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Abstract

Any science deals with the study of certain models of the real world. However,

a model is always an abstraction resulting in some uncertainty, which must be

considered. The theory of fuzzy sets is one way of formalizing one of the types

of uncertainty that occurs when modeling real objects. Fuzzy sets have been ap-

plied in various real-world problems such as control system engineering, image

processing, and weather forecasting systems.

This research focuses on applying the categorical framework of abstract L-

fuzzy relations to L-fuzzy topology with ideas, concepts and methods of the theory

of L-fuzzy sets. Since L-fuzzy sets were introduced to deal with the problem of ap-

proximate reasoning, t − norm based operations are essential in the definition of

L-fuzzy topologies. We use the abstract theory of arrow categories with additional

t − norm based connectives to define L-fuzzy topologies abstractly. In particular,

this thesis will provide an abstract relational definition of an L-fuzzy topology,

consider bases of topological spaces, continuous maps, and the first two separa-

tion axioms T0 and T1. The resulting theory of L-fuzzy topological spaces provides

the foundation for applications and algorithms in areas such as digital topology,

i.e., analyzing images using topological features.
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Chapter 1

Introduction

The concept of a fuzzy sets, introduced in 1985 by Zadeh [20], has aroused great in-
terest among mathematicians, both theoretical and applied. It also inspired enthu-
siasm among some engineers, biologists, psychologists, economists and specialists
in other fields who use mathematical ideas and methods in their research. General
topology was one of the first areas of theoretical mathematics to which fuzzy sets
became systematically involved. In 1968, three years after the appearance of the
Zadeh’s work, Chang introduced the concept of a fuzzy set to general topology [3].
This work was followed by others in which Chang’s fuzzy spaces and other struc-
tures of topological type for systems of fuzzy sets were considered. Since then, the
intensity of research in the field of fuzzy topology has increased dramatically, and
currently there are many publications on this topic.

The purpose of this thesis is to construct and discuss a categorical framework
of abstract L-fuzzy relations and apply it to L-fuzzy topology. The theory of L-
fuzzy topology combines general topology and ideas, concepts and methods of
the theory of L-fuzzy sets. An important characteristic of L-fuzzy topology is given
by the fact that the axiom requiring that the intersection of two open sets is open
is replaced by a modified intersection based on a t-norm like operation ∗ on the
underlying lattice instead of the logical "and" in the Boolean case or the lattice meet
in lattice case, respectively. The lack of theoretical investigation of ∗ operations in
the context of abstract L-fuzzy relations requires additional intensive research. In
this thesis we define L-fuzzy topologies abstractly using arrow categories with an
additional ∗ operation.

The resulting theory of L-fuzzy topological spaces provides the foundation for
applications and algorithms in areas such as digital topology, i.e., analyzing images
using topological features. For example, concepts of topology are used to specify
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and develop important image analysis algorithms such as border tracing, surface
tracing, detecting and counting of components, holes or tunnels, or region filling
[9]. Since image data might be uncertain, using L-fuzzy sets as basic components
allows these concepts and algorithms to be applied in a more general context [12].

We briefly describe the content of the thesis. Chapter 2 presents the minimum
background information which is necessary for reading the main text of the work.
The chapter is divided into three main sections, namely lattices, L-fuzzy relations
and categories of relations. In the second section we define the new set of ∗ oper-
ations based on t-norm which plays key role in constructing of fuzzy categories in
third section. Chapter 3 gives briefly definitions of general, fuzzy and relational
topologies. This review of the classical approaches in literature also serves as a
reference to compare the abstract relational approach taken in this thesis. Chap-
ter 4, the main contribution of this thesis, presents a relation-algebraic approach
to fuzzy topology. In this chapter we take a fresh look at many of the issues dis-
cussed earlier and cover important topics of fuzzy topology in terms of relations,
such as bases, construction of topologies and separations axioms. The last chapter
includes our concluding remarks and some ideas about future work.

The thesis has been proposed as a seminar in Foundations and Applications
of Computational Topology and Information Processing conference and will be
published in Relational and Algebraic Methods in Computer Science conference.
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Chapter 2

Mathematical Preliminaries

2.1 Lattices

This chapter will introduce main concepts of lattice theory and provide some ex-
amples. For more details we refer to [4, 17].

One of the most researched concepts is partially-ordered set or poset.

Definition 2.1. A partial-ordered set or poset is a set A on which a binary relation ≤ is
defined that satisfies the following axioms for all x, y, z ∈ A

x ≤ x (reflexive),

if x ≤ y and y ≤ z, then x ≤ z (transitive),

if x ≤ y and y ≤ x, then x = y (antisymmetric).

If x ≤ y or y ≤ x is true for all x, y ∈ A, then such a set is called a linearly ordered
set.

Example 1. We can take some set of numbers {0, 1, 2,⋯, 9} and consider the
regular order of smaller or equal. Visualization of the posets is done by Hasse
diagrams, where vertices are the elements of the posets and edges are relationship
by order. Please note that in a Hasse diagram elements that are printed higher
are bigger than the elements below. Furthermore, a Hasse diagram only shows
the essential information. Lines due to transitivity and reflexivity are usually not
shown.

Similarly, we can draw a set of letters in alphabetical order. Figure 2.1 shows
the Hasse diagram of natural numbers and alphabets in linear order.

Example 2. Consider the set {a, b} and all its subsets, i.e., the so-called power
set P({a, b}) of {a, b}. There are four of them: ∅,{a},{b},{a, b}. The order relation
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9

8

∶

2

1

z

y

∶

b

a

Figure 2.1: Hasse diagrams of natural numbers and alphabets.

is the inclusion relation ⊆. In this order there is the smallest element ∅, the largest
element {a, b} and two element {a} and {b} between them. These two intermediate
elements are not comparable to each other (none of the sets {a} and {b} is a subset
of the other).

{a, b}

{a} {b}

∅

{a, b, c}

{a, b} {b, c}

{b}

{a, c}

{a} {c}

∅

Figure 2.2: Hasse diagrams of the powersets of {a, b} and {a, b, c}.

Similarly consider all subsets of the three-element set {a, b, c} (there are eight of
them) and also order them by inclusion. Figure 2.2 shows the Hasse diagram of
the two powersets of {a, b} and {a, b, c}.

Example 3. Let the set consist of some positive integers, and x ≤ y is understood
as "x is a divisor of y". Each number is its divisor (reflexivity). If a is divisible by
b, and at the same time b is divisible by a, then these numbers are equal (anti-
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symmetry). Finally, if a divides b and b divides c, then b
a and c

b are integers, and
their product equal to c

a is also an integer, that is a divides c. So we get a partially
ordered set.

Now lets consider a partially ordered set (A,≤). If M is a subset of A, then every
element a ∈ A (not necessarily a ∈ M) satisfying the condition a ≥ x for all x ∈ M
is called the upper bound of the subset M of the set A. The dual concept is called
a lower bound. The greatest elements of all the lower bounds of M is called the
greatest lower bound of the subset M. If there exists an greatest lower bound, then it
is unique. The least upper bound of the subset M is defined similarly and they are
the least elements of all the upper bounds of M (if it exists) [17].

h

f g

d e

c

a b

Figure 2.3: The greatest lower bound and the least upper bound of A = {a, b} and
B = {c, d, e}.

Figure 2.3 illustrates all least upper bounds and all greatest lower bounds of
A = {a, b} and B = {c, d, e}. Since A has no lower bounds, it has no greatest lower
bound. However, elements c − h are upper bounds of A, and c is the least upper
bound. In case of B there are three lower bounds c, a and b, where c is greatest
lower bound for B. The upper bounds of B are f , g and h. Since f and g are not
comparable, B has no least upper bound.

Definition 2.2. A partially ordered set L is called an upper semilattice if each pair of its
elements x and y has a least upper bound or join, denoted by x∨y; and a lower semilattice if
each pair of elements has a greatest lower bound or meet, denoted by x ∧ y. Both upper and
lower semilattice are called complete iff every subset M has a least upper bound denoted
by ⋁M and a greatest lower bound denoted by ⋀M. L is called a lattice iff it is a lower
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and upper semilattice. Furthermore, it is called bounded iff it has a least element 0 and a
greatest element 1.

The elements 1 and 0 of upper and lower semilattices respectively are unique.
If L is complete, then we have 1 = ⋁ L and 0 = ⋀ L.

Obviously, each pair of elements can have only one upper and lower bound (if
they exist), so finding the bounds can be treated as the result of the meet and join
operations. In this sense, the semilattice is equivalent to an algebra with a poset A
and a signature {∨,∧}.

For semilattice operations, the following rules are true:

x ∧ x = x, x ∨ x = x idempotency;
x ∧ y = y ∧ x, x ∨ y = y ∨ x commutativity;

x ∧ (y ∧ z) = (x ∧ y)∧ z, x ∨ (y ∨ z) = (x ∨ y)∨ z associativity;
x ∧ y = x⇐⇒ x ≤ y, x ∨ y = x⇐⇒ x ≤ y consistency;

y ≤ z⇒ x ∧ y ≤ x ∧ z, y ≤ z⇒ x ∨ y ≤ x ∨ z monotonicity.

If the partially ordered set is a lattice, then we have in addition:

x ∧ (x ∨ y) = x, x ∨ (x ∧ y) = x absorption.

A proof of the properties above can be found in [6].
In particular, a complete lattice (L,≤) is a regular lattice, it necessarily contains a

greatest and a least elements. As an example of a complete lattice, we can consider
any powerset with ⋂ and ⋃ operations or the unit interval [0, 1]. The real numbers
(R,≤) is not a complete lattice. However the extension (R∪ {−∞,∞},≤) with −∞ <

x < +∞ for all x ∈ R is a complete lattice.
A function f from a lattice M to a lattice L is called a homomorphism if

f (x ∨ y) = f (x)∨ f (y), f (x ∧ y) = f (x)∧ f (y)

for all x, y ∈ M.
Similarly, a complete lattice homomorphism is a function f from L1 to L2 satisfying:

f (⋁M) = ⋁
x∈M

f (x), f (⋀M) = ⋀
x∈M

f (x)

for all subsets M of L1.
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2.1.1 Distributive Lattices

There are many classes of lattices. One of the most important classes from the
combinatorial point of view is formed by distributive lattices.

Lemma 2.3. Let L be a lattice. Then the following inequalities are true

(1) x ∨ (y ∧ z) ≤ (x ∨ y)∧ (x ∨ z),

(2) (x ∧ y)∨ (x ∧ z) ≤ x ∧ (y ∨ z).

Proof. Since x ≤ x ∨ y and x ≤ x ∨ z, x ≤ (x ∨ y) ∧ (x ∨ z). Similarly, y ∧ z ≤ y ≤ x ∨ y
and y ∧ z ≤ z ≤ x ∨ y imply y ∧ z ≤ (x ∨ y) ∧ (z ∨ y). Together, we obtain x ∨ (y ∧ z) ≤
(x ∨ y) ∧ (x ∨ z). Analogously, we can show the second inequality is a dual of the
first inequality.

Now we can define distributive lattices, by replacing inequalities of the previ-
ous lemma to equalities.

Definition 2.4. A lattice L is said to be distributive if one of the following laws is satisfied:

(1) x ∧ (y ∨ z) = (x ∧ y)∨ (x ∧ z),

(2) x ∨ (y ∧ z) = (x ∨ y)∧ (x ∨ z)

for all x, y, z ∈ L.

It can be shown that any of these laws is equivalent to each other, and the
following lemma will prove it.

Lemma 2.5. For all lattices L, (1) and (2) are equivalent.

Proof. We can prove equivalency of above axioms by using absorption, associativ-
ity and commutativity laws. Let us start with (1) is equivalent to (2):

x ∨ (y ∧ z) = (x ∨ (x ∧ z))∨ (y ∧ z) absorption

= x ∨ ((x ∧ z)∨ (y ∧ z)) associativity

= x ∨ ((z ∧ x)∨ (z ∧ y) commutativity

= x ∨ (z ∧ (x ∨ y)) (1)

= (x ∧ (x ∨ y))∨ (z ∧ (x ∨ y)) absorption

= ((x ∨ y)∧ x)∨ ((x ∨ y)∧ z) commutativity

= (x ∨ y)∧ (x ∨ z) (1)
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Similarly (changing ∨ to ∧ and vice versa), we can obtaine a proof of equivalency
from (2) to (1).

b

x zy

a

Figure 2.4: The example of nondistributive lattice.

Figure 2.4 illustrates the example of nondistributive lattice. Obviously, this
Hasse diagram defines a lattice and that x ∨ (y ∧ z) = x ∨ a = x, but (x ∨ y)∧ (x ∨ z) =
b ∧ b = b ≠ x.

Definition 2.6. A complete lattice L is said to satisfy the first infinite distribution law iff

x ∧⋁M = ⋁
y∈M

(x ∧ y)

for all x ∈ L and M ⊆ L.

Obviously, every complete lattice that satisfies the first infinite distribution law
is also distributive.

2.1.2 Complete Heyting Algebra

This class of lattices is interesting by providing a notion of complement or nega-
tion. This is also known as a relative pseudo-complement.

Definition 2.7. Let L be a bounded lattice. L is called Heyting algebra if for every two
elements x and y there exists a pseudo-complement x relative to y (x → y), satisfying:

z ≤ y → x⇐⇒ x ∧ z ≤ y

for all z ∈ L.

In every Heyting Algebra we have x → x = 1. The pseudo-complement of x
relative to 0 is called the pseudo-complement of x.
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A Heyting Algebra homomorphism is a homomorphism of bounded lattices f
that preserves relative pseudo-complementation, i.e, f (x → x) = f (x) → f (y) for
all x, y.

Now we can show the distributive property of Heyting Algebra.

Theorem 2.8. Every Heyting Algebra is distributive.

Proof. From the distributive law found in entry distributive inequalities (Lemma
2.5), we only need to show that

x ∧ (y ∨ z) ≤ (x ∧ y)∨ (x ∧ z).

Since x ∧ y ≤ (x ∧ y)∨ (x ∧ z), so y ≤ x∶ ((x ∧ y)∨ (x ∧ z)). Analogously, z ≤ x → ((x ∧
y)∨ (x ∧ z)). Then y ∨ z ≤ x → ((x ∧ y)∨ (x ∧ z)), or x ∧ (y ∨ z) ≤ (x ∧ y)∨ (x ∧ z).

From Definition 2.6 and Theorem 2.8 we can conclude the following:

Definition 2.9. If L is a complete lattice, then the following are equivalent:

(1) L satisfies the first infinite distribution law.

(2) L is a Heyting algebra.

2.2 L-Fuzzy Relations

L-Fuzzy relations play a fundamental role in the theory of fuzzy systems. The
apparatus of the theory of L-fuzzy relations is used in modeling the structure of
complex systems, analyzing decision-making processes, modeling managing tech-
nological processes, etc..

The theory of L-fuzzy relations is also used in problems in which the theory of
regular relations is traditionally applied. The apparatus of the theory of regular
relations is used for a qualitative analysis of the relations between objects of the
system under investigation. However, when methods of quantitative analysis of
relations for some reasons cannot be applied, L-fuzzy relations come in handy.

The regular n− ary relation Rr is defined as a subset of the Cartesian product of
n sets

Rr ⊆ X1 ×X2 ×⋯×Xn.

Like a fuzzy set, fuzzy relations can be specified using its membership function

f (Rr) ∶ X1 ×X2 ×⋯×Xn → [0, 1],
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where [0, 1] is the unit interval of the real numbers. However, in the theory of
L-fuzzy relations it is often convenient to take a more general structure than the
interval [0, 1]. As a L-fuzzy relation we understand a function

R∶X1 ×X2 ×⋯×Xn → L,

which maps the Cartesian product of the sets X1 × X2 ×⋯ × Xn into the complete
Heyting algebra L.

Notice that L-fuzzy relations generalizes the notion of fuzzy relations since the
unit interval is a complete Heyting algebra.

For finite relations it is often convenient to represent them as matrices. For
example, if R ∶ X ×Y → L with X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4, y5} is an
L-fuzzy relation, then the matrix representation of R is shown in Figure 2.5. The d
in the second row of the matrix means that the second element of X is in relation
R to the second element of Y by degree d.

R =

⎛
⎜
⎜
⎜
⎝

1 a b 1 0
c d 0 0 1
0 1 c a b
1 0 a c d

⎞
⎟
⎟
⎟
⎠

1

c d

a b

0

L =

Figure 2.5: Matrix representation of L-fuzzy relations

2.2.1 Basic Operations and Properties

The known operations on regular relations can be generalized to L-fuzzy relations.
Let Q, R∶A → B, S∶B → C and P ∶ D → B be L-fuzzy relations [17]. Then we can
define the following operations:

The intersection between relations Q and R is defined as

(Q ∩ R)(x, y) ∶= Q(x, y)∧ R(x, y).
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Union between those relations is defined as

(Q ∪ R)(x, y) ∶= Q(x, y)∨ R(x, y).

The conversion of relation Q is defined as

QT(x, y) ∶= Q(y, x).

The composition of relations Q and S is defined as

(Q ○ S)(x, z) ∶= ⋁
y∈B

((Q(x, y)∧ S(y, z)).

The inclusion of relations Q and R is defined as

Q ⊆ R⇐⇒ ∀x ∈ A, y ∈ B ∶ Q(x, y) ≤ R(x, y).

The least and greatest relations are defined as

⊧AB(x, y) ∶= 0, ⊧ AB(x, y) ∶= 1.

The identity relation on the set A is defined as

IA(x1, x2) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 iff x1 = x2,

0 otherwise.

The left residual with → relative pseudocomplement is defined as

(Q/P)(x, u) ∶=⋀
y

P(u, y)→ Q(x, y).

Let us give an example for each of the operations above. Consider the fol-
lowing matrix representations of relations Q, R, and S mentioned earlier, with
the additional relation P ∶ A → B, where A = {x1, x2, x3}, B = {y1, y2, y3, y4} and
C = {z1, z2, z3, z4}.
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Q =

⎛
⎜
⎜
⎜
⎜
⎝

y1 y2 y3 y4

x1 0.3 0.2 1 0

x2 0.8 1 0 0.2

x3 0.5 0 0.4 0

⎞
⎟
⎟
⎟
⎟
⎠

, R =

⎛
⎜
⎜
⎜
⎜
⎝

y1 y2 y3 y4

x1 0.3 0 0.7 0

x2 0.1 0.8 1 1

x3 0.6 0.9 0.3 0.2

⎞
⎟
⎟
⎟
⎟
⎠

,

P =

⎛
⎜
⎜
⎜
⎜
⎝

y1 y2 y3 y4

x1 0.4 0.9 1 0.2

x2 1 1 0.5 0.6

x3 0.8 0.2 0.7 0

⎞
⎟
⎟
⎟
⎟
⎠

, S =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z1 z2 z3 z4

y1 0.9 0 0.3 0.4

y2 0.2 1 0.8 0

y3 0.8 0 0.7 1

y4 0.4 0.2 0.3 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then the intersection and union between Q and R performed component-wise us-
ing join ∧ and meet ∨ operations respectively, or in other words, minimum and
maximum functions. The 0.7 and 1 in the first row of the both matrices below
means Q(x1, y3) ∧ R(x1, y3) = 1 ∧ 0.7 = 0.7 and Q(x1, y3) ∨ R(x1, y3) = 1 ∨ 0.7 = 1
respectively.

Q ∩ R =

⎛
⎜
⎜
⎜
⎜
⎝

y1 y2 y3 y4

x1 0.3 0 0.7 0

x2 0.1 0.8 0 0.2

x3 0.5 0 0.3 0

⎞
⎟
⎟
⎟
⎟
⎠

, Q ∪ R =

⎛
⎜
⎜
⎜
⎜
⎝

y1 y2 y3 y4

x1 0.3 0.2 1 0

x2 0.8 1 1 1

x3 0.6 0.9 0.4 0.2

⎞
⎟
⎟
⎟
⎟
⎠

.

The composition (or product) of L-fuzzy relations is important in the theory of
fuzzy sets, and it is done similarly to matrix multiplication in linear algebra. How-
ever, instead of multiplication and summing, we use join ∧ and meet ∨ operations.
The 0.5 in the third row of the composition matrix below is computed the following
way:
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(Q ○ S)(x3, z1) =⋁
y
(Q(x3, y)∧ S(y, z1)

= (Q(x3, y1)∧ S(y1, z1))∨ (Q(x3, y2)∧ S(y1, z2))

∨ (Q(x3, y3)∧ S(y3, z2))∨ (Q(x3, y4)∧ S(y1, z4))

= 0.5∨ 0∨ 0.4∨ 0

= 0.5

The conversion of relation R and composition of relations Q and S are shown
below

RT =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 x3

y1 0.3 0.1 0.6

y2 0 0.8 0.9

y3 0.7 1 0.3

y4 0 1 0.2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q ○ S =

⎛
⎜
⎜
⎜
⎜
⎝

z1 z2 z3 z4

x1 0.8 0.2 0.7 1

x2 0.8 1 0.8 0.4

x3 0.5 0 0.4 0.4

⎞
⎟
⎟
⎟
⎟
⎠

.

The least ⊧AB and greatest ⊧ AB relations are as follows

⊧AB(x, y) =

⎛
⎜
⎜
⎜
⎜
⎝

y1 y2 y3 y4

x1 0 0 0 0

x2 0 0 0 0

x3 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, ⊧

AB(x, y) =

⎛
⎜
⎜
⎜
⎜
⎝

y1 y2 y3 y4

x1 1 1 1 1

x2 1 1 1 1

x3 1 1 1 1

⎞
⎟
⎟
⎟
⎟
⎠

,

Since each element of relation Q is less than each element of relation P, or Q(x, y) ≤
P(x, y) for all x ∈ A, y ∈ B, it is obvious that relation P includes relation Q, or Q ⊆ P.

The following properties of L-fuzzy relations and their proofs are adopted from
[17].

Theorem 2.10. Let L be a complete Heyting Algebra, then the following properties are
true for all L-fuzzy relations Q, Q

′

, Qi∶A → B, R, Ri∶B → C, and S∶C → D for i ∈ I.

(1) Q ○ IB = Q and IB ○ R = R,

(2) (Q ○ R) ○ S = Q ○ (R ○ S),

(3) (Q ∩Q
′

)T = QT ∩Q
′T,
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(4) (Q ○ R)T = RT ○QT,

(5) (QT)T = Q,

(6) Q ○ (⋂
i∈I

Ri) ⊆ ⋂
i∈I

(Q ○ Ri) and (⋂
i∈I

Qi) ○ R ⊆ ⋂
i∈I

(Qi ○ R),

(7) Q ○ R ∩ T ⊆ Q ○ (R ∩QT ○ T),

(8) Q ○ ⊧(BC) = ⊧AC,

(9) Q ○ (⋃
i∈I

Ri) = ⋃
i∈I

(Q ○ Ri) and (⋃
i∈I

Qi) ○ R = ⋃
i∈I

(Qi ○ R),

Proof. (1) Let us breakdown the definitions of composition and identity relations

(Q ○ IB)(x, z) = ⋁
y∈B

(Q(x, y)∧ IB(y, z))

= Q(x, z)∧ 1

= Q(x, z).

(2) Since L is a complete Heyting Algebra, it also satisfies the first infinite distri-
bution law. Then we can use the first equation from Definition 1.8 and show the
following

((Q ○ R) ○ S)(x, u) = ⋁
z∈C

((Q ○ R)(x, z)∧ S(z, u))

= ⋁
z∈C

((⋁
y∈B

(Q(x, y)∧ R(y, z)))∧ S(z, u))

= ⋁
z∈C

⋁
y∈B

(Q(x, y)∧ R(y, z)∧ S(z, u))

= ⋁
y∈B

⋁
z∈C

(Q(x, y)∧ R(y, z)∧ S(z, u))

= ⋁
y∈B

(Q(x, y)∧ (⋁
z∈C

(R(y, z)∧ s(z, u))))

= ⋁
y∈B

(Q(x, y)∧ (R ○ S)(y, u))

= (Q ○ (R ○ S)(x, u)).

(3) From the basic intersection and conversion operations on relations mentioned
earlier, the next derivative is true.



CHAPTER 2. MATHEMATICAL PRELIMINARIES 15

(Q ∩Q
′

)T(x, y) = (Q ∩Q
′

)(y, x)

= Q(y, x)∧Q
′

(y, x)

= QT(x, y)∧Q
′T(x, y)

= (QT ∩Q
′T)(x, y).

(4) From the composition and conversion operations on relations, the next deriva-
tive is clear

(Q ○ R)T(x, z) = (Q ○ R)(z, x)

= ⋁
y∈B

(Q(z, y)∧ R(y, x))

= ⋁
y∈B

(RT(x, y)∧QT(y, z))

= (RT ○QT)(x, z).

(5) The following from the conversion definition.

(QT)T(x, y) = QT(y, x)

= Q(x, y)

(6) Again, using the composition operation on relations, we can show the following
is true.

(Q ○ (⋂
i∈I

Ri))(x, z) = ⋁
y∈B

(Q(x, y)∧ (⋂
i∈I

Ri)(y, z))

= ⋁
y∈B

(Q(x, y)∧⋀
i∈I

Ri(y, z))

= ⋁
y∈B
⋀
i∈I

(Q(x, y)∧ Ri(y, z))

≤⋀
i∈I
⋁
y∈B

(Q(x, y)∧ Ri(y, z))

=⋀
i∈I

(Q ○ Ri)(x, z)

= (⋂
i∈I

(Q ○ Ri))(x, z)

(7) Since L is complete upward-distributive, and using composition and intersec-
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tion operations, the following computation is true.

(Q ○ R ∩ T)(x, z) = (Q ○ R)(x, z)∧ T(x, z)

= (⋁
y∈B

(Q(x, y)∧ R(y, z)))∧ T(x, z)

= ⋁
y∈B

(Q(x, y)∧ R(y, z)∧ T(x, z))

= ⋁
y∈B

(Q(x, y)∧ R(y, z)∧Q(x, y)∧ T(x, z))

≤ ⋁
y∈B

(Q(x, y)∧ R(y, z)∧ ( ⋁
x′∈A

(Q(x
′

, y)∧ T(x
′

, z))))

= ⋁
y∈B

(Q(x, y)∧ R(y, z)∧ (QT ○ T)(y, z))

= ⋁
y∈B

(Q(x, y)∧ (R ∩QT ○ T)(y, z))

= (Q ○ (R ∩QT ○ T))(y, z).

(8) The next proof comes from the composition and least element ⊧BC(x, z) = 0

(Q ○ ⊧BC)(x, z) = ⋁
y∈B

(Q(x, y)∧ ⊧BC(y, z))

= 0

= ⊧AC(x, z).

(9) The proof can be found analogously to (6), in which we use the union instead
of the intersection operation. Also, it means that ○ is a lower adjoint of a triple of
residuated operations. The upper left and lower right adjoints are denoted in [17]
by S/R and Q/S.
(10) Proof of the definition of the residuals can be found in [17].

2.2.2 Crispness and Arrow Operations

As mentioned earlier, L-fuzzy relations are a generalized form of regular relations
which includes least element 0 and greatest element 1. We call an L-fuzzy relation
0 − 1 crisp if it uses only those elements. In other words, an L-fuzzy relation Q is
called 0− 1 crisp iff Q(x, y) = 0 or Q(x, y) = 1 for all x and y. The crisp relation may
be identified with regular relations, i.e. with relations over the truth values B. It is
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clear that the set of 0− 1 relations is closed under all operations defined above [17].
Another important class of relations are scalar relations. Scalar relations were

first introduced in [5] and [8]. Scalar relations are relations R∶A → B fulfilling

⊧

AA; R; ⊧ BB = R [17]. Figure 2.6 shows two scalar relations as matrices in which u
is an element of the underlying lattice L. They can be characterized as diagonal
matrices with one element from L on the diagonal.

⎛
⎜
⎜
⎜
⎝

u 0 0 0
0 u 0 0
0 0 u 0
0 0 0 u

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

Scalar relation ⊧AA as a scalar relation

Figure 2.6: Two scalar relations.

Definition 2.11. For some u ∈ L and ∀x, y ∈ A, a scalar α∶A → A is

αu
A(x, y) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u iff x = y,

0 otherwise

The scalar relation on the left of Figure 2.6 is the scalar αu
A.

L-fuzzy relations can be decomposed as a regular relations, and conversely,
from regular relations we can synthesize L-fuzzy relations. This decomposition
and synthesis can be done by utilizing the α-cuts of L-fuzzy relations.

Definition 2.12. Let α ∈ L and R ∶ A → B. Then the α-cut of an L-fuzzy relations R is a
0− 1 crisp relation defined by the following.

Rα(x, y) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 iff R(x, y) ≥ α,

0 otherwise

If we choose α = 0.6 in the example of Section 2.2.1, then we obtain R0.6 as the
following matrix.
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R0.6(x, y) =

⎛
⎜
⎜
⎜
⎜
⎝

y1 y2 y3 y4

x1 0 0 1 0

x2 0 1 1 1

x3 1 1 0 0

⎞
⎟
⎟
⎟
⎟
⎠

where all pairs of relation R that are greater or equal to 0.6 are increased to 1, and
others decreased to 0. From a theoretical point of view it is sufficient to introduce
just two additional operations in order to obtain all α-cut operations. These new
operations are called up-arrow (support) and down-arrow (kernel). They are defined
as follows.

R↑(x, y) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 iff R(x, y) ≠ 0,

0 otherwise
R↓(x, y) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 iff R(x, y) = 1,

0 otherwise.

Arrow operations are dual to each other. The up-arrow operation increases all
membership degrees that are higher than 0, and the down-arrow operation de-
creases those less than 1. Both operations form 0− 1 crisp relations, which are least
and greatest 0 − 1 crisp relations respectively. For the same example above, arrow
operations on relation R will be the following matrices.

R↑(x, y) =

⎛
⎜
⎜
⎜
⎜
⎝

y1 y2 y3 y4

x1 1 0 1 0

x2 1 1 1 1

x3 1 1 1 1

⎞
⎟
⎟
⎟
⎟
⎠

, R↓(x, y) =

⎛
⎜
⎜
⎜
⎜
⎝

y1 y2 y3 y4

x1 0 0 0 0

x2 0 0 1 1

x3 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

.

Lastly we can introduce the definition of arbitrary α-cuts.

Definition 2.13. Let R ∶ A → A be a relation and αu ∶ A → A be a scalar with some u ∈ L.
Then the relational expression (αu/R)↓ computes the α-cut of R.

As an example to above definition consider arbitrary relation R in Figure 2.7
with the scalar αu, the α-cut of R is as follows.

(α/R)↓ =

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

u 0 0
0 u 0
0 0 u

⎞
⎟
⎟
⎟
⎠

/

⎛
⎜
⎜
⎜
⎝

1 c 0
u u 0
0 b 1

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

↓

=

⎛
⎜
⎜
⎜
⎝

1 0 0
1 1 0
0 b 1

⎞
⎟
⎟
⎟
⎠

↓

=

⎛
⎜
⎜
⎜
⎝

1 0 0
1 1 0
0 0 1

⎞
⎟
⎟
⎟
⎠
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R =
⎛
⎜
⎝

1 c 0
u u 0
0 b 1

⎞
⎟
⎠

1

u

c b

0

Figure 2.7: Arbitrary relation R.

The above operations have their own properties, and they are grouped in the
next lemma adopted from [17].

Lemma 2.14. Let L be a complete Heyting Algebra. Then the following properties are true
for all L-fuzzy relations Q, R∶A → B and S∶B → C.

(1) Q is 0− 1 crisp iff Q↑ = Q iff Q↓ = Q,

(2) (RT ○ S↓)↑ = R↑T ○ S↓,

(3) (Q ∩ R↓)↑ = Q↑ ∩ R↓,

(4) if u ≠ 0, then αu↑
A = IA,

(5) Qu = (αu
A/Q)↓.

Proofs for above properties of operations can be found in [17].

2.2.3 T-Norm Based Operations

The definition of t-norm was first used in the study of probabilistic metric spaces
[15] where triangular inequalities were enlarged using the theory of t-norm. Then
its area of use extended to the fuzzy set theory, where t-norm was used for the
intersection and union of fuzzy sets [7] .

In this section we will introduce new arbitrary operations ∗, ∗′ and a set of ax-
ioms, so that operations ∗ and ∗

′ will became abstract versions of the meet and
composition operations based on the t-norm we mentioned earlier.

Before we go any further with the set of axioms, let us give some basic defini-
tions of generalized t-norms between [0, 1] to arbitrary complete lattices [19].

Definition 2.15. If L is complete lattice, then ⟨L,∗, 1⟩ is called an Abelian monoid iff
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(1) ∗ is associative and commutative with neutral element 1,

(2) ∗ is monotonic in both parameters.

The weakest t-norm with monoid operation ⊛ is given by

x⊛ y ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

x iff y = 1,

y iff x = 1,

0 otherwise.

Lemma 2.16. Let ⟨L,⊆,∗, 1⟩ be an Abelian monoid. Then the following is true for all
x, y ∈ L.

(1) x ∗ y ⊆ x and x ∗ y ⊆ y,

(2) x ∗ 0 = 0 ∗ x = 0,

(3) x ∗ (y ∧ z) ⊆ x ∗ y ∧ x ∗ z and (x ∧ y) ∗ z ⊆ x ∗ z ∧ y ∗ z,

(4) x⊛ y ⊆ x ∗ y ⊆ x ∧ y,

(5) ∗ = ∧ iff ∗ is idempotent.

In this work, we use the same ∗ sign to denote the operation on scalars and ∗

based meet operation on relations. In the case of L-relations, it is clear from the
next component-wise definition of the meet and composition operators based on ∗

on scalar relations.

Definition 2.17. Let Q, R ∶ A → B and S ∶ B → C are L-relations. Then we define

(Q ∗ R)(x, y) = Q(x, y) ∗ R(x, y),

(Q∗
′S)(x, z) = ⋁

y∈B
Q(x, y) ∗ S(y, z).

As we mentioned earlier, ∗ operators from the left side of the above equations
are not the same as ∗ operators from the right side.

If the ∗ operation distributes over arbitrary unions, then we call ∗ continuous.
The continuous condition, among other things, ensures a good behavior of the
residual derived from the meet operation. Continuous t-norms ∗ have a unique
residuum, which is a binary operation Ð→∗ such that for all x, y and z in [0, 1],
x ∗ y ≤ z iff x ≤ y Ð→∗ z [19].
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Let us start with the ∗ operation. The following two lemmas adopted from [19],
and their proofs will be discussed in the next chapter.

Lemma 2.18. Let Q, R ∶ A → B and S ∶ B → C are L-relations. Then the following is true.

(1) ∗ is associative and commutative,

(2) ∗ is continuous,monotonic and Q ∗ R ⊑ S⇔ Q ⊑ R Ð→∗ S,

(3) (Q ∗ R)T = QT ∗ RT,

(4) Q ∗ R↓ = Q ∩ R↓.

Now, let us consider ∗
′ operation, which we assume binds tighter than ∗ opera-

tion.

Lemma 2.19. Let P, Q ∶ A → B and R, S ∶ B → C and O ∶ A → C are L-relations. Then
the following is true.

(1) ∗
′ is associative,

(2) ∗
′ is continuous, monotonic, and Q∗

′R ⊑ S⇔ Q ⊑ S /∗ R,

(3) (Q∗
′R)T = QT∗

′RT,

(4) Q∗
′R↓ = Q; R↓

(5) (P ∗Q)
∗
′ (R ∗ S) ⊆ P∗′R ∗Q∗

′S,

(6) Q; R ∗O ⊆ Q; (R ∩QT∗
′S),

(7) Q∗
′R ∗O ⊆ Q; (R ∗QT∗

′O),

(8) (P ∗Q)
∗
′R ∗O ⊑ P∗′ (R ∗QT∗

′O).

where ; is composition that binds tighter than lattice operations.

2.3 Categories of Relations

In this section, we will discuss the various categorical paths that requires the com-
plete Heyting algebra to formalize binary relations between two different sets.
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2.3.1 Categories

Category theory offers a framework that is sufficiently expressive for many con-
cepts, constructions and theories in mathematics, which often makes certain hid-
den aspects of the theory explicit and allows new viewpoints.

The following definitions are basic notions from category theory as defined in
[17]. An extensive theory can be found in [1].

Definition 2.20. Category C consists of

(1) a class of objects ObjC ,

(2) for every pair of objects A and B a class of morphisms C[A, B],

(3) an associative binary operation ; mapping each pair of morphisms f in C[A, B] and
g in C[B, C] to a morphism f ; g in C[A, C],

(4) for every object A a morphism IA such that for all f in C[A, B] and g in C[C, A] we
have IA; f = f and g; IA = g.

Let us give some common categories with its objects and morphisms.

1. Set - category of sets, where sets are objects, and functions between them are
morphisms.

2. Rel - category of relations, where sets are objects and relations are mor-
phisms.

3. L-Rel - category of L -fuzzy relations, where the objects are non-empty sets
and the morphisms are L -fuzzy relations.

4. Vect - category of vector spaces and linear mapping as objects and mor-
phisms respectively.

5. PO - category of posets with objects and morphisms as posets and monotone
functions respectively.

In this work, the morphism f in C[A, B] is denoted by f ∶ A → B, similar to a
relation R ∶ A → B, where relations will be morphisms.

Most literature in category theory use diagrams to visualize equations in cate-
gories. The nodes of the graph is the objects of a category, and an arrow between
nodes represents a morphism between the corresponding objects. It is understood
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that a path in the graph represents the composition of the arrows along the path.
Please note that this representation already uses the associativity of composition,
since a path of length more than 2 has more than one potential interpretation as a
sequence of compositions. All of those different interpretations are equivalent due
to the associativity of composition.

Any two paths with the same start and end nodes are understood as an equality
of the two compositions along the two paths. For example, the left diagram in
Figure 2.8 shows that the composition of f and g is equal to h, i.e. f ; g = h. The
right diagram shows the identity law of categories.

A B

C

A B

B

f

g
h

f

f IB

Figure 2.8: Visual representation of categories.

However, we will often use diagrams to indicate the typing, i.e., the source
and target, of relations appearing in a relational term. In this case no equation is
implied by the corresponding diagram.

The following Lemma defines L -Rel, the category of L-fuzzy relations we men-
tioned earlier as an example of categories.

Definition 2.21. Let L be a complete Heyting algebra. Then the structure satisfying that

(1) The objects are nonempty sets,

(2) A relation R ∶ A → B is a function A × B → L,

together with composition of L-relations and the identity relation forms a category.

Another important notion in category theory is the notion of a functor. Functors
are homomorphisms between categories.

Definition 2.22. Functor F ∶ C1 → C2 is a mapping that converts objects to objects, and
morphisms to morphisms, denoted by pair of functions (FObj, FMor) where
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(1) FMor( f ); FMor(g) = FMor( f ; g) for all morphisms f ∶ A → B and g ∶ B → C and
objects A, B, and C in C1,

(2) FMor(IA) = IFObj(A) for all objects A in C1.

A functor F is called injective iff FMor is injective, and full iff for all objects A and
B and morphisms g ∶ FMor(A) → FMor(B) there is a morphism f ∶ A → B such that
FMor( f ) = g.

The Simplest example of functors is the identity functor IC1 ∶ C1 → C1, which
assigns to each object of the category itself this object and to each morphism itself
this morphism.

2.3.2 Allegories

In theory of categories, an allegory is a category with some structural elements of
the category of sets and binary relations between them. Allegories can be used as
an abstraction of the categories of relations. The following is a general definition
of allegories as defined in [17].

Definition 2.23. An allegory R is a category that satisfies the following.

(1) For all objects A and B, the class of morphisms R[A, B] is a lower semilattice. The
meet and the induced ordering are denoted by ⊓,⊑ respectively. The elements in
R[A, B] are called relations.

(2) There is a monotone operation ⌣ (converse operation) such that for all relations Q, R ∶

A → B and S ∶ B → C the following is true:

(Q; S)⌣ = S⌣; Q⌣and(Q⌣)⌣ = Q.

(3 For all relations Q ∶ A → B and R, S ∶ B → C the following is true:

Q; (R ⊓ S) ⊑ Q; R ⊓Q; S.

(4) For all relations Q ∶ A → B, R ∶ B → C and S ∶ A → C the following is true (modular
law):

Q; R ⊓ S ⊑ Q; (R ⊓Q⌣; S).

The following definition provides an important class of relations which is given
by mappings [17].
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Definition 2.24. Let R be an allegory and relation Q ∶ A → B. Then we call

(1) Q univalent iff Q⌣; Q ⊑ IB,

(2) Q total iff IA ⊑ Q; Q⌣,

(3) Q a map iff Q is univalent and total,

(4) Q injective iff Q⌣ is univalent,

(5) Q surjective iff Q⌣ is total,

(6) Q bijective iff Q⌣ is a map,

(7) Q a bijective iff Q is a bijective map.

The next lemmas show some properties of allegories and univalent relations as
described in [17], and their proofs can be found in the same reference.

Lemma 2.25. Let R be an allegory, Q ∶ A → B, R ∶ A → C, S ∶ D → B be relations, and
f ∶ B → C and g ∶ A → D be mappings. Then the followings are true:

(1) Q; f ⊑ R iff Q ⊑ R; f ⌣,

(2) g⌣; Q ⊑ iff Q ⊑ g; S.

Lemma 2.26. LetR be an allegory, relation Q ∶ A → B be univalent, and R, S ∶ B → C, T ∶

C → A, U ∶ C → B. Then we have

(1) Q; (R ⊓ S) = Q; R ⊓Q; S,

(2) T; Q ⊓U = (T ⊓U; Q⌣); Q.

The first example of an allegory is category Rel of sets and relations. Recall
that objects of this allegory are sets, and the morphism A → B is a binary relation
between A and B.

Another example is the category of L-fuzzy relations L-Rel with meet and con-
verse operations. If we define a distributive structure by replacing lower semi-
lattices in allegories to distributive lattices as the order, then the allegory L-Rel
of L-fuzzy relations becomes a distributive allegory. The following definition of
distributive allegory is adopted from [17].

Definition 2.27. A distributive allegoryR is an allegory, and for all relations Q ∶ A → B,
R, S ∶ B → C
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(1) The classes R[A, B] are distributive lattices with a least element. Union and the
least element are denoted by ⊔ and ⊧AB,

(2) Q; ⊧BC = ⊧AC,

(3) Q; (R ⊔ S) = Q; R ⊔Q; S.

By adding the residual operation of a relation algebra to a distributive structure,
we can get a division allegory as defined in [17].

Definition 2.28. A division allegory R is a distributive allegory such that composition ;
has an upper left adjoint, i.e., for all relations R ∶ B → C and S ∶ A → C there is a relation
S/R ∶ A → B (called the left residual of S and R) such that for all Q ∶ A → B the following
holds

Q; R ⊑ S⇐⇒ Q ⊑ S/R.

From the component-wise definition of residuals (Theorem 2.10 (10)), we can
say L-Rel is a division allegory with S/R as residual.

We can also define an upper right adjoint (S⌣/Q⌣)⌣ for ;, and it will be denoted
by Q/S. The symmetric version of the residuals defined as syq(Q, R) ∶= (Q/R) ⊓

(Q⌣/R⌣) and is called the symmetric quotient in [17].
The next lemma provides some basic properties of the symmetric quotient, and

all the proofs can be found in [17].

Lemma 2.29. Let R be a division allegory, Q ∶ A → B, R ∶ A → C, S ∶ A → D be relations,
and f ∶ D → A be mapping. Then the following are true

(1) f ; syq(Q, R) = syq(Q; f ⌣, R),

(2) syq(Q, R)⌣ = syq(R, Q),

(3) syq(Q, R); syq(R, S) ⊑ syq(Q, S).

2.3.3 Dedekind Categories

In this section we will discuss an important categorical structure which requires
the order structure to be complete. Basically, Dedekind category is a division al-
legory, where distributive lattices R[A, B] are complete Heyting algebras for all
objects A and B. The full definition of Dedekind categories as defined in [19] is as
follows.
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Definition 2.30. A Dedekind category R is a category satisfying the following for all
relations Q ∶ A → B, R ∶ B → C and S ∶ A → C

(1) For all objects A and B the collection R[a, B] is a complete Heyting Algebra. Meet,
join, the inducing ordering, the least and the greatest element are denoted by ⊓,⊔,⊑
, ⊧AB and ⊧ AB respectively.

(2) There is a monotone operation ⌣ (converse operation) mapping a relation Q ∶ A → B
to Q⌣ ∶ B → A such that the following are true

(Q; R)⌣ = R⌣; Q⌣,

(Q⌣)⌣ = Q.

(3) Holds the following modular law

(Q; R)⊓ S ⊑ Q; (R ⊓ (Q⌣; S)).

(4) There is a relation S/R ∶ A → B (the left residual of S and R) such that for all
X ∶ A → B the following is true

X; R ⊑ S⇐⇒ X ⊑ S/R.

As defined in (4), it is possible to formulate the right residual of R and S by
R/S = (S/R)⌣, and it is identified as R; X ⊑ S ←→ X ⊑ R/S.

Next, we need to state some properties of Dedekind categories. Let us start
with properties of the greatest elements defined as in [17].

Lemma 2.31. Let R be a Dedekind category. Then for all objects A and B in R the
following are true.

(1) ⊧ ⌣AB =

⊧

BA,

(2) ⊧ AA; ⊧ AB =

⊧

AB; ⊧ BB =

⊧

AB,

(3) ⊧ AB =

⊧

AB; ⊧ BA; ⊧ AB.

The proof of above lemma is an easy exercise and can be found in [17].
The next lemma gives a few other properties valid in Dedekind categories

adopted from [17, 19].
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Lemma 2.32. Let R be a Dedekind category, Q ∶ A → B, R ∶ B → C, S ∶ A → D, and
T ∶ D → C. Then the following are true

(1) (Q ⊓ S; ⊧ DB); R = Q; R ⊓ S; ⊧ DC,

(2) IA ⊓Q; Q⌣ = IA ⊓Q; ⊧ BA = IA ⊓

⊧

AB; Q⌣.

The first formula has its dual equation by reversing the direction of composition
and displays as follows Q; (R ⊓

⊧

BD; T) = Q; R ⊓

⊧

AD; T. For the full proof of the
above lemma see [17], or it can be done similarly to properties of L-fuzzy relations
in the Section 2.1.

Other important properties of Dedekind categories are related to partial iden-
tities, and they are shown in next lemma [19].

Lemma 2.33. Let R be a Dedekind category, S ∶ A → A partial identities, and R ∶ C →
A, U ∶ A → B. Then the following are true

(1) S = IA ⊓ S; ⊧ AA = IA ⊓

⊧

AA; S,

(2) R; S = R ⊓

⊧

CA; S and S; U = U ⊓ S; ⊧ AB,

(3) S⌣ = S.

The proof of the above lemma is an easy exercise, and can be found in [17, 19].
Since L-Rel[A, B] is a complete Heyting algebra, L-Rel forms a Dedekind cat-

egory. However, this category cannot satisfy one of the important properties of
L-fuzzy relations, particularly, the 0 − 1 crispness. Therefore, by the definition of
categories, the construction of new categories from a given one, we need to define
a new category that covers the crispness property of L-fuzzy relations. Adding two
arrow operations, the up-arrow ↑ and the down-arrow ↓, gives us a new structure
called the Arrow category [18].

2.3.4 Arrow Categories

This section will introduce an extended Dedekind category which defines a suit-
able algebraic theory of L-fuzzy relations. It is done by adding two operations,
up-arrow ↑ and down-arrow ↓, mentioned earlier.

The abstract definition of arrow categories is as follows [17].

Definition 2.34. An arrow category A is a Dedekind category with ⊧ AB ≠ ⊧AB for all
A, B and operations ↑, ↓ satisfying the following. For all Q, R ∶ A → B, S ∶ B → A, and
T ∶ B → C
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(1) R↑, R↓ ∶ A → B,

(2) (↑, ↓) is a Galois correspondence, i.e., Q↑ ⊑ R iff Q ⊑ R↓,

(3) (S⌣; T↓)↑ = S↑⌣; T↓,

(4) (Q ⊓ R↓)↑ = Q↑ ⊓ R↓,

(5) If αA ≠ ⊧AA is a non-zero scalar then α↑A = IA.

Now we can show the algebraic theory of L-fuzzy relations using the next
lemma as defined in [17].

Lemma 2.35. Let L be a complete Heyting algebra with 0 ≠ 1. Then L−Rel together with
↑ and ↓ is an arrow category.

The proof of the above lemma is an easy exercise. The formula (1) is obvious,
and the formulas (2)− (5) were already shown in Lemma 2.14 (1)− (4).

From Lemma 2.14 we can define crispness in an arbitrary arrow category as
follows [17].

Definition 2.36. A relation R ∶ A → B of an arrow category A is called crisp iff R↑ = R.
The crisp fragment A↑ of A is defined as the collection of all crisp relations.

The following lemma summarizes some basic properties of arrow categories as
shown in [17].

Lemma 2.37. Let A be an arrow category and Q, R ∶ A → B, S ∶ B → C, T ∶ A → C. Then
the following are true

(1) I↑A = IA ≠ ⊧AA,

(2) R↓↑ = R↓,

(3) R↑↓ = R↑,

(4) ↑, ↓ are closure and kernel operations respectively,

(5) R = R↑ iff R↓ = R↑ iff R↓ = R,

(6) ⊧

↑
AB = ⊧AB and ⊧ ↓AB =

⊧

AB,

(7) (R⌣; S↑)↑ = R↑⌣; S↑,

(8) R⌣↑ = R↑⌣ and R⌣↓ = R↓⌣,
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(9) (R; S↓)↑ = R↑; S↓ and (R↓; S)↑ = R↓; S↑,

(10) (R; S↑)↑ = R↑; S↑ and (R↑; S)↑ = R↑; S↑,

(11) (Q ⊓ R↑)↑ = Q↑ ⊓ R↑,

(12) For all nonzero ideal relations J↑ = ⊧ AB holds,

(13) R↓ → Q↑ = (R → Q↑)↓ ⊑ (R → Q)↓ and (R → Q)↑ ⊑ R↑ → Q↓,

(14) Q↑/T↓ = (Q↑/T)↓ ⊑ (Q/T)↓ and (Q/T)↑ ⊑ Q↓/T↑,

(15) T↓/S↑ = (T/S↑)↓ ⊑ (T/S)↓ and (T/S)↑ ⊑ T↑/S↓.

The full proof of above lemma can be found in [17].
The next lemma shows a collection of closure properties of the class of crisp

relations, and the proof can be found in [17].

Lemma 2.38. Let A be an arrow category and Qi, Q, T ∶ A → B for i ∈ I, R ∶ A → C, and
S ∶ B → C crisp relations. Then the following are true

(1) ⊔
i∈I

Qi and ⊓
i∈I

Qi are crisp,

(2) Q⌣ is crisp,

(3) Q; S is crisp,

(4) R/S and Q/R are crisp,

(5) Q → T is crisp.

Lemma 2.38 (3) gives the following inclusion axiom.

Lemma 2.39. Let A be an arrow category and Q ∶ A → B and R ∶ B → C crisp relations.
Then the following holds Q↓; R↓ ⊑ (Q; R)↓.

Proof. It follows from above lemma.

Q↓; R↓ = (Q↓; R↓)↓ Lemma 2.38

⊑ (Q; R)↓

There are some other properties of an arrow categories and they are collected
in the following lemma.
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Lemma 2.40. Let A be an arrow category and Q ∶ A → B and R ∶ C → B crisp relations.
f ∶ A → C is a crisp map. Then the following holds:

(1) f ; Q↓ = ( f ; Q)↓,

(2) f ; syq(Q, R)↓ = syq(Q; f ⌣, R)↓,

(3) f ; (Q/R)↓ = (Q; f ⌣/R)↓,

(4) (Q/R)↓; f ⌣ = (Q/R; f ⌣)↓.

Proof. (1) Since f is crisp we obtain

f ⌣; ( f ; Q)↓ ⊑ ( f ⌣; f ; Q)↓ Lemma 2.39 and f ⌣ is crisp

⊑ Q↓ f is univalent

This implies

( f ; Q)↓ ⊑ f ; f ⌣; ( f ; Q)↓ f is total

⊑ f ; Q↓.

(2) Consider the following computation:

f ; syq(Q, R)↓ = ( f ; syq(Q, R))↓ from (1)

= syq(Q; f ⌣, R)↓. Lemma 2.29

(3) We have

X ⊑ f ; (Q/R)

⇐⇒ f ⌣; X ⊑ Q/R Lemma 2.25(2)

⇐⇒ Q; f ⌣; X ⊑ R

⇐⇒ X ⊑ Q; f ⌣/R,

which immediately implies f ; (Q/R) = Q; f ⌣/R.
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(4) Also solves similar to (2)

X ⊑ (Q/R); f ⌣

⇔ X; f ⊑ Q/R Lemma 2.25 (1)

⇔ Q; X; f ⊑ R

⇔ Q; X ⊑ R; f ⌣ Lemma 2.25 (1)

⇔ X ⊑ Q/R; f ⌣.

which immediately implies (Q/R); f ⌣ = (Q/R); f ⌣.

The next lemma shows another important property of symmetric quotients in
arrow categories that will be used later in later sections of the thesis.

Lemma 2.41. Let A be an arrow category and Q ∶ A → B and R ∶ C → B crisp relations.
If syq(Q, R)↓ is surjective, then the following holds:

Q; syq(Q, R)↓ = R.

Proof. First we obtain the inclusion ⊑ by

Q; syq(Q, R)↓ ⊑ Q; syq(Q, R) ⊑ Q; (Q/R) ⊑ R.

Then we have

R ⊑ R; syq(Q, R)↓⌣; syq(Q, R)↓ surjectivity

= R; syq(R, Q)↓; syq(Q, R)↓ Lemma 2.29(2) and Lemma 2.37

⊑ Q; syq(Q, R)↓. similar to ⊑ above

2.3.5 Fuzzy Categories

In this section we will extend an arrow category further by adding t-norm based
operations mentioned in Section 2.2.3. t-norm based operations play an important
role in fuzzy theory. For example, we can replace binary meets with t-norm based
meet operations in order to relax the property that open sets are closed under form-
ing meets in the definition [19].

Now let us define the fuzzy category.
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Definition 2.42. A fuzzy category F is an arrow category with t-norm based meet, com-
position, pseudo-complement, and residual operators ∗, ∗′ ,Ð→∗ , /∗ respectively satisfying

(1) ∗ is associative and commutative,

(2) Q ∗ P ⊑ S⇔ Q ⊆ P Ð→∗ S,

(3) (Q ∗ P)⌣ = Q⌣ ∗ P⌣,

(4) Q ∗ P↓ = Q ⊓ P↓,

(5) ∗
′ is associative,

(6) Q∗
′R ⊑ S⇔ Q ⊑ S /∗ R,

(7) (Q∗
′R)⌣ = Q⌣∗

′R⌣,

(8) Q∗
′R↓ = Q; R↓,

(9) (P ∗Q)
∗
′ (R ∗ S) ⊑ P∗′R ∗Q∗

′S,

(10) Q; R ∗ T ⊑ Q; (R ⊓Q⌣∗
′S),

(11) Q∗
′R ∗ T ⊑ Q; (R ∗Q⌣∗

′T),

(12) (P ∗Q)
∗
′R ∗ T ⊑ P∗′ (R ∗Q⌣∗

′T)

for all relations P, Q ∶ A → B and R, S ∶ B → C and T ∶ A → C.

Now we can show the algebraic theory of L-fuzzy relations using next the
lemma and provide proofs as in [19].

Lemma 2.43. Let L be a complete Heyting algebra. Then L −Rel together with t-norm
based operators is a fuzzy category.

Proof. The properties (1) − (8) are easy to prove by component-wise definition of
∗, where (4) and (8) use x ∗ 1 = x = x ∧ 1 and x ∗ 0 = 0 = x ∧ 0 for all x ∈ L.
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(9) We immediately derive

((P ∗Q)
∗
′ (R ∗ S))(x, z) = ⋁

y∈B
(P ∗Q)(x, y) ∗ (R ∗ S)(y, z)

= ⋁
y∈B

P(x, y) ∗Q(x, y) ∗ R(y, z) ∗ S(y, z)

= ⋁
y∈B

P(x, y) ∗ R(y, z) ∗Q(x, y) ∗ S(y, z)

⊆ (⋁
y∈B

P(x, y) ∗ R(y, z)) ∗ (⋁
y∈B

Q(x, y) ∗ S(y, z))

= (P∗′R)(x, z) ∗ (Q∗
′S)(x, z)

= (P∗′R ∗Q∗
′S)(x, z)

(10) We immediately derive

(Q; R ∗O)(x, z) = (Q; R)(x, z) ∗O(x, z)

= (⋁
y∈B

Q(x, y)∧ R(y, z)) ∗O(x, z)

= ⋁
y∈B

(Q(x, y)∧ R(y, z)) ∗O(x, z)

⊆ ⋁
y∈B

Q(x, y) ∗O(x, z)∧ R(y, z) ∗O(x, z)

⊆ ⋁
y∈B

Q(x, y)∧Q(x, y) ∗O(x, z)∧ R(y, z)

⊆ ⋁
y∈B

Q(x, y)∧ (⋁
x∈A

Q(x, y) ∗O(x, z))∧ R(y, z)

= ⋁
y∈B

Q(x, y)∧ (QT∗
′O)(y, z)∧ R(y, z)

= ⋁
y∈B

Q(x, y)∧ (R ∧QT∗
′O)(y, z)

= (Q; (R ∧QT∗
′O))(x, z).
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(11) We immediately derive

(Q∗
′R ∗O)(x, z) = (Q∗

′R)(x, z) ∗O(x, z)

= (⋁
y∈B

Q(x, y) ∗ R(y, z)) ∗O(x, z)

= ⋁
y∈B

Q(x, y) ∗ R(y, z) ∗O(x, z)

= ⋁
y∈B

Q(x, y)∧Q(x, y) ∗ R(y, z) ∗O(x, z)

⊆ ⋁
y∈B

Q(x, y)∧ R(y, z) ∗ (⋁
x∈A

Q(x, y) ∗O(x, z))

= ⋁
y∈B

Q(x, y)∧ R(y, z) ∗ (QT∗
′O)(y, z)

= ⋁
y∈B

Q(x, y)∧ (R ∗QT∗
′O)(y, z)

= (Q; (R ∗QT∗
′O))(x, z).

(12) We immediately derive

((P ∗Q)
∗
′R ∗O)(x, z) = ((P ∗Q)

∗
′R)(x, z) ∗O(x, z)

= (⋁
y∈B

(P ∗Q)(x, y) ∗ R(y, z)) ∗O(x, z)

= (⋁
y∈B

P(x, y) ∗Q(x, y) ∗ R(y, z)) ∗O(x, z)

= ⋁
y∈B

P(x, y) ∗Q(x, y) ∗ R(y, z) ∗O(x, z)

⊆ ⋁
y∈B

P(x, y) ∗ R(y, z) ∗ (⋁
x∈A

Q(x, y) ∗O(x, z))

= ⋁
y∈B

P(x, y) ∗ R(y, z) ∗ (Q⌣∗
′O)(y, z)

= ⋁
y∈B

P(x, y) ∗ (R ∗Q⌣∗
′O)(y, z)

= (P∗′ (R ∗Q⌣∗
′O))(x, z).

The next few lemmas show important properties of fuzzy categories.

Lemma 2.44. Let A be a fuzzy category and Q ∶ A → B and R, S ∶ B → C are L-relations.
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If Q is crisp, then the following holds:

Q; (R ∗ S) ⊑ Q; R ∗Q; S.

Proof. Consider the following derivatives:

Q; (R ∗ S) = Q∗
′ (R ∗ S) Lemma 2.19(4)

= (Q ∩Q)
∗
′ (R ∗ S)

= (Q ∗Q)
∗
′ (R ∗ S) Lemma 2.18(4)

⊑ Q∗
′R ∗Q∗

′S Lemma 2.19(5)

= Q; R ∗Q; S. Lemma 2.19(4)

Lemma 2.45. Suppose Q ∶ A → B and R, S ∶ B → C are L-relations. If Q is crisp and
univalent, then the following holds:

Q; (R ∗ S) = Q; R ∗Q; S.

Proof. The inclusion ⊆ was already shown in Lemma 2.44. For the converse inclu-
sion consider the following derivation

Q; R ∗Q; S = Q∗
′R ∗Q; S Lemma 2.19(4)

⊑ Q; (R ∗Q⌣∗
′ (Q; S)) Lemma 2.19(7)

= Q; (R ∗Q⌣; Q; S) Lemma 2.19(4)

⊑ Q; (R ∗ S) Q is univalent
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Chapter 3

Topology

This chapter will briefly introduce definitions of general topology and fuzzy topol-
ogy and provide relation-algebraic formulations for them.

3.1 General Topology

The term topology was first introduced by German mathematician J.B. Listing in
1847 and for a long period was termed analysis situs [10]. Since then, topology has
been given many definitions, such as considerations of neighborhoods, open sets,
and closed sets. This work will only focus on the definition based on open sets.

A special place among the areas of topology is general topology. At present,
general topology has reached the most natural level of generality, which allows us
to present the topological principles, concepts and constructions with the great-
est transparency, and at the same time ensure the widest applicability in other
branches of mathematics. The term general topology refers to the topology used
by most mathematicians. It teaches us to speak clearly and accurately about things
related to the idea of continuity.

The following definition of the topology is given using open sets.

Definition 3.1. A topology τ on a nonempty set X is a collection of subsets of X, called
open sets, such that

(1) The empty set ∅ and the set X are open,

(2) The union of an arbitrary collection of open sets is open set,

(3) The intersection of a finite number of open sets is open.
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The pair (X, τ) is a topological space.
The simplest example of a topology is the discrete topology where τ is a col-

lection of all subsets of X. Indiscrete topology is the opposite example, in which
the topological structure is the most modest, and it consists of only X and ∅. The
standard topology on R is the most common example.

Often, a topological structure is defined by describing some part of it, sufficient
to restore the entire structure. The bases of a topology is a set of open sets, such that
every non-empty open set is representable as a union of sets from this set.

Definition 3.2. The collection of B of open sets X is called base of τ, if and only if every
element from τ is a union of elements of B.

Let X = R - the set of all real numbers. Then the collection of all open intervals
of the form (a, b) defines the base of the topology on R. It should be noted that not
every collection of sets can serve as a base for some topology.

Now that we have defined the basic structure of a topological space, we can
describe functions between them. One of the important functions between spaces
is continuous maps.

Definition 3.3. Let X and Y be topological spaces. Mapping f ∶ X → Y is called continu-
ous if for each open set V ⊑ Y , the inverse image f −1(V) is open in X.

The inverse image of V in the Definition 3.3 under the function f is defined to
be the set f −1(V) = {x ∈ X ∶ f (x) ∈ V} containing elements x ∈ X such that f (x) ∈ V.
Using a base of a topology, it is enough to check that the inverse image of every
basis element in Y is open [11].

3.2 Fuzzy Topology

Fuzzification of general topology is done by replacing subsets in the definition of
general topology by fuzzy sets, and can be formulated as in the following defini-
tion.

Definition 3.4. The fuzzy topology on a set X is a family τ of fuzzy subsets which satisfies
the following three axioms

(1) The empty set ∅ and the set X are open (∅(x) = 0 and X(x) = 1),

(2) (A ∗ B)(x) = A(x) ∗ B(x) ,
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(3) if {Aj ∶ j ∈ J} ⊑ τ, then⋁
j

Aj ∈ τ.

Since the component-wise empty set and the whole set are least and greatest
elements respectively, the first axiom remains the same as in the case of general
topology. For the second axiom, instead of the union, the operation ∗ is used, i.e.,
the intersection of two sets is computed based on ∗ instead of ∧.

3.3 Relational Topology

Recently, a relation-algebraic approach to topology became a new and separate
approach to this research area. Considering topology algebraically means to deal
with algebraic rules of the topology itself instead of component-wise reasoning.
All the conversions between several concepts of the topology can be formulated
by relation-algebraic rules.

Before we define the relation algebraic approach to topology, a few new opera-
tors and constructions mentioned earlier need to be introduced.

In addition to the basic operators in Chapter 2, symmetric quotient mentioned in
Section 2.3.2 is needed in order to compare two relations column-wise. First, we
want to demonstrate how residuals are computed component-wise in the case of
L-fuzzy relations. Therefore, consider two relations

Q ∶ A → B and R ∶ A → C.

Then we have
(Q/R)(y, z) = ⋀

x∈A
Q(x, y)→ R(x, z),

i.e., y is related to z by a degree u iff u is the greatest value so that Q(x, y) ∧ u ≤

R(x, z). In other words, u is the greatest degree so that every entry in the column
related to y meet u is smaller or equal to the corresponding entry in the column
related to z. This could also be phrased as the column of y is included in the
column of z with a degree of u. Please note that, in the case of crisp relations, this
simply means that (Q/R)(y, z) iff the column of y is included in the column of z.
By definition of the symmetric quotient, this implies that syq(Q, R)(y, z) = u iff u is
the greatest value so that Q(x, y) ∧ u = R(x, z) ∧ u. Following the wording above,
this could be phrased as the column of y is similar (or equal) to of the column of z
by degree u. Again, note that in the case of crisp relations, we have syq(Q, R)(y, z)
iff the column of y is equal to the column of z.
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Now we would like to interpret a relation Q ∶ A → B as follows. Each column of
Q, i.e., each element in B, can be seen as a L-fuzzy set of elements of A. Concretely,
if y ∈ B, then y represents the L-fuzzy subset of A defined by the membership
function f (x) = Q(x, y). Now a family of sets in this interpretation is a relation
in which any two different columns have different entries, i.e., syq(Q, Q)↓ = I. In
other words, we call relation Q a family of sets over A.

Earlier we have shown that a topology can be generated from bases. Using
bases instead of topologies themselves helps to avoid defining all of the open sets
in the space. However, we have to be able to compare bases in order to determine
whether they produce the same topology.

B

A

C

R

f

S

Figure 3.1: Base comparison.

Now we might have multiple families of subsets over A, e.g, a family of sets S
over A as shown in Figure 3.1. Those sets might be different because they can con-
sist of different amounts of subsets. The comparison of a family of sets is done by
the injective function f = syq(R, S)↓. The following example illustrates the injective
function from Figure 3.1.

Q =

⎛
⎜
⎜
⎜
⎝

1 1 0
0 1 0
0 0 1

⎞
⎟
⎟
⎟
⎠

R =

⎛
⎜
⎜
⎜
⎝

1 1
0 1
0 0

⎞
⎟
⎟
⎟
⎠

f = syq(R, S)↓ =
⎛
⎜
⎜
⎜
⎝

1 0
0 1
0 0

⎞
⎟
⎟
⎟
⎠

Definition 3.5. Let τ1 and τ2 be families of sets. Then we define τ1 ≤ τ2 iff there is a crisp
injective function so that τ2; f ⌣ = τ1.

Definition 3.6. Let τ1 and τ2 be families of sets. Then τ1 and τ2 are said to be equivalent
if τ1 ≤ τ2 and τ2 ≤ τ1.

The above definition basically means B and C are the same, however, their
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subsets ordering might different. From the above definitions we can obtain the
next lemma.

Lemma 3.7. Suppose τ1 ≤ τ2. i.e., there is a function f with τ2; f =τ1. Then we have:

(1) f = syq(τ1, τ2)
↓,

(2) syq(τ1, τ2)
↓ is crisp and bijective.

Proof. (1) First we show that
f ⊑ syq(τ1, τ2)

↓.

From the assumption, we obtain f ; τ⌣2 = (τ2; f ⌣)⌣ = τ⌣1 so that f = f ↓ ⊑ (τ⌣2 /τ⌣1 )↓

follows. On the other hand,

τ1; f = τ2; f ⌣; f ⊑ τ2

implies f = f ↓ ⊑ syq(τ1, τ2)
↓. Together this shows f ⊑ syq(τ1, τ2)

↓. The opposite
inclusion simply follows from the fact that f is total and syq(τ1, τ2)

↓ is univalent
because τ2 is a family of sets.

(2) The assertion follows immediately from (1) and the fact that τ1 is a family of
sets.

Next step, we are interested in the family of all subsets. The following defini-
tion describes the relation between the set and its direct power as in [14].

Definition 3.8. Let A be an object. An object P(A) together with a relation ε ∶ A Ð→

P(A) is called a relational power iff

(1) syq(ε, ε)↓ ⊑ I,

(2) syq(Q, ε)↓ is total for every Q ∶ A → B.

The matrix representation of this relationship can be illustrated as follows:

ε =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

{} {a
}

{b
}

{a
,b

}

{c
}

{a
,c

}

{b
,c

}

{a
,b

,c
}

a 0 1 0 1 0 1 0 1

b 0 0 1 1 0 0 1 1

c 0 0 0 0 1 1 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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The next step is to define direct product, strict fork and meet operators. The full
definitions from [14] is follows.

Definition 3.9. The product of two objects A and B is an object A × B together with
projection relations π ∶ A × B → A and ρ = A × B → B if the following axioms hold

(1) π, ρ are crisp,

(2) π⌣; π ⊑ I,

(3) ρ⌣; ρ ⊑ I,

(4) π; π⌣ ⊓ ρ; ρ⌣ = I,

(5) π⌣; ρ =

⊧

AB.

Now if any direct products is given by the following projections π ∶ A × B → A
and ρ = A × B → B, we can define a new operator as an operation for relations. Let
R be relation C → A and S be relation C → B, then the fork operator is

R 4 S ∶= R; π⌣ ⊓ S; ρ⌣.

The fork operator is illustrated in Figure 3.2.

A

A × B

B

C

R

R 4 S

S

Figure 3.2: Visual illustration of the fork operator.

Next, we will define the meet relation of a powerset ordering P(A) via mem-
bership deletion. The binary meet relation M ∶ P(A) × P(A) → P(A) is defined
by

M ∶= syq((ε 4 ε), ε).
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Intuitively, this relation takes a pair of sets , computes the elements that are com-
mon in both sets, and relates the original pair with the set that contains exactly
those elements.

Another valuable construction is a combination of forming equivalence classes
and moving to a sub-object. If Q ∶ A → A is an equivalence relation on a subset B
of A, then we can form the set of equivalence classes of B. The following definition
captures this concept abstractly as in [17].

Definition 3.10. Let Q ∶ A → A be a crisp symmetric idempotent relation, i.e. Q↓ = Q,
Q⌣ = Q and Q; Q = Q. Then an object B together with a crisp relation R ∶ B → A satisfying
R; R⌣ = IB and R⌣; R = Q is called a splitting of Q.

The following example illustrates relations Q and R from the above definition.
Let A and B be sets {x1, x2, x3, x4}, {y1, y2} respectively.

Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 x3 x4

x1 1 0 1 0

x2 0 1 0 1

x3 1 0 1 0

x4 0 1 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, R =
⎛
⎜
⎝

x1 x2 x3 x4

y1 1 0 1 0

y2 0 1 0 1

⎞
⎟
⎠

.
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Chapter 4

Relation-Algebraic Formulation of
Fuzzy Topology

This chapter introduces a relation-algebraic approach to fuzzy topology. In this
chapter we take a fresh look at many of the issues discussed earlier and cover
important topics of fuzzy topology in terms of relations, such as bases, continuous
map, and separations axioms.

4.1 The fuzzy meet M and fork 4∗ operators

The definition of fuzzy topology mentioned in Section 3.1 can be also similarly
formulated in terms of relations by changing meet M and strict fork 4 operators
using ∗ as in Definition 3.4.

M∗ = syq((ε; π⌣ ∗ ε; ρ⌣), ε)↓,

R 4∗ S ∶= R; π⌣ ∗ S; ρ⌣.

Before we give a definition of fuzzy topology let us provide necessary proper-
ties of the fuzzy meet M∗ and strict fork 4∗ operations.

Lemma 4.1. Let Q ∶ C → A, R ∶ C → B be relations, and f , g be crisp maps. Then the
following holds:

(Q 4∗ R); ( f ⌣ ⊗ g⌣) = Q; f ⌣ 4∗ R; g⌣.
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Proof. Consider the following derivations:

(Q 4∗ R); ( f ⌣ ⊗ g⌣) = (Q; π⌣ ∗ R; ρ⌣); ( f ⌣ ⊗ g⌣)

= Q; π⌣; ( f ⌣ ⊗ g⌣) ∗ R; ρ⌣; ( f ⌣ ⊗ g⌣) Lemma 2.45 is dual

= Q; ( f ⌣; π⌣ ⊓π⌣; ρ; g⌣; ρ⌣) ∗ R; (ρ⌣; π; f ⌣; π⌣ ⊓ g⌣; ρ⌣) Lemma 2.26 (1)

= Q; ( f ⌣; π⌣ ⊓

⊧ ; g⌣; ρ⌣) ∗ R; ( ⊧ ; f ⌣; π⌣ ⊓ g⌣; ρ⌣)

= Q; f ⌣; π⌣ ∗ R; g⌣; ρ⌣ f , g, π, ρ is total

= Q; f ⌣ 4∗ R; g⌣.

As mentioned earlier, the definition of topology can be formulated many ways.
We would like to propose a new relation-algebraic formulation of fuzzy topology
and give a proof for it.

Definition 4.2. A relation τ ∶ A → B is called a topology iff

(0) τ is total,

(1) syq(τ, τ)↓ ⊑ I,

(2) syq(τ 4∗ τ, τ)↓ is total,

(3) syq(τ; R, τ)↓ total for every crisp R.

We call the target B of τ the set of open sets of τ. The first axiom requires
that every element be contained in an open set. The second axiom requires τ to
be a family of sets. The third axiom requires that, given two open sets, the set of
common elements with degree computed as the ∗ of the degrees in the two sets is
also an open set. Lastly, the arbitrary union of open sets is open.

4.2 Bases

As we mentioned in Chapter 3.2, a topological structure can be defined by describ-
ing some part of it, sufficient to restore the entire structure. Lets formulate the
definition of base of a fuzzy topology in terms of relations, and give illustration of
it as in Figure 4.1.

Definition 4.3. Let τ ∶ X → C be topology. A relation b ∶ X → B is called a base of
topology τ iff the following holds:
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C

X

B

τ

b

Figure 4.1: Base of topology.

(1) syq(b, b)↓ ⊑ I,

(2) syq(b, τ)↓,

(3) syq(b; syq(b, τ)↓; (τ/τ)↓, τ)↓ = I.

Axiom (1) requires that b is a family of sets that is by Axiom (2) a subfamily of
τ. Axiom (3) requires that every open set in τ is the union of sets in b, i.e., for every
open set A in τ, the union of all sets from b that are included in A is A again. The
last axiom can be equivalently stated as shown in the lemma below. Since the two
versions are equivalent, we will mainly use the simpler version in the remainder
of the thesis.

Lemma 4.4. Let τ be topology, and b a relation satisfying Axioms (1) and (2) of a base of
τ. Then Axiom 4.3 (3) is equivalent to:

τ = b; (b/τ)↓.

Proof. First we show that Axiom (3) implies the equation above. Consider the fol-
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lowing computation:

τ = τ; I

= τ; I⌣ I⌣ = I

= τ; syq(b; syq(b, τ)↓; (τ/τ)↓, τ)↓ Definition 4.3(3)

= τ; syq(τ, b; syq(b, τ)↓; (τ/τ)↓)↓ I⌣ = I and Lemma 2.29

= b; syq(b, τ)↓; (τ/τ)↓ I surjective

= b; (τ; syq(b, τ)↓⌣/τ)↓ Lemma 2.40(3)

= b; (τ; syq(τ, b)↓/τ)↓ Lemmas 2.29 and 2.37(8)

= b; (b/τ)↓. Lemma 2.41

Now, we assume the equation above is valid and we show Axiom (3) as follows:

syq(b; syq(b, τ)↓; (τ, τ)↓, τ)↓ = syq(b; (b/τ)↓, τ)↓ as above proof

= syq(τ, τ)↓ by assumption

= I. Lemma 4.3(1)

The previous definition of base defines b as a base of the given topology. On
the other hand, we want to define a relation b as base without a previous given
topology. First we show that a base of a topology will always satisfy the following
properties.

Lemma 4.5. If b is a base of topology τ, then the followings hold:

(1) b is total,

(2) b 4∗ b ⊑ b; (b/(b 4∗ b))↓.

Proof. (1) as follows:

b; ⊧ = b; syq(b, τ)↓; (τ, τ)↓; ⊧ I ⊑ (τ/τ)↓ and syq(b, τ)↓ is total

= b; (b/τ)↓; ⊧ Lemma 4.4

= τ; ⊧ Lemma 4.4

=

⊧ . Lemma 3.2
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(2) Consider the following derivations:

syq(τ 4∗ τ, τ)↓ = syq(τ 4∗ τ, τ)↓; syq(b; (b/τ)↓, τ)↓ Lemma 4.4 and τ axiom

= syq(b; (b/τ)↓; syq(τ 4∗ τ, τ)↓⌣, τ)↓ Lemma 2.40(2) and τ axiom

= syq(b; (b/τ)↓; syq(τ, τ 4∗ τ)↓, τ)↓ Lemma 2.29

= syq(b; (b/(τ; syq(τ, τ 4∗ τ)↓)), τ)↓ Lemma 2.40(4)

= syq(b; (b/(τ 4∗ τ))↓, τ)↓. Lemma 2.41

This implies:

τ 4∗ τ = τ; syq(τ, τ 4∗ τ)↓ Lemma 2.41

= τ; syq(τ, b; (b/(τ 4∗ τ))↓)↓

= b; (b/(τ 4∗ τ))↓. Lemma 2.41

And finally, using above derivations we can prove given axiom as follows:

b 4∗ b = τ; syq(τ, b)↓4∗ τ; syq(τ, b)↓ Lemma 2.41

= (τ 4∗ τ); (syq(τ, b)↓ ⊗ syq(τ, b)↓) Lemma 4.1

= b; (b/(τ 4∗ τ))↓; (syq(τ, b)↓ ⊗ syq(τ, b)↓)

= b; (b/((τ 4∗ τ); (syq(τ, b)↓ ⊗ syq(τ, b)↓)))↓ Lemma 2.40(4)

= b; (b/(τ; syq(τ, b)↓4∗ τ; syq(τ, b)↓))↓ Lemma 4.1

= b; (b/(b 4∗ b))↓. Lemma 2.41

Now we can provide a definition of base without any given topology as men-
tioned earlier. In other words, we are providing a definition of a general base in
terms of relations.

Definition 4.6. A relation b ∶ X → B is called a base iff b is a family of sets and it satisfies:

(1) b is total,

(2) b 4∗ b ⊑ b; (b/b 4∗ b)↓.

Please note that the inclusion in Axiom (2) is, in fact, an equation since the
inclusion ⊇ is always true.
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Every base gives rise to a topology by using a splitting of the direct power
induced by the base as shown in Figure 4.2.

P(X)

X

B

Aε

b

i

h ∩ IP(X)

Figure 4.2: Topology generated by a base.

Definition 4.7. Let b ∶ X → B be a base and i ∶ A → P(X) the splitting of h ∩ IP(X). Then
ε; i⌣ is called a topology generated by b.

In order to justify our notation of the previous definition, we have to show that
ε; i⌣ is a topology.

Lemma 4.8. With the notation of Definition 4.7, the relation e; i⌣ is a topology with base
b.

(1) ε; i⌣ is total,

(2) syq(ε; i⌣, ε; i⌣)↓ ⊑ I,

(3) syq(ε; i⌣; R⌣, ε; i⌣)↓ is total,

(4) syq(ε; i⌣ 4∗ ε; i⌣, ε; i⌣)↓ is total.
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Proof. (1) The assertion is shown as follows:

syq( ⊧ , ε)⌣; h = syq(b; (b/ε)↓; syq( ⊧ , ε)↓⌣, ε)↓ Lemma 2.40 (2)

= syq(b; (b/ε)↓; syq(ε, ⊧ )↓, ε)↓ Lemma 2.29(1)

= syq(b; (b/ε; syq(ε, ⊧ )↓), ε)↓ Lemma 2.40(4)

= syq(b; (b/ ⊧ )↓, ε)↓ Lemma 2.41

= syq(b; ⊧ , ε)↓ definition of /

= syq( ⊧ , ε)↓ b is total

syq( ⊧ , ε)↓; (h ⊓ I) = syq( ⊧ , ε)↓; h ⊓ syq( ⊧ , ε)↓ Lemma 2.26(1)

= syq( ⊧ , ε)↓ as above

syq( ⊧ , ε)↓⌣; syq( ⊧ , ε)↓ = syq( ⊧ , ε)↓⌣; syq( ⊧ , ε)↓; (h ⊓ I) above

⊑ h ⊓ I syq( ⊧ , ε)↓ is univalent

ε; i⌣; ⊧ = ε; i⌣; i; ⊧ i total

= ε; (h ⊓ I); ⊧ definition of i

⊇ ε; syq( ⊧ , ε)↓⌣; syq( ⊧ , ε)↓; ⊧ above

= ε; syq(ε, ⊧ )↓; syq( ⊧ , ε)↓; ⊧ Lemma 2.29(1)

=

⊧ ; syq( ⊧ , ε)↓; ⊧ Lemma 2.41

=

⊧ ; ⊧ syq( ⊧ , ε)↓ is total

=

⊧ total.

(2) Consider the following

syq(ε; i⌣, ε; i⌣)↓ = i; syq(ε, ε)↓; i⌣ Lemma 2.29(2) is dual

= i; i⌣ definition of ε

= I definition of i
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(3) The assertion is shown as follows

ε; i⌣; R⌣ = ε; i⌣; i; i⌣; R⌣ definition of i

= ε; (h ⊓ I); i⌣; R⌣ definition of i

= ε; (h⌣ ⊓ I); i⌣; R⌣ Lemma 2.33(3)

⊑ ε; h⌣; i⌣; R⌣

= b; (b/ε)↓; i⌣; R⌣ Lemma 2.41

⊑ b; ((b/ε); i⌣; R⌣)↓ Lemma 2.39 and h, R crisp

⊑ b; (b/(ε; i⌣; R⌣))↓

This implies ε; i⌣; R⌣ = b; (b/ε; i⌣; R⌣)↓ since the inclusion ⊒ is alway true. Now, we
immediately obtain

syq(ε; i⌣; R⌣, ε)↓; h = syq(b; (b/ε)↓; syq(ε, ε; i⌣; R⌣)↓, ε)↓ Lemma 2.40(2)

= syq(b; (b/ε; syq(ε, ε; i⌣; R⌣)↓)↓, ε)↓ Lemma 2.40(4)

= syq(b; (b/ε; i⌣; R⌣)↓, ε)↓ Lemma 2.41

= syq(ε; i⌣; R⌣, ε)↓ above

Last but not least, this implies

syq(ε; i⌣; R⌣, ε; i⌣)↓; ⊧ = syq(ε; i⌣; R⌣, ε)↓; i⌣; ⊧

= syq(ε; i⌣; R⌣, ε)↓; i⌣; ⊧ i total and definition of i

= [syq(ε; i⌣; R⌣, ε)↓; h ⊓ syq(ε; i⌣; R⌣, ε)↓]; ⊧ Lemma 2.26(1)

= syq(ε; i⌣; R⌣, ε)↓; ⊧ above

=

⊧

(4) First we have

b; (b/ε)↓4∗ b; (b/ε)↓ = (b 4∗ b); ((b/ε)↓ ⊗ (b/ε)↓)

⊑ b; (b/b 4∗ b)↓; ((b/ε)↓ ⊗ (b/ε)↓)

⊑ b; ((b/b 4∗ b); ((b/ε)↓ ⊗ (b/ε)↓))↓ Lemma 2.39

⊑ b; (b/(b 4∗ b); ((b/ε)↓ ⊗ (b/ε)↓))↓

= b; (b/b; (b/ε)↓4∗ b; (b/ε)↓)↓

⊑ b; (b/ε 4∗ ε)↓
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Now, we are able to conclude

ε; i⌣ 4∗ ε; i⌣ = ε; i⌣; i; i⌣ 4∗ ε; i⌣; i; i⌣ definition of i

= ε; (h ⊓ I); i⌣ 4∗ ε; (h ⊓ I); i⌣ definition of i

⊑ ε; h; i⌣ 4∗ ε; h; i⌣

= (ε; h 4∗ ε; h); (i⌣ ⊗ i⌣) Lemma 4.1

= (b; (b/ε)↓4∗ b; (b/ε)↓); (i⌣ ⊗ i⌣) Lemma 2.41

⊑ b; (b/ε 4∗ ε)↓; (i⌣ ⊗ i⌣) above

= b; (b/(ε 4∗ ε); (i⌣ ⊗ i⌣))↓ Lemma 2.40(4)

= b; (b/ε; i⌣ 4 ε; i⌣)↓ Lemma 4.1

Form the following computation

syq(ε; i⌣ 4∗ ε; i⌣, ε)⌣; h = syq(b(b/ε)↓; syq(ε, ε; i⌣ 4∗ ε; i⌣)↓, ε)↓ Lemma 2.40(2)

= syq(b; (b/ε; syq(ε, ε; i⌣ 4∗ ε; i⌣)↓)↓, ε)↓ Lemma 2.40(4)

= syq(b(b/ε; i⌣ 4∗ ε; i⌣)↓, ε)↓ Lemma 2.41

= syq(ε; i⌣ 4∗ ε; i⌣, ε)↓

We now obtain

syq(ε; i⌣ 4∗ ε; i⌣, ε; i⌣)↓; ⊧ = syq(ε; i⌣ 4∗ ε; i⌣, ε)↓; i⌣; ⊧

= syq(ε; i⌣ 4∗ ε; i⌣, ε)↓; (h ⊓ I); ⊧ i total

= [syq(ε; i⌣ 4∗ ε; i⌣, ε)↓; h ⊓ syq(ε; i⌣ 4∗ ε; i⌣, ε)↓]; ⊧ Lemma 2.26(1)

= syq(ε; i⌣ 4∗ ε; i⌣, ε)↓; ⊧ above

=

⊧

4.3 Continuous maps

We have given an abstract notion of continuous maps between topological spaces
earlier in Definition 3.3. Now we can give its relational-algebraic formulation. Let
A and B be base sets, and f be a map between them as shown in Figure 4.3. Our
task is to show that f is continuous. A general definition of a continuous map
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states that the inverse image of an open set is also open. Similarly we can define a
continuous map between A and B.

τ1

A

τ2

B

τ1 τ2

syq( f ; τ2, τ1)
↓

f

Figure 4.3: Continuous maps.

Definition 4.9. Let τ1 be a topology on A, τ2 be a topology on B, and f ∶ A → B a map.
Then f is called continuous if syq( f ; τ2, τ1)

↓ is total.

Now the composition of continuous maps should be also continuous. Consider
the following example in Figure 4.4.

τ1

A

τ2

B

τ3

C

τ1 τ2

syq( f ; τ2, τ1)
↓

f

syq(g; τ3, τ2)
↓

g

τ3

Figure 4.4: Composition of continuous maps.

The continuity of the composition of continuous maps f and g is an easy exer-
cise, and can be shown as follows:

syq(g; τ3, τ2)
↓; syq( f ; τ2, τ1)

↓ = syq( f ; τ2; syq(τ2, g; τ3)
↓, τ1)

↓

= syq( f ; g; τ3, τ1)

4.4 Separation axioms

The definition of topological spaces is very general and sometimes we need to be
more specific. Separation axioms helps to define topological spaces with more re-
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stricted properties. First, we will introduce these axioms in their traditional forms
[2].

- A topological space is said to satisfy the separation axiom T0 if for two different
points of this space, at least for one of them there exists an open set not containing
the other point. Spaces satisfying the separation axiom T0 are called T0 of a space or
a Kolmogorov space.

- A topological space is said to satisfy the separation axiom T1 if for each of two differ-
ent points of this space there exists an open set that does not contain the other point.
Spaces satisfying the separation axiom T1 are called T1 space.

Now we can define them in terms of relational algebra and using the open set
definition of topology.

Definition 4.10. Let τ be a topology. Then the following axioms are called a

(1) T0-space or Kolmogorov space if syq(τ⌣, τ⌣) ⊑ I,

(2) T1-space if τ⌣/τ⌣ ⊑ I.

Inclusion in above definition is also equality. A topological space fulfilling the
axiom (2) also fulfils the axiom (1), since T1 ⇒ T0 which can easily be proved ob-
serving

syq(τ⌣, τ⌣) ⊑ τ⌣/τ⌣ definition syq

⊑ I. axiom (2)

1 2 3

Figure 4.5: Topology τ.

Let τ be a topology as shown in Figure 4.5, then we have

τ =

{} {1
}

{2
}

{1
,2

}
{3

}
{1

,3
}

{2
,3

}
{1

,2
,3

}

1
2
3

⎛
⎜
⎜
⎜
⎝

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 1

⎞
⎟
⎟
⎟
⎠
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Separation axioms T0 and T1 respectively:

syq(τ⌣, τ⌣) =

⎛
⎜
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎟
⎠

⊑ I τ⌣/τ⌣ =

⎛
⎜
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎟
⎠

⊑ I
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Chapter 5

Conclusion

This chapter covers a summary of this thesis followed by a discussion of the work
planned in the future.

In this thesis we have presented an application of categorical framework of ab-
stract L-fuzzy relations to L-fuzzy topology. The proposed categorical framework
is an extension of an arrow category with additional new ∗ operations based on
t-norms explained in Chapter 2. We were able to give a new set of definitions of
fuzzy topology in terms of relational algebra, and it can be found in Chapter 4. In
addition, we have covered related topics such as construction of topologies, set of
separation axioms and their proofs.

Throughout the work, we sought to trace the connection between the fuzzy
topology on the one hand and the general topology and some other areas of math-
ematics on the other. Fuzzy topology allows us to take a fresh look at many facts
of general topology, on the role of classical logic in general topology.

Speaking about the application of ideas, methods and results of fuzzy topol-
ogy in applied problems, it has been growing from automata theory to analysing
images using topological features. Among the works in which fuzzy topology is
used, we note Rosenfeld [12] (discussion of the use of fuzzy topology in image
analysis) and others in the field of theory of automata [16, 13]. We hope that our
work will contribute to the popularization of ideas of fuzzy topology and, possibly,
expanding the list of its applications in applied problems.
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