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ABSTRACT 

The goal of the present thesis was to investigate a novel motor unit potential train 

(MUPT) editing routine, based on decreasing the variability in shape (variance ratio, VR) 

of the MUP ensemble. Decomposed sEMG data from 20 participants at 60% MVC of 

wrist flexion was used. There were two levels of denoising (relaxed and strict) criteria for 

removing discharge times associated with waveforms that did not decrease the VR and 

increase its signal-to-noise ratio (SNR) of the MUP ensemble. The peak-to-peak 

amplitude and the duration between the positive and negative peaks for the MUP 

template were dependent on the level of denoising (p’s <0.05). The error-filtered 

estimation (EFE) algorithm was used to calculate the inter-discharge interval (IDI) for the 

denoised MUPTs. In total, VR decreased 24.88% and the SNR increased 6.0% (p’s < 

0.05). The standard error of estimate (3.2 versus 3.69%) in mean IDI before and after 

denoising using the relaxed criteria, was very similar (p>0.05). The same was true 

between denoising criteria (p>0.05). Editing the MUPT based on MUP shape resulted in 

significant differences in measures extracted from the MUP template, with trivial 

difference between the standard error of estimate for mean IDIs between the complete 

and denoised MUPTs. 
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CHAPTER 1:  Introduction 

1.1 Development of the Problem 

The main advantage of indwelling recordings is that they bypass the fascia, fat, and 

skin which alter the electrical signals to obtain direct and clear motor unit action 

potentials (MUPs) (Perry, Easterday, & Antonelli, 1981). Indwelling electrodes have 

been criticized because the needle or wire haws a limited pickup area compared to its 

surface electrode counterpart (Farina & Holobar, 2016). Thus, to obtain a more 

representative sample throughout the muscle, the needle must be reinserted in multiple 

locations and at different depths (Podnar, 2004). Therein lays the main disadvantage in 

that the procedure is invasive and can be painful to the patient or study participant 

(Strommen & Daube, 2001). There is a low risk for infection or disease transmission, but 

the needle may still cause minor damage to muscle fibers which could cause changes in 

MUP shapes (De Luca et al., 2006). The MUP shape is a critical variable used to identify 

motor units (MUs) and study the health status of the neuromuscular system (Mambrito & 

De Luca, 1984). Another limitation is that it is difficult to obtain reliable recordings of 

the same MU from one session to the next, because it is nearly impossible to place an 

indwelling electrode in the same location within the muscle (Perry et al., 1981). 

The limitations outlined above are more problematic for kinesiological 

investigation as needle examinations are more commonly performed within the clinical 

setting as part of electrodiagnostic testing by a physician (Daube & Rubin, 2009). 

Advances in biomedical instrumentation and signal processing techniques now allow 

researchers to record MUPs from the skin surface to investigate the neuromuscular 

system non-invasively (De Luca, Adam, Wotiz, Gilmore, & Nawab, 2006; Farina & 
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Holobar, 2016; Holobar & Farina, 2014; Nawab, Chang, & De Luca, 2010). In addition 

to being non-invasive, surface electrodes can record from 25 MUs or more (De Luca, 

Adam, Wotiz, Gilmore, & Nawab, 2006; Farina & Holobar, 2016; Holobar & Farina, 

2014; Nawab, Chang, & De Luca, 2010). Surface electrodes can be placed and replaced 

on the skin at the same location over the muscle to reliably track the same MU over 

multiple sessions to determine the effects of various interventions (Martinez-Valdes et al., 

2017) but, unfortunately the validity of the surface detected MUs is challenged due to the 

sEMG decomposition technique (Enoka, 2019; Farina & Enoka, 2011).  

The two-source technique is the gold-standard for validating MUPs that have been 

obtained by decomposition of the surface electromyographic (sEMG) signal (Farina & 

Enoka, 2011). The procedure involves inserting a needle into the muscle and a surface 

electrode on the skin, immediately over the needle (Conwit et al., 1997). Once an 

indwelling MUP has been identified on an oscilloscope (or, computer screen), the 

analogue-to-digital (A/D) data collection system is set to trigger based on the peak-to-

peak (P-P) amplitude of spikes from an identified indwelling motor unit action potential 

train (MUPT). The result is hundreds, or even thousands of epochs of EMG waveforms 

detected from the skin surface, when that particular MU discharged during the 

contraction. The waveforms are then averaged to decrease the random noise and increase 

the signal-to-noise (SNR) as a function of the √𝑁 (N represents the number of 

waveforms), revealing the underlying deterministic MUP shape from the skin surface 

(Boe, Stashuk, Brown, & Doherty, 2005; Conwit et al., 1997). The technique is termed 

‘spike triggered averaging’ (STA), and the MUP shape that is revealed is termed a 
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‘template’. Each MU is identified by its own template should be unique in shape, with 

unambiguous discharge times. 

Hu, Suresh and Rymer (2013a) used the two-source technique to validate MU 

discharge times obtained by sEMG decomposition (dEMG, version 4.1.1.0, Delsys. 

Natick, MA) up to 15% MVC. The same research group more recently demonstrated that 

even slight errors in MU discharge times result in an unrecognizable template (Hu, 

Rymer, & Suresh, 2013b). As a result, STA of the sEMG signal using only the MU 

discharge times obtained by sEMG decomposition has been used to validate MU data up 

to 50% MVC (Hu et al., 2013b). In this case, a number of different MUPs were identified 

from the skin surface, and their templates were compared to those provided by the dEMG 

decomposition system. The criteria for a match was a that coefficient of variation in P-P 

amplitude between the two templates had to be less than 0.3, and the average cross-

correlation coefficient had to be greater than 0.7. 

The purpose of this thesis was to extend the approach of Hu and colleagues 

(2013a, 2013b), by editing the individual motor unit potential trains (MUPTs), retaining 

only those MU discharge times for which there is ‘high confidence’ (Enoka, 2019). The 

term ‘high confidence’ is derived from the notion that all MUPs within a MUPT having 

the same shape, confer a degree of validity to the discharge times (Parsaei & Stashuk, 

2009, 2011). While edited trains may result in MUP quantification with greater precision, 

the calculation of motor unit discharge rates (MUDRs) on MUPTs with missing and/or 

erroneous discharge times can also be problematic (Stashuk & Qu, 1996a; Stashuk, 

1999a, 2001). To this end, this thesis also compared the inter-discharge intervals (IDIs) 

obtained by the original sEMG composition to that of edited MUPTs, as determined by 
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the error-filtered estimation (EFE) algorithm. The EFE algorithm is a robust statistical 

method for estimation of the mean and standard deviation of IDIs, which has already 

been validated for use in quantitative needle EMG (Stashuk & Qu, 1996a). 

1.2 Statement of the Problem 

The discharge times of a MU are the most critical measure to extract from the 

decomposition process because they are used to calculate MUDR and quantify the MUP 

as a means to understand the neural control of muscle and assess the health status of the 

neuromuscular system (Castronovo et al., 2018; Contessa, Letizi, De Luca, & Kline, 

2018; Piasecki et al., 2018). 

Hu et al. (2013a; 2013b) have demonstrated that if the discharge times are 

correctly obtained from the indwelling MUP, they can be used to obtain a sufficient 

number of epochs of EMG data to reveal its respective surface motor unit potential. The 

investigators have more recently shown that the firing times obtained by the Delsys 

(dEMG, version 4.1.1.0, Natick, MA) decomposition algorithm can be used in isolation 

to obtain epochs of data from the surface EMG signal, to validate MUP templates 

external to the commercially available propriety program (McManus, Hu, Rymer, Suresh, 

& Lowery, 2017). The critical assumption is that incorrect discharge times will not allow 

the signal averaging of random noise to cancel-out and reveal a deterministic shape. It 

could reasonably be argued that, since the protocol involved relatively low force level 

(<30% MVC) isometric contractions, decomposition of the surface EMG signal was 

easily unambiguous. High intensity contractions (>50% MVC) would, however, involve 

greater numbers of MUs, more MUPs in superposition, leading to a more complex 

interference pattern, which would have a greater probability of error (Nawab et al., 2010). 
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Editing the MUPTs based on the shape of contributing MUPs would provide a greater 

degree of confidence in the remaining MU discharge times (Parsaei & Stashuk, 2009, 

2011).  

1.3 Purpose of the Research 

This thesis determined the efficacy of a semi-automated routine for editing the 

MU discharge times within a MUPT from the flexor carpi radialis (FCR) during isometric 

contractions at 60% MVC. The IDIs obtained by the original sEMG decomposition were 

then compared to that of edited MUPTs, as determined by the error-filtered estimation 

(EFE) algorithm.  

1.4 Approach to the Problem 

Participants performed two isometric contractions of the wrist flexors, held at 

60% MVC for 15 seconds. Motor unit potentials were recorded in the flexor carpi radialis 

(FCR). The MU discharge times obtained from the dEMG decomposition were then used 

to STA the sEMG signal. A custom graphical user interface (GUI) in MATLAB 

(MathWorks Inc., Natick, MA) was used to edit the MU discharge times from the dEMG 

system, based on how well the MUP shape fits the overall MU template derived from 

STA. The algorithm for inclusion of an individual motor unit potential (MUP) and its 

associated discharge time was: (1) a correlation greater than or equal to r=0.0 (relaxed) or 

r=0.3 (strict) between any MUP and its respective template; (2) a signal-to-noise ratio 

(SNR) of root-mean-square (RMS) amplitudes greater than 0.0 (relaxed) or 0.3 (strict); 

(3) a peak that was located within the 95% (relaxed) or 68% (strict) confidence interval 

for the MU template peak location; (4) and (5) relaxed and strict values were multiplied 
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with the MUP template peak to create a range that the MUPs must fall within. 

Waveforms falling outside the boundaries of these three criteria were considered as noise 

and the erroneous discharge time was removed. The process was termed ‘denoising’.  

The following criteria was used to assess the impact of denoising. First, it was 

expected that there would be a decrease in the variance ratio (VR) which measures the 

variability in the shape of MUP waveforms contributing to the MU template. Decreases 

in the VR should also be accompanied by an increase in the SNR of individual MUPs 

underlying the MU template. Motor unit action potentials that have a lower variability in 

shape are easier to isolate and classify, ultimately creating a better template  (Parsaei & 

Stashuk, 2009). The peak-to-peak (P-P) amplitude and duration of the MU template were 

also monitored for changes, but a case could be made for either increases or decreases 

these measures, depending on the amplitude nature of the waveforms that were removed. 

Since MUDRs cannot be calculated on denoised MUPTs, the EFE algorithm (Stashuk & 

Qu, 1996a) estimated the mean and standard deviation of the IDIs as a function of the 

level of denoising based on ‘relaxed’ and ‘moderate’ exclusion criteria, for less or more 

removal of MU firings, respectively. The statistically estimated mean and standard 

deviation IDIs were then compared to the original, complete MUPTs from the dEMG 

system decomposition. The goal was to determine if the level of denoising has an impact 

on the outcome measures outlined above. 

1.5 Hypotheses 

1. Noise reduction will result in a significant decrease in the VR of 

remaining MUPs that constitute the extracted MUP template. 
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2. Noise reduction will result in significant increase in the SNR of MUPs that 

constitute the extracted MU template. 

3. There will be a significant difference in MUP P-P amplitude and duration 

after noise reduction. There are no predictions for direction of change 

(increase or decrease) in these measures, as it would depend on the 

amplitude nature of the ‘noise’ waveforms that have been removed. 

4. There will be a significant correlation between the original IDIs from the 

dEMG system and those calculated from the denoised MUPTs. However, 

previous work on the EFE algorithm suggests that the correlation may 

degrade as the level of denoising increases and more MU discharge time 

are removed (Stashuk & Qu, 1996a). 

1.6 Significance of the Study 

Advances in biomedical instrumentation and signal processing techniques have 

resulted in an increase of commercially available devices that have facilitated EMG 

investigation of the neuromuscular system by the non-expert (De Luca, 1997). Despite 

the ease of use, understanding the various factors that affect the EMG signal requires in-

depth knowledge of physiological signals so that results are not misinterpreted (De Luca, 

1997). As a result, misinterpretation of the surface EMG signal has been cited as one of 

the main obstacles to understanding the neuromuscular system (Enoka & Duchateau, 

2015). 

It is now possible for investigators to record MUPTs from the skin surface and 

make inferences about the neural control of muscle without being able to independently 

validate the data from proprietary software (De Luca & Nawab, 2011; Nawab et al., 
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2010). Validation of surface EMG decomposition algorithms has been the subject of 

much debate, with the two-source method as the gold-standard (Farina, Merletti, & 

Enoka, 2015). Routine validation by the two-source method is invasive, which is contrary 

to the main goal of surface EMG detection. This thesis proposed to extend the method of 

using only the discharge times identified by surface EMG decomposition, but for higher 

intensity contractions. The challenge is significantly greater with high intensity 

contractions because the interference is more complex and MU activity is more variable 

(Nawab et al., 2010). A simple method, as proposed here, that can be used by any 

investigator to facilitate the extraction of surface detected MUPTs for further validation 

will help to limit the misinterpretation of surface EMG signals that plagues the field 

(Enoka, 2019). 

1.7 Assumptions 

The following is a list of assumptions that must be made for the study: 

1. Participants were able to successfully complete a trapezoidal contraction 

profile that achieved a truly representative 60% MVC. 

2. The study participants were healthy and did not have any neuromuscular 

disorders. 

3. When asked to flex at the wrist, the flexor carpi radialis was the greatest 

contributor to this joint action.  

4. Minimal coactivation of antagonist muscles of the wrist (extensor carpi 

radialis) occurred.  
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5. The EMG data recorded from the surface through the dEMG sensor was 

from the flexor carpi radialis with minimal cross-talk from surrounding 

musculature. 

6. The data collection did not impose fatigue in the participants’ muscles 

during the study. 

1.8 Delimitations 

The following is a list of delimitations placed upon the study: 

1. Only isometric contractions of the flexor carpi radialis were used in this 

study. 

2. Only 60% MVC was used during this study. 

3. Participants were university/college aged. 

4. Participants had no neuromuscular abnormalities.  

5. A single joint action was considered for this study, which is flexion for the 

wrist. 

1.9 Limitations 

The following is a list of limitations that correspond to the study delimitations: 

1. Since only isometric contractions of the flexor carpi radialis were used for 

this study, the results can only be directly applied to contractions of the 

same type from these muscles. The findings may not be applied to other 

muscles or contraction types. 

2. Since only contractions of 60% MVC were used for this study, the results 

can only be applied to 60% MVC intensity contractions, or lower. 
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3. Since our participants were university/college aged population, the 

findings may not apply to individuals with age-related differences in 

muscle size, body composition, or MU behaviour. 

4. The findings also do not necessary apply to individuals with 

neuromuscular abnormalities that would have greater variability in MUP 

shape and MU activity patterns. 

5. Due to the single joint action at the wrist, the findings may not accurately 

represent the applicability to muscle during multi-joint actions. 
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CHAPTER 2:  Review of the Related Literature 

2.1 Anatomy 

2.1.1 Flexor Carpi Radialis 

The flexor carpi radialis (FCR) is a flexor and abductor of the hand, at the wrist 

joint. The FCR originates on the medial epicondyle of the humerus and inserts on the 

base of the second metacarpal (Figure 1). The FCR is innervated by the median nerve and 

is supplied blood from the ulnar artery. The FCR muscle fibers that insert along the 

midline of the tendon are oriented longitudinally and muscle fibers originating along the 

sides of the tendon are oriented at oblique angles (Segal, Wolf, DeCamp, Chopp, & 

English, 1991). Cadaveric work has demonstrated that the FCR has an approximated 

length of 164 mm to 197 mm, a pennation angle that varied considerably between 3.1° to 

13.25° and a physiological cross-sectional area of 166 mm2 to 250 mm2 (Lieber, Fazeli, 

& Botte, 1990; Liu et al., 2014). These differences are likely due to the inherent 

interindividual variability between cadavers, also Liu and colleagues (2014) split the FCR 

into two neuromuscular compartments to isolate the neurovascular supply, where Lieber 

and associates (1990) did not. According to results of a study where investigators used 

biopsies and phosphorus-31 nuclear magnetic resonance to determine fiber-type 

distribution, the FCR has approximately 40% Type I fibers and 60% Type II fibers 

(Mizuno, Secher, & Quistorff, 1994). Due to the proximal, longitudinally arranged 

muscle fibers of the FCR, it is easy to instrument with surface electrodes to record EMG 

data. There is minimal subcutaneous fat tissue over the FCR, which also facilitates the 

use of the FCR for neuromuscular investigations (Imanishi, Nakajima, & Aiso, 2000).  
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Recent cadaveric work has suggested that the motor endplates of the innervating 

alpha motoneurons are located in the proximal quarter of the FCR (Song et al., 2014). 

This evidence provides insight into appropriate placement of the dEMG electrode, since it 

is suggested that innervation zones are avoided in the dEMG user’s manual. Based on 

evidence from Zaheer et al. (2012) and Roy et al. (1986), it is ideal to detect the motor 

point before placing the electrode, thus minimizing chances of EMG amplitude 

cancellation, which will be further discussed in a later section.  
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Figure 1. Muscles of the lower arm, the flexor carpi radialis (FCR) is highlighted. 

Luttgens, K., Wells, K. (1982). Kinesiology: scientific basis of human motion. Saunders 

College Pub. 
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2.2 Surface Electromyography 

2.2.1 Muscle Fiber Action Potential 

The electrochemical activity can be recorded as voltage changes using electrodes 

placed on the skin surface or intramuscularly via a needle or fine wire (see Figure 2). The 

electrochemical activity is a result of membrane potential changes at the cellular level. 

The propagation of the action potential arises from a cascade of events that begins with 

the depolarization of an alpha motoneuron cell axon. The axonal terminal of the alpha 

motoneuron then releases acetylcholine. This neurotransmitter crosses the synaptic cleft 

and attaches to the nicotinic receptor which propagates the action potential across the 

neuromuscular junction. This then causes the sarcolemma around the myofibril to begin 

the depolarization cascade by increasing the permeability to sodium (Na+) through the 

opening of voltage-gated Na+ channels as a result of a 10 mV increase in positive 

membrane potential. Subsequently, Na+ rushes into the cell, generating a polarity reversal 

inside the cell. The polarity reversal in the cell can be seen from an electrode as the active 

depolarization where there is a current sink (see Figure 2a). The inactivation gate on the 

Na+ channel closes shortly after the Na+ rushes into the cell. The adjacent local area to the 

initial site of depolarization then undergoes the same change due to the polarity reversal 

from the Na+. The depolarization propagates axially and radially toward the following 

adjacent areas due to the Na+ ions moving towards the negatively charged inner 

membrane of the sarcolemma. This can be seen from an electrode as the passive 

depolarization where there is a weak source of electrical potential (see Figure 2b). The 

new relative positivity that exists in the cell then causes potassium (K+) ions to leave the 

cell and repolarize the cell, bringing it to the baseline -70 mV resting potential. The  
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Figure 2. Electrochemical events at the cellular level of a muscle fiber and the ensuing 

waveform as seen from electrode recordings. Loeb, G. E., Gans, C. (1986). 

Electromyography for experimentalists. University of Chicago Press.  
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repolarization is seen from an electrode as the strong source of electrical potential (see 

Figure 2c) (Sherwood, Kell, & Ward, 2013). These events are what give rise to a muscle 

fiber action potential (MFP). 

2.2.2 Motor Unit Action Potential 

A motor unit (MU) is defined as a single alpha motoneuron and all of the muscle 

fibers it innervates and is the smallest functional unit of the neuromuscular system (see 

Figure 3). The individual MFPs which occur very close in time (~10 s) summate at the 

electrode to create a motor unit action potential (Griep, Boon, & Stegeman, 1978; 

Stålberg, Ekstedt, & Broman, 1971). The motor unit action potential (MUP) generated 

from an alpha motoneuron propagates along a muscle membrane. Motor neurons branch 

out from the spinal cord through various pathways, which are routed throughout the body 

to innervate muscle fibers. Each individual motor neuron innervates a different number of 

muscle fibers, and this ratio is termed the innervation ratio (Enoka & Fuglevand, 2001). 

Using a 14-lead multi-electrode, investigators identified that there are approximately 329 

muscle fibers per MU in the tibialis anterior (Gath & Stålberg, 1981). While there are no 

available studies on an innervation ratio estimation for the flexor carpi radialis, 

investigators have found an innervation ratio of 1:165 for a similar muscle, the extensor 

longus digitorum (Clark, 1931). Figure 3 shows that depolarization begins a cascade that 

propagates along the axon of the motor neuron, then bidirectionally along the muscle 

fibers it innervates. From the neuromuscular junction of the motoneurons towards the 

tendons to then cause a muscle twitch that occurs after a delay of a few milliseconds (De 

Luca, 1979; Kamen & Gabriel, 2010). The narrow region of motor  
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Figure 3. One motor unit is depicted here with only 6 of its muscle fibers. The signal that 

propagates along the muscle fiber is recorded by an electrode in a unipolar or bipolar 

fashion. Griep, P. A. M., Boon, K. L., Stegeman, D. F. (1978). A study of the motor unit 

action potential by means of computer simulation. Biological cybernetics. 
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endplates near the muscle belly is termed the innervation zone (Rainoldi, Melchiorri, & 

Caruso, 2004; Rodriguez-Falces, 2017). 

2.2.3 Motor Unit Action Potential Train and Interference Pattern 

A series of discharges from a single motor unit is termed a motor unit action 

potential train (MUPT). Figure 4 shows the MUPTs from many MUs. Note that the 

firings for each MU are separated by a non-uniform inter-pulse interval (IPI). An 

electrode placed either within the muscle itself or on the skin surface can record the 

electrical potentials from a population of MUs as they summate (De Luca, 1979; Stashuk, 

2001). The composite EMG signal can be described as an interference pattern (IP) as 

depicted in the bottom panel of Figure 4. Depending on the type of electrode, the IP will 

appear different due to variations in conductance from the surrounding tissues. The signal 

also undergoes wave cancellation due to the summation of positive and negative 

potentials from neighbouring MUs occurring at the same time (Christie, Inglis, Kamen, & 

Gabriel, 2009; Keenan, Farina, Maluf, Merletti, & Enoka, 2005). Both volume 

conduction and cancellation hinder the detection of MUPs from the surface EMG signal. 

Indwelling electrodes, with a smaller recording volume, allow investigators to record 

from individual MUPTs (Andreassen & Rosenfalck, 1978), and there is less chance for 

wave cancellation due to the selectivity of the electrode. Superposition and 

synchronization may occur due to the temporal characteristics of various MU firings 

occurring at the same time (Defreitas, Beck, Ye, & Stock, 2014; Stashuk, 2001).  

 

 



 19 

 

Figure 4. Trains of motor unit action potentials (top) summate together to make up the 

recorded EMG signal (bottom). Basmajian, J. V., De Luca, C. J. (1985). Muscles alive: 

their function revealed by electromyography. Williams & Wilkins.  
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2.3 Variability in MUP Shape 

2.3.1 Jiggle 

Motor unit potential jiggle is defined as the variability of MUP shape. The jiggle 

was originally measured by Stålberg and Sonoo (1994) to quantify the amount the 

variability of MUP shape as an electrodiagnostic measure. A higher jiggle value is 

representative of greater MU shape variability and a lower jiggle value is representative 

of lower MU shape variability (Stålberg & Sonoo, 1994). As reported by Stålberg and 

Sonoo (1994) the jiggle is represented by calculations of consecutive amplitude 

difference (CAD) and the cross-correlational coefficient (CCC) of the consecutive 

discharges. Inspection of Figure 5 shows that greater consecutive amplitude difference 

values and lower cross-correlational coefficient of the consecutive discharge times are 

associated with a greater jiggle. It is expected that jiggle increases with an increase in 

jitter, which is formally defined as the random arrival times of single fiber action 

potentials at the electrode (Stålberg & Sonoo, 1994). Boyd and colleagues (1979) noted 

four major mechanisms for jitter and jiggle: variance in propagation time in the terminal 

nerve endings; neuromuscular transmission delays at the motor end plate; positions of the 

motor end plates on the muscle fibers, giving rise to an unequal distance for the potentials 

to travel to the electrode. Changes in jitter and jiggle are characteristic of neuromuscular 

disorders (Campos et al., 2000). A change has been suggested to modify the jiggle 

measurement, which includes the estimation of baseline fluctuation from segments of the 

recording that are free from secondary MU firings, and alignment of the consecutive 

discharges using a correlation maximization (Campos et al., 2000). Campos and  
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Figure 5. Difference in jiggle can be seen visually here, as depicted by the variability in 

the overlaid MUAPs. In a normal motor unit, the there is a low CAD and high CCC 

value. In the amyotrophic lateral sclerosis (ALS) motor unit, the CAD is much higher and 

the CCC is substantially lower. Stålberg, E. V., Sonoo, M. (1994). Assessment of 

variability in the shape of the motor unit action potential, the “jiggle” at consecutive 

discharges. Muscle & Nerve. 
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colleagues (2000) noted that there was an 18.8% improvement upon the jiggle measures, 

which indicates that the modifications using correlation maximization were beneficial. 

2.3.2 Variance Ratio  

The variance ratio (VR) is a measure that quantifies the reproducibility of a 

waveform and it is similar to the measurement of jiggle. Reproducibility and variability 

are interrelated. The less variability in the shape of a waveform, the more reproducible it 

is. Conversely, the more variability in waveform shape, the less reproducible it is. 

Variability may be affected by both physiological and technical factors associated with 

recording EMG. The VR was originally used by Hershler and Milner (1978) to quantify 

the reproducibility of EMG waveforms during gait. Kadaba and colleagues (1985) later 

used the VR to compare the variability in the shape of muscle activity recorded by 

surface versus indwelling wire electrodes. Calder et al. (2005) employed VR to study the 

reproducibility of an evoked compound muscle action potential (CMAP) from the biceps 

brachii (see Figure 6). The VR is represented by the following formula:  

𝑉𝑅 =

∑ ∑ (𝑦𝑡,𝑛 − 𝑦𝑡̅)
2𝑁

𝑛=1
𝑇
𝑡=1

𝑇(𝑁 − 1)

∑ ∑ (𝑦𝑡,𝑛 − 𝑦̅)
2𝑁

𝑛=1
𝑇
𝑡=1

𝑇𝑁 − 1

 

where T = the number of time points, N = the number of waveforms and yt,n is the value 

of the nth waveform at time point t, 𝒚𝒕̅ is the average of the waveform values at the time 

point t, averaged over N waveforms and 𝒚̅ is the grand mean of all the waveforms. As the 

observation for 𝒚𝒕̅ approaches 𝒚̅ the VR starts to approach one (1), which is the 
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maximum value for VR. The inverse is also true, the numerator approaches zero (0) if yt,n 

approaches 𝒚𝒕̅ the VR approaches zero (0).  

A higher VR is representative of waveforms that are loosely grouped, and a lower 

VR is representative of a VR that is tightly grouped. The VR is ultimately a ratio of the 

mean squared differences between waveforms divided by the total sum of squares of the 

waveforms (Hershler & Milner, 1978; Kamen & Gabriel, 2010). For the purpose of the 

present study, the VR will be used to evaluate the reproducibility of a MUP over the 

duration of its entire train. 
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Figure 6. M-waves from the biceps brachii overlaid from two different subjects. One is 

depicting a low VR (0.02) and the other a higher VR (0.62). Calder, K. M., Hall, L., 

Lester, S. M., Inglis, J. G., Gabriel, D. A. (2005). Reliability of the biceps brachii M-

wave. Journal of NeuroEngineering and Rehabilitation.  
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nature of the study. A practical upper limit of VR = 0.40 has been used by Jacobson 

and colleagues (1995). Calder and colleagues (2005) compared the biceps brachii 

M-waves from two subjects, corresponding to a high and low VR (figure 4.9). The 

EMG data defined by the interval between the first point of the EMG waveform ( , )t y1 1  

and the last point ( , )t yn n  for each individual subject must be interpolated into the same 

number of data points ( )T . The formula for calculating the VR is
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To calculate yt, the EMG waveforms must be averaged on a point-by-point basis 

across all trials ( )N  within each subject to yield a single EMG waveform that is T 

data points in length. Since an average is calculated using the data points for yt, the 

result is a single value ( )y  that represents the entire waveform.

FIGURE 4.9 A high (0.62) and a low (0.02) variance ratio (VR) for the biceps brachii M-wave (compound muscle action 

potential, or CMAP) as observed for two different subjects. The waveforms were interpolated to fit into 1000 points from the 

identified onset and end. The waveforms associated with a low VR are tightly grouped, while there is considerably more fluc-

tuation among the waveforms with high VR.

Reprinted from K. Calder , L.A. Hall, S.M. Lester , et al., 2005, “Reliability of the biceps brachii m-w ave,”  Journal of NeuroEngineering and Rehabilitation  2:33. © 2005 Calder et al.; licensee 

BioMed Central Ltd.
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2.3.3 Signal-to-Noise Ratio 

The SNR is a classic signal processing measure to quantify the amount of signal 

energy of interest versus unwanted noise. The SNR is calculated by dividing the signal 

power (PS) by the noise power (PN), which provides the investigator with a gain ratio in 

decibels (dB). One method that the SNR is represented is by the following formula:  

𝑆𝑁𝑅 = 10 log (
𝑃𝑆
𝑃𝑁

) 

 To conduct this calculation effectively, the noise is often a portion of the EMG 

signal that is taken from a quiescent period before the subject begins contracting. The 

signal is often taken from the middle of the isometric contraction. A higher SNR is 

representative of well-defined MU events, while a lower SNR is representative of less-

defined MU events (see Figure 7). The SNR is dependent on the contact of the electrode 

with the skin, the muscles around the muscle of interest and other sources of noise such 

as computer monitors and lights, and the recording equipment itself (Clancy, Morin, & 

Merletti, 2002). Recommendations have been made to minimize the difficulties around 

SNR, such as carefully preparing the skin by using alcohol, using a mild abrasive to 

remove superficial layers of the skin and by using a conductive electrolyte gel (Clancy et 

al., 2002). The decomposition algorithm developed by Delsys requires a signal-to-

baseline noise ratio of at least 2 dB. Within the context of the present study, the signal 

will be considered the innermost 15 ms of the MUPT window, while the noise will be 

considered the outermost 5 ms from either side of the MUPT window. The reason for 

these windowed values is to be as selective as possible in exclusively capturing the signal 

against the noise. 
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Figure 7. Two samples of motor unit shimmer plots (thin grey lines) with their respective 

mean templates (black line): (a) clear, unambiguous event against background noise (as 

denoted by the clear peak and thick band around the mean), (b) an unclear event against 

background noise (noticeable by the dispersion of the shimmer in the background and 

unclear template). Both examples have dashed vertical lines to denote where the 15 ms of 

signal and 5+5 ms of noise is calculated from.  
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2.4 Motor Unit Behaviour 

2.4.1 Henneman’s Size Principle 

The orderly recruitment of motoneurons from smallest to largest is termed the size 

principle. The size principle came to fruition as a collection of works that were carried 

out by Elwood Henneman and his colleagues in the mid-20th century (Mendell, 2005). 

Originally, this was described as the susceptibility of the motoneurons discharging as a 

function of their diameter and resistance to current in a hierarchical method (Henneman, 

1957). The deactivation of these motoneurons also shows a similar pattern, where the first 

recruited motoneuron will be the last one to be deactivated. The size of a motoneuron is 

reflective of the diameter of the axon, however, this can is typically inferred through 

MUP force-twitch amplitude or MUP peak-to-peak amplitude (Hu et al., 2013b). Hu et al. 

(2013b) also stated that the MUP size may not be reliable due to the variability in 

distance of the MUP to the recording site. One group studied MUs identified from the 

first dorsal interosseous and extensor indicis, and they stated that it is possible to use the 

conduction velocity of a nerve fibre to estimate the size of the motoneuron (Freund, 

Budingen, & Dietz, 1975). Overall, the gradation of force is due to the orderly 

recruitment of motoneurons, thus an increase in excitation and activation of motoneurons 

will result in a greater output of force, which will be discussed in a further section 

(Mendell, 2005).  

2.4.2 Phenomenon Known as Onion Skin Scheme 

One proposed control scheme that modulates the firing rate and recruitment of 

motor units is termed the “onion skin phenomenon” (De Luca, LeFever, McCue, & 
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Xenakis, 1982a). It details that the firing rate of MUs will be inversely proportional to the 

recruitment threshold (De Luca & Contessa, 2012; De Luca, LeFever, McCue, & 

Xenakis, 1982b). This was identified in publications as early as 1971, where Person and 

Kudina investigated the discharge pattern and frequency of MUs during voluntary 

contractions (Person & Kudina, 1972). The basic concept indicates that MUs that are 

activated earlier will maintain a higher firing rate than MUs that are activated later (De 

Luca & Contessa, 2015). The term “onion skin” is due to the MUFR patterns resembling 

the layers of an onion (see Figure 9) (De Luca et al., 2006). Through inspection of Figure 

8, the increased level of force requires more recruitment of MUs through further central 

activation and it is clearly visible that MUs were recruited in an orderly fashion following 

Henneman’s size principle (see Figure 9). These findings were similar to that of De Luca 

and Hostage (2010) where subjects performed force tracking tasks to various percentages 

of MVC while EMG was recorded in the first dorsal interosseous, vastus lateralis and the 

tibialis anterior. The work affirms previously established findings where participants used 

their extensor digitorum communis muscle during a steady isometric contractions and the 

inverse relationship between motor unit recruitment threshold firing rate was found 

(Monster & Chan, 1977). The potential explanation behind why the high-threshold MUs 

are firing slower is due to their inherent disadvantage, in which faster firing will induce a 

faster rate of fatigue, thus they must fire slower in order to continue to fire (De Luca & 

Hostage, 2010). 

While the onion skin phenomenon is commonly reported, there have also been a 

number of instances where there is a firing rate crossover between earlier and later 

recruited MUs. This is termed the ‘reverse onion skin’ phenomenon. A study by Hu and  
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Figure 8. Coloured lines: Mean firing rate of individual motor units identified in the first 

dorsal interosseous muscle relating to the Y-axis. Black line: force paradigm relating to 

the right Y-axis. All events are bound by time. De Luca, C. J., Adam, A., Wotiz, R., 

Gilmore, D. L., Nawab, S. H. (2006). Decomposition of Surface EMG Signals. Journal of 

Neurophysiology.  
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Figure 9. Motor units are recruited in a hierarchical manner with an increase in force 

output. The lowest threshold motor units are recorded first and the highest threshold 

motor units are recruited last. The max tension that a motor unit can generate occurs after 

a short period of time after recruitment. Motor units will summate to generate maximal 

muscle tension. Winter, D. A. (1990). Biomechanics and motor control of human 

movement (2nd Ed.). John Wiley & Sons. 
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colleagues (2014a) was conducted where participants were asked to trace a force 

paradigm over 3 different step levels, gradually increasing in force until the participant 

reached 15% MVC. The MU firing data did not reveal any systematic firing rate profile 

crossings, however there were occasional crossovers, which is a key marker of the 

reverse onion skin phenomenon. Hu and colleagues (2014a) mentioned that the later 

recruited MUs who showcase this reverse onion skin profile tend to exhibit a steeper rise 

in firing rate as the excitation level increases, where it then begins to exceed the firing 

rates of earlier recruited MUs. Another group analyzed the recruitment threshold and 

firing properties of motor units in the soleus up to maximal effort (Oya, Riek, & 

Cresswell, 2009). Oya et al. (2009) found that the initial and peak firing rates for later 

recruited, higher threshold MUs were significantly higher than the firing rates for the 

earlier recruited, low threshold MUs, up to 89% MVC. The potential explanation for this 

occurrence could be due to a persistent inward current mechanism (PIC) by which there 

is an amplification of synaptic input and could trigger an increase in firing rate, or limit 

the rate increase (Heckman, Gorassini, & Bennett, 2005). Both of the previously 

mentioned studies reported some degree of firing rate crossover, where one group tested 

up to 15% MVC (Hu et al., 2014) and one group tested up to maximal contraction levels 

(Oya et al., 2009), however De Luca and Hostage (2010) tested across many different 

muscles and MVC ranges and found that the onion skin profile was dominant in their 

data. This discrepancy in the data requires further investigation as to the what the 

underlying mechanisms are and why there are differences across results.  
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2.5 Muscle Force Regulation  

2.5.1 Recruitment Range 

As mentioned in the previous section, MUs are recruited in an orderly fashion 

based on the motoneuron size, thus smallest recruited first and largest recruited last 

(Henneman, 1957; Mendell, 2005). The force level at which the motor unit is recruited is 

known as the recruitment threshold (Defreitas et al., 2014). Certain MUs will recruit new 

MUs up to a certain percentage of MVC while others while have a reliance on the rate 

coding (modulation through firing rate) of MUs. A study was conducted to investigate the 

firing rate of MUs during isometric force, where participants performed isometric 

contractions at 20, 40, 60 and 80% MVC and the mean firing rate of MUs was calculated 

using indwelling electrodes (Seki & Narusawa, 1996). The investigators found that the 

firing rate was higher in the smaller muscle (first dorsal interosseous) in comparison to 

the larger muscle (biceps brachii), which indicates a reliance on MU recruitment for the 

larger muscle to generate maximum force and a reliance on MU rate coding (modulation 

of the firing rate) for the smaller muscle to generate maximum force (Seki & Narusawa, 

1996). These results were also found previously (Kukulka & Clamann, 1981). A group of 

investigators further confirmed that the biceps brachii recruitment range was large (from 

0.13 to 96.1% MVC) (Christie et al., 2009). Seki and Narusawa (1996) explain that this 

may be due to the type of muscle fiber because there are Type I in the small muscles for 

fine motor control and Type II in the larger muscles responsible for gross upper extremity 

movements. The reliance on rate coding after 50% of maximal contraction effort was also 

reported in the flexor carpi radialis (Calancie & Bawa, 1985). It was also found that the 

recruitment range for the tibialis anterior was up to 88% MVC, which indicates a 
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dependence on the recruitment of new MUs rather than rate coding (Feiereisen, 

Duchateau, & Hainaut, 1997), this was also reported by Van Cutsem and colleagues 

(1997). 

2.5.2 Common Drive 

Common drive occurs when there are simultaneous fluctuations in the firing rates 

of different MUs (Lowery, Stoykov, & Kuiken, 2003; Semmler, Nordstrom, & Wallace, 

1997). De Luca and Erim (2002) conducted a study where participants performed ramp 

contractions at 20-30% MVC with indwelling electrodes within two adjacent forearm 

extensor muscles, and found a significant amount of correlation between firing rate 

fluctuations. This may be in part due to the common innervation of muscle fibers which 

indicates that the central nervous system treats the muscles as a functional unit (De Luca 

& Erim, 2002; Kamen, Greenstein, & De Luca, 1992). Kamen and colleagues (1992) 

investigated common drive based on the lateral preference (right hand vs. left hand) in 

healthy subjects and found that there was a greater amount of common drive in firing 

rates (at 30% MVC) in the dominant side compared to the non-dominant side. They infer 

that the results could potentially be due to the organization of peripheral receptors or 

muscle topography between the dominant and non-dominant limbs. Overall, the common 

drive illustrates the relationship between the hierarchical recruitment of MUs, the size of 

the motoneurons and the global output from the central nervous system (De Luca & Erim, 

1994).  
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2.5.3 Synchronization 

Motor unit synchronization, or short-term synchronization refers to an increase in 

the tendency for MUs to fire within a few milliseconds of one another (Defreitas et al., 

2014; Milner-Brown, Stein, & Lee, 1975). This may be due to the strengthening of reflex 

pathways shown in trained compared to untrained individuals (Milner-Brown et al., 

1975). This may be a neural strategy to increase force production (Semmler, 2002). A 

group of investigators examined the synchronization of low- and high-threshold MUs at 

80% of MVC and found that high-threshold MU pairs demonstrate greater short-term 

synchronization than lower threshold MU pairs (Defreitas et al., 2014). Furthermore, the 

amount of synchronization that occurs between different age groups (young vs. old) was 

not significantly different, even at maximal forces, suggesting that synchronization is not 

exclusively meant to increase force production (Kamen & Roy, 2000). The 

synchronization may be due to inherent differences in the membrane properties among 

different MUs and differences in synaptic strength from other sources (Defreitas et al., 

2014). 

2.5.4 Doublets 

When a single MU fires within a short period (2.5 to 20 ms) their paired firings 

are termed doublets (Simpson, 1969), which are suspected to effectively modulate force 

by taking advantage of the catch-like properties of muscle. The catch-like property of 

muscle is the force augmentation that occurs after a burst of two to four pulses takes 

place (see Figure 10) resulting from increased Ca2+ concentration (Garland & Griffin, 

1999) and increased stiffness of the series elastic component of the muscle (Binder-
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Macleod & Kesar, 2005). Further, the mechanisms underlying the double discharges are 

dependent on the intrinsic properties of the motoneuron membrane, where a delayed 

depolarization may occur (Garland & Griffin, 1999). The delayed depolarization is due to 

the antidromic signals traveling back toward the dendrites again where the membrane is 

brought closer to threshold, where an additional discharge ensues (Kudina & Churikova, 

1990). In a review by Garland and Griffin (1999) it is stated that doublet discharges have 

been reported in many muscles, including the adductor pollicis, biceps brachii, flexor 

carpi radialis, trapezius and soleus, to name a few. In regards to the population incidence, 

It has been observed that occurrence of doublets appears to be greater in younger adults 

compared to older adults, with insignificant variability between force levels (Christie & 

Kamen, 2006). Conclusively, doublet discharges may be present as a form of force 

production or to improve motor performance. Within the present study it is possible that 

doublets may appear within a decomposition or revealed through spike-triggered 

averaging.  
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Figure 10. Catch-like properties of muscle as shown through 3 separate situations. In A 

and B the muscle is stimulated by a doublet pulse immediately. In B, a single drop-out of 

a pulse reduced the force. In C, an additional firing occurred immediately after another to 

enhance the force. Kamen G., Gabriel, D.A. (2010). Essentials of Electromyography. 

Human Kinetics. 
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2.6 Factors That Affect the Surface Electromyographic Signal 

There are many factors that impact the origin of the EMG signal, which can range 

from intrinsic factors to extrinsic factors. Intrinsic factors include the tissues that are 

between the recording electrode and the muscles (Nordander et al., 2003), the 

architectural properties of the skeletal muscle (van Eijden & Raadsheer, 1992), muscle 

fiber conduction velocity (Farina & Merletti, 2004) cross-talk of other muscles (De Luca 

& Merletti, 1988) and movement artefacts (De Luca, Donald Gilmore, Kuznetsov, & 

Roy, 2010). Extrinsic factors could be from the changes of muscle temperature (Bigland-

Ritchie, Thomas, Rice, Howarth, & Woods, 1992), electrode placement and inter-

electrode distance (Rainoldi et al., 2004), skin preparation (Clancy et al., 2002) and 

fatigue (Bigland-Ritchie & Woods, 1984). The present factors should all be considered 

before collecting electromyographic data to ensure the integrity and reliability of the 

work. 

2.6.1 Subcutaneous Tissue 

Surface EMG is inherently limited by the complexity of human anatomy, in which 

there are layers of skeletal muscle. Deep muscles, such as the multifidus on the spine, 

require the use of intramuscular EMG electrodes for a reliable recording (Stokes, Henry, 

& Single, 2003). Intramuscular EMG electrodes may be fine wire or needles that are 

inserted directly into the muscle belly, which serve the benefit of bypassing the common 

tissues that are between the surface electrode and the muscle, while also increasing 

selectivity of the electrode. The EMG signal can be affected by the amount of sub-

cutaneous tissue that is between the recording electrode and the muscle.  



 38 

Tissue filtering acts as a spatial low-pass filter which distorts the true EMG signal 

by attenuating the higher frequencies (De la Barrera & Milner, 1994; Kuiken, Lowery, & 

Stoykov, 2003). In addition, it has been reported that the signal-to-noise ratio is inversely 

related to the skinfold thickness of the tissue between the recording electrode on the 

muscle (Zaheer et al., 2012). In a study by De la Barrera and Milner (1994) it was 

concluded that lower levels of skinfold thickness over the biceps brachii led to greater 

electrode selectivity. This means that sEMG signals are difficult to compare between 

subjects and therefore must be normalized to individual participants. In addition to their 

primary findings, De la Barrera and Milner (1994) found that the median frequency of the 

power spectrum for the sEMG signal declined with increases in skinfold thickness (r = -

0.92). Another study was conducted regarding the mean and median power frequency 

differences between men and women at 20, 40, 60 and 80% MVC, where women 

generally presented lower mean and median power frequencies (Bilodeau, Arsenault, 

Gravel, & Bourbonnais, 1992). Pooling participants data while analyzing frequency 

spectrum characteristics should be done with great care (Bilodeau et al., 1992). More 

recently, the spectral characteristics of EMG were measured from contractions at 70% 

MVC in the TA and there was a poor association between median frequency and MU 

recruitment, likely due to the spatial distribution of MUs (Del Vecchio, Negro, Felici, & 

Farina, 2017). Skinfold thickness is a necessary measurement to determine if EMG 

decomposition is possible, since it has been found that greater skinfold thickness values 

may render decomposition less possible (Hogrel, 2003). Although, the methodology by 

Hogrel (2003) was not the same as the present study. 
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2.6.2 Architectural Properties of Muscle 

As mentioned previously, there are two main types of muscle fibers: slow twitch 

(Type I) and fast twitch (Type II and Type IIx). The Type I muscle fibers generally have 

a small diameter and the Type II fiber types are larger (Sherwood et al., 2013). The 

architectural properties of a muscle, such as the muscle fiber diameter and the muscle 

length, can affect the myoelectric signal. A linear relationship has been observed between 

the diameter of a muscle fiber and the conduction velocity in frog fibers (Håkansson, 

1956). The linear relationship is attributed to the input resistance properties of the fiber, 

where an increased diameter would include a greater velocity due to a decreased 

resistance. The correlation between conduction velocity and fiber diameter has also been 

observed in vivo in neuromuscular patients (Blijham et al., 2006). Arendt-Nielsen and 

colleagues (1992) conducted a study where evoked potentials were elicited in participants 

at 4 different knee angles (5, 45, 90 and 120°, where 5° is near full extension) at 3 

contraction levels (0, 25 and 50% MVC). Regardless of contraction level, the conduction 

velocity declined. This occurrence is due to the lengthening of the muscle fiber, which 

decreases the diameter of the fiber (Arendt-Nielsen, Gantchev, & Sinkjær, 1992). 

Human muscle can be arranged in a variety of orientations, such as parallel or 

longitudinal (biceps brachii) where fibers extend parallel to the force-generating axis, or 

uni- and multipennate (vastus lateralis and gluteus, respectively) where fibers are at an 

angle relative to the force-generating axis (Lieber & Fridén, 2000). The pennation angle 

is often measured through ultrasound to acquire an accurate measurement (Fukunaga, 

Kawakami, Kuno, Funato, & Fukashiro, 1997). Through modeling, a group of 

investigators sought to determine the effects of obliquely arranged muscle fibers of the 
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gastrocnemius muscle on the surface electromyogram (Mesin, Merletti, & Vieira, 2011). 

They found that surface electrodes placed over muscles with pennate fibers sample 

strictly from nearby sources (Mesin et al., 2011). This study was followed up with 

another in which investigators used high-density sEMG to determine if the MUs were 

localised in the gastrocnemius (Vieira, Loram, Muceli, Merletti, & Farina, 2011). Their 

results revealed that the MUs were localised in the gastrocnemius (Vieira et al., 2011), 

and this may be due to the central nervous system taking advantage of the architectural 

properties of muscle (Mesin et al., 2011). Understanding the various anatomical 

arrangements of muscle will aid in identifying appropriate electrode placement 

(Staudenmann, Roeleveld, Stegeman, & van Dieën, 2010). 

2.6.3 Muscle Fiber Conduction Velocity 

Muscle fiber conduction velocity (MFCV) is a measure of the velocity at which 

the action potential propagates along the muscle fibers from the motor end plates. The 

MFCV is an important measurement as it can provide information on neuromuscular 

disorders (Blijham et al., 2006) and is a major contributor to the power spectrum of the 

sEMG signal (Arendt-Nielsen & Mills, 1985; Arendt-Nielsen & Zwarts, 1989; Yaar & 

Niles, 1992). Understanding the velocity at which action potentials propagate along the 

muscle fiber can offer valuable insight to the initiation of movements (Arendt-Nielsen & 

Zwarts, 1989). The MFCV is influenced by many factors including muscle temperature 

(Troni, DeMattei, & Contegiacomo, 1991), muscle length (Arendt-Nielsen et al., 1992), 

muscle fiber diameter (Blijham et al., 2006; Håkansson, 1956), firing frequency 

(Morimoto & Masuda, 1984), MU type (Hopf, Herbort, Gnass, Günther, & Lowitzsch, 

1974), force of the contraction (Sadoyama & Masuda, 1987; Sbriccoli et al., 2003) and 
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fatigue (Bigland-Ritchie, Donovan, & Roussos, 1981). During a study that involves the 

investigation of the neuromuscular system extrinsic variables such as muscle length, 

muscle temperature and electrode placement should be controlled to ensure the integrity 

of the data.  

The MFCV can affect the EMG signal if the electrode is not placed away from the 

motor point, which may result in the velocities being interpreted as too high (Arendt-

Nielsen & Zwarts, 1989). The motor point is the site of electrical stimulation where the 

largest muscle contraction is evoked from the smallest stimulus. This is identified 

through percutaneous repeated electrical stimulation (Bowden & McNulty, 2012). 

Incorrect estimation of MFCV is also observed with an incorrect electrode orientation. 

Arendt-Nielsen and Zwarts (1989) recommend placing the electrodes perfectly 

perpendicular to the muscle fibers to avoid under- or overestimating the velocities. As 

mentioned previously, the MFCV changes based on the angle of a joint as a result of 

changing muscle length (Arendt-Nielsen et al., 1992). Inbar and associates (1987) had 

participants contract their biceps brachii at several different angles (45, 90 and 180°, 

flexion to extension) and found that median power frequency increased at each joint 

angle as a function of MFCV. Additionally, the fiber orientation should also be 

considered, as the MFCV may not be easily estimated from pennate muscle fibers due to 

the oblique orientation with the electrode recording surface (Farina & Merletti, 2004). 

This is due to the arrival of the potential at the recording electrode at different distances 

along the fiber (Mesin et al., 2011). 

More recently, Del Vecchio and colleagues (2018) investigated the relationship 

between MFCV and recruitment threshold of MUs within the tibialis anterior using high-
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density sEMG and they found that MFCV was highly correlated with recruitment 

threshold (R2 = 0.7). Previous work by Sbriccoli and colleagues (2003) investigated the 

relationship between contraction speed, median frequency and conduction velocity. They 

reported that the concomitant changes in rate of contraction (MVC/s) were associated 

with MFCV, in which contractions that were accomplished quickly showed that MFCV 

was reached at higher MVCs and much faster. Maximal MFCV was reached at 52.3% 

MVC at 5% MVC/s, and max MFCV was reached at 85% MVC at 20% MVC/s 

(Sbriccoli et al., 2003). Controlling the speed of contraction when measuring MFCV is 

imperative based on these findings.  

2.6.4 Cross-talk 

Cross-talk is defined as the recording of action potentials from nearby muscles 

while the electrode is placed on a specific muscle of interest (De Luca & Merletti, 1988). 

Classically, it has been measured by using the cross-correlation function which depicts 

the similarity between two signals, thus revealing commonalities (De Luca & Merletti, 

1988; Mogk & Keir, 2003). Extrinsic and intrinsic properties can either increase or 

decrease the level of cross-talk. The level of cross-talk that is recorded is dependent on 

the investigator’s ability to appropriately place the electrodes over the muscle of interest 

while being conscious of the inherent anatomical limitations (such as muscles in close 

proximity). For example, if EMG is being recorded from the flexor carpi radialis when 

muscles are in close proximity, such as the extensor carpi radialis, the chance of cross-

talk in the EMG signal is greater. The detection surface of an electrode may have an 

electrical field large enough to record activity from both muscles. Winter and colleagues 

(1994) found that an electrode surface of 5 mm2 had a detection depth of 18 mm. Other 
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investigators noted that electrode size was estimated to have negligible effects on 

detection depth and state that the signal will be primarily dominated by MUPs located at 

a depth of 10-12 mm (Fuglevand, Winter, Patla, & Stashuk, 1992). Synergistic muscles 

will be an exception, as it is not possible to conclude whether the synergist signals have 

contamination from each another (Winter, Fuglevand, & Archer, 1994), also noted by 

Mogk & Keir (2003) where they found 50% common signal between electrode pairs over 

the forearm extensor muscles and 60% common signal between electrode pairs over the 

forearm flexors.  

Controlling for cross-talk is important when reporting the electrical activity of 

specific muscles. Electrode placement can have a significant effect on the cross-talk in 

the EMG recording. Winter and colleagues (1994), investigated both a theoretical model 

and an experimental approach. Both the model and experimental approach were used to 

investigate the difference in cross-correlation between electrode pairs at various inter-

electrode distances. Based on the results, recommendations were made to reduce the 

amount of cross-talk: use electrodes with smaller surface area and also arrange them in a 

close bipolar spacing with differential amplification (Winter et al., 1994).  

The cross-correlation technique was used under the assumption that there was no 

extinction of the intracellular action potential at the end-plate and tendon region, which 

may render cross-correlation techniques as oversimplified (Farina, Merletti, Indino, 

Nazzaro, & Pozzo, 2002). Conclusively, Farina and colleagues (2002) did settle that 

minimizing electrode distance for double-differential signals will aid in decreasing cross-

talk (Figure 11). A double-differential signal is where three in-line electrodes are 

differentiated (subtracted from each other) twice to form a double differential (Guerrero, 
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Spinelli, & Haberman, 2016). Using a 3-bar electrode and/or double-differential 

amplification is also supported as a method of cross-talk reduction by many (De Luca, 

Kuznetsov, Gilmore, & Roy, 2012; De Luca & Merletti, 1988; Guerrero et al., 2016). A 

study was conducted in which EMG was measured from several cat muscles to 

investigate the cross-talk at various levels of supramaximal stimulation applied at the 

nerve (Solomonow et al., 1994). They denervated muscles adjacent to the muscle of 

interest and found that the cross-talk contained in those adjacent was negligible 

(Solomonow et al., 1994). Solomonow and associates (1994) declared that the cross-talk 

may be negligible when using EMG for biomechanical studies, this however, is not 

applicable to all muscle groups (i.e., muscles of the back, gluteus area, etc.).  

With relevance to this specific study, it is important to note that the flexor carpi 

radialis is in close proximity to many other muscles (Mogk & Keir, 2003). Specifically in 

regards to the Delsys dEMG electrode, where there are 4 differentiated channels acting to 

counter and reduce the common signal from adjacent muscles and external electronic 

sources (Nawab et al., 2010). 
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Figure 11. Double-differential amplification, where electrodes are in-line and Va and Vb 

are differentiated, then Vb and Vc are differentiated. IA1 and IA2 are the single 

differentiations and IA3 is the differentiation of IA1 and IA2, therefore IA3 is a double 

differential. Guerrero, F. N., Spinelli, E. M., Haberman, M. A. (2016). IEEE 

Transactions on Biomedical Circuits and Systems. Figure 1, page 787. 
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Abstract—Inthis paperwepresentananalysis ofthevoltage

amplifie

r

neededfordoubledifferential(DD)sEMG measure-

ments andanovel,verysimplecircuitforimplementingDD

activeelectrodes.Thethree-inputamplifierthatstandaloneDD

activeelectrodesrequireisinherentlydifferentfromadifferential

amplifier ,andgeneralknowledgeaboutitsdesignis scarceinthe

literature.First,thefigures ofmeritoftheamplifier aredefine d

throughadecompositionofits inputsignalintothreeorthogonal

modes.This analysis reveals amodecontainingEMG crosstalk

components thattheDD electrodeshouldreject.Then,theeffect

offin

i

teinputimpedanceis analyzed.Becausetherearethree

terminals,minimumbounds forinterferencerejectionratios due

toelectrodeandinputimpedanceunbalances withtwodegreesof

freedomareobtained.Finally,anovelcircuitdesignispresented,

includingonlyaquadrupleoperationalamplifierandafew passive

components.Thisdesignisnearlyas simpleasthebranchedelec-

trodeandmuchsimplerthanthethreeinstrumentationamplifier

design,whileprovidingrobustEMG crosstalkrejectionandbetter

inputimpedanceusingunitygainbuffersforeachelectrodeinput.

Theinterferencerejectionlimits ofthis inputstageareanalyzed.

An easilyreplicableimplementation oftheproposedcircuitis

described,togetherwithaparameterdesignguidelinetoadjustit

tospecificneeds.Theelectrodeis comparedwiththeestablished

alternatives,andsamplesEMG signalsareobtained,acquiredon

differentbodylocations withdrycontacts,successfullyrejecting

interferencesources.
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I.INTRODUCTION

S
URFACEelectromyography(sEMG)allowstoacquirein-

formationaboutmuscleactivityinanon-invasiveway,
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sureEMG signals.
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(c)Approximationobtainedwiththebranchedelectrode[8].

beattenuatedvaryingthenumberofcontactsandgeometryof

theelectrodes [1],[2].Severaltopologies ofincreasingcom-

plexityhavebeenproposed,amongwhichtheso-calledLinear

DoubleDifferential,orjustDoubleDifferentialtopology(DD)
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tivelylow complexity[3]–[5].Thiselectrodeisusedinresearch

andincorporatedincommercialequipments(Ottobock13E200,
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potentials , and asdepictedinFig.1(a).Theoutputof
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pairsofelectrodesasgivenbythefollowingequation:
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2.6.5 Electrode Placement 

The focus of the present thesis is to examine the validity of an automated 

decomposition system, thus the setup and placement of the electrode must be done in 

accordance with recommendations on an ideal electrode placement site (Zaheer et al., 

2012). Before the electrodes are placed, the skin should be properly prepared to ensure 

minimal skin-electrode impedance to achieve the best signal amplitude (Clancy et al., 

2002). This is easily accomplished by cleansing the skin with alcohol and using a 

conductive gel between the skin surface and electrode, as recommended by Clancy and 

colleagues (2002), and mentioned in the SNR section of this document. Anatomical 

variability must be understood and accounted for, as to avoid areas of excessive 

subcutaneous tissue (De la Barrera & Milner, 1994), cross-talk from surrounding muscles 

(Winter et al., 1994) or the innervation zone (Rainoldi et al., 2004).  

As mentioned in the previous section, electrode placement is a major contributor 

to electrode cross-talk (De Luca & Merletti, 1988; Winter et al., 1994), and so it should 

be done with care. Subcutaneous tissue has been discussed previously, where it is clear 

that there are negative effects on the EMG signal due to tissue filtering (Bilodeau et al., 

1992; De la Barrera & Milner, 1994; Hogrel, 2003; Nordander et al., 2003). The 

innervation zone, as mentioned previously, is the location where nerve terminations and 

muscle fibers are connected (Rainoldi et al., 2004). If the electrodes are placed in such a 

configuration that they straddle the innervation zone, it will result in signal amplitude 

attenuation (see Figure 12) (Beck et al., 2009; Farina, Merletti, Nazzaro, & Caruso, 2001; 

Rainoldi et al., 2004). Using a linear electrode array it is possible to easily identify the 

innervation zone of muscles (Mesin, Merletti, & Rainoldi, 2009). Beck and colleagues 
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(2009) used a linear electrode array over the vastus lateralis and found that electrodes 

placed around the innervation zone had low-frequency attenuation and recommend 

placing electrodes between the innervation zone and the tendon end regions. This has also 

been recommended by others through experimentation (Rainoldi et al., 2004, 2000) and 

modelling (Farina et al., 2001). Recently, a study was conducted where a monopolar and 

bipolar electrode arrangement were used to quantify the reliability of evoked potentials 

and the reduction of cross-talk (Green, McGuire, & Gabriel, 2015). For EMG on the FCR 

they found that a bipolar configuration with one electrode placed on the motor point and 

one directly adjacent in orientation with the fiber direction significantly minimizes cross-

talk from the ECR (Green et al., 2015). Lateva and colleagues (2001) reported that the 

individual phases (onset, spike, terminal wave and slow-afterwave) of the MUP can be 

used for studying MU properties and inferring muscle fiber architectural characteristics. 

Due to the nature of the present study, dynamic contractions are not of major importance, 

but movement during an isometric task must be mitigated to control for the shift of the 

innervation zone below the electrodes (Rainoldi et al., 2000). 

Zaheer and colleagues (2012) stated that the placement of the dEMG sensor has 

an influence on the total yield of MUPTs that are identified from the decomposition 

algorithm. The investigators made inferences based on MU yield in several locations on 

the body (six lower limbs and one upper limb) over muscle bellies that had various 

amounts of subcutaneous tissue. Based on the findings, Zaheer and colleagues (2012) 

recommended placing dEMG electrode 1/3 distal from the center of the TA muscle belly 

due to the MU yield at that sensor site. The innervation zone was investigated in 43 

different muscles and the investigators found that there was good uniformity of the  
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Figure 12. This is an example of an EMG signal that was recorded with a linear electrode 

array. The electrode array was placed longitudinally with the vastus medialis muscle and 

it was placed over the innervation zone. There is a clear attenuation of signal amplitude 

(A), and the phases are reversed for B1 and B2. Rainoldi, A., Melchiorri, G., Caruso, I. 

(2004). A method for positioning electrodes during surface EMG recordings in lower 

limb muscles.  

 

 

 

 

 

38 A. Rainoldi et al. / Journal of Neuroscience Methods 134 (2004) 37–43

Fig. 1. The figure shows an example of EMG signal recorded with linear electrode array in single differential mode during a strong contraction of a

vastus medialis muscle. The observed signal amplitude minimum over the IZ (A) and the phase reversal (B1 and B2) are the consequence of both the

single differential recording mode and the movement of the depolarized zones toward tendon terminations in opposite direction.

variable estimates. These studies clearly show that accurate

estimation of sEMG signal amplitude, spectral variables

and muscle fiber conduction velocity are subject to elec-

trode location and that failure to adhere to optimal electrode

placement can provide misleading results.

Fig. 1 shows an example of EMG signal recorded with

the linear electrode array technique. The picture highlights

the recorded signal pattern as a consequence of the single

differential acquisition mode. Due to the movement of the

Fig. 2. Variations of EMG variable estimates along the muscle length. In (a) muscle fiber conduction velocity (CV), (b) correlation coefficient (CC), (c)

spectral (MNF) and (d) amplitude (ARV) variables are depicted. Vastus medialis muscle, 70% MVC; channel 1 is proximal and channel 13 is distal

(interelectrode distance equal to 10 mm). Each single differential signal is obtained subtracting the signals picked up by each couple of electrodes, thus

when the electrodes are placed over the IZ, an error in the variable estimates will occur because of the travelling potentials in opposite directions. As

a consequence the best locations for electrode positioning are the areas between IZ and tendon terminations where the EMG variable estimates are not

affected by the alterations described above.

depolarized zones in opposite direction and to the subtrac-

tion between each couple of electrodes, the amplitude signal

over the innervation zone (IZ, which is the location where

nerve terminations and muscle fibers are connected) will be

minimum (A) and the distal and proximal signals with re-

spect to the IZ will appear with phase reversal (B1 and B2).

An example of EMG variable estimate variations along

the muscle length is depicted in Fig. 2 for the vastus medialis

muscle. Average rectified value (ARV) and mean frequency
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innervation zone in the FCR and TA (Beretta Piccoli et al., 2014). This means that across 

trials the identification of a motor point within these muscles should not be excessively 

complex or difficult. 

2.6.6 Movement Artifact 

Movement artifact is a source of noise that can occur if the muscle moves under 

the electrode surface, or if there is movement between the electrode-skin interface (De 

Luca et al., 2010). De Luca and associates (2010) found that a Butterworth filter with a 

cutoff frequency of 20 Hz and a slope of 12 dB/oct was recommended to mitigate the 

noise that resulted from movement artifacts. According to Day (2002), it is ideal to apply 

a similar filter to the EMG signal, as some movement artifact is comprised of the low 

frequency components of the EMG power spectrum. Rainoldi and colleagues (2000) 

noted that the innervation zone below the electrodes shifted approximately 10 mm during 

dynamic contractions, which may introduce movement artifact into the recorded signal.  

2.6.7 Temperature and EMG 

Temperature in the recording environment should be controlled when recording 

EMG signals as it has the potential to modulate the results (Bigland-Ritchie et al., 1992; 

Rutkove, 2000, 2001; Rutkove, Kothari, & Shefner, 1997; Troni et al., 1991). 

Temperature can be modulated to invoke changes in the neuromuscular system, whether 

it be through whole-body or local heating and cooling. Generally, in electrodiagnostic 

medicine the investigators try to keep temperatures of the upper limb between 34°C and 

36°C and the lower limb between 32°C and 34°C. Cooling the muscle effects the 

neuromuscular system by increasing MUP duration (Bertram, Nishida, Minieka, Janssen, 
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& Levy, 1995) decreasing Na+/K+ pump activity, conduction velocity (Troni et al., 1991), 

mean power frequency (Winkel & Jørgensen, 1991) and/or muscle contraction force 

(Rutkove, 2001). Different effects are observed with heating, although the severity of 

these effects is still of relevance and must be controlled for. It has been reported that with 

heating up to 42°C (skin temperature) that MUP amplitude and duration decrease while 

conduction velocity increases (Farina, Arendt-Nielsen, & Graven-Nielsen, 2005; Hodgkin 

& Katz, 1949; Rutkove et al., 1997b). These changes are likely due to sodium channel 

function, as understood by Hodgkin and Katz (1949) in a squid model. Furthermore, 

some of these changes may be due to the mechanical properties of the muscle itself, such 

as changing of the viscoelastic properties of muscle (Farina, Arendt-Nielsen, & Graven-

Nielsen, 2005). 

For the purpose of the present study, it is important to note that changes in MU 

discharge rates occur with temperature changes. Mallette and colleagues (2018) had 

participants complete isometric contractions in a cold condition (~22° C skin 

temperature) and thermoneutral condition. The local forearm cooling increased the 

number of MUs recruited, increased the MUP duration and decreased MUP amplitude 

(Mallette et al., 2018), findings similar to those reported previously (Rutkove, 2000, 

2001). The investigators also reported that MU discharge rates did not change between 

conditions, which has been previously observed in the first dorsal interosseous following 

the cooling of 5°C (Bigland-Ritchie et al., 1992). Farina and colleagues (2005) have also 

reported no difference in the discharge rate of low-threshold MUs at various skin 

temperatures.  
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It has been reported that heat has a significant effect on the EMG signal, as 

reported previously (Racinais, 2013; Rutkove et al., 1997). The RMS EMG amplitude 

was decreased in both a hot core (~39° C) and a hot skin (35.2° C) condition. A 

decreased RMS amplitude may be explained by the shortening of the time that the 

voltage-gated sodium (Na+) channels remain open when temperature increases (Hodgkin 

& Katz, 1949; Racinais, 2013). Considerations for temperature should be noted when 

conducting a study, as temperature may be a large influencer on the outcome of the 

collection of the EMG signal.  

2.6.8 Muscular Fatigue 

Muscular fatigue can be described as the inability of a muscle to sustain a 

required or expected force (Bigland-Ritchie et al., 1981; Bigland-Ritchie & Woods, 

1984). This can be due to metabolic changes in the periphery associated with a high rate 

of energy turnover due to muscle cross-bridge events or a lack of descending neural drive 

(Sacco, McIntyre, & Jones, 1994). When a build-up of metabolites occurs, such as the 

accumulation of hydrogen (H+) or lactate, the rate of adenosine triphosphate (ATP) 

supply declines. The gathering of such metabolites as well as potassium (K+) in the 

extracellular spaces leads to a decreased effectiveness of calcium (Ca2+) and thus there is 

a reduction in excitation-contraction coupling (Bigland-Ritchie & Woods, 1984). More 

recently, other factors have been said to the cause, such as an accumulation of inorganic 

phosphate (Pi) (Westerblad, Allen, & Lännergren, 2002). The accumulation of Pi results 

from the breakdown of creatine phosphate. The Pi may act directly on the myofibrils by 

binding to an active site and reducing the force generating capacity or by binding to Ca2+ 

directly in the sarcoplasmic reticulum (Westerblad et al., 2002). With fatigue, motor units 
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must then have higher activation rates to maintain the same level of force through means 

of rate coding (Fuglevand, Macefield, & Bigland-Ritchie, 1999). The effects of fatiguing 

contractions can be seen through the depression of the EMG amplitude that is recorded 

(Dimitrova & Dimitrov, 2003; Enoka, 2012). Fatigue also appears as a shift to the lower 

frequencies in the frequency spectrum due to the increase of low-frequency components 

(24 to 48 Hz) and the decrease in the high-frequency components (136 to 400 Hz) 

(Bigland-Ritchie et al., 1981; Komi & Tesch, 1979). This shift has been more dominant 

with individuals who had greater amounts of fast-twitch fibers (Komi & Tesch, 1979). 

The shift in the spectrum to the lower-frequency components with a concomitant decline 

in force generating capacities after fatigue may suggest that there is an impairment of the 

excitation-contraction coupling, since EMG responses were still recorded even though 

tension was not significantly generated (Fuglevand et al., 1999). 

The MFCV, median power frequency (MDF) and mean power frequency (MPF) 

is said to be affected by fatigue. In a study by Arendt-Nielsen and Mills (1985) 

participants contracted at various levels ranging from 10% to 90% MVC. The 

investigators noted that a linear relationship existed between the MPF and MFCV, 

however for 10-20% MVC the MPF and MFCV increased, while contractions of 30% 

MVC or higher led to both variables decreasing (Arendt-Nielsen & Mills, 1985). These 

results were later replicated within a healthy and a clinical cohort (neuropathy, 

myasthenia, myotonia, myopathy) population. Participants sustained a maximum 

continuous contraction for as long as possible. The researchers found that MFCV 

decreased linearly with fatigue. The MPF decreased with fatigue as well (Yaar & Niles, 

1992). Sbriccoli and colleagues (2003) measured the influence of the speed of a 
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contraction on several variables, including conduction velocity and MDF. They found 

that with higher speed of contraction to maximal effort led to a steeper decline in the 

MDF (Sbriccoli et al., 2003). The MDF and MPF both declined after sustained 

contractions of the TA at 20 and 80% MVC (Merletti et al., 1990). The reduction in 

MFCV, and MDF was also observed in the brachioradialis in a study where participants 

held sustained contractions of the elbow flexors (Lowery, Nolan, & O’Malley, 2002). 

Recently, using the dEMG system, investigators had participants fatigue their vastus 

lateralis muscle. The participants exhibited an increase in motor unit firing rates, 

recruitment of new motor units and decrease in motor unit recruitment thresholds. The 

investigators reported that the control scheme remained unchanged (Contessa, De Luca, 

& Kline, 2016).  

2.7 Electromyographic Decomposition 

For years many investigators have sought to develop technology to extract the 

rudimentary information of single MUs from the complex sEMG signal (Drost, 

Stegeman, van Engelen, & Zwarts, 2006; Lefever & De Luca, 1982; Merletti, Holobar, & 

Farina, 2008; Nawab et al., 2010). Decomposition of the sEMG signal is the process of 

separating the constituent MUPs that form the interference pattern (Stashuk, 2001). This 

has been accomplished using semi-automated (McGill, Lateva, & Marateb, 2005) and 

fully-automated technology (Gazzoni, Farina, & Merletti, 2004; Merletti et al., 2008; 

Nawab et al., 2010). Decomposition software has been used with both sEMG (De Luca et 

al., 2006; Drost et al., 2006; Gazzoni et al., 2004; Merletti et al., 2008; Nawab et al., 

2010) and indwelling EMG signals (McGill, Cummins, & Dorfman, 1985; Nawab, 

Wotiz, & De Luca, 2008; Stashuk & de Bruin, 1988; Stashuk & Qu, 1996). When 
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evaluating the validity of the decomposition technology, it is important to ensure that the 

MU firing times are true to ensure that one MU can be discriminated from another (Qu & 

Stashuk, 1993; Stashuk & Qu, 1996). The focus of this thesis is to only use MU data that 

is considered valid by removing data in which we do not have high confidence. The 

following section introduces and details the specific processes that several investigators 

have developed for their own methods of decomposition.  

2.7.1 Delsys Decomposition EMG System 

The Delsys dEMG system is currently commercially available. The 

decomposition is fully automated and requires minimal input from the user. The process 

requires a 5-pin electrode that creates 4 differential EMG channels and then the signal is 

automatically decomposed with the Precision Decomposition III (PD III) algorithm (De 

Luca et al., 2006; Nawab et al., 2010) (Figure 13). The PD III algorithm uses template 

matching to assign MUPs to their respective MU based on their shape and firing 

statistics. The PD III algorithm includes an artificial intelligence procedure known as the 

PD-IPUS (Integrated Processing and Understanding of Signals) stage and the PD-IGAT 

(Iterative Generate and Test) stage (Figure 14). Figure 15 shows a sample of data 

acquired using the dEMG system. 

The PD-IPUS stage is used for template creation, template matching and 

updating. The PD-IPUS framework is meant to handle signals, like electromyograms, that 

are zero-mean random (stochastic) and non-deterministic (may exhibit different 

behaviour although the input is the same). This is accomplished by using a maximum a 

posteriori (MAP) receiver. The MAP receiver ensures that the matching of templates is 
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accomplished by using information of the identified templates for further matching, such 

that only information from the signal itself is being used, and nothing known beforehand. 

The PD-IGAT stage is specifically designed to identify which MUPTs have a presence in 

any of the superpositions that occur within the sEMG signal. Superpositions occur when 

two or more MUPs occur at a similar instance in time and distort one another as observed 

in the recorded EMG signal (Etawil & Stashuk, 1996). Templates are combined based on 

MUPs that are of greater likelihood and the search for the superposition is stopped if the 

template combination that models the sEMG superposition can be subtracted from the 

sEMG signal and reduce the net energy by at least 50%. If there are competing answers, 

the combination of MUPs that most accurately represents the local firing time is selected.  

Nawab and colleagues (2010) were able to successfully decompose sEMG signals 

into their constituent MUPTs using their automatic algorithm, this included five different 

muscles and various levels of force ranging up to 100% MVC. Their results yield ond 

average for all MUPTs a high accuracy of 92.5%, and reaching 97% at certain times, 

using the decompose-synthesize-decompose-compare validation approach (Nawab et al., 

2010). 
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Figure 13. Visual depiction of the surface EMG decomposition algorithm. De Luca, C. 

J., Adam, A., Wotiz, R., Gilmore, L. D., Nawab, S. H. (2006). Decomposition of surface 

EMG signals. Journal of Neurophysiology. 
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Figure 14. Diagram of the PD-IPUS and PD-IGAT stages of MU decomposition. The 

PD-IPUS is used for template creation, template matching and updating templates. The 

PD-IGAT is used to discriminate MUPs that have led to a superposition in the signal. 

Nawab, S. H., Chang, S., De Luca, C. J. (2010). High-yield decomposition of surface 

EMG signals. Clinical Neurophysiology.  
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Figure 15. Sample of motor unit firing statistics as observed from the dEMG system. 

From top to bottom: MUDR of each identified MU respectively; inter-pulse interval for 

each identified MU; the mean firing rate for each identified; templates of the MUs 

identified from the decomposition. De Luca, C. J., Adam, A., Wotiz, R., Gilmore, L. D., 

Nawab, S. H. (2006). Decomposition of surface EMG signals. Journal of 

Neurophysiology. 
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2.7.2 High-density sEMG Decomposition 

High-density sEMG (HD-sEMG) has been used frequently in the last 20 years. It 

requires the use of multiple, closely spaced electrodes in a grid formation (multi-channel 

surface EMG), which provides the investigator with temporal and spatial information 

about the distribution of the electrical activity from the muscle (Figure 16) (Farina, 

Holobar, Merletti, & Enoka, 2010; Merletti, Botter, Troiano, Merlo, & Minetto, 2009; 

Merletti et al., 2008; Zwarts & Stegeman, 2003). Investigators have used electrode grid 

arrays to decompose the sEMG signal with success (Drost et al., 2006; Holobar, Farina, 

Gazzoni, Merletti, & Zazula, 2009; Merletti et al., 2008, 2008) (Figure 17). 

Decomposition is accomplished using blind source separation (BSS), which is a method 

of separating a set of mixed signals without the use of any information given a priori 

(Holobar & Zazula, 2007). The benefit of using the BSS method is that the 

decomposition is not sensitive to the superpositions of MU action potentials (Merletti et 

al., 2008).  

The detailed mathematics and engineering constituting the source separation 

procedure is found in Holobar and Zazula (2007). In simple terms, first the EMG signal is 

combined, then an instant in time where there is high MU activity is selected, the MU 

discharge pattern is then blindly reconstructed with no a priori information, and single 

MU discharge patterns are filtered out. This is repeated until the entirety of the signal has 

been decomposed. This algorithm has been refined to only accept MUs that exhibit SNRs 

(as reported by the investigators as “PNR”, for pulse-to-noise ratio) that are greater than  
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Figure 16. A 192-electrode high-density sEMG grid with an inter-electrode distance of 

10 mm. Pan, L., Zhang, D., Jiang, N., Sheng, X., Zhu, X. (2015). Improving robustness 

against electrode shift of high density EMG for myoelectric control through common 

spatial patterns. Journal of NeuroEngineering and Rehabilitation. 
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Figure 17. Surface EMG signals that was recorded from the biceps brachii using a 61-

electrode grid array. Each individual waveform within each column represents a double-

differentially amplified signal. Gazzoni, M., Farina, D., Merletti, R. (2004). A new 

method for the extraction and classification of single motor unit action potentials from 

surface EMG signals. Journal of Neuroscience Methods.  
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Saitou et al., 2000; Schulte et al., 2003; Tokunaga et al.,

1998). These MU properties can not be easily investigated

from invasive EMG recordings, thus, surface EMG may pro-

vide a better insight into muscle anatomy and physiology,

with applications not feasible with traditional intramuscular

recording systems (Zwarts and Stegeman, 2003).

Analysis of single MUs from surface EMG is performed

by extracting the contributions of individual sources from the

interference signals. In this respect, automatic techniques,

with partial interaction of the operator, have been proposed

in previous work (Disselhorst-Klug et al., 1999; Farina et al.,

2003a; Kleine et al., 2000, 2001). These methods imply a

threshold-based segmentation and a cross-correlation based

classification.

The purpose of this study is to present a novel automatic

system for the identification and extraction of MU action po-

tentials (MUAPs) from surface EMG signals detected with

multi-channel electrode systems, for the assignment of the

detected potentials to different MUs, and for the analysis

of the properties of the identified MUs. The developed sys-

tem can be applied to signals acquired with different detec-

tion system configurations. Although the method requires

stronger a priori assumptions with respect to previous tech-

niques (e.g. Kleine et al., 2000), it has many advantages

over past approaches. In particular, the system can adapt to

changes of the MUAP shape over time, due, for example,

to fatigue. Examples of application of the method to both

simulated and experimental signals detected with one- and

two-dimensional electrode arrays are presented.

2. Methods

2.1. Multi-channel surface EMG signal detection

Multi-channel surface EMG detection consists in the

recording of surface EMG signals in more than one de-

Fig. 1. Surface EMG signals recorded from the biceps brachii muscle of a healthy subject with a matrix of 61 electrodes at 5% MVC. Each plot corresponds

to a column of electrodes of the matrix placed along the fiber direction. The longitudinal double differential filter is applied to each detection point.

tection point over the muscle. At each detection point, the

recorded EMG signal can be collected monopolarly, i.e.

from a single electrode with respect to a remote electrode,

or by a particular spatial filter, i.e. as the linear combination

of signals detected by electrodes placed in a specific geo-

metrical configuration. In the latter case, the detection point

is the center of the spatial arrangement of the electrodes

forming the filter. The detection points over the muscle may

be placed either in the longitudinal muscle direction, i.e.

along the muscle fibers, perpendicularly to this direction,

or in both directions. Systems of hundreds of detection

points have been proposed to get so-called high density

EMG recordings (Blok et al., 2002; Prutchi, 1995; Zwarts

and Stegeman, 2003). An example of multi-channel signals

detected by a matrix of 61 electrodes at low contraction

level is reported in Fig. 1. The longitudinal double differen-

tial filter is applied to each detection point in this example.

From these signals it is possible to identify in each column

the location from which the action potentials generate, to

follow their propagation along the fibers, and to estimate

the fiber length.

The processing method proposed in this study considers

signals detected in many detection points over the skin,

taking advantage of the additional information provided

by the multi-channel system with respect to a simpler

detection system. The segmentation technique adopted is

based on two steps, the first consisting in the detection

of candidate MUAPs by means of a multi-scale matched

filter and the second based on the selection of the candi-

date MUAPs for the subsequent classification. While the

first step does not imply major assumptions, the second

is based on the properties of propagation of the action

potentials along the muscle fibers. In the second step,

only MUAPs presenting clear propagation along the lon-

gitudinal fiber direction are selected among the candi-

date MUAPs. This improves the performance of MUAP

detection.
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30 dB (Holobar, Minetto, & Farina, 2014). This allows for a more reliable 

decomposition, even at contractions of 70% MVC. 

2.7.3 Decomposition-based Quantitative EMG 

Clustering techniques were introduced by Stashuk and Qu (1996b) for EMG 

decomposition, where similarity and dissimilarity measures are used to partition groups 

of MUPs into categories (Stashuk, 1999b, 2001). This process was accomplished with 

unsupervised classification, meaning that the investigator does not feed the algorithm any 

information a priori, and all assignment criteria are developed based on the data itself. 

The similarity and dissimilarity criteria are determined by comparing the waveforms 

based on attributes that are measurable between each MUP. In the context of signal 

processing, this may indicate that the attributes of interest are times of occurrence, MUP 

amplitude or MUP shape, for example. The Euclidean distance is the most frequently 

used similarity measure, which depicts the straight-line distance between two defined 

points, therefore a closer distance suggests a greater similarity and it can be calculated on 

the basis of specific variables such as amplitude or inter-discharge interval.  

The following is reported from Stashuk and Qu (1996b). The algorithm that was 

used by Stashuk and Qu (1996b) was based on k-means clustering in which a number k is 

chosen based on some immediate criteria if using supervised learning (such as MUP 

shape), or k is arbitrarily selected when using an unsupervised learning model. Then, 

other data points are assigned to k based on their Euclidean (straight-line) distance from 

that point. The cluster centers are recalculated and iterated until all possible assignments 

are made and the intra-cluster variance is completely minimized (Galluccio, Michel, 

Comon, & Hero, 2012; Stashuk & Qu, 1996). The steps were slightly modified to include 
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the addition of shape- and temporal-based clustering (STBC) information, as the 

performance of the k-means clustering is influenced by the initial selection of the primary 

clustering value. The updated STBC version includes a user-selected cluster initialization 

and a learning phase. As taken directly from the publication:  

1. Cluster initialization: choose the initial number of cluster and the cluster 

centers using the information from the firing patterns.  

2. Learning phase: use K-means clustering, cluster splitting based on firing 

pattern information, selection of core cluster members and ignore clusters with 

too few members. 

3. Individual-cluster threshold classification: use a threshold based on individual 

clusters to assign candidate MUPs. This is data-driven and no distribution of 

MUPs is assumed.  

4. Cluster splitting: split single clusters into pairs of clusters based on firing-

pattern information. 

5. Cluster merging: merge pairs of clusters into single clusters based on shape 

and firing-pattern information.  

The algorithm was successful and able to decompose an indwelling EMG signal 

correctly, with assignment accuracy of the STBC algorithm between 95.3 and 100%. This 

assignment accuracy was based specifically on the ratio of number of correctly assigned 

MUPs to the total number of MUPs assigned. Stashuk and Qu (1996b) also manually 

decomposed the indwelling EMG signals to compare the results directly to the automated 
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decomposition, which demonstrated further success (see Figure 18 and Figure 19). One 

major limitation of clustering is that selecting a priori information to be used as a fixed 

similarity across all clusters is not feasible for complex signals, such that the MUP 

clusters may vary substantially between one another (Stashuk & Qu, 1996b). The authors 

also created an error-filtered estimation (EFE) algorithm that estimates the mean and 

standard deviation of inter-pulse intervals (IPIs) and removes erroneous firings that do 

not belong to the MUPT (Stashuk & Qu, 1996a). This has been done with MUPTs that 

contain as much as 60% error in firings and only requires 10 or more correct firings.  
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Figure 18. (a) Manually decomposed EMG signals with the (a) MUP template, (b) the 

MUP shimmer plot and (c) the firing times for the respective firings. Stashuk, D. W. 

(2001). EMG signal decomposition: how can it be accomplished and used? Journal of 

Electromyography and Kinesiology.  
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Figure 19. (b) Clustering algorithm results, with the (a) MUP template, (b) the MUP 

shimmer plot and (c) the firing times for the respective firings. Stashuk, D. W. (2001). 

EMG signal decomposition: how can it be accomplished and used? Journal of 

Electromyography and Kinesiology. 
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2.8 Validation Techniques 

2.8.1 Reconstruct & Test Method 

De Luca and LeFever (1982) were interested in EMG signal decomposition 

through the use of a fully automatic, mathematical algorithm. Before this idea was 

conceived, there was a great deal of visual identification by a human operator for MU 

detection which took a long time for completion. De Luca and LeFever (1982) developed 

an algorithm that required minimal human operation but could yield accurate results. 

Four main sequential steps were detailed: locate the MUP in the waveform of the 

myoelectric signal; identify if it can be grouped with previously detected MUs and if not, 

assign the MUP to a new MU template; use the MUP that was identified to update the 

template; remove the MUP from the myoelectric signal and restart from the first step. The 

signal was continuously decomposed until all MUPs above a certain amplitude threshold 

are removed. Throughout the process, the template is continuously updated allowing the 

algorithm to function even when the MUAP is subjected to variation. This methodology 

is foundational for what was later termed Precision Decomposition, as explained in a 

previous section (De Luca et al., 2006; Nawab et al., 2010).  

The reconstruct and test approach (also known as the decompose-synthesize-

decompose-compare [DSDC]) validation method involves automated decomposition of 

the sEMG signal, from which the decomposed signal is then resynthesized and white 

Gaussian noise, with a variance that is equal to the residual signal, is added to the 

resynthesized signal (see Figure 20). The goal of this validation protocol is to overcome 

the limitations of the two-source test (De Luca & Hostage, 2010). The resynthesized 
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signal is then compared with the original decomposition and any discrepancies between 

the two decompositions are considered to be errors. The strength of this validation 

method is that it compares all of the decomposed MUPTs, not just a small subset, that 

would be validated through the two-source method (De Luca et al., 2015). Limitations to 

this validation model are further explored in a later section.  
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Figure 20. Decompose-synthesize-decompose-compare visual outline. The sEMG signal 

is decomposed into its constituent MUAPTs. The decomposed MUAPTs are then 

resynthesized and Gaussian noise equal to the residual from the first decomposition is 

redistributed across the signal. The resynthesized signal is then decomposed again and is 

compared to the original decomposition. Nawab, S. H., Chang, S., De Luca, C. J. (2010). 

High-yield decomposition of surface EMG signals. Clinical Neurophysiology.  

 

 

 

 

 

 

 



 70 

2.8.2 Two-Source Method of Validation 

Early validation methods of EMG signal decomposition accuracy were initiated 

by Mambrito and De Luca (1984), in which the decomposition algorithm developed by 

De Luca and LeFever (1982) was applied to two recorded intramuscular EMG signals 

taken from the same muscle (tibialis anterior) at a distance of 1 cm apart. The researchers 

found that the two sources showed 100% agreement for the common MUPs from their 

1415 detections (Mambrito & De Luca, 1984). The same group of researchers used an 

identical technique to validate their sEMG decomposition data, by placing a surface 

sensor array over the skin surface of the tibialis anterior with a quadrifilar needle sensor 

inserted directly below the surface sensor, at 1 cm depth (De Luca et al., 2006). This 

technique was then successfully adapted to be used with a pair of sEMG sensors that 

were spaced closely and simultaneously recorded the contraction (Nawab et al., 2010).  

Some have suggested that the most effective way to validate the decomposition 

accuracy is through the two-source method (Farina & Enoka, 2011; Farina et al., 2010). If 

the two-source method is being used with an indwelling electrode and a surface electrode, 

the issue of invasiveness arises. De Luca and Nawab (2011) stated that there are two 

deficiencies that exist when using the two-source method; firings are from a small subset 

of common MUPTs that are detected by both sensors and it does not offer any insight on 

the remainder of the MUs detected in the sEMG signal, and if intramuscular EMG is used 

then a different algorithm is required to decompose the signal compared to the sEMG 

source. The two-source method has appeared to be a reliable source of validation for 

determining the accuracy of a decomposition algorithm, although the deficiencies and 
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limitations of the method should be considered moving forward (De Luca et al., 2006; 

Farina et al., 2010; Hu et al., 2014; Nawab et al., 2010).  

2.8.3 Spike Triggered Averaging 

Spike triggered averaging (STA) is a method of waveform averaging in which 

segments of a signal are time-aligned based on a triggering event (such as a firing from a 

MUP), then an epoch centered around the event is used as a window to average all of the 

detected events based on the respective triggers (Hu et al., 2013b; Hu, Rymer, & Suresh, 

2013c). As an example: the dEMG algorithm from Delsys provides the operator with all 

of the identified MUP firing instances, which can be used as the trigger for collecting the 

MUP within a specific epoch. The epoch is determined by the operator (25 ms in the 

present thesis) and is then used to average all MUPs that are associated with the MU 

firings. The product is an averaged signal of the MUPs based on the firing times from a 

single MU. 

Spike triggered averaging introduces some problems including superpositioning 

of different action potentials from other motor units and spurious firings from other 

sources (Hu et al., 2013c). Hu and colleagues (2014b) sought to determine the validity of 

a skin surface EMG decomposition algorithm due to the scarcity of routine assessment 

procedures for the validity of automated decomposition software. The group used inter-

spike intervals (ISIs) to examine the firing statistics of the identified MUs from the 

sEMG signal (Hu et al., 2014b). It is possible to validate the accuracy of the dEMG 

through inter-spike intervals (ISIs). This method involved a two-step process and 

included the use of intramuscular EMG. The first step involved spike triggered averaging 
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and the second step involved the alignment of the intramuscular EMG and sEMG raw 

signals. Histograms for ISIs were created for both the sEMG and intramuscular EMG 

data and then overlaid upon one another to elucidate the similarities and differences 

between the signals.  

Cross-validation between the ISIs for intramuscular EMG and sEMG signals 

provided confirmation of the presence of a MU discharge. Correlation coefficients were 

calculated for the coefficient of variation for the ISIs based on the accuracy percent from 

the cross-validation for the ISIs, and a moderate negative correlation was revealed based 

on that relationship (r = -0.65, p < 0.001). Analysis of the ISI statistic led to uncovering 

valuable information regarding the accuracy of sEMG decomposition and where errors 

may be found during decomposition (Hu et al., 2014b). 

2.8.4 The Gap Statistic 

Using the output of any sort of clustering algorithm, such as the previously 

mentioned k-means clustering, it is possible to estimate the number of clusters that exist 

in a set of data (Tibshirani, Walther, & Hastie, 2001). A gap statistic is used to select 

features that effectively represent MUPs within a specific MUPT (Parsaei & Stashuk, 

2011). The algorithm explained by Parsaei and Stashuk (Parsaei & Stashuk, 2011) 

describes two main parts of a similar gap-based validity approach, the adaptive gap-based 

MUPT validation. First, the algorithm estimates the gap values between the MUPs that 

are assigned to a given cluster (MUPT), and second, the samples with significant gap 

values are used to represent the MUPs within the cluster. Investigators compared several 

validation methods after decomposing simulated and real EMG data. The results suggest 
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that the adaptive gap-based MUPT method was the most effective, as it was faster and 

among the top four of the evaluated validation methods (Parsaei & Stashuk, 2011). It 

yielded the highest accuracy for valid trains (93.8%), a moderately high accuracy for 

detecting invalid trains (73.9%) and the best total accuracy (91.5%), while also being the 

fastest computation.  

2.8.5 Debate on the Accuracy and Validation of the dEMG System.  

Since the advent of the dEMG system (De Luca et al., 2006; Nawab et al., 2010) 

there has been ongoing debate regarding the validation methodology of that sEMG 

decomposition (De Luca & Nawab, 2011; Farina & Enoka, 2011; De Luca et al., 2015; 

Farina et al., 2015). The debate consisted of a series of letters to the editor in regard to 

claims originally made by De Luca et al. (2006) on their sEMG decomposition 

technology. Farina and Enoka (2011) led the discussion by elucidating issues with the 

decomposition methods and validation. Recall from a previous section that the 

decompose-synthesize-decompose-compare (DSDC) (also known as the reconstruct-and-

test approach) validation method was used to assess the accuracy of the sEMG 

decomposition. Farina and Enoka (2011) argued that there were several concerns with the 

validation methods, the following section contain four that were of most importance for 

De Luca and Nawab (2011) to rebut.  

Farina and Enoka proposed that De Luca and Hostage (2010) decomposed a set of 

synthetic signals that were generated by themselves, of which the discharge times were 

known for all MUs. De Luca and Nawab (2011) stated that the reconstructed signals from 

Nawab et al. (2010) and De Luca and Hostage (2010) are synthetic sEMG signals that 
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contain known MUAP shapes and firing times from the decomposition. The issue with 

the rebuttal from De Luca and Nawab (2011) is that their results are dependent on a 

signal that was acquired by them, so the known times are a result of their own 

decomposition. Decomposing a synthetic signal from another research group may 

strengthen their argument of validity since the decomposition must reveal the same 

MUAP shapes and firing rates to a high accuracy. De Luca and Nawab (2011) argue that 

there are 3 flaws with the use of a synthetic signal: (1) it is a generic test that may not 

accurately model an sEMG signal; (2) the firing rates are assigned by choice and (3) it 

would not consider the changing shape of a MUAP that occur in the sEMG signal as a 

result of movement (electrode or participant), fatigue or disease.  

The next claim was in regard to the bias in the first decomposition created by the 

disagreement between the first decomposition and the decomposition of the reconstructed 

signal (Farina & Enoka, 2011). There appears to be bias because the decomposition of the 

reconstructed signal did not contain firings that were exclusively detected in that 

decomposition compared to the first decomposition. De Luca and Nawab (2011) claim 

that the argument was based on “false conjecture” and iterated that the figure was not 

meant to identify false positives and false negatives, but instead was meant to be used as 

a reference to acknowledge the similarity of the decompositions. They also state that 

several MUs in the figure exemplify false negatives and false positives but are not clearly 

stated as such. The false positive and false negative criterion are used in the accuracy 

assessment that are used in Nawab et al. (2010) and De Luca and Hostage (2010) (see 

Figure 21).  
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Figure 21. Comparison of the MUs obtained through decomposition of the original 

sEMG signal and the reconstructed signal. Top: the individual MUs that were identified 

in both decompositions. Bottom: a short epoch of the firings from the detected MUs, 

errors were marked with an oval. De Luca, C. J., Hostage, E. C. (2010). Relationship 

between firing rate and recruitment threshold of motoneurons in voluntary isometric 

contractions.  
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The low power in the residual signal would indicate that the Gaussian noise that is 

being imposed on the reconstructed signal is going to force the reconstructed signal to 

look identical and thus their decompositions may be similar. In this case, the 

decomposition may appear to be accurate (Farina & Enoka, 2011). De Luca and Nawab 

(2011) explained that not all residual signals have low power, and the claim was based on 

a generality of a single example. 

In a later clarification, it is mentioned that the four-channel (5-pin) electrode is 

designed to record overlapping MUAPs from many MUs in the sEMG signal (De Luca et 

al., 2015). Thus, the sEMG signal that is generated includes MUAPs that are likely to 

have superposition. De Luca and associates (2015) state that an algorithm that can 

incorrectly decompose the sEMG signal into non-overlapping segments is not appropriate 

to be used for DSDC validation.  

Farina and Enoka (2011) claimed that the decomposition method had not been 

validated with anything except the DSDC approach, however, this is not the case. De 

Luca et al. (2006) used the two-source test that was earlier introduced by Mambrito and 

De Luca (1984). In the study of interest there was a comparison of intramuscular EMG to 

sEMG recordings from 13 contractions of the FDI with an average accuracy of 94.3 ± 

1.9%. Furthermore, Nawab et al. (2010) compared the decomposition of two sEMG 

signals and found an accuracy of 92%. The two-source test contains some deficiencies as 

mentioned in a previous section regarding the two-source methodology.  

In the last exchange of letters, Farina and colleagues (Farina et al., 2015) stated 

that the critical issue in the field of EMG decomposition is ultimately the validity of the 
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decomposition. They then clarified that the DSDC validation procedure is not adequate 

since it is not measuring the accuracy of the decomposition. The DSDC validation 

method does not reflect the quality of the MUAPs that are decomposed, rather it assesses 

if the decomposition can be accomplished again with a similar reconstructed signal. 

Farina et al. (2015) continue to highlight the pressing issue of overcoming the source 

separation problem, in which residual noise decreases with an increase in noise sources. 

They did not shift in their stance that the DSDC validation method remains to be 

problematic and that the two-source test is still the best validation method (Farina et al., 

2015).  

The goal of this thesis is to facilitate the validation of discharge times that are 

obtained through automated decomposition of the sEMG signal by means of removing 

extraneous firings that do not correspond with selected predetermined parameters. The 

proposed task is easy to implement and requires minimal computation time from the 

operator. 
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CHAPTER 3:  Methods 

3.1 Participants 

The force and sEMG data are from 20 participants (10 males and 10 females). 

Participants with neurological or musculoskeletal disorders or injuries of the upper limbs 

as well those who were outside the age range of 18-35, were excluded from the study. 

This study was cleared by Brock University Research Ethics Board (REB: #16-313 and 

REB: #18-042 Appendix 2). 

3.2 Experimental Task 

The data collection took place inside a Faraday cage. Participants watched a 

computer screen in front of them that provided visual feedback of the force being exerted 

on the load cell. Three MVCs were performed by the participant for 3 s to determine what 

20% and 60% MVC was for the following trials. Adequate inter-trial rest (2 minutes) was 

implemented to minimize any fatigue effects as done previously in the laboratory 

(Gabriel, Lester, Lenhardt, & Cambridge, 2007). The force was provided as direct 

feedback through a computer monitor to facilitate the holding of the contraction. 

Participants were asked to trace a ramp on the screen that represented 20% MVC force 

based on the most stable MVC effort. The 20% MVC force trace was used as a signal 

quality check for the dEMG electrode to ensure high-quality recordings as indicated by a 

high SNR, and low skin and line interference. Participants were then required to complete 

two additional ramp contractions to 60% MVC. The participant had to trace a force-time 

pattern in which the rising contraction increased by 10% MVC/s for 6 seconds, then was 

maintained at 60% MVC for 15 seconds and decreased by 10% MVC/s for 6 seconds. 
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3.3 Apparatus and Instrumentation  

Subjects were asked to participate in a task familiarization session on a separate 

day prior to beginning the experimental protocol. Participants were seated so they were 

comfortable and able to insert their hand into the custom jig, with the forearm in 

supination (Figure 22), their arm was required to rest comfortably. The setup of the 

custom-made device included an Interface MB-100 load cell (Interface, Scottsdale, AZ), 

which allowed for the measurement of wrist flexion force. The forearm was rested on the 

wooden surface to reduce the amount of contribution from elbow flexion and shoulder 

flexion. 

The motor point, which is the area of the muscle where a contraction can be 

elicited by the most minimal intensity stimulation (Bowden & McNulty, 2012), was 

located through low-level, repeated percutaneous electrical stimulation over the FCR at 

1.5 pulses/s. The motor point was marked using indelible ink to use as reference for 

downstream placement of the dEMG electrode. To ensure proper electrode placement, the 

palmaris longus was also identified with this method as to avoid an improper electrode 

placement. Preparatory work for the electrode included shaving the skin surface over the 

FCR, cleaning the skin surface with alcohol, using a light abrasive cream (NuPrep, 

Weaver and Co., Aurora, CO) to remove dead skin from the skin surface and then using 

alcohol to clean it once more.  

The 5-pin dEMG electrode was placed approximately 2 cm distally from the 

identified motor point and secured with tape. The dEMG electrode has an interelectrode  
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Figure 22. Participant seated comfortably their hand comfortably placed in the jig. The 

dEMG sensor is secured to the skin surface over the FCR with tape. The force paradigm 

is viewable on the monitor with direct feedback of the participant’s applied force. 

 

 

 

 

 

 

Delsys dEMG Electrode 

Wrist Flexion Device 



 81 

distance of 5 mm resulting in four channels of differential EMG. The ground electrode 

was placed over the olecranon process of the ulna. The EMG signal and force signals 

were collected using the Delsys Bagnoli-16 (Delsys, Natick, MA). Force was sampled at 

20,000 Hz. The EMG signals were amplified 1000 times and the signal was filtered 

between 20 and 450 Hz and digitized at 20,000 Hz. 

3.4 Data Reduction 

Files were stored on a lab computer and all data was reduced offline. The sEMG 

files that are associated with each trial for all limbs on each test day were processed 

through the dEMG automated decomposition (dEMG, version 4.1.1.0, Delsys, Natick, 

MA). The firing times that were acquired from the decomposition were used to isolate the 

MUPs from each identified MU. Each MUP occupied a 25 ms epoch centered at the 

discharge time, and templates were calculated for each MUPT (Bezerianos, Laskaris, 

Fotopoulos, & Papathanasopoulos, 1995). Templates were calculated for each of the four 

channels from the dEMG sensor.  

The variability in MUP shapes contributing to a template was assessed by 

calculating the variance ratio (VR) on the MUPT. The calculation was completed on the 

central 15 ms of the epoch, which was considered the signal portion of the MUP. The 

signal-to-noise (SNR) of each 25 ms epoch was also calculated. Similar to the VR, the 

root-mean-square (RMS) amplitude of the central 15 ms was the signal. The average 

RMS amplitude of the two outer 5 ms portions of the epoch was the noise. Figure 23 

shows the shimmer plots of two different representative MUPTs, one where no denoising 

was necessary (top panel), and another that would be subjected to the denoising routine 

(bottom panel). The mean VR and SNR across all four channels is presented in the top  
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Figure 23. The shimmer plots. The gray waveforms are the individual motor unit (MU) 

potentials with the motor unit potential train. The thick black line is the MU template for 

each channel. The total number of discharges is presented in the top right corner of 

channel 1. The variance ratio (VR) and signal-to-noise-ratio (SNR) are also presented in 

the top left corner, and they represent the mean across channels. 
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right of the first channel. Note that the error-free MUPT has a lower VR and higher SNR, 

and it is characteristically free of waveforms that obscure the peaks and valleys of the 

template. All the discharge times for the MUPT in the top panel would be considered 

valid (Parsaei & Stashuk, 2009). The denoising routine then aims to remove the 

waveforms that obscure the peaks and valleys of the MU template. 

3.5 Editing of Motor Unit Potential Trains 

Automated editing of the MUPTs was performed through a graphical user 

interface (GUI) that was custom written in MATLAB (MathWorks Inc., Natick, MA). 

The GUI was to allow visual inspection of the denoising process. Two sets of parameters 

for inclusion of MUPs within a MUPT were compared, corresponding to relaxed versus 

strict criteria. Relaxed criteria were the initial point at which discharge times would be 

removed with minimal loss as a percentage of the total number. Strict criteria resulted in 

a greater percentage of loss in the total number of discharge times with the upper limit of 

50%, to remain well-within the accuracy of the EFE algorithm. There were five 

parameters: 

1. The correlation between the MUP and the MUP template had to be greater than 

r=0.0 (relaxed) or r=0.3 (strict) (Davila & Mobin, 1992); 

2. The relaxed criteria had no initial SNR requirement for MUPs, but a minimal 

value of 0.3 was required for the strict criteria (Florestal, Mathieu, & Malanda, 

2006); 
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3. The MUP peak had to occur within the 95% (relaxed) or 68% (strict) confidence 

interval of the location of that peak of the MUP template (Dorfman, Howard, & 

McGill, 1989; Stålberg, Ekstedt, & Broman, 1971b); 

4. Based on the work of Zennaro (2002), criteria 4 and 5 were designed to isolate 

those MUPs that cluster around the main peak. If the main MUP template peak is 

positive, the MUP peak should not fall below the isoelectric line (relaxed), or 

below 0.3 times the peak value (strict) of MUP template. The polarity of these 

criteria changes for a main peak that is negative; 

5. If the main MUP template peak is negative, the MUP peak should not exceed 5 

times the peak value (relaxed) of MUP template, or below 3 times the peak value 

(strict) of MUP template. The polarity of these criteria changes for a main peak 

that is negative. 

Representative examples of the same MUPTs denoised by both the relaxed and 

strict criteria are depicted in Figure 24 and Figure 25, respectively. Figure 24 shows that 

the difference in IDIs calculated on denoised data without (50.74  11.50 ms) and with 

(55.09  12.02) the EFE algorithm. The later compares with the 55.75  12.46 ms for the 

original discharge times. There was a 19.26% loss in discharge times, an 8.9% reduction 

in the VR, and a less than 0.5% increase in SNR. Figure 25 shows that strict criteria 

resulted in an increased loss of discharge times to 24.94%, while the VR remained nearly 

the same but the SNR increased by almost 2%. The parameters of the denoising algorithm 

were specific enough to allow MUPTs to pass through unaltered if they were error-free. 

However, the parameters could be ‘tuned’ to separate MUPTs in the case of 
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superposition. Figure 26 depicts two different MUs, but only one fits the underlying 

shimmer plot. Note the shadow peak in the top panels at approximately 7 ms, which is 

also present in the MU template in the residuals. Additional tuning is possible if greater 

separation is desired. 

3.6 Statistics 

The percent loss in discharge times was limited to 50%, but the remaining total 

number could be less than require for a stable estimate and removed. Moreover, the same 

MUPT could be affected differently between relaxed versus strict criteria. For example, 

the same MU that would pass through the relaxed denoising criteria unaltered would have 

MU discharge times removed under the strict criteria. Thus, the changes would only be 

present in the strict condition. It is also the case, that a MU might be present in the 

relaxed denoising condition, but the number of discharges would fall below the minimum 

required (at least 50% of a MUPT) for calculation of the IDI using the EFE algorithm; it 

would be removed and not present in the strict condition. In total, there were 375 MUs 

common across all three conditions. The criterion measures were the: VR, SNR, the 

peak-to-peak (P-P) amplitude of the MU template, the P-P duration, and the IDI. When 

necessary, data transformations were applied to ensure normality and homogeneity of 

variances, as evaluated using probability plots and Levene’s test, respectively (Bartlett, 

1936; Berry, 1987; Hosken, Buss, & Hodgson, 2018). 

A single-factor, repeated measures analysis of variance (ANOVA) was used to 

evaluate the criterion measures before and after denoising using both relaxed and strict 

criteria for MUP inclusion with the MUPT. Significant differences were further explored 

using planned comparisons (Kirk, 2012). The relationship between the IDIs calculated on 
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the original MU discharge times versus those calculated using the EFE algorithm for the 

relaxed and strict criteria, were evaluated using linear regression analysis (Kleinbaum, 

Kupper, Nizam, & Rosenberg, 2013). There were 550 MUs in common between the 

original and relaxed conditions, and there was 538 MUs in common between the original 

and strict conditions. The number of MUs for regression analysis is greater because 

commonality is only required for two versus three conditions. 
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Figure 24. Representative example of denoising a motor unit potential train (MUPT) 

using relaxed criteria. The top panels are the shimmer plots, one for each channel. The 

shimmer plots include the MU templates calculated before (black) and after (red) 

denoising. The waveforms removed from each channel are plotted immediate below it, 

indicating the percent decrease in discharge times ( FIR). Beneath the residuals plots are 

the frequency-distributions curves of the inter-discharge intervals (IDIs) before (left) and 

after (right) denoising. The variance ratio (VR), the signal-to-noise ratio (SNR), and the 

cross-correlation coefficient (Rxy) for the MU template before and after denoising. The 

bottom graphs plot the isometric wrist flexion force-time curves and instantaneous motor 

unit discharge rate (MUDR) before (left) and after (right) denoising. After denoising, the 

mean and standard deviation of the IDIs was calculated using the Error Filtered 

Estimation algorithm. 
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Figure 25. Representative example of denoising a motor unit potential train (MUPT) 

using strict criteria. The top panels are the shimmer plots, one for each channel. The 

shimmer plots include the MU templates calculated before (black) and after (red) 

denoising. The waveforms removed from each channel are plotted immediate below it, 

indicating the percent decrease in discharge times ( FIR). Beneath the residuals plots are 

the frequency-distributions curves of the inter-discharge intervals (IDIs) before (left) and 

after (right) denoising. The variance ratio (VR), the signal-to-noise ratio (SNR), and the 

cross-correlation coefficient (Rxy) for the MU template before and after denoising. The 

bottom graphs plot the isometric wrist flexion force-time curves and instantaneous motor 

unit discharge rate (MUDR) before (left) and after (right) denoising. After denoising, the 

mean and standard deviation of the IDIs was calculated using the Error Filtered 

Estimation algorithm. 
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Figure 26. Representative example of superposition of two motor unit potential trains 

(MUPTs) using strict criteria. The top panels are the shimmer plots, one for each channel. 

The shimmer plots include one MU templates calculated after denoising (black). The 

waveforms removed from each channel are plotted immediate below it, indicating the 

percent decrease in discharge times ( FIR). A portion of the MUPs from a second 

MUPTs appears in the residuals, sufficient to generate a second MU template. Note the 

shadow peak in the top panels at approximately 7 ms, which is also present in the MU 

template in the residuals. Additional tuning is possible if greater separation is desired. 
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CHAPTER 4:  Results 

The means and standard deviations for the criterion measures are presented in 

Table 1. The variance ratio (VR) exhibited a significant decrease of 24.88% across the 

three conditions (F(2, 748)=1209.13, p<0.01). The majority of the decrease (20.26%) 

occurred with the relaxed condition. Increasing the parameters to the strict criteria then 

resulted in a 5.8% reduction, compared to the relaxed criteria (F(1, 748)=74.00, p<0.01). 

Similarly, the signal-to-noise ratio (SNR) exhibited a significant increase of 6.0% across 

the three conditions (F(2, 748)=343.02, p<0.01). Half of the increase (3.12%) was due to the 

relaxed condition. Increasing the parameters to the strict criteria then resulted in a 2.98% 

increase, compared to the relaxed criteria (F(1, 748)=167.39, p<0.01). As might be 

expected, there was significant increase in the loss of discharges times from 19.20 ± 

9.98% for the relaxed criteria to 25.34 ± 11.41% for the strict criteria (t(374)=-29.19, 

p<0.01). 

It was expected that denoising would have an impact on the peak-to-peak (P-P) 

amplitude of the MU template. The one-way ANOVA revealed a significant difference 

between the three conditions (F(2, 748)=14.09, p<0.01). The reduction was a 1.49% 

reduction in P-P amplitude between the original and relaxed criteria, however, the P-P 

amplitude exhibited a 1.22% increase between the relaxed and strict criteria (F(1, 

748)=10.79, p<0.05). Despite the rise, both denoising criteria resulted in an overall lower 

P-P amplitude compared to the original condition (F(1, 748)=17.39, p<0.01). The duration 

between MUP peaks (P-P duration) followed a less consistent pattern of change. The one-

way ANOVA revealed a significant difference between the three conditions (F(2, 748)= 

5.68, p<0.01). There was a 0.89% reduction in P-P duration between the original and 
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relaxed criteria. However, the P-P duration increased 1.92% between the relaxed and 

strict criteria (F(1, 748)=11.32, p<0.05). There was no overall pattern of change in the P-P 

duration determined from original versus denoised MU discharge times for the relaxed 

and strict criteria (F(1, 748)=0.03, p=0.857). 

Regression analysis was first performed on the original MU discharges times 

without denoising to evaluate the efficacy of the EFE algorithm in calculating the IDIs in 

the absence of removed data (see Figure 27). The results were a significant correlation of 

r=0.99 (p<0.05). The standard error of estimate (SEE) was only 2.32 ms (3.20%). The 

correlation between the original and denoised MU discharge times for the relaxed and 

strict criteria remained equally high r’s=0.99 (p<0.05). There was an increase in the SEE 

for both the relaxed (2.68 ms, 3.69%) and strict (3.73 ms, 5.14%) criteria. Bonferroni-

corrected paired t-tests, revealed no significant difference in the SEE of IDIs for the 

original and denoised MUPTs using the relaxed criteria (t(539)=-1.72, p>0.05), or between 

the relaxed and strict criteria (t(526)=-1.931, p>0.05). 
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Table 1. Means (M) and standard deviations (S) for the motor unit template peak-to-peak 

(P-P) amplitude, the duration between the P-P amplitudes, variance ratio (VR), and the 

signal-to-noise ratio (SNR) for the original and denoise MU discharge times. 

 No Denoising Relaxed Criteria Strict Criteria 

 M ± SD M ± SD M ± SD 

VR 0.7696 ± 0.1339 0.6137 ± 0.1092 0.5781 ± 0.1124 

SNR 1.1945 ± 0.1599 1.2330 ± 0.1883 1.2708 ± 0.2098 

P-P Amplitude (mV) 0.3688 ± 0.2799 0.3633 ± 0.2781 0.3678 ± 0.2816 

P-P Duration (ms) 5.5965 ± 1.7650 5.5465 ± 1.6939 5.6552 ± 1.8256 
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Figure 27. Regression analysis of IDIs calculated on the original motor unit discharge times versus those obtained using the Error 

Filtered Estimation (EFE) algorithm on the denoised data using the relaxed and strict criteria. The difference in the number of sampled 

motor units was due the removal of discharge times relative to the requirement for an absolute minimum. While the percent decrease 

was constrained to 50%, the minimum absolute number was 30% of discharge times within a motor unit potential train. 
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CHAPTER 5:  Discussion 

In this paper we demonstrated that an automated routine for editing MUPTs based 

on the shape of the contributing MUPs, resulted in a significant decrease in the VR and 

an increase in SNR. The MUPs that were removed were associated with discharge times 

that were assumed to be erroneous. Removal of erroneous discharge times had a 

significant impact on MUP template quantification. Since direct calculation of the IDI on 

MUPTs with removed discharge times is problematic, we also demonstrated that the EFE 

algorithm could estimate the IDI with near perfect correlation with the original data. 

Research groups using the dEMG system have set the accuracy rating of the 

dEMG reconstruct-and-test (internal MU decomposition validation) to 85-95% (Beck, 

DeFreitas, & Stock, 2011; Defreitas et al., 2014; Stock, Beck, & Defreitas, 2012). 

Additionally, Hu and colleagues (2014b) conducted a correlational analysis between the 

coefficient of variation (CV) of peak-to-peak (P-P) amplitude and dEMG internal 

decomposition accuracy and observed a significant negative relationship, suggesting that 

lower accuracy ratings from the dEMG system are associated with higher CVs. The 

negative relationship justifies the use of a higher rating for the dEMG decomposition 

results. For the present study, a >90% accuracy rating was required for all decomposed 

MUs. For a more detailed explanation of the reconstruct-and-test approach, also known 

as the deconstruct-synthesize-deconstruct-compare test, the interested reader should 

reference Nawab and colleagues (2010). 

McManus and colleagues (2017) recently used statistical techniques to remove 

MUs from the analysis. First, the CV was calculated for the P-P amplitude of the MUPT 

templates and then the maximum linear correlation coefficient was calculated between 
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the spike-triggered average (STA) template and the dEMG template. These measures 

were used to select MUs that were deemed ‘reliable’. If a MU did not exhibit an average 

correlation coefficient of >0.7 and a CV for P-P amplitude of <0.3, it was removed prior 

to analysis. In an earlier study, McManus and colleagues (2015; McManus, Hu, Rymer, 

Suresh, & Lowery, 2016) used a similar approach, however, MUs were required to have 

an average correlation coefficient of >0.8 and a CV for P-P amplitude of <0.2. With such 

stringent criteria, McManus and colleagues (2016) were only able to analyze 27.7 ± 14% 

of MUs. In contrast, the proposed routine results in a minimal loss of MUPTs, which is 

absolutely critical when evaluating patients where the initial number of MUPTs is greatly 

reduced (Boe, Stashuk, & Doherty, 2007; Hu, Suresh, Rymer, & Suresh, 2015, 2016; 

McNeil, Doherty, Stashuk, & Rice, 2005). 

It is common practice for investigators to discard MUPTs based on discharge 

statistics when working with either surface or indwelling EMG (Holobar et al., 2014; 

McManus et al., 2015, 2017; Muceli et al., 2015; Negro, Muceli, Castronovo, Holobar, & 

Farina, 2016). For example, MUPTs with a CV >0.3 are often removed from analysis. 

Holobar and colleagues (2010; 2014) implemented a similar strategy as McManus and 

associates (2017) in which MUs that exhibited a CV of >0.3 were excluded from their 

analysis, as they were deemed to have had irregular discharge patterns. Motor unit 

potential trains with unusually long (200–400 ms) or short (<20 ms) IDIs are also 

commonly removed to ensure a stable estimate of the mean and standard deviation 

(Christie et al., 2009; Holobar et al., 2010). The dEMG algorithm requires IDIs that are 

350 ms or less (Nawab et al., 2010). 
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The MUP P-P amplitude and duration between the two major peaks of the MUPs 

were quantified in the present study. There was a significant overall decrease in P-P 

amplitude between the original data and that obtained through denoising, and there was a 

significant albeit slight increase between the two denoising conditions. An initial 

decrease between the original data and both denoising criteria might be expected due to 

the removal of high amplitude noise around the peak. The relaxed criteria would remove 

the high amplitude noise by requiring the waveform peak to occur within the 95% 

confidence interval of the peak for the MUP template. The same is true for the maximum 

peak limits. Pilot work revealed that the peak parameter affected 85% of the MUPTs. 

With the majority of high amplitude noise removed, increasing the parameters for the 

strict criteria had a more pronounced effect on the lower amplitude noise which would 

increase the overall mean P-P amplitude. Indirect support is given by the observation that 

the majority of the decrease in the VR occurred with the relaxed criteria, but the percent 

increase in SNR was nearly equal across criteria. 

The changes in MUP P-P amplitude were small but statistically significant, which 

was influenced by the large MU sample size (N=375). However, the observed changes of 

1.3% are of practical importance in reducing the variability of P-P amplitude within the 

context of pre-experimental planning, sample size estimation, detecting significant 

differences following an intervention or disease tracking (Christie, Kamen, Boucher, 

Inglis, & Gabriel, 2010; Pope, Hester, Benik, & DeFreitas, 2016; Shefner, Jillapalli, & 

Bradshaw, 1999). For example, Shefner and colleague (2007) studied a technique for 

motor unit number estimate in amyotrophic lateral sclerosis patients. They measured the 

P-P amplitude of the surface MUP across 12 months and reported a stable difference of 
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114.7 µV to 122.3 µV. This difference in P-P amplitude over the 12-month period 

amounted to 8.33%, but the potential difference of 1.3% due to denoising is a non-trivial 

portion of this range. Martinez-Valdes and colleagues (2017) tracked MUs across weeks 

using a high-density sEMG system and observed good to excellent (0.73–0. 93) intraclass 

correlation coefficients (ICCs) for MUP P-P amplitude across sessions at 30-50% MVC, 

but the means and standard deviations were not reported. Nevertheless, both the 

reliability and identification of the same MUP across test sessions could be enhanced by 

denoising. 

 The present study quantified the duration between the major positive and 

negative peaks of the MUP, rather than the traditional duration, primarily for the 

unambiguity of this particular metric. Automated determination of MUP duration is a 

difficult problem as the determination of the onset and termination of the MUP is still 

affected by noise (Rodríguez et al., 2007; Rodríguez-Carreño, Gila-Useros, & Malanda-

Trigueros, 2012), with manual detection still the gold-standard (Boe et al., 2010; Boe, 

Dalton, Harwood, Doherty, & Rice, 2009). We then based our duration measure on the 

work of Brown and colleagues (Brown & Yates, 1982; Carleton & Brown, 1979; Kadrie 

& Brown, 1978) who used the duration between positive and negative peaks of surface 

potentials obtained with electrical stimulation of the peripheral nerve. The duration 

between the positive and negative peaks has been shown to be highly sensitive to the 

health status of the neuromuscular system and physiological conditions that affect muscle 

fiber conduction velocity (Rodriguez-Falces, Navallas, Malanda, & Rodriguez-Martin, 

2014). The P-P duration changed in a similar manner as P-P amplitude. That is, there was 

an overall significant F-ratio. The relaxed criteria had only a slight impact on the P-P 
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duration with the majority of change occurring between the relaxed and strict criteria. 

The increase in P-P amplitude between the relaxed and strict criteria was associated with 

a concomitant increase (1.92%) P-P duration. While the percent change might be 

considered trivial if the changes were due to a physiological intervention, the difference 

would have practical meaning in terms of greater precision and reducing error variability 

(Rodríguez et al., 2007; Rodríguez-Carreño et al., 2012; Shefner et al., 1999). 

One technique for the validating indwelling MUPTs is based on MUP shapes 

contributing to the MUP template (Parsaei & Stashuk, 2009, 2011). An ensemble of 

MUPs grouped tightly together provides the investigator a greater degree of confidence in 

the validity of the discharge times associated with the MUPT. The current study extends 

this approach to editing MUPTs obtained by surface EMG decomposition. One editing 

approach is to remove MUPs that fall outside the 95% confidence interval of the template 

(Zennaro et al., 2002), which is a form of a posteriori template matching. MUP 

quantification and multivariate classification is another successful scheme (Parsaei & 

Stashuk, 2009, 2011). The present study also emphasized MUP shape by removing 

waveforms that were uncorrelated with the MUP template, and other noise criteria related 

to peak location, peak amplitude, and the overall SNR. The efficacy of this approach was 

assessed, in part, by decreases in the variability (variance ratio, VR) of the MUP 

ensemble associated with MUPT. 

The nearly 25% total reduction in VR represents significant decrease in the 

variability in MUP ensemble shape to 0.578 ± 0.1124, which is lower than that depicted 

in the top panel of Figure 23. This is the first application of the VR to surface detected 

MUPs, but the level of reproducibility of MUP shape may be considered very good when 
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compared to the evoked compound muscle action potential (CMAP), which has a much 

higher SNR. Because the CMAP is an evoked maximal potential, it has been shown to 

have a high degree of reproducibility with a VR of 0.244 ± 0.169. However, in 

comparison with the CMAP, the surface detected MUP can also exhibit a highly 

reproducible shape and lower SNR (Boe, Stashuk, & Doherty, 2004). As a result, the 

ensemble will resemble a ‘thick’ band of waveforms (Figure 23). This difference in 

amplitude at each point in time results in a higher VR, despite how reproducible the 

shape is. For this reason, changes in the SNR are an important part of the denoising 

routine. 

Use of the EFE algorithm has long been established for use in manual editing of 

the indwelling MUPTs (Stashuk & Qu, 1996a). The current study extends its use for 

editing of MUPTs obtained through decomposition of the surface EMG signal. Its 

performance as a robust estimator is highlighted by the lack of significant difference in 

the SEE of IDIs when applied to the original MUPTs versus those denoised by the 

relaxed criteria, where the number of discharges was reduced by 19.2  9.98%. The same 

was true for the difference between the relaxed and strict criteria, where the number of 

discharges was reduced further to 25.35  11.41%. The SEE of IDIs for the strict 

condition (5.4%) was nearly half the predicted 11% when detected errors are less than 

60% of the MUPT and CV in IDIs is less than 20% (Stashuk & Qu, 1996a). While the 

reduction in discharge times was limited to 50%, the strict condition included MUPTs 

with reductions that approached that limit. The EFE algorithm has been shown to 

estimate the true mean without bias for MUPTs containing errors up to 70%, and with as 

few as ten discharges. To facilitate the automated process, the current work used a 
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conservative approach, limiting the reduction in discharge times to 50% and the 

minimum number of discharges had to be 30. Although, these limits allow greater error 

detection by ‘tuning’ the five parameters during manual editing, if desired. 

5.1 Conclusion 

Automated editing of MUPTs based on shape resulted in a significant reduction in 

shape variability (VR) and in the SNR, which also had an impact on the measures 

extracted from the MUP template. Changes in the P-P amplitude and the duration were 

dependent on the level of denoising. Greater precision in MUP template quantification 

may be obtained by using the strict denoising criteria, and the mean IDI may be estimated 

using the EFE algorithm, with no significant difference from the relaxed criteria. If MUP 

template quantification is not required, the relaxed criteria may be preferred. 

5.2 Future Work 

Decomposition of both the surface and indwelling EMG signals combines both 

MUP shape and discharges statistics. To identify the same MU across test session, 

Cescon and Gazzoni (2010) used a Euclidean distance cut-off of 0.3 for MUP shape. 

While not reported in this thesis, the Euclidean distance in MUP shape between MUPTs 

was calculated for all four channels. Denoising had no impact on the Euclidean distance, 

where approximately 55% of the MUPTs in a single trial had a Euclidean distance of less 

than or equal to 0.3. This finding emphasizes the original observations of Buchtal (1957) 

obtained on indwelling multielectrode recordings of MU territories. Potentials from 

different MUs can appear identical in shape and are differentiated only by their discharge 

characteristics. For this reason, MUPT discharge statistics are also part of decomposition 
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algorithms (Nawab et al., 2010; Parsaei & Stashuk, 2012). Once a MUPT has been 

denoised, future work should evaluate the efficacy of spike train metrics (Satuvuori & 

Kreuz, 2018; Victor & Purpura, 1996) as an adjunct to the Euclidean distance to 

differentiate MUPTs, and ensure that only uniquely identified MU are used for analysis.  
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Appendix 1 – Piloting the Denoising Algorithm 

Abstract 

The purpose of this pilot work was to determine a systematic approach for 

removing erroneous motor unit (MU) discharge times obtained by the dEMG surface 

electromyographic (sEMG) decomposition technique. Motor unit discharge times were 

obtained from the flexor carpi radialis (FCR) and tibialis anterior (TA) during ramp 

isometric contractions, held at 60% of maximal voluntary contraction (MVC). The 

dominant and non-dominant, upper and lower limbs of 20 participants were tested. A 

total of 920 MUs were analyzed. The discharge times for each MU were used to spike 

trigger average the sEMG signal to calculate its template.  

A custom graphical user interface in MATLAB (MathWorks Inc., Natick, MA) 

was used to denoise the surface electromyographic (sEMG) signal from the Delsys 

dEMG system (Natick, MA). The algorithm for inclusion of an individual motor unit 

potential (MUP) and its associated discharge time was the following, based on 

observations: (1) a positive correlation (r > 0.0) with the template; (2) a signal-to-noise 

ratio (SNR) greater than 0.5 dB; and (3) a peak that was located within the 68% 

confidence interval for the MU template peak location. Additional ‘tuning’ of these three 

parameters was required for only 30% of the MUPTs. Waveforms falling outside the 

boundaries of these three criteria were considered as a noise and the erroneous discharge 

time was removed. Thus, the term ‘denoising’.  

Efficacy of the denoising routine was evaluated by changes in the variance ratio 

(VR) and SNR of MUPs contributing to each template. A three-way (4-Limb  4-
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Channels  2-Denoise) randomized block factorial (RBF) analysis of variance (ANOVA) 

was therefore used to evaluate significant differences in the VR and SNR. On average, 

33.07% of the discharge times were removed from MUPTs (p<0.05). There was a 

significant decrease in the VR across limbs (23.05%, p<0.05). Likewise, the SNR 

exhibited a significant increase across limbs (11.67%, p<0.05). Denoising also resulted in 

a significant increase in the correlation between the VR and SNR across all limbs 

(p<0.05). The variability in the shape of MUPs contributing to a MU template and 

increased its SNR, supporting the validity of the remaining MU discharge times.  

Introduction 

The gold standard for motor unit (MU) identification is through the use of needle 

or fine wire electrodes, where the recording surface is in close proximity to the muscle 

fibers (Farina, Merletti, & Enoka, 2015). Advances in decomposition of the surface 

electromyographic (sEMG) decomposition has led to a dramatic increase in 

neurophysiological studies that record MUs from the skin surface (De Luca, Adam, 

Wotiz, Gilmore, & Nawab, 2006; Farina & Holobar, 2016; Holobar & Farina, 2014; 

Nawab, Chang, & De Luca, 2010). At present, there are two main computational 

approaches to decomposing the sEMG signal into its individual MU potentials (MUPs). 

The computational approaches are also linked with different recording methodologies: 

high-density sEMG (HD-sEMG) grid electrodes (Farina, Holobar, Merletti, & Enoka, 

2010), or the dEMG system with a five-pin recording sensor (Delsys, Natick, MA) (De 

Luca et al., 2006; Nawab et al., 2010). As a result, there is debate about the best approach 

for decomposing the sEMG signal and validating the results (De Luca, Nawab, & Kline, 

2015; Farina et al., 2015), 
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The most direct validation technique compares the MU templates obtained from 

indwelling and surface signals, called the ‘two-source’ method. Originally, the amplitude 

of an indwelling MUP is used to trigger data collection and averaging of the surface 

signal, which is termed the ‘spike-triggered averaging’ (STA) technique (Stashuk, 2001). 

The discharge time of the MU is unambiguously linked with the MUP recorded on the 

skin surface. Hu, Rymer, and Suresh (2014) employed the two-source technique by 

comparing the MU template obtained by traditional STA to that with a MU template 

generated by using the discharge times obtained through sEMG decomposition. This 

version of the two-source technique was used to validate MU discharge times up to 15% 

MVC. The same research group more recently demonstrated that even slight errors in 

MU discharge times result in an unrecognizable template (Hu, Rymer, & Suresh, 2013b). 

As a result, STA of the sEMG signal using only the MU discharge times obtained by 

sEMG decomposition has been used to validate MU data up to 50% MVC (Hu et al., 

2013b). 

The purpose of this pilot work was to determine the feasibility of using the STA 

technique to extract MU discharge times for which there is a ‘high confidence’ of their 

validity. The validity of a MU discharge time was assessed on the basis of how its 

associated MUPs contributed to the final MU template. There were there three criteria 

whose specific parameters were determined heuristically as part of the pilot work: (1) a 

positive correlation with the template, at least greater than zero; (2) a minimum signal-to-

noise ratio (SNR) greater than 0 dB; and (3) a peak that was located within ‘at least’ the 

95% confidence interval for that of the MU template. Otherwise, the discharge time was 

removed, and a MU template was recalculated based on MUPs with lower variability and 
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a greater signal-to-noise ratio (SNR). Removal of MUPs is hereafter referred to as 

“denoising”. If proven feasible, the next step is to use the remaining discharge times to 

calculate MU peak-to-peak (P-P) amplitude, P-P duration, and discharge rate with ‘high 

confidence’. The term ‘high confidence’ is derived from the notion that all MUPs within 

a MUPT having the same shape, confer a degree of validity to the discharge times 

(Parsaei & Stashuk, 2009, 2011). 

Methods 

 The data that was used in this study was part of an intervention study on cross-

education in the upper and lower limbs (Green & Gabriel, 2018). The dominant and non-

dominate, upper and lower limbs were assessed for unilateral maximal isometric strength 

of the wrist flexors and ankle dorsiflexors. Motor unit discharge rate (MUDR) of the 

flexor carpi radialis (FCR) and tibialis anterior (TA) were there then measured at 60% 

maximal voluntary contraction (MVC).  

 Participants. The force and sEMG data from 20 participants (10 males and 10 

females) were used for analysis. Participants were free from neurological or 

musculoskeletal disorders of the upper and lower limbs and all within the age range of 

18-35 years. The study was cleared by Brock University Research Ethics Board (REB: 

#16-313, Appendix 2).  

 Experimental Design. On each of the four days of testing, participants were 

required to complete 3 MVCs for dominant and non-dominant upper and lower limbs, in 

a randomized order. Electromyographic recordings were then taken from the FCR and 

TA during a 60% MVC force tracking task. There were three trials per limb, and the 
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order of testing was also randomized. A total of 48 trials per participant were used for this 

study.  

 Apparatus and Subject Test Position. For the sake of brevity, please see the 

same apparatus and test position for wrist flexion and ankle dorsiflexion depicted in the 

Green, McGuire, and Gabriel (2015) and Lenhardt and Gabriel (2009), respectively. 

Subjects were familiarized with the protocol on the first day. For the dorsiflexion trials, 

the participants were seated in a custom-made chair that allowed for isolation of 

dorsiflexion of the ankle. The participant’s knees, hips and ankles were at an angle of 

90°. The other leg was placed on a foot rest for the duration of the trials. Dorsiflexion 

force was recorded through a load cell that was secured to the foot plate (JR3 Inc., 

Woodland, CA). Forearm flexion trials were completed with the hand inserted into the 

custom jig. The arm rested at 160° elbow flexion. The device included a load cell (MB-

100, Interface, Scottsdale, AZ) to measure flexion force at the wrist. Two metal bars were 

located on either side of the wrist reduce the amount of contribution from elbow and 

shoulder as much as possible.  

Instrumentation. The participant’s FCR and TA were located through palpation 

and flexion of the wrist and dorsiflexion of the ankle, respectively. The motor point was 

located through low-level, repeated percutaneous electrical stimulation at 1.5 pulses/s 

(Christie, Lester, LaPierre, & Gabriel, 2004). Once identified, motor point was marked 

using indelible ink so that the dEMG electrode was placed away from the location (Green 

et al., 2015). Skin preparation involved shaving a desired amount of hair off the skin 

surface over the muscle, cleaning the skin surface with alcohol, using a light abrasive 
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cream (NuPrep, Weaver and Co., Aurora, CO) to remove dead skin from the skin surface 

and then using alcohol to clean it once more. 

The 5-pin dEMG electrode was placed approximately 2 cm distally from the 

identified motor point, taped on and secured with a Velcro strap. The dEMG electrode 

has an interelectrode distance of 5 mm resulting in four channels of differential EMG. 

The ground electrode was placed over the olecranon process of the ulna for FCR EMG 

and on the patella for the TA EMG. The EMG signal and force signals were collected 

through the Delsys Bagnoli-16 (Delsys, Natick, MA). Force was sampled without any 

amplification or filtering at 20,000 Hz. The EMG signals were amplified 1000 times and 

the signal was filtered between 20 and 450 Hz and digitized at 20 kHz.  

Force Tracking. Participants had a computer screen in front of them that 

provided visual feedback of the force they exerted on the load cell. There were 3 maximal 

isometric contractions, each 4 seconds in duration with a 2-minute inter-trial rest interval, 

to determine the submaximal (20 and 60%) forces (Gabriel, Lester, Lenhardt, & 

Cambridge, 2007). Participants were asked to trace a ramp on the screen that represented 

20% MVC, which was used as a signal quality check for the dEMG electrode to ensure 

low skin impedance, acceptable SNR and low line interference. Three ramp contractions 

to 60% MVC were completed after verification of signal quality. The ramp increased by 

10% MVC/s for six seconds, then was maintained at 60% MVC for six seconds and then 

decreased by 10% MVC/s for six seconds (see Figure 1).  
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Preliminary Analysis 

Since the proposed work represents our first attempt to use discharge times out 

side of the dEMG system to STA the identified MUs, shimmer plots of each identified 

MU at 60% MVC were created for all participants using MATLAB (The Mathworks, 

Inc., Natick, MA). The STA templates were 25 ms in length (12.5 ms on either side of the 

trigger time). The series of discharge times associated with a specific MU constitutes its 

MUPT. Since a MUP is recorded at each discharge time, the shimmer plot is the overlay 

of all the individual MUPs within the MUPT. The quality of the MU data was first 

assessed by visual inspection (see Figures 2, 3, and 4), which resulted in six 

classifications based on the variability of waveforms within the MUPT: 

(1) Few discharges ( 50) with a well-defined shape because there were no 

obvious errors in discharge times as revealed by waveforms that do not 

obscure the peaks and valley of the MUPT (Figure 2, top panel).  

(2) Few discharges (50) with a poorly-defined shape because there were 

obvious errors in discharge times as revealed by waveforms that obscure 

the peaks and valley of the MUPs (Figure 2, bottom panel).  

(3) Sufficient discharges (>50) with a high SNR. The definition of a high 

SNR was a peak-to-peak (P-P) amplitude for baseline noise that was 

roughly less than half the P-P amplitude for the MUPs. Additionally, there 

were no obvious errors in discharge times as revealed by waveforms that 

obscure the peaks and valley of the MUPs (Figure 3, top panel). 
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(4) Sufficient discharges (>50) with a high SNR, with obvious errors in 

discharge times as revealed by waveforms that obscure the peaks and 

valley of the MUPs (Figure 3, bottom panel).  

(5) Sufficient discharges (>50) with a moderate SNR. The definition of a 

moderate SNR was a P-P amplitude for baseline noise that was 

approximately greater than half the P-P amplitude for the MUPs. There 

were no obvious errors in discharge times as revealed by waveforms that 

do not obscure the peaks and valley of the MUPs (Figure 4, top panel).  

(6) Sufficient discharges (>50) with a moderate SNR, and there were obvious 

errors in discharge times as revealed by waveforms that obscure the peaks 

and valleys of the MUPs (Figure 4, bottom panel).  

The next step was to calculate the VR for MUPs associated with each MUPT, to 

determine if the six categories may be characterized by VRs of specific magnitudes. 

MUPTs with a SNR less than 0.5 with no obvious errors in discharge times had VRs less 

than 0.75. If the SNR was greater than 0.5 the VR was generally greater than 0.75. Errors 

in discharge times increased the VR even further as depicted in category 6. Linking the 

six categories to specific VRs allowed for the automatic selection of visually difficult to 

identify MUs (Lefever & De Luca, 1982) from which to develop a denoising routine. 

Therefore, MUPTs with a sufficient number of discharge times (>50) and a VR of 0.75 or 

greater were used for analysis.  
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Figure 1. One decomposed ramp contraction from a representative participant. Along the 

left Y-axis is the MU number and the bar plot of its discharge times that was detected by 

dEMG with an accuracy rating of >90%. The right Y-axis is the force that the participant 

exerted during the 60% MVC ramp contraction. 
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Figure 2. The shimmer plots for category 1 (top) and category 2 (bottom). The gray 

waveforms for the individual motor unit (MU) potentials with the motor unit potential 

train. The thick black line is the MU template for each channel. The total number of 

discharges is presented in the top left corner of channel 1 for each category. The variance 

ratio (VR) and signal-to-noise-ratio (SNR) are also presented in the top left corner of 

channel 1 for both categories, and they represent the mean across channels. The shimmer 

of each MUPT is plotted with the mean waveform overlaid (black line). 
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Figure 3. The shimmer plots for category 3 (top) and category 4 (bottom). The gray 

waveforms or the individual motor unit (MU) potentials with the motor unit potential 

train. The thick black line is the MU template for each channel. The total number of 

discharges is presented in the top left corner of channel 1 for each category. The variance 

ratio (VR) and signal-to-noise-ratio (SNR) are also presented in the top left corner of 

channel 1 for both categories, and they represent the mean across channels. The shimmer 

of each MUPT is plotted with the mean waveform overlaid (black line). 
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Figure 4. The shimmer plots for Category 5 (top) and category 6 (bottom). The gray 

waveforms or the individual motor unit (MU) potentials with the motor unit potential 

train. The thick black line is the MU template for each channel. The total number of 

discharges is presented in the top left corner of channel 1 for each category. The variance 

ratio (VR) and signal-to-noise-ratio (SNR) are also presented in the top left corner of 

channel 1 for both categories, and they represent the mean across channels. The shimmer 

of each MUPT is plotted with the mean waveform overlaid (black line). 
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Denoising. The denoising algorithm uses the correlation between an individual 

MUP and the extracted template that is calculated on the entire train identified by the 

dEMG discharge times. To start, the parameters were set such that the limits were not 

over-encumbering. The individual MUP must have a minimum correlation with the 

template of greater than zero (r > 0) (Davila & Mobin, 1992). The MUP also must have a 

SNR of the root-mean-square (RMS) amplitude that is greater than 0 to help identify an 

event (Florestal, Mathieu, & Malanda, 2006). Finally, the MUP peak has to occur within 

the 95% confidence interval of the location of that peak of the template (Dorfman, 

Howard, & McGill, 1989; Stålberg, Ekstedt, & Broman, 1971). These three criteria may 

be manually tuned using the feedback of how well the calculated template cross-

correlates with the template provided by the dEMG system. The goal was to decrease the 

VR and increase the SNR with the following constraints: (1) the cross-correlation 

between the dEMG template and the recalculated template, after removing the erroneous 

discharge times, should not decrease more than 10% (Arendt-Nielsen & Zwarts, 1989), 

and (2) limit the loss of discharge times to approximately 30% of the entire train. The 

denoising steps are detailed below:  

Step 1. Calculate the VR and SNR on each of the four channels. 

Step 2. Calculate the template for the MUPT.  

Step 3. Calculate the cross-correlation between the extracted template the dEMG 

template for that specific MU and channel. 

Step 4. Denoise the MUPT using the following criteria: 
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(1) The cross-correlation between the MUP and its template must be 

greater than 0.0; 

(2) The MUP peak location must be within the 68% confidence 

interval of those MUPs constituting the extracted template; 

(3) The MUP SNR must be greater than 0.5 dB.  

Step 5. Recalculate the cross-correlation coefficient between the extracted 

template and that from dEMG.  

Step 6. Recalculate the VR and SNR on the denoised MUPT.  

Step 7. Calculate the percent change in the cross-correlation coefficient and 

discharge times. 

Step 8. Plot the waveforms that have been removed (i.e., residuals) to verify that 

MUPs belonging to the MUPT have not been removed.  

Step 9. Repeat steps 4 – 8, adjusting the three denoising criteria such that the 

cross-correlation between the updated extracted template and that from dEMG 

does not go below the 10% of the original value or the loss in the discharges does 

not exceed 30%.  

 Denoising was accomplished through a custom graphical user interface (GUI) in 

MATLAB (MathWorks, Natick, MA) that provided feedback on the impact of specific 

values for the denoising parameters: VR, SNR, and the cross-correlation coefficient (Rxy) 

between the calculated template using the dEMG discharge times and that provided by 
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the dEMG system. Figure 5 shows the information provided by the denoising GUI. The 

top panels plot the MUP shimmers, one for each of the four channels. The templates 

calculated from the discharge times (red) and that provided by the dEMG system (blue) 

are superimposed on the shimmer plots. Beneath each shimmer is a plot of the residual 

waveforms that have been removed from that particular channel as a result of denoising. 

Denoising was performed only on the channel with the lowest initial VR, termed the 

“target channel” (red title). The residual waveforms beneath the target channel are 

associated with the removed discharge times. Residual waveforms for the other three 

channels reflect the same removed discharge times. 

The user adjusted the values for the denoising parameters so that the peaks and 

valleys of the target channel were clear, while the residuals waveforms had no distinct 

shape. The residual plots also include the percent decrease in the number of discharges ( 

FIR), which was the same across channels. The frequency-distribution curve for the inter-

discharge intervals (IDIs) before denoising, along with the initial VR, SNR, and Rxy is 

presented in bottom left of Figure 5. The frequency-distribution curve for the remaining 

IDIs, and the VR, SNR, and Rxy after denoising is depicted in the bottom right of Figure 

5. In this particular case, there was no change in Rxy but denoising effected a 6.3% 

decrease in VR and a 4.1% increase in the SNR. 

The denoising parameters removed waveforms that were not positively correlated 

with the calculated MU templated. The discharge times with these waveforms were 

removed and “assumed” be noise. However, waveforms that were not positively 

correlated with the calculated MU templated could also be associated with another MU as 

would occur with superposition. Figure 6 shows the case of superposition which required 
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more “stringent” tuning of the denoising parameters to separate the two MU templates. 

Note, the residual waveforms resemble the MU template (blue) provided by the dEMG 

system. 

The parameters of the denoising algorithm were specific enough to allow MUPTs 

to pass through unaltered (see Figure 7). Figures 6, 7, and 8 illustrates the necessity of 

calculating templates using the denoised motor unit discharge times. First, Figure 7 

illustrates that it was not unusual for the MU templates provided by the dEMG system to 

include discontinuities, which would make the quantification of MU dimensions more 

difficult. Inspection of Figure 8 also shows that the calculated MU template has a better 

‘fit’ with the underlying shimmer plot for each channel than the MU template provided 

by the dEMG system. The cross-correlation coefficient between the two templates is Rxy 

= 0.88, which is similar to that generally observed on Table 1. Finally, Figure 8, is an 

example of the difference in the calculated MU template before (red) and after (blue) 

denoising. In this case, the blue waveform is ‘not’ the MU template from the dEMG 

system. Rather, it is the MU template calculated on denoised data. The MU presented in 

Figure 8 (MU#2) is the same as the presented in Figure 6. Thus, denoising is expected to 

have a significant impact on the quantification of MU templates. The cross-correlation 

coefficient between the raw and denoised MU templates increased to Rxy = 0.97. 
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Figure 5. Representative example of denoising a motor unit potential train (MUPT). The 

top panels are the shimmer plots, one for each channel. The shimmer plots include the 

MU templates calculated from the discharge times (red) and that provided by the dEMG 

system (blue). The waveforms removed from each channel are plotted immediately below 

it, indicating the percent decrease in discharge times ( FIR). The bottom right and left 

graphs are the frequency-distributions curves of the inter-discharge intervals (IDIs) 

before and after denoising, respectively. Likewise, the variance ratio (VR), the signal-to-

noise ratio (SNR), and the cross-correlation coefficient (Rxy) between the calculated MU 

template using the dEMG discharge times and that provided by the dEMG system. 
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Figure 6. Representative example of superposition following denoising a motor unit 

potential train (MUPT). The top panels are the shimmer plots, one for each channel. The 

shimmer plots include the MU templates calculated from the discharge times (red) and 

that from the dEMG system (blue). The waveforms removed from each channel are 

plotted immediately below it, indicating the percent decrease in discharge times ( FIR). 

The bottom right and left graphs are the frequency-distributions curves of the 

interdischarge intervals (IDIs) before and after denoising, respectively. Likewise, the 

variance ratio (VR), the signal-to-noise ratio (SNR), and the cross-correlation coefficient 

(Rxy) between the calculated MU template using the dEMG discharge times and that from 

the dEMG system. 
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Figure 7. Representative example of the difference in shape between the calculated 

motor unit (MU) template using the dEMG discharge times and that from the dEMG 

system. The top panels are the shimmer plots, one for each channel. The shimmer plots 

include the MU templates calculated from the discharge times (red) and that from the 

dEMG system (blue). The bottom left graph is the frequency-distributions curve of the 

inter-discharge intervals (IDIs) before and after denoising, respectively. Likewise, the 

variance ratio (VR), the signal-to-noise ratio (SNR), and the cross-correlation coefficient 

(Rxy) between the calculated MU template using the dEMG discharge times and that from 

the dEMG system. 
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Figure 8. The effect of denoising on the calculated motor unit (MU) template. The top 

panels are the shimmer plots, one for each channel. The shimmer plots include the 

templates calculated from the ‘raw’ discharge times (red) and that after denoising (blue). 

The waveforms removed from each channel are plotted immediate below it, indicating 

the percent decrease in discharge times ( FIR). The bottom right and left graphs are the 

frequency-distributions curves of the interdischarge intervals (IDIs) before and after 

denoising, respectively. Likewise, the variance ratio (VR), the signal-to-noise ratio 

(SNR), and the cross-correlation coefficient (Rxy) between the calculated MU templates 

before and after denoising. 
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Study Variables 

The following study variables were calculated on a two-second stable portion of 

the force trace, centered at the middle of the 60% contraction: (1) VR; (2) SNR, and (3) 

the cross-correlation (Rxy) between the calculate MU template and the template provide 

by the dEMG system (McManus, Hu, Rymer, Suresh, & Lowery, 2017). Across the 20 

participants, there were 230 MUs per limb that met the criteria of having a VR of 0.75 or 

greater for a total of 920 MUs. 

Statistics  

 Motor unit potential trains were studied in the dominant and non-dominant upper 

and lower limbs, across all four channels of the sEMG activity from the dEMG electrode, 

before and after denoising. A three-way (4-Limb  4-Channels  2-Denoise) randomized 

block factorial (RBF) analysis of variance (ANOVA) was therefore used to evaluate 

significant differences across limbs, channels, before and after denoising the MUPTs 

(Kirk, 2012). Orthogonal contrasts were used to further explore significant differences 

observed through the RBF ANOVA. The effect of denoising on the correlation between 

the VR and SNR was evaluated according to the procedures outlined by Raghunathan and 

colleagues (1996). When necessary, data transformations were applied to ensure 

normality and homogeneity of variances, as evaluated using probability plots and 

Levene’s test, respectively (Bartlett, 1936; Berry, 1987; Hosken, Buss, & Hodgson, 

2018). In the case of cross-correlation coefficients, Fisher’s Z-transformations was 

applied prior to further statistical analysis (Silver & Dunlap, 1987). 

  



155 

 

Results 

 Figure 9 shows the cumulative probability curve for the three parameters used to 

denoise the MUPTs. In order, the frequency of adjustment from the initial values were: a 

standard deviation less than or equal to 1.0, a SNR of greater than 0.5 dB, and a cross-

correlation coefficient greater than zero for 93% of the MUPTs. This parameter was 

highly sensitive to both noise and superpositions. When superpositions were identified in 

the residuals, the SNR and standard deviations were used to refine the inclusion criteria. 

In general, for denoising, the SNR for an individual MUP had to at least 0.5 for 70% of 

the MUPTs. The peak of an individual MUP had to be within 1.0 standard deviation of 

the location of the peak of the MUP template for 75% of the MUPTs. The dispersion of 

peaks within a MUPT was an average of 2.99 ± 3.76 ms, with a total range of 13.10 ms. 

These values were nearly identical across all four limbs, differing only in the second 

decimal place. There was a significant reduction in the overall number of firing times of 

33.07% (p<0.05), which was nearly identical across limbs. 

The means and standard deviations for the criterion measures are presented in 

Table 1. There were no significant differences for changes in the VR across the four 

channels (p<0.05). Denoising resulted in an overall 23.05% decrease in the variance ratio 

(p<0.05). Although, the decrease in VR was greater for the upper limbs compared to the 

lower limbs (p<0.05). The upper limbs had an average decrease of 21.07% while the 

lower limbs had a decrease of 16.35%. There was no significant difference for changes in 

the SNR across the four channels (p>0.05). The SNR exhibited an overall increase of 

11.67% (p<0.05). There was, however, a significant difference in the increase in SNR 

between limbs (p<0.05). Orthogonal contrasts revealed that the increase in SNR for the 
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dominant leg was 11.92% compared to 13.65% for the other three limbs, a difference 

which may be considered trivial.  

 A lower VR and a higher SNR for MUPs underlying a MU template should 

increase the quality of the template. It was there for interest to determine if denoising had 

an impact on the relationship between these two variables. Separate correlational analyses 

were performed for the upper and lower limbs on the relationship between the VR and the 

SNR due to the slight differential impact of denoising for the dominant leg. Figure 10 

shows that the significant linear negative relationship between the VR and the SNR was 

observed for both upper (r=-0.46, p<0.05) and lower limbs (r=-0.36, p<0.05), as 

expected. Denoising resulted in a significant increase in the correlation (r=-0.56) for the 

FCR (p<0.05). In contrast, the increase to r=-0.46 for the TA failed to reach the 0.05 

probability level (p=0.26).  

The cross-correlation coefficient provided additional feedback when adjusting the 

parameters for the denoising algorithm. The goal was to prevent an appreciable reduction 

in the correlation between the calculated template and the dEMG template, or, if possible, 

to improve the correlation across all four channels. There were no significant differences 

for changes in the cross-correlation coefficient across the four channels (p>0.05). 

Inspection of the means and standard deviations in Table 1 shows alterations were not 

evident until the third decimal point. Overall, denoising resulted in a 0.15% change in the 

cross-correlation coefficient between the calculated MU template and that provided by 

the dEMG system (p<0.05). There also was a 1.33% difference in the overall cross-

correlation coefficient for the upper versus lower limbs (p<0.05). 
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Figure 9. Cumulative probability curve for the denoising parameters used during the 

denoising process. Shown is cross-correlation (Rxy) between the individual motor unit 

potential (MUP) and the MUP template calculated by spike-trigger averaging the surface 

electromyographic signal from the discharge times (black), the signal-to-noise ratio 

(SNR) of the individual MUP (blue), and the standard deviation (STD) for the location of 

the MUP peaks contributing to the template ‘before’ denoising (red). 
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Figure 10. Relationship between the variance ratio (VR) and signal-to-noise ratio (SNR) 

before (red circles) and after denoising (blue squares), with the FCR on the left and the 

TA on the right.  
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Table 1. The means (M) and standard deviations (SD) for the variance ratio (VR), signal-

to-noise ratio (SNR), the cross-correlation coefficient (Rxy) between the calculated motor 

unit template and that from the dEMG system, and the number of discharges (FIR) for 

each motor unit potential train for the dominant arm (D. Arm), non-dominant arm (N.D. 

Arm), dominant leg (D. Leg), and non-dominant (N.D Leg), before and after denoising. 

There were 230 motor units (MUs) per limb, for a total of N=920. 

  D. Arm N.D. Arm D. Leg N.D. Leg 

  M ± SD M ± SD M ± SD M ± SD 

VR 
Before 0.847 ± 0.042 0.851 ± 0.039 0.844 ± 0.038 0.848 ± 0.038 

After 0.666 ± 0.116 0.673 ± 0.118 0.703 ± 0.106 0.712 ± 0.111 

SNR 
Before 1.195 ± 0.116 1.194 ± 0.090 1.220 ± 0.147 1.218 ± 0.136 

After 1.359 ± 0.188 1.353 ± 0.151 1.365 ± 0.240 1.388 ± 0.258 

Rxy 
Before 0.898 ± 0.073 0.892 ± 0.080 0.879 ± 0.085 0.887 ± 0.083 

After 0.896 ± 0.074 0.891 ± 0.081 0.878 ± 0.086 0.886 ± 0.081 

FIR 
Before 122.25 ± 

56.92 

122.14 ± 

48.85 

122.70 ± 

46.96 

124.27 ± 

47.75 

After 81.10 ± 41.43 81.64 ± 39.06 82.57 ± 34.59 83.70 ± 34.85 
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Discussion 

Decomposition of the sEMG signal has been under constant scrutiny since its 

introduction. One reason is that the specific algorithms and software code are proprietary 

and part of commercially available system (Farina & Holobar, 2016; Nawab et al., 2010). 

In the absence of the original source code, emphasis has been placed on validating the 

MU discharge times obtained by sEMG decomposition methods (Farina & Enoka, 2011). 

The current approach was motivated by the work by Parsaei and Stashuk (2009) where 

validation of the MU discharge times associated with a MUPT is based on the shapes of 

the individual contributing MUPs. Parsaei and Stashuk (2009) perform their analysis a 

priori as part of their initial MU identification and creation of the calculation of its 

template. In contrast, the discharge times of MUPs contributing to the MUPT and its MU 

template are already provided. The denoising routine is a posteriori determination of 

validity based on removing discharge times associated with MUPs that do not ‘fit’ a data 

driven confidence interval for the specific MU template. 

The data-driven confidence interval was based on the STA technique to create a 

MU template for the MUPT. First, MUP waveforms that were not positively correlated 

with the calculated template were removed. The waveform may be random noise or 

belong to another MU. In the case of superposition, the cross-correlation coefficient 

could be increased to separate the MUPs from two different MUPTs. Based on the 

present analysis, a cross-correlation coefficient of Rxy > 0.0 was sufficient for over 90% 

of the MUPTs. More recently McManus and colleagues (2017) remove firings from 

MUPs if they did not have an average correlation of 0.7 with the respective MU template. 

Their earlier work demonstrated that the a cross-correlation coefficient between the MU 

template obtained by discharge times versus STA was sensitive to errors in the discharge 

times (Hu, Rymer, & Suresh, 2013a). The cross-correlation coefficient was deemphasized 
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in the present work as it does not ‘entirely’ capture different aspects MUP variability, 

which is more than just shape.  

Originally, it was thought that the SNR of the MU template could be used to set a 

threshold for MUPs belonging to a particular MUPT, however, this was not the case. The 

SNR has been used by other investigators for event detection during segmentation, where 

the EMG signal is broken down into non-overlapping segments of varying length to 

determine if a MUP exists against background noise (Florestal et al., 2006). Additionally, 

the SNR also determines the number of MUs that can be detected (Holobar, Farina, 

Gazzoni, Merletti, & Zazula, 2009). The ranges of SNRs reported are similar to values 

reported by Holobar and colleagues (2009), specifically for the sEMG signal 

decomposition but at much lower isometric force levels (10-20% MVC). The SNR was 

highly sensitive for the inclusion or exclusion of MUPs within a MUPT. Once a threshold 

was set, small increases would remove too many valid discharges. The 0.5 level was 

sufficient for 70% of the MUPTs. 

The location of the MUP peak relative to that of the STA MU template was the 

most effective parameter for tuning the denoising process. The dispersion of peak 

locations within a MUPT is related to the variability in motor unit discharge times. Motor 

unit discharge statistics are a critical component of MU identification routines where the 

algorithm estimates the probability of MUP occurring at a specific location in the sEMG 

signal (De Luca et al., 2006). This may be one source of error in the observed discharge 

times. Motor unit discharge statistics are also used in an a posteriori fashion to determine 

the validity of MU identification technique, based on MUPT stability (Holobar, Minetto, 

Botter, Negro, & Farina, 2010). Once an event has been detected, an epoch of time (20 – 

30 ms for sEMG signals) is used to determine whether the observed MUP belongs to a 

particular MUPT (Florestal et al., 2006). Errors in event detection, location of the MUP 

within the epoch, and normal physiologic variability in MU discharge rates interact to 
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contribute to scatter of MUP peaks contributing a template. It was observed that a 68% 

confidence interval (1 standard deviation) allowed for a high degree of selectivity for 

75% of the MUPTs and was the most ‘tunable’ parameter, continually being adjusted 

thereafter (see Figure 8). 

The scatter of peaks contributing to a MU template is related to the dispersion of 

waveforms which has a partial impact on the VR. The origins of this source of variability 

in MUP shape is different than the jiggle measure, which is used clinically to assess the 

integrity of the neuromuscular system (Campos et al., 2000). Computationally, the VR 

and jiggle are quite similar. While not a main focus of this pilot work, jiggle was 

calculated to determine its relationship with the VR. As expected, there was a correlation 

of r=0.99 (p<0.05). Thus, jiggle is a another measure of MUP variability but is more 

directly linked with variability in motor unit discharge statistics (Abdelmaseeh, Smith, & 

Stashuk, 2014; Stålberg & Sonoo, 1994). Jiggle is also affected by variability in the 

innervation of muscle fibers contributing to the MU, termed “jitter”. Neuromuscular 

disorders can affect the innervation of individual muscle fibers within a MU, resulting in 

a large time difference (>20 s) in the appearance of individual muscle fiber action 

potentials (Miralles, 2001) 

It was expected and shown that denoising would have a significant impact on the 

VR and SNR, which are important variables for MU identification techniques (Florestal 

et al., 2006; Holobar et al., 2010; Parsaei & Stashuk, 2011, 2013). It is expected that MU 

templates associated with MUPs with that have lower VR and higher SNR, would 

facilitate the a posteriori classification of MU templates obtained by sEMG 

decomposition because motor units shapes can be quite similar (Holobar et al., 2009; 

Parsaei & Stashuk, 2009, 2011). The lack of significant differences across channels 

validates the strategy of using a single ‘target channel’ for denoising.  
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The impact of denoising on the SNR was slightly less for the dominant lower leg 

than the other three limbs. It is possible that the difference is not of practical significance 

due to the large sample size (N=230). However, it may reflect the fact that SNR for the 

TA of both legs was already significantly greater than that for the FCR of both arms, 

before denoising (2.0%, p<0.05). Regression analysis clearly showed that a higher initial 

SNR played a role on the impact of denoising on the relationship between VR and SNR. 

The change was not as great as that observed for the upper limb. One reason for the 

slightly higher SNR in the TA, may be due to a lower amount of subcutaneous tissue. 

Significant negative correlations have been observed between skin-fold thickness and 

root-mean-square sEMG amplitude (Gabriel & Kamen, 2009; Nordander et al., 2003). 

The literature is scant on this specific topic but there is evidence that, in males, the 

amount of subcutaneous tissue over the TA is slightly less ( 1 mm) than that over the 

FCR (Borkan & Norris, 1977; Garn, 1954). Difference in the distribution of subcutaneous 

tissue may be a factor to consider in future efforts. 
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