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Abstract 

Cryphonectria parasitica, the causal agent of Chestnut Blight, causes necrotic lesions 

(so-called cankers) on the bark of stems and branches of susceptible host trees. 

Cryphonectria Hypovirus 1 (CHV1) infects C. parasitica and reduces the fungus 

virulence (hypovirulence) and alters the fungus morphology in culture (pigmentation and 

sporulation capacity). By these characteristics the mycovirus CHV1 is used in Europe as 

a biological control agent of Chestnut Blight. The aim of this project is to better 

understand the effect of the mycovirus on the fungi pathogenicity by comparing the 

production of some lignin degrading enzymes and the metabolic profiles of some virulent 

and hypovirulent (converted and original) strains. For qualitative evaluation, several 

different compounds have been used as indicators for ligninolytic enzymes production. 

For quantitative evaluation, among nine strains five were chosen for biological tests and 

cultivation in minimal liquid media and the amount of enzyme produced were analyzed. 

Virulent strains were found to cause more damage in chestnut branches and to produce 

more lignin degrading enzymes. In apple fruits, some CHV1 infected strains produced 

bigger rot lesions than wild type strains. In parallel, Biolog FF MicroPlates have been 

used for the first time with C. parasitica strains to assess their metabolic profiles with 

concurrent reads of utilization of 95 different carbon sources. Moreover, carbohydrates, 

amino acids, amines/amides, miscellaneous and polymers were found to be more 

consumed by hypovirulent strains; therefore, this may suggest a novel adaptation 

mechanism in fungal ecology and fitness. 

Keywords: Cryphonectria parasitica, Chestnut Blight, Hypovirulence, Lignin degrading 

enzymes, Metabolic profiles. 

Resumo 

Cryphonectria parasitica, o agente causal do cancro do castanheiro, provoca lesões 

necróticas (cancros) na casca do tronco e ramos de hospedeiros suscetíveis. O micovírus 

Cryphonectria hipovírus 1 (CHV1) infecta C. parasitica e reduz a virulência do fungo 

(hipovirulência) e altera a morfologia do fungo em cultura (capacidade de pigmentação e 

esporulação). Dadas essas características, o micovírus CHV1 é usado na Europa como 



 

 

 

agente de controlo biológico para o tratamento do cancro do castanheiro. O objetivo deste 

trabalho é entender melhor o efeito do micovírus na patogenicidade do fungo, 

comparando a produção de algumas enzimas que degradam a lenhina entre estirpes 

virulentas e hipovirulentas (convertidas e originais), assim como os perfis metabólicos. 

Para a avaliação qualitativa, vários compostos diferentes foram utilizados como 

indicadores para a produção de enzimas lenhinolíticas. Para a avaliação quantitativa, 

foram escolhidas cinco estirpes para testes biológicos e cultura em meio líquido mínimo, 

e a quantidade de enzima produzida analisada. Verificou-se que estirpes virulentas 

causam maior dimensão da lesãonos ramos do castanheiro e produzem mais enzimas 

lenhinolíticas. Em maçãs, algumas das estirpes hipovirulentas produziram lesões maiores 

do que as de tipo selvagem. Paralelamente, foram usadas pela primeira vez microplacas 

Biolog FF com estirpes de C. parasitica, para avaliar perfis metabólicos com leituras 

simultâneas de 95 fontes de carbono diferentes. Hidratos de carbono, aminoácidos, 

aminas / amidas, compostos diversos e polímeros foram mais consumidos pelas estirpes 

hipovirulentas; o que pode sugerir um mecanismo de adaptação ecológica do fungo. 

Palavras-chave : Cryphonectria parasitica, cancro do castanheiro, hipovirulência, 

enzimas degradadoras de lenhina, perfis metabólicos 
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I. Introduction 

The chestnut is one of the most useful trees in the temperate regions considering the 

importance of chestnuts as a high carbohydrate food source and timber producer. In the 

world there are 4 major species: American Chestnut (Castanea dentata), European 

Chestnut (C. sativa), Chinese Chestnut (C. mollissima) and Japanese Chestnut (C. 

crenata) (Rigling and Prospero, 2017). Chestnut trees can be attacked by lethal diseases 

such as Chestnut Blight (Cryphonectria parasitica) and Ink Disease (Phytophthora 

cinnamomi and Phytophthora cambivora)   (Curculio elephas), the chestnut moth (Cydia 

splendana) and the oriental chestnut gall wasp (Dryocosmus kuriphilus) (Santos, 2017). 

Cryphonectria parasitica is an Ascomycete fungus, it hosts mostly species in the genus 

Castanea causing chestnut blight, a devastating disease that create a great damage of the 

chestnut stands all over the world, but it can also infect oaks (Quercus spp.) and maples 

(Acer spp.). It is native to Eastern Asia and then accidently introduced into North America 

and Europe through infected chestnut plants (Rigling and Prospero, 2017). It was first 

detected in 1904 on American chestnut and caused the destruction of all chestnut trees on 

4 million hectares in the beginning of this century (Smith, 2013). In the middle of the 20th 

century, it was introduced into Europe and destroyed most chestnut population in west-

European countries (Smith, 2013).  

In 1950, Biraghi noticed superficial (recovered) cankers on some chestnut trunks, and 

abnormal strains of the pathogen were isolated from naturally recovered cankers by 

Grente in 1964 (Tarcali, 2007). Lately, it was found that this pathogen can be infected 

naturally by a mycovirus called Cryphonectria hypovirus 1 (CHV1). This virus has the 

ability to control chestnut blight causing reduced parasitic growth, sporulation and 

pigmentation capacity and also diminishing the activity of pathogenesis–related enzymes, 

like oxaloacetate acethylhydrolase (OAH) (Chen et al., 2010) and laccase (Chung et al., 

2008).  

The aim of this project is to better understand the effect of the mycovirus on the fungi by 

comparing the production of some lignin degrading enzymes and the metabolic profiles 

of some virulent and hypovirulent (converted and original) strains. For qualitative 

evaluation, several different compounds have been used as indicators for ligninolytic 

enzymes production. For quantitative evaluation, among nine strains five were chosen for 
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biological tests and cultivation in minimal liquid media and the amount of laccase, lignin 

peroxidase and manganese peroxidase produced were analyzed. The Biolog FF 

MicroPlate system (Biolog Inc.)  was used to characterize filamentous fungi according to 

their metabolic profiles. These profiles were obtained from fungus utilization of 95 carbon 

sources from different chemical groups (amines/amides, amino acids, carbohydrates, 

carboxylic acids, polymers and miscellaneous compounds). This method has been used  

to  identify and aid  the definition of new  species of  fungi with  small morphological  

variation, when molecular  techniques  are of  limited application (Rice and Currah, 2005). 

Biolog FF MicroPlates was used with C. parasitica to assess their metabolic profiles and 

functional diversity.  
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II. Literature review 

This literature review contains information about strains of Cryphonectria parasitica, 

Chestnut Blight, its symptoms and artificial and natural control of this disease. It also 

provides information about lignin degrading enzymes.  

1. Cryphonectria parasitica 

1.1 Taxonomy 

Cryphonectria parasitica (Murr.) Barr. is a Sordariomycete (Ascomycete) fungus in the 

family Cryphonectriaceae (Order Diaporthales). Closely related species that can also be 

found on chestnut include C. radicalis, C. naterciae and C. japonica. 

1.2 Host range 

C. parasitica hosts are particularly species that belong to the genus Castanea in the family 

Fagaceae: the American chestnut (C. dentata), the European chestnut (C. sativa), the 

Chinese chestnut (C. mollissima Blume) and the Japanese chestnut (C. crenata Siebold 

& Zucc.) (Rouan et al., 1986). Cryphonectria parasitica can also attack other species 

such as oaks (Quercus spp.), post oak (Q. stellata Wangenh.), scarlet oak (Q. coccinea 

Münchh.), live oak (Q. virginiana Mill.) and white oak (Q. alba L.) in the USA, and holm 

oak (Q. ilex L.), sessile oak [Q. petraea (Mattuschka) Lieblein], downy oak (Q. pubescens 

Willd.) and Hungarian oak (Q. frainetto Ten.) in Europe (Rigling and Prospero, 2017). 

Occasionally, C. parasitica has also been found on maples (Acer spp.), European 

hornbeam (Carpinus betulus L.) and American chinkapin (Castanea pumila L. var. 

pumila and C. pumila var. ozarkensis) (Rigling and Prospero, 2017). 

1.3 Life cycle and reproduction 

C. parasitica enter to the host bark through fresh formed wounds or crack in the bark 

(Rouane et al., 1986). 

Both asexual and sexual spores are able of causing infection (Prospero et al., 2006), these 

spores are produced in the stroma, which holds a perithecium or a pycnidium: perithecium 

where the sexual ascospores are produced, pycnidium where the asexual conidia are 

produced. These spores are released from the stroma and spread on the infected bark 

(Smith, 2013). 

The type of reproduction is determined by environmental factors like the nutrition 

available, temperature, and light (Smith, 2013). Sexual reproduction can be induced by 
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nitrogen starvation, light, and low temperatures (Smith, 2013). In C. parasitica, mating 

is controlled by a single mating type (MAT) locus, which contains either the MAT-1 or 

MAT-2 allele (Marra et al., 2004). A conidium (with one mating type) acts as a male 

gameta, fertilizes a receptive hypha of the other mating type. C. parasitica has also a 

mixed mating system, with outcrossing and self-fertilization occurring at variable 

frequencies (Marra et al., 2004). 

These conidia are formed by mitosis and are genetically identical to the mycelium. They 

are generally dispersed to nearby trees by carriers such as insects and birds as well as rain 

(Rigling and Prospero, 2017). 

Sexual and asexual fruiting bodies develop in masses of yellow–orange to red–brown 

pustules named stromata (Figure 1) and degrade the tissues down to the cambial layer of 

the tree. The cambial layer is essential for production of the xylem and phloem. Once a 

tree branch has become girdled, an important reduction in the transport of water and 

nutrient is observed (Rigling and Prospero, 2017).  

 

Figure 1 - Sporulation of Cryphonectria parasitica. (a) On the infected bark, the fungus 

produces masses of yellow–orange to reddish– brown pustules (stromata) harbouring 

sexual or asexual fruiting bodies. (b) Sexual fruiting bodies (perithecia). (c) Asexual 

fruiting bodies (pycnidia). The asexual spores (conidia) are extruded from the pycnidia 

as spore tendrils (adapted from Rigling and Prospero, 2017). 

1.4 Vegetative compatibility 

What is interesting in C. parasitica is that its vegetative incompatibility system restricts 

the horizontal transmission of virulence-attenuating mycoviruses between fungal 

individuals (Anagnostakis, 1977). To date, six unlinked vegetative incompatibility (vic) 

loci, each with two alleles, have been identified (Cortesi and Milgroom, 1998). These six 

di-allelic vic loci define 26564 vic genotypes, which correspond to 64 different vc types 
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(Biella et al., 2001). Two isolates are vegetative compatible if they have the same alleles 

at the six vic loci, so a co-culture of this two isolates on the same agar plate will combine 

into a single culture, otherwise if the isolates are vegetative incompatible, a barrage line 

will be formed along the contact zone (Figure 2), as a result of a programmed cell death 

(apoptosis) (Biella et al., 2002). 

 

Figure 2 -  (B)Vegetative incompatibility and (M) Vegetative compatibility.  

1.5 vc-types distribution 

Less vc types were found in Germany and Macedonia due to a recent introduction of the 

disease in these areas and/or low vic-allele diversity, in the other hand, more vc-types 

have been observed in areas, where the disease has been introduced from a long time and 

where sexual reproduction is more frequent e.g. France, Italy and Switzerland (Onofre et 

al., 2007). 

Some vc-types are frequent in areas but rare in others, like a geographic distribution 

pattern. For example, EU-12 is the dominant vc type in southern Italy, Greece and eastern 

Europe, whereas EU-1, EU-2 and EU-5 are dominant in northern Italy, southern France, 

Switzerland and eastern Spain (Robin and Heiniger, 2001). 

In Portugal, Trás-os-Montes is the most important chestnut-growing province with 85% 

of the total area of chestnut orchards and 79% of chestnut forests (INE, 2004). In the 

recent years, the disease has spread from the initial foci to other areas (Bragança et al., 

2005) and the most dominant vc type in Portugal is EU-11, which represents 80.2% of all 

isolates, but other vc types have been found such as EU-28 and P-9 (Onofre et al., 2007). 
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2. Chestnut blight 

2.1 Invasion history 

During the 20th century the pathogen was introduced into north America and Europe 

(Griffin, 1986) through infected chestnut plants coming from Japan (Myburg et al., 2004). 

After its first detection in 1904 in New York, the pathogen spread at a rate of more than 

30 km per year (Anagnostakis, 1977)  causing severe ecological and economic problems 

(Elliott and Swank, 2008). In Europe, it was first detected in 1938 in Italy, near Genoa 

(Ringling and Prospero, 2017). By 1950, the disease spread into France, Switzerland and 

Slovenia and then into eastern and south-eastern Europe and Turkey (Rigling and 

Prospero, 2017). A different genetic lineages of C. parasitica have been found in south-

western giving the idea of  an additional introduction into south Europe (Dutech et al., 

2009). 

2.2. Disease symptoms 

The manifestation of symptoms depends on the virulence of the strain of C. parasitica 

and the age of the infected tree part. Necrotic lesions are formed by virulent strains of  

C. parasitica, these lesions are capable of causing mortality to small branches (Figure. 

3a, b, c, d). On thicker branches or stems perennial cankers are formed, this type of 

cankers may develop over years before killing the branches (Figure. 3a). Bark cankers on 

young stems/branches are orange to reddish-brown on the surface. On older 

stems/branches, canker coloration is generally less pronounced. C. parasitica develops a 

longitudinal splits and typical pale brown mycelial fans in the bark, the leaves wilt, turn 

yellow or brown (Figure. 3f). Trees react to an infection by producing numerous 

epicormic shoots below the cankers (Figure 3b) (Rigling and Prospero, 2017). 

 

 a                            b                            c                           d                        f 

Figure 3- Symptoms of chestnut blight on Castanea sativa (adapted from Rigling and 

Prospero, 2017) 
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3. Factors related to the virulence of C. parasitica 

After splitting the tree tissues and advancing in the bark, the chestnut tree tries to reform 

the wound caused by the pathogen, but it’s inhibited by cell wall degrading enzymes and 

metabolites produced by C. parasitica such as oxalic acid, which has toxic effect on host 

cells and induce cell wall degradation (Rigling and Prospero, 2017). A knock out of the 

gene encoding for the oxalic acid producing enzyme confirms the role of this substance 

in pathogenesis (Chen et al., 2010), but there is other virulence factors including a G-

protein signaling (Gao et al., 1996), an Ste12 transcription factor (Deng et al., 2007), a 

tannic acid-inducible laccase (Chung et al., 2008), a cyclophilin (Chen et al., 2010), a 

protein kinase 2 (CK2)-mediated signaling (Salamon et al., 2010) and an inhibitor 

(CpBir1) of apoptosis proteins (Gao et al., 2013). 

4. Oxidative enzymes involved in degradation of cell-wall components 

4.1 Composition of the plant cell wall 

Cell walls of plants are composed of cellulose, hemicellulose and lignin: 

• Cellulose, the major constituent of all plant material, is a linear biopolymer consisting 

of anhydroglucopyranose molecules (glucose) connected by β-1,4- glycosidic bonds. 

Coupling of adjacent cellulose chains via hydrogen bonds, hydrophobic interactions 

and Van der Waals forces results in the parallel alignment of crystalline structures 

known as microfibrils (Dashtban et al., 2010). 

• Hemicelluloses are heterogeneous polymers of pentoses (including xylose and 

arabinose), hexoses (mainly mannose, less glucose and galactose) and sugar acids. 

The highly variable composition of hemicelluloses is dependent on its plant source 

(Badal, 2000). 

• Lignin, a heterogeneous polymer of lignocellulosic residues. It generally contains 

three precursor aromatic alcohols including coniferyl alcohol, sinapyl and p-coumaryl 

(Wei et al., 2009). These precursors form the guaiacyl-(G), syringyl-(S) and p-

hydroxyphenyl (H) subunits in the lignin molecule, respectively (Speranza et al., 

2005). The subunits ratio, and so, the lignin composition varies between different 

plant groups. Oxidative coupling of these lignin aromatic alcohol monomers creates 

a complex structure in lignin which is highly recalcitrant to degradation (Wong, 

2009). 
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By linking to both hemicelluloses and cellulose, lignin acts as a barrier to any 

solutions or enzymes and prevents penetration of lignocellulolytic enzymes to the 

interior lignocellulosic structure. Beside Basidiomycetes white-rot fungi, most 

microorganisms are not able to degrade lignin (Dashtban et al., 2010).  

4.2 Oxidative enzymes 

Some fungal species such as C. parasitica are capable of lignin, cellulose, and 

hemicellulose decomposition and transforming this components into carbon dioxide 

(Rivera-Hoyos et al., 2013) by production of laccases (Lac), lignin peroxidases (LiP) and 

manganese peroxidases (MnP). Although LiP is able to oxidize the non-phenolic part of 

lignin (which forms 80-90% of lignin composition) (Wang et al., 2008), some studies of 

the early stages of the fungal degradation of wood have shown that oxidative ligninolytic 

enzymes are too large to penetrate into the wood cell wall micropores (Srebotnik et al., 

1988). Thus, it has been suggested that prior to the enzymatic attack, low-molecular 

weight diffusible reactive oxidative compounds must initiate changes to the lignin 

structure (Tanaka et al., 1999). Figure 4 summarizes the major steps of lignin degradation 

process. 

 

Figure 4 - Schematic diagram of lignin degradation by basidiomycetes white-rot fungi: 

the major steps and enzymes involved (adapted from Dashtban et al., 2010). 
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4.2.1 Oxaloacetate acetylhydrolase (OAH) 

OAH (EC 3.7.1.1) is a member of the Phosphoenolpyruvate mutase (PEPM)/isocitrate 

lyase (ICL) superfamily. They take action on α-oxycarboxylate substrates to 

generate/divide C-C or P-C bonds. All PEPM/ICL superfamily members are oligomeric 

proteins, mostly tetramers, and each subunit adopts an (α/β)8-barrel fold (Chen et al., 

2010). The active site could be found at the C-terminal side of the β-barrel. Mg2+ or 

Mn2+ are necessary for the activity of PEPM/ICL superfamily members, the metal 

mediates the interactions between the protein and the substrate (Chen et al., 2010). 

Oxaloacetate acetylhydrolase catalyzes the hydrolysis of oxaloacetate to oxalic acid and 

acetate (Figure 5). Oxalic acid production and secretion are related with fungal 

pathogenesis and virulence (Kirkland et al., 2005) The virulence mechanism is caused by 

acidification that activates lignocellulose degradation, diminishes viability of host tissue 

in favor of pathogen proliferation, and induces crystallization of calcium oxalate, which 

blocks vessels (Nakagawa and Shimazu, 1999). 

 

Figure 5 -The OAH-catalyzed reaction.  

 

4.2.2 Laccase 

Laccase (EC 1.10.3.2), p-diphenol oxidase (systematic name – benzenediol: oxygen 

oxidoreductase), was for the first time extracted from a plant in 1883 (Kaczmarek and 

Kwiatos, 2017). Actually, there are many identified laccases, either extracellular or 

intracellular. They are glycoproteins, which most frequently occur as isoenzymes, and by 

oligomerization of subunits, can form multimeric complexes, mainly dimeric or 

tetrameric with a mass that ranges from 50 kDa to 100 kDa (Thurston, 1994).  

Laccases, popularly named as the blue oxidases, belong to the multicopper oxidases 

(MCOs) superfamily (Arora and Sharma, 2010) and they have the capacity to oxidize 

organic and inorganic compounds such as mono-, di, poly-, amino- and methoxyphenols, 

and a number of aromatic amines. The final step of the reactions of this oxidoreductases 

is the reduction of molecular oxygen to two water molecules, that’s why laccases are 

viewed as “ideal green” catalysts (Galhaup and Haltrich, 2001).  
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Beside simple phenolic derivates, laccase can catalyze the oxidation of a wide range of 

substrates, by mediators interacting in the transport of electrons between the substrate and 

the catalytic center of the enzyme (Kersten et al., 1990).  

The most frequently applied synthetic mediators are diammonium salt 2,2’-azino-bis (3- 

ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxybenzotriazole (HBT), 

hydroxyanthranilic acid (HAA), violuric acid, hydroxyyacetanilide (NHA) and 

hydroxyphthalimide (HPI). It has been proved that oxidation of veratryl alcohol to 

aldehyde is approximately 5-fold more efficient in the presence of ABTS as a mediator 

(Kaczmarek and Kwiatos, 2017). Fungal laccases are involved in sporulation, pigment 

production, fruit body formation, and plant pathogenesis (Rivera-Hoyos et al., 2013). 

4.2.3 Lignin peroxidase (LiP) 

Lignin peroxidase, (EC 1.11.1.14) is a glycoprotein that contains a heme, cleaves C-C 

bonds and oxidizes benzyl alcohols to aldehydes or ketones. LiP is capable to catalyze 

both phenolic and non-phenolic lignin substructures by a one-electron oxidation reaction 

to generate unstable aryl radical cations. It’s necessary to have an extracellular hydrogen 

peroxide, to act as an electron acceptor. LiP is capable of the initiation of different non-

enzymatic reactions such as the cleavage of Cα-Cβ bond in the side chain, β-O-4 bond 

between side chain and next ring and cleavage of aromatic ring (Figure 6) (Swe, 2011). 

 

Figure 6 - Reactions initiated by lignin peroxidase: (1) cleavage of Cα-Cβ bond in the 

side chain, (2) β-O-4 bond between side chain and next ring and (3) cleavage of 

aromatic ring (adopted from Swe, 2011). 

4.2.4 Manganese peroxidase (MnP) 

Manganese peroxidase (EC 1.11.1.13), is a heme containing glycoprotein, attacks 

phenolic lignin components. Only some basidiomycetes and wood decaying white-rot 

fungi can produce this enzyme. It oxidizes Mn2+ to Mn3+ and H2O2 acts as an electron 

acceptor. The first step of the catalytic cycle of MnP is the binding of H2O2 to the native 
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ferric enzyme and the formation of iron-peroxide complex. The heme will provide two 

electrons for the cleavage of oxygen-oxygen bond of hydrogen peroxide to one water 

molecule, which generate the MnP Compound I (Fe4+-oxo-porphyrin-radical complex). 

By a monochelated Mn2+, this MnP Compound I is reduced to MnP Compound II (Fe4+-

oxo-porphyrin complex), thus Mn3+ is formed. By the reduction of MnP Compound II 

by Mn2+ and the releasing of another water molecule the native enzyme is reformed. 

Then, a strong oxidant is generated, Mn3+, which oxidizes phenolic structures by single 

electron oxidation (Figure 7) (Swe, 2011). 

 

Figure 7 - Catalytic cycle initiated by Manganese Peroxidase (adapted from Swe, 2011). 

 

4.2.5 Versatile peroxidases (VP) 

Versatile peroxidases were first discovered in 1999 in members of the genus Pleurotus 

(Dashtban et al., 2010). They are glycoproteins with the ability to oxidize typical 

substrates of other peroxidases including Mn (II) and also veratryl alcohol (VA), MnP 

and the typical LiP substrate, respectively (Dashtban et al., 2010). Due to their hybrid 

structures, VPs can provide multiple binding sites for the substrates that’s why they have 

the ability to oxidize Mn (II), phenolic and nonphenolic aromatic compounds (Wesenberg 

et al., 2003). This makes VPs more efficient than LiP and MnP, because they are not able 

to efficiently oxidize phenolic compounds in the absence of VA or oxidize phenols in the 

absence of Mn (II), respectively (Ruiz- Dueñas, 2009). 
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Table 1 - Features of the main two groups of fungal ligninolytic enzymes (adapted from Dashtban et al., 2010) 
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5. Management of the disease  

5.1 Quarantine measures for control of the disease 

To reduce the movement and spread of C. parasitica some quarantine regulations have 

been adopted, so chestnut and oak plantlets can only be moved within Europe if they are 

accompanied by a plant passport which certifies that: (i) the plants came from areas free 

from C. parasitica; or (ii) no observation of C. parasitica has been made at the production 

place or its immediate vicinity since the beginning of the last complete cycle of 

vegetation, nevertheless these regulations were ineffective to completely stop the spread 

of the pathogen because the infection wasn’t always detectable by visual examination 

(Rigling and Prospero, 2017). 

Cutting and burning of the infected plants wasn’t successful too because it’s difficult to 

find all the inoculum sources (Prospero and Rigling, 2013). 

Avoiding wounds in the bark may be a successful way to reduce the spread of the disease 

and when wounds are unavoidable (pruning or grafting), the wounding shouldn’t be done 

in the period of spore production (Rigling and Prospero, 2017). Chemicals are not an 

option because of the restriction of its use in some forests, and some fungicides have 

proven to be phytotoxic (Trapiello et al., 2015).  

5.2 Natural control of the disease: Cryphonectria hypovirus 1 (CHV1) 

Hypovirus that infect C. parasitica are double-stranded RNA (dsRNA) viruses without a 

coat protein, incorporated with fungal membrane vesicles and located in the cytoplasm. 

There have been identified four species, namely Cryphonectria hypovirus 1 (CHV1), 

CHV2, CHV3 and CHV4. The one that causes hypovirulence to C. parasitica and acts as 

biological control agent of chestnut blight in Europe is CHV1, which decreases the 

parasitic growth and sporulation capacity of the pathogen (Rigling and Prospero, 2017). 

There are subtypes of CHV1 with different levels of virulence, some reveal severe 

symptoms in C. parasitica and decrease almost completely the sporulation (e.g., CHV-

1/EP713), and other are milder and concede more sporulation, (e.g., CHV1/Euro7). This 

mild strains of CHV1 are much more frequent in Europe (Milgroom and Cortesi, 2004). 

CHV2, CHV3 and CHV4, are taxonomically related to CHV1, but they are different from 

CHV1 by the genome organization and the effect on C. parasitica (Hillman and Suzuki, 

2004). While CHV2 and CHV3 can cause hypovirulence to C. parasitica, CHV4 causes 

no significant symptoms in its fungal host (Rigling and Prospero, 2017). 
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The spread of this hypovirus depends on the combination of horizontal transmission (to 

other fungal individuals) and vertical transmission (to spores) of the hypovirus. From a 

hypovirus-infected fungal individual, the hypovirus is only transmitted into asexual 

spores (conidia), but not into sexual ascospores (Prospero et al., 2006). It is dispersed 

with the conidia and then transmitted from the outgrowing spores to other fungal 

individuals via hyphal anastomosis (Milgroom and Cortesi, 2004). 

The hypovirus transmission is limited by the vegetative incompatibility of C. parasitica 

strains. To know the ability of transmission between two strains, a co-culturing pairs of 

hypovirus- infected and hypovirus-free strains on potato dextrose agar (PDA) plates is 

performed and the change of the orange morphology of hypovirus-free strains to a white 

morphology of the hypovirus-infected strains enables the visual evaluation of hypovirus 

transmission (Rigling and Prospero, 2017). 

Some studies have revealed that some C. parasitica proteins are down-regulated in the 

presence of CHV-1 such as laccase, oxaloacetate acetylhydrolase (Chen et al., 2010), 

pheromone-encoding gene, cryparin: a cell wall hydrophobin (Turina and Rostagno, 

2007), some gene are shown to be disrupted, e.g. CpMK1 (is a Hog 1 homologue from 

C. parasitica, related to pigmentation, conidiation, laccase production and cryparin 

expression) (Park et al., 2004), also cpg-1 (one of G-protein components, which is 

required for efficient hyphal growth, orange pigmentation, conidiation and sexual 

reproduction) (Turina and Rostagno, 2007). 

 

6. Objectives 

1. Convert virulent strains (EU-11, EU-66) to hypovirulent by the CHV-1 hypovirus 

(RB111). 

2. Evaluate the degree of virulence of the virulent and hypovirulent strains of C. 

parasitica. 

3. Evaluate the production of laccase, lignin peroxidase and manganese peroxidase 

in virulent and hypovirulent strains of C. parasitica 

4. Evaluate the differences in metabolic profile of virulent and hypovirulent strains 

of C. parasitica. 
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III. Materials and Methods 

1. Characterization of Cryphonectria parasitica isolates 

1.1 Cryphonectria parasitica isolates 

C. parasitica isolates used in this study, listed in Table 2, were obtained from different 

locations in chestnut plantation field. These strains were re-cultured and maintained, on 

Potato Dextrose Agar (PDA, 39g/L) after sterilization at 120°C for 20min. 

 

Table 2 – Strains information of C. parasitica isolates 

 

1.2 Conversion of virulent strains  

Conversions were made by placing virulent (Cast13, VBC02, Cast26) and hypovirulent 

(RB111) isolates of C. parasitica approximately 5mm apart at the edge of a Petri dish 

containing PDA. Mycelium of the converted strains were removed and transferred to fresh 

PDA medium. 

1.3 Evaluation of the virulence of C. parasitica isolates by inoculation in apples 

For this assay we used five isolates of C. parasitica with at least seven days of growth 

and apples homogenous and without defects or decay and finally washed in distilled water 

and dry.  

Date  Code VCG Sites Virulence 

2018 Cast13 EU11 Castrelos (Bragança)  Virulent 

2018 Cast26 EU11 Castrelos (Bragança)  Virulent 

2018 VBC02 EU11 Vila Boa Carção (Bragança) Virulent 

2011 RB111 EU11 Rio Bom (Valpaços) Hypovirulent 

2017 Serra05 EU11 Serra (Chaves) Hypovirulent 

2013 SR442 EU11 Sergude (Felgueiras) Hypovirulent 

2018 Cast07 EU66 Castrelos (Bragança)  Virulent 

2018 Cast17 EU66 Castrelos (Bragança)  Virulent 

2014 VDP11 EU66 Vilar de Peregrinos (Vinhais) Virulent 
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A sterilized Pasteur glass pipette was used to obtain circular mycelial sections of  

C. parasitica isolates for the use as an inoculum, as shown in Figure 8. With another 

sterilized Pasteur glass pipette, holes were made in the apples as shown in the Figure 9. 

 

 

Figure 8 - Drilling holes in C. parasitica. 

 

Figure 9 - Drilling holes in the apples. 

 

With the help of a tweezers C. parasitica inoculum was placed into the apples (with three 

replicates for each isolate), and it was sealed with parafilm (Figures 10 and 11). Each of 

the replicates was identified and apples incubated at 24ºC in the dark for seven days. 

 

Figure 10 - Covering the inoculum with parafilm. 
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Figure 11 - Inoculated apples in incubation tray. 

Presence of lesions and their growth [largest radius (r>) and minor radius (r <)] were 

evaluated in mm after seven days incubation time, as shown in Figure 12. 

 

Figure 12 - Rot lesion in an apple. 

1.4 Evaluation of the virulence of C. parasitica isolates in young branches of Castanea 

sativa Mill. 

Chestnut branches were collected in C. sativa nurseries at ESAB-IPB open fields. 

 

Figure 13 - Young chestnut tree. 

r>

r<
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Chestnut branches were cut into sections approximately 20 cm long. Wax was applied on 

both cutting sides of the branches to avoid desiccation of the wood, as shown in Figure 

14 and 15. 

 

Figure 14 - Chestnut branches.  

 

Figure 15 - Wax application. 

It was used a scalpel to do a cut in the middle of each branch, and a Pasteur glass pipette 

to obtain mycelia from each isolate from a Petri plate. Then, inoculations of the three 

hypovirulent and two virulent strains of Cryphonectria parasitica at the cut site were 

made using a loop. The name of the isolate was registered in the branch. The all steps in 

the process can be visualized in Figures 16 and 17. 

 

 

Figure 16 – Cutting the branches. 
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Figure 17 - Application of inoculum. 

After inoculation, the inoculation sites were covered with cotton wool moistened with 

distilled water and surrounded with parafilm to avoid loss of moisture (Figure 18). 

     

Figure 18 - Cover with cotton and parafilm. 

Finally, chestnut branches were placed on a laboratory tray in an incubation chamber at 

25ºC in the light. They were checked for fungal growth after six days. If there was any, 

registration and measurement of the growth were made. Disease growth was checked in 

two directions (r1(cm), r2(cm)) from the center. 

1.5 CHV1 virus detection protocol 

1.5.1 RNA Extraction and CHV1 identification 

The presence of CHV1 (Cryphonectria hypovirus 1) was verified through the presence of 

double-stranded RNA (dsRNA). For the extraction of dsRNA, the isolates that presented 

morphological characteristics of hypovirulence were grown in Petri dishes with PDA 

medium for seven days at 25 ºC in the dark. The mycelium was removed and macerated 

using liquid nitrogen. Total RNA was isolated from mycelium using the NorGen BioTek 

kit (Thorold, ON, Canada). Extraction was done using lysis buffer, precipitated with 

100% ethanol and washed in columns with wash solution. The RNA was dissolved in 

elution buffer and stored at -20°C. 

The ORF-A region was amplified using the primers hvep-1F (5`- 

TGACACGGAAGCTGAGTGTC-3´) and EP-721-4 (5´- 
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GGAAGTCGGACATGCCCTG - 3´). For the ORF-B region were utilized the primers 

orfB-12aF (5´- AGACCTCAATCGGGTCTCCCT - 3´) and orfB-12aR (5´- 

TTCAACCACACGACGAGTTCG - 3´). PCR amplification was performed using 1 µl 

of cDNA in a total of 50 µl reaction volume consisted of 10 µl of 2X Jump Start (Sigma) 

and 1 µl of each primer (20 pmol/µl). Thermocycling conditions were set up with an 

initial denaturation at 94 °C for 2 min, followed by 33 cycles consisting of 94 ºC 

denaturation for 1 min, annealing at 55 °C for 1,5 min, and elongation at 72 °C for 2 min, 

with a final extension at 72 ° C for 8 min. The PCR products were visualized by agarose 

gel electrophoresis on 1.5% gel stained with GelRed® Nucleic Acid Gel Stain (Biotium, 

Inc) under UV illumination. 

 

2. Qualitative and quantitative evaluation of ligninolytic enzyme 

production 

2.1 Qualitative enzymatic assays 

Nine strains were used for the qualitative evaluation: six virulent strains (3 EU11, 3 

EU66) and 3 hypovirulent strains. 

2.1.1 Bavendamm test (phenol oxidase test) 

The medium contained 1.5% malt extract, 1.5% agar and 0.5% tannic acid, pH=4.5. The 

solution with tannic acid was prepared, autoclaved separately and mixed with the other 

components before pouring into Petri dishes. Petri plates were inoculated with plugs from 

fungal strains catted with glass Pasteur pipettes. Incubation at 25°C in darkness.  

2.1.2 Peroxidases medium 

For peroxidases evaluation it was used PDA with 25mg/l Azur B added. After sterilization 

it was aseptically transferred into rectangular Petri dishes, inoculated and Incubated at 

25°C in darkness. 

2.1.3 Cellulase medium 

The medium was prepared with 0.5% of carboxymethyl cellulose (CMC) and 1.6% agar 

for the growing of nine isolates. Four days after inoculation and incubation at 25°C, the 

plates were flooded with a 0.1% solution of Congo Red for 45min, then the stain was 

poured off, and they were destained with a 1M solution of NaCl for 15min. An 

uninoculated plate was used as a control for media decolorization. 
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2.1.4 Screening for laccase and peroxidases 

It was used malt extract agar (MEA) medium supplemented with 0.04% RBBR and 

200μM CuSO4. For this, solutions of 20% of RBBR and 400mM of CuSO4 were prepared 

and filtered through a 0.2μm filter. As controls two uninoculated plates were used: one 

with the dye (as abiotic control) and one without dye (as biotic control). 

2.2 Quantitative enzymatic assays 

2.2.1 Media and cultures conditions for enzymes quantification 

For quantitative enzymatic assays five strains were selected: two virulent (Cast13 and 

VBC02), their converted ones (Cast13c and VBC02c) and one hypovirulent strain 

(RB111). These strains were incubated for four days in a sterile PDB medium in 250ml 

Erlenmeyer flasks and incubated at 110rpm, at 25°C. Then, the mycelium was filtered 

and transferred to a minimal medium with 62.5ml salt solution, 2mg thiamine, 10g 

glucose in a 1liter.  

Salt solution contained:  24g/l NH4NO3, 16g/l KH2PO4, 4g/l Na2SO4, 8g/l KCl, 2g/l 

MgSO4 . 7H2O, 1g/l CaCl2, 8ml/l of a trace elements solution. Trace elements solution is 

composed of: 60mg/l H3BO3, 140mg/l MnCl2 · 4H2O, 400mg/ml ZnCl2, 40mg/l Na2MoO4, 

100mg/l FeCl3 · 6H2O, 400mg/l CuSO4 · 5H2O. 

The minimal medium was buffered at pH value 4, using a Na2HPO4 (0.2M)- citrate (0.1M) 

buffer. The Erlenmeyer flasks of 500ml, filled with 200ml minimal medium were 

autoclaved in 121°C for 20min and incubated at 110rpm, at 25°C. After 3 days of 

incubation the mycelium were filtered, freezed using liquid nitrogen and stocked at -80°C 

for molecular methods, the supernatant was centrifuged at 3200 rpm for 40 min and  

putted in tubes and stocked at -80°C for further analyses. 

Note: Two similar culture medium were done following the previous method.  

2.2.2 Enzyme assays 

Laccase activity is determined by monitoring the oxidation of ABTS in citrate phosphate 

buffer, pH 3.6. The reaction mixture contains 0.2 mM of ABTS (555μl) and 250 μl of 

culture supernatant in a total volume of 5 ml. The oxidation of ABTS was measured by 

an increase in absorbance at 405nm. In the blank the supernatant was replaced by buffer. 

Laccase enzyme activity is further measured in units, one unit of enzyme activity (U) is 

defined as the amount of enzyme that released 1 μmole per minute of oxidized product.  

Lignin peroxidase (LiP) activity is determined by monitoring the oxidation of azure B 

dye. The reaction mixture contained 1 ml of 125 mM sodium tartrate buffer (pH 3.0), 500 
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μl of 0.160 mM azure B, 500 μl of the culture filtrate and 500 μl of 2 mM H2O2. The 

reaction was initiated by adding peroxide hydrogen and the absorbance of each sample 

was taken at 651 nm after 5 min interval. One unit of enzyme activity has been expressed 

as an O.D. decrease of 0.1 units per minute per ml of the culture filtrate (Arora and Gill 

2001). 

The activity of manganese peroxidase (MnP) can be measured by the assay, which was 

performed by the addition of 0.4 mL MnSO4 (1mM) in 1 mL sodium tartrate buffer 

(50mM) (pH 3.0) in the presence of 0.4 mL H2O2 (0.1mM) and 0.2 mL culture 

supernatant. Manganic ions Mn3+ form a complex with tartrate, the absorbance of each 

sample was taken at 270 nm after 5 min interval. One unit of Manganese peroxidase 

activity corresponds to the change in absorbance per minute at 25 °C. 

Note: For the blank in Lignin and Manganese peroxidase assays, each sample, just after 

adding the hydrogen peroxide, was considered zero. 

2.2.3 Total protein concentration 

Total protein concentration was determined by Bradford Assay based on Bradford method 

with bovine serum albumin (BSA) as standard. the samples were containing between 10 and 

100 μl in a total volume of 100 μl into glass tubes and 1mL of protein reagent then they 

were mixed gently. The absorbance was measured at 595 nm. The assay reagent was made 

by dissolving 100 mg of Coomassie Blue G250 in 50 mL of 95% ethanol. The solution 

was then mixed with 100 mL of 85% phosphoric acid and made up to 1 L with distilled 

water. The reagent was filtered and then stored in an amber bottle at room temperature. 

Note: Quartz (silica) spectrophotometer cuvettes should not be used, as the dye binds to 

this material. Plastic and glassware used in the assay should be absolutely clean and 

detergent free.  

3. Characterization of the metabolic profiles 

3.1 Testing the viability of the mycelium used 

Two virulent (Cast13 and VBC02) isolates, their converted ones (Cast13c and VBC02c) 

and one hypovirulent strain (RB111) were grown in 250ml Erlenmeyer with 100ml of 

PDB, using five plugs of each isolate. Four days of incubation time at 110 rpm, at 25°C. 

In each case, the mycelium was filtered and transferred to glass bottles. 

Its viability was tested by counting the number of sections in a bottle with smashed 

mycelium (the smashing was done with a laboratory mixer). 10 µl of smashed mycelium 

were placed in a petri dish containing PDA and were spread throughout the plate (Figure 
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21), then the plates were incubated at 25°C in the dark for five days. The number of 

sections per plate were counted and per mL were calculated. 

 

Figure 19 - Spreading the mycelium throughout the plate. 

3.2 BIOLOG FF Microplates 

The global phenotypes and utilization of 95 low molecular weight carbon sources (plus a 

negative control) by each of the isolates were evaluated using the Biolog FF Microplate 

(Biolog Inc.), following manufacturer instructions. The obtained mycelium (viable and 

non-contaminated) was suspended in FF inoculating fluid supplied by Biolog in glass 

tubes (Cat. Nº 1006), mixed gently by hand and adjusted to approx.  75 % transmittance 

at 590 nm using a Biolog Turbidimeter, previously calibrated using an FF Biolog 

Turbidity standard (Cat. Nº 3426) (Figure 19, 20). Smashed mycelium (100 µl) was added 

to each well, and the FF MicroPlates were then incubated at 25°C in the dark. The optical 

density at 490 nm (mitochondrial activity) was determined using an ASYS UVM  340 

microplate reader (Hitech GmbH) for each plate at 24 h intervals over the next seven 

days. Carbon sources were considered not utilized in wells in which color development 

was less than, or equal to, that of negative controls. 

                    

Figure 20 - BIOLOG Turbidimeter       Figure 21 - ASYS UVM 340 microplate reader                      
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4. Statistical analyses 

Multivariate analyses were performed in PAST v.3.18 to reduce the number of variables 

resulting from metabolic (Biolog-carbon source utilization) profiles, using Principal 

Component Analysis (PCA). For the metabolic profiles, the average well color 

development (AWCD) of the different replicates were calculated seven days after 

incubation, where AWCD equals the sum of the difference between the OD of the blank 

well (control) and substrate wells, divided by 95 (the number of substrate wells in the FF 

Microplate). The AWCD values were stabilized only at seven days, therefore OD 

readings obtained in each of the 95 carbon sources at this incubation time were then 

reduced to a smaller, easily interpretable, number of explanatory variables with PCA.   

Significant differences between the strains were calculated using Anova one way.
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IV. Results 

1. Characterization of Cryphonectria parasitica isolates 

1.1 Conversion of virulent isolates to hypovirulent 

The results of pairing between each of the three virulent strains: VBC02, Cast26 and 

Cast13 with the hypovirulent RB111, are shown in Figure 22. 

 

Figure 22 - Conversion of three virulent strainsVBC02, Cast26 and Cast13. 

The pairings show no separation lines between the two isolates (Figure 22). Single growth 

on PDA shows different morphologic characteristic than those from virulent isolates. 

Then, two chosen virulent strains, their converted ones and the hypovirulent were further 

tested for Pathogenicity and the presence of dsRNA (Figure 28). These isolates seem to 

be converted with visual observation but we need confirmation by biomolecular methods.  

 

Figure 23 – Differences between virulent and hypovirulent strains of C. parasitica in 

the colony morphology, nine days post inoculation. 

On PDA medium as we compared virulent strains with hypovirulent ones, RB111, 

Cast13c and VBC02c infected with CHV1 showed slow growth rate with an average of 

6 mm per day, white mycelium color and no spores production, in the other hand, virulent 
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strains Cast 13 and VBC02 show high growth rate with an average of 10 mm per day, 

orange mycelium color, sectored colony margins and spores’ production (Figure 23). 

1.2 Pathogenecity tests 

The results of inoculating five strains of C. parasitica in apple fruits and in chestnut 

branches are shown in Figures 24 and 25, respectively. 

 

Figure 24 - Wounds of inoculated apples with Cryphonectria parasitica plugs, 10 days 

after inoculation. 

 

Figure 25 - Mean infection area caused by virulent and hypovirulent strains of 

Cryphonectria parasitica. 10 days after inoculation. 
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Apple fruit rot lesion measurements are presented in Appendix III. Infection area caused 

by VBC02 is higher than the one caused by its converted one (VBC02c), but the pattern 

between Cast13 and Cast13c are not similar, as shown in Figure 25. The infection area of 

the hypovirulent RB111 is even higher than that from Cast13, so infection areas may not 

be the only factor related with C. parasitica pathogenicity in C. sativa. p value = 

0.009<0.05, results are significantly different (Appendix VI, Figure 45).  

Chestnut lesion measurements are shown in Appendix IV. Hypovirulent strains caused 

small disease lesions but virulent strains caused large brown cankers on the shoots of 

chestnut (Figure 26 and 27). p value = 0.0002<0.05, results are significantly different 

(Appendix VI, Figure 44). 

 

Figure 26 - Evaluation of lesions in chestnut shoots inoculated with plugs of Cast13, 

VBC02, Cast13c, VBC02c and RB111, six days post-inoculation. 

 

Figure 27 - Mean lesion area made by virulent and hypovirulent strains of 

Cryphonectria parasitica after 6 days of inoculation. 
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1.3 CHV1 identification 

Two converted strains were tested for the presence of dsRNA (one hypovirulent was used 

as a control) using two types of primers ORF region A and ORF region B. All strains 

contained dsRNA using ORF A and ORF B primers (Figure 28). The 3 hypovirulent 

strains (original and converted) are infected by the virus. 

 

Figure 28 - CHV1 detection in hypovirulent strains of C. parasitica using two different 

primers ORFA (right) and ORFB (left). (1: Cast13c; 2: RB111; 3: VBC02; M: marker)  

2. Qualitative and quantitative evaluation of ligninolytic enzyme 

production 

The differences in laccase, cellulase and lignin peroxidase production for nine different 

strains are shown in Figures 29 and 30, and compared in Table 3. The positive results 

with Azure B and RBBR are observed as colorless halos around microbial growth, which 

indicates the production of lignin-degrading enzymes, with simultaneously coloration of 

the mycelium by the dye, as shown in Figure 30. A positive cellulase test is indicated by 

the formation of a yellow halo after flooding the plate with Congo Red (Figure 29 B). A 

positive Bavendamm test results is a brown color around the microbial growth indicating 

a polyphenol oxidase activity (Figure 29 A). 

The analysis of Table 3 reveals that virulent strains (Cast13 EU11, Cast26 EU11, VBC02 

EU11, Cast07 EU66, Cast17 EU66, VDP11 EU66) showed more intensive color and/or 

bigger halos for all the indicators used than hypovirulent strains (RB111, Serra05, SR442) 

indicating higher production of lignin-degrading enzymes and cellulase. 
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2.1 Qualitative evaluation: Dyes decolorization 

 

      

 

Figure 29 – A: Four of the nine isolates tested for Bavendamm test;  B: Cellulase test. 
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Figure 30 - A: Azure B dye;  B: RBBR dye. 
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Table 3 - Effect on dyes decolorization during growth of different fungal strains 

Strains Bavendamm Cellulase Azure B RBBR 

Cast13 (EU11) +++ 2 +++ +++ 

Cast26 (EU11) +++ 2 +++ +++ 

VBC02 (EU11) +++ 2 +++ ++ 

RB111 + 1 + + 

Serra05 + 1 + + 

SR442 ++ 1 + + 

Cast07 (EU66) +++ 3 +++ +++ 

Cast17 (EU66) +++ 3 +++ +++ 

VDP11 (EU66) +++ 3 +++ +++ 

Bavendamm test: + to +++ refer to increasing color reaction obtained in the test. 

Halo diameter in cellulase test: 1→ refer small (5-14mm) ø halo, 3→big (15-25mm) ø halo. 
Dye decolorization in Azure B and RBBR medium: + to +++ refer to increasing decolorization. 

 

 

2.2 Quantitative evaluation 

Specific laccase activity for five chosen strains are shown in Figure 32, 34, absorbance 

curves are presented in Figure 31 and 33, enzymes measurement and data are shown in 

Appendix I, Table 5, 6, 7, 8, 9 and 10. 

 

Figure 31 - Change in absorbance at 405nm of 3 strains of Cryphonectria parasitica. 
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Figure 32 - Specific laccase activity for the first culture. 

 

Figure 33 - Change in absorbance at 405nm of 4 strains of Cryphonectria parasitica 

 

Figure 34 - Specific laccase activity of the second culture. 
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For the second culture, the virulent strain VBC02 had the highest specific laccase activity 

followed by the virulent strain Cast13, the converted strain Cast13c had the lowest 

specific laccase activity for the 1st culture and VBC02c for the 2nd.  The difference in the 

enzyme specific activity was huge between the 2 cultures. Some strains didn’t show any 

activity in one of the cultures caused by instant degradation or adsorption of the substrate 

ABTS. p value = 0.0036<0.05 for the first culture and 0<0.05 for the second culture, 

results are significantly different (Appendix VI, Figure 46 and 47).  

 

Specific lignin peroxidase activity for five chosen strains are shown in Figure 36, 

absorbance curves are presented in Figure 35, The measurement data and calculation of 

lignin peroxidase activity is given in Appendix I, Table 11, 12, 13 and 14. 

 

Figure 35 - Change in absorbance at 651nm of 4 strains of Cryphonectria parasitica. 

  

Figure 36- Specific Lignin peroxidase activity for 5 strains of C. parasitica. 
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The highest amount of lignin peroxidase was produced by the wild type strain VBC02 

and the lowest by dsRNA containing strain Cast13, which also have a great margin of 

error caused by a very different absorbance values between the repetitions as shown in 

Figure 36. The converted strain VBC02c didn’t produce any lignin peroxidase. In the 

second culture, all strains had no LiP activity. These observations were confirmed by the 

calculation of specific enzyme activity, expressed by μmole per milligram of protein and 

minute (U/mg), using total protein content of the growth medium presented in Appendix 

II.  Manganese peroxidase presents different absorbance values in the first minute caused 

by the addition of the supernatant, after some minutes all curves started to tend toward 

zero showing no MnP activity. p value = 0.0002<0.05, results are significantly different 

(Appendix VI, Figure 47).  

 

3. BIOLOG microplates: metabolic profiles characterization 

All BIOLOG measurement and Data are presented in Appendix V. We have 95 carbon 

sources, 75 of them were used by all the strains. None of the 5 strains was able to consume 

all types of substrates. All strains were unable to utilize just one carbon source: 2-amino 

ethanol, the virulent strain VBC02 consumed less carbon sources than all other strains 

(85 carbon sources), the hypovirulent strain RB111 consumed the most carbon sources 

(93 carbon sources). Cast13c had the highest average well color development (AWCD) 

after 7 days of inoculation (Figure 37). 

 

 

Figure 37 - Average well color development for the five strains after seven days of 

inoculation. 
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Figure 38 - Diagram of carbon sources utilization, by chemical groups, for 5 strains of 

Cryphonectria parasitica after seven days of inoculation. 

Figure 38 shows the differences in chemicals groups consumption by five strains of 

Cryphonectria parasitica 2 virulent (Cast13, VBC02) their converted ones (Cast13c, 

VBC02c) and RB111. Cast13 converted is the strain that utilize the most amino acids and 

carbohydrates. Hypovirulent strain RB111 has dominance in the consumption of 

amines/amides, miscellaneous and polymers composts. Cast 13 develops the most color 

intensity for carboxylic acids, comparing to the other strains. VBC02 shows the less 

consumption of carbon sources.  

 

The heat map representing carbon source utilisation by Cryphonectria parasitica strains 

are presented in Figure 39: 
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Figure 39 - Heat map of carbon source utilisation by Cryphonectria parasitica strains 

assessed through Well Color Development (WCD) at seven days, corrected to control, 

of each of 95 carbon sources/chemical group, using Biolog FF MicroPlates. 
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Table 4 - Principal component: Eigenvalue and variance 

 

 

 

 

 

Figure 40 - Principal Component Analysis of carbon utilisation obtained through Biolog 

FF Microplates for Cryphonectria parasitica isolates. 

The PCA analysis (Figure 40) shows that the strains studied have large differences in their 

metabolic profiles, specially Cast13c and VBC02 which are located in different 

quadrants. RB111, Cast13 and VBC 02 are relatively related.

 

 

 

 

PC Eigenvalue % variance 

1 3.28969 57.453 

2 1.28441 22.432 

3 0.738476 12.897 

4 0.413284 7.2179 
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V. Discussion 

This project aims to compare virulent strains of Cryphonectria parasitica with virus 

infected strains, the hypovirulent strains, utilized as biological control agents.  

 

Nine different fungal strains were screened on PDA media containing colored indicator 

compounds that enabled the visual detection of ligninolytic enzymes production. Several 

different compounds have been used as indicators for ligninolytic enzymes production. 

These compounds and indicators were more consumed by virulent strains of C. parasitica 

than by hypovirulent ones, enhancing the difference in phenol oxidase activity after the 

transfer of the dsRNA into virulent strains, as it has been reported for the Bavendamm 

test (Rigling et al., 1989). The comparable growth rate of virulent and hypovirulent strains 

in the Bavendamm test or in the Azure B test prove that dsRNA affects phenol oxidase 

activities but not general viability of the strains.  

Five strains (two virulent, three hypovirulent - two converted and one original) were 

selected for further studies for the reason that these strains showed great differences in 

the qualitative evaluation and they belong to the same VCG group (EU11) which resulted 

in a successful conversion. These strains were inoculated in different materials, namely 

apples and chestnut branches, to characterize their degree of virulence. Results obtained 

from the chestnut branches inoculation were related with the ones obtained previously 

with the indicators of ligninolytic enzymes production. Chestnut shoots are composed of 

lignin, hemicellulose and cellulose therefore the lesions made by virulent strains, which 

have higher laccase activity, were more important than the damage made by strains that 

contains dsRNA, which suffer from decrease in laccase activity, consequently a laccase-

null mutant caused a smaller lesion area on chestnut bark than did the wild type (Chung 

et al., 2008). The reduction in the lesion area made by hypovirulent strains was also tested 

and proved in other studies, for C. parasitica (Chung et al., 2008) and other 

phytopathogenic fungus (Zhai et al., 2016). Besides that, the biggest rot lesion was made 

by a virulent strain VBC 02, and the smallest by a hypovirulent VBC 02c, Different results 

were attained in the case of apple fruits inoculation by a converted strain Cast13c, which 

made bigger infection area than its virulent version Cast13. This observation can be 

related to the one reported with the BIOLOG microplate that shows a high carbohydrates 

degradation by some hypovirulent strain, especially Cast13c. Carbohydrates represents 

the principal component of an apple. Some of the hypovirulent strains tested showed great 
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carbohydrates consumption but small rot lesion in the apple. The reason for that can be 

due to the types of carbohydrates presents in the apple and the different affinity for these 

substrates by C. parasitica strains. 

Two similar cultures medium were made to measure the activity of 3 ligninolytic enzymes 

secreted by the 5 strains chosen previously. The amount of Laccase and LiP produced by 

wild type strains was high compared to dsRNA containing strains, for laccase (844 U/mg 

in Cast13, 331 U/mg in Cast13c for 1st culture), (94680 U/mg in VBC02, 4608 U/mg in 

VBC02c in the 2nd culture),  for LiP (45 U/mg in Cast13, 22U/mg in Cast13c) and for 

MnP no activity was detected in the 2nd culture media suggesting that C. parasitica 

belongs to the type of fungus who are able to degrade lignin by producing laccase and 

lignin peroxidase (Dashtban et al., 2010).  Laccase play a role in the infection process 

and are involved in the degradation of lignin, pathogenesis, formation of fruiting body 

and pigmentation (Rigling and Prospero, 2017). The locus controlling the functions 

mentioned previously could be one that controls phenol oxidase activity of the laccase 

and lignin peroxidase type which is affected by dsRNA in white strains. The hypothesis 

saying that laccase activity is reduced by the presence of dsRNA was proved by many 

studies before (Rigling et al., 1989; Rigling and Alfen, 1993; Chung et al., 2008), but 

Lignin peroxidase and manganese peroxidase activity for C. parasitica have never been 

studied before. We can notice the huge activity differences given by the 2 culture, which 

can be a consequence of the dissimilarity between the chestnut branches, used as inducers. 

Actually, some studies have related radial growth rates to blight susceptibility   (Reynolds 

et al., 2011), or the presence of some inhibitors in the growth medium (Eggert et al., 

1996).  VBC02, VBC02c in the 1st culture, Cast13c in the 2nd culture, showed both no 

activity and instant disappearance of the substrate ABTS after adding the supernatant, 

some ABTS-degrading substances may be present in this liquid.  

At the metabolic level, their metabolic profiles were evaluated using Biolog FF 

MicroPlates, with concurrent reads of fungal utilization of 95 different carbon sources. 

Hypovirulent strains showed great consumption of some chemical groups and very 

different metabolic profile comparing to their virulent version. This hypovirulent strains 

are infected by the mycovirus CHV1, which is known to reduce the pathogenicity of the 

fungal but without completely dysfunction the mycelium. In contrary, the virus somehow 

looks like to keep the mycelium in a juvenile state with the induction of some metabolic 

pathways, while the debilitation is affecting pathways related to the virulence of the fungi. 

These observations are supported by our results: amines/amides, miscellaneous and 
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polymers, amino acids and carbohydrates are more consumed by hypovirulent strains than 

by virulent strains. Other study also proved that the consumption of some amino acids, 

carbohydrates, lipids and nucleotides are increased in a virus infected C. parasitica 

comparing to wild type strain (Dawe et al., 2009). The infection activates some metabolic 

pathways included in the fungal defense mechanism against the mycovirus. Some of these 

pathways require amino acids to produce antiviral toxins, they consume also different 

carbohydrates, which gives the mycelium the ability to take other pathways to produce 

energy or other compounds, and that explain the result from PCA analysis that shows the 

big difference in the metabolic profiles between a virulent and its white strain.  

C. parasitica isolates variability was assessed using Biolog FF MicroPlates for the first 

time. The use of this metabolic approach may facilitate future dsRNA detection, as the 

use of different carbon sources by one converted isolate, comparing to its virulent type, 

may confirm the transfer of the dsRNA.   
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VI. Conclusion 

Two wild strains of C. parasitica were converted using an hypovirulent strain, then two 

virulent and three hypovirulent strains were chosen to test their pathogenicity and 

ligninolytic enzymes production. Results showed that damage on chestnut branches made 

by dsRNA containing strains is smaller than the one done by virulent strains, in addition 

laccase and lignin peroxidase activities are reduced in hypovirulent strains. However, 

metabolic profiles evaluation assessed by BIOLOG microplates revealed that most of 

carbon sources are more consumed by hypovirulent strains. The aforementioned 

achievements lead to the conclusion that mycovirus don’t cause a general debilitation of 

the fungus but they partially modify the genes related to the pathogenicity.  

Our metabolic analysis, the first time used on Cryphonectria parasitica, has revealed the 

enormous changes that happens in response to the hypovirus, it may also facilitate future 

isolate selection, as the use of specific carbon sources provides complete information on 

the isolates, which enable the insertion of such information in a scientific database. These 

studies may lead to new perspectives for understanding the biological process used by the 

hypovirus. 
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VIII. Appendix 

Appendix I: Calculation for laccase, lignin peroxidase and manganese peroxidase activities  

Table 5 - Absorbance at 405 nm for laccase activity for the first culture 

strain N°                1 2 3 4 5 6 7 8 9 10 

Cast13 1 0.013 0.024 0.038 0.055 0.074 0.095 0.118 0.145 0.171 0.198 

2 0.017 0.032 0.052 0.074 0.099 0.161 0.206 0.231 0.257 0.292 

3 0.01 0.023 0.039 0.059 0.092 0.108 0.135 0.168 0.198 0.229 

average 0.013 0.026 0.043 0.063 0.088 0.121 0.153 0.181 0.209 0.240 

RB111 1 0.007 0.009 0.013 0.017 0.021 0.026 0.03 0.035 0.041 0.046 

2 0.017 0.019 0.027 0.032 0.038 0.044 0.052 0.059 0.068 0.076 

3 0.001 0.004 0.009 0.014 0.022 0.026 0.03 0.036 0.042 0.049 

average 0.008 0.011 0.016 0.021 0.027 0.032 0.037 0.043 0.05 0.057 

Cast13 

(C) 

1 0.001 0.002 0.004 0.006 0.008 0.01 0.014 0.017 0.018 0.02 

2 0.007 0.01 0.013 0.016 0.017 0.02 0.021 0.023 0.025 0.027 

tmin

min 
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Table 6 - Absorbance at 405 nm for laccase activity for the second culture 

3 0.004 0.007 0.009 0.012 0.014 0.016 0.018 0.02 0.022 0.024 

average 0.004 0.006 0.009 0.011 0.013 0.015 0.018 0.02 0.022 0.024 

strain N°                1 2 3 4 5 6 7 8 9 10 

Cast13 1 0.074 0.459 0.825 1.154 1.494 1.778 2.035 2.22 2.391 2.423 

2 0.075 0.243 0.489 0.76 1.065 1.362 1.613 1.923 2.174 2.345 

3 0.069 0.324 0.602 0.919 1.257 1.575 1.922 2.215 2.31 2.417 

average 0.073 0.342 0.639 0.944 1.272 1.572 1.857 2.119 2.292 2.395 

VBC02  1 0.127 0.386 0.54 0.739 0.976 1.192 1.396 1.646 1.789 1.99 

2 0.132 0.28 0.439 0.649 0.887 1.062 1.268 1.479 1.683 1.867 

3 0.047 0.176 0.371 0.578 0.8 1.08 1.288 1.481 1.679 1.897 

average 0.102 0.281 0.45 0.655 0.888 1.111 1.317 1.535 1.717 1.918 

RB111 1 0.08 0.397 0.646 0.854 1.351 1.445 1.768 1.962 2.21 2.275 

tmin

min 
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2 0.054 0.239 0.499 0.752 1.086 1.366 1.643 1.887 2.09 2.197 

3 0.06 0.329 0.58 0.87 1.239 1.494 1.765 1.984 2.161 2.214 

average 0.0647 0.322 0.575 0.825 1.225 1.435 1.725 1.944 2.154 2.229 

VBC02 

(C) 

1 0.061 0.237 0.402 0.562 0.78 1.017 1.151 1.301 1.551 1.675 

2 0.081 0.273 0.414 0.597 0.8 0.975 1.163 1.357 1.537 1.722 

3 0.037 0.172 0.323 0.538 0.653 0.869 1.028 1.214 1.409 1.613 

average 0.06 0.227 0.380 0.566 0.744 0.954 1.114 1.291 1.499 1.67 
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Table 7 - Calculation of laccase activity first culture 

strains ε (M cm-1)  

 

Slope (min-1) 

 

Sample 

volume (L) 

Laccase activity 

μM per min μM/L.min 

Cast13  36780 

 

0.025 

 

0.25. 10-3 1.03 4114.55 

RB111 36780 0.005 

 

0.25. 10-3 0.22 888.16 

Cast13c 36780 0.002 

 

0.25. 10-3 0.09 362.51 

 

Table 8 - Calculation of laccase activity second culture 

strains ε (M cm-1)  

 

Slope (min-1) 

 

Sample 

volume (L) 

Laccase activity 

μM per min μM/L.min 

Cast13  36780 0.24 0.25. 10-3 9.66 38640.56 

VBC 

02  

36780 0.19 0.25. 10-3 7.95 31827.07 

RB111 36780 0.21 

 

0.25. 10-3 8.94 35796.63 

VBC02 

C 

36780 0.17 

 

0.25. 10-3 6.97 27884.72 

Calculation for laccase activity: 

According to Lambert-Beer law:  

A = ε c l  

Where A = Absorbance  

ε = Molar absorption coefficient (M-1 cm-1)  

c = Concentration (M), l = path length (cm)  

Given the change in absorbance per time  

 Δc/Δt = ΔA/ ε l Δt, Thus, c = ΔA/ε l Δt  
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Where c = Enzyme activity (M/L.min)  

ΔA = Increase in absorbance at 405 nm  

ε = Molar absorption coefficient = 

l = path length = 1.5cm  

Δ t = Reaction time in minute  

Δ A/ Δ t = slope from graph  

Thus,  

c (μM/L.min) = (106 x slope)/ ε*1.5 

Table 9 - Specific laccase activity first culture 

strain Laccase activity 

(U/L) 

Total protein (mg/L) Specific laccase 

activity (U/mg) 

Cast13 4114.55 4.87 844.19 

Cast13 c 362.51 1.09 331.84 

RB111 888.16 1.84 480.41 

 

Table 10 - Specific laccase activity second culture: 

strain Laccase activity 

(U/L) 

Total protein (mg/L) Specific laccase 

activity (U/mg) 

Cast13 38640.56 1.43 27048.39 

VBC02 31827.08 0.34 94685.56 

RB111 35796.62 4.20 8519.60 

VBC02 c 27884.72 6.05 4608.72 

Specific laccase activity (U/mg) = Laccase activity (U/L)/ Total protein (mg/L) 
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Table 11 - Absorbance at 651 nm for lignin peroxidase activity (first culture) 

strain N°                5 10 15 20 25 30 35 40 45 60 

Cast1

3 

1 0.036 0.028 0.021 0.008 -0.007 -0.024 -0.037 -0.059 -0.081 -0.155 

2 0.052 0.056 0.057 0.05 0.039 0.014 0.001 -0.025 -0.049 -0.08 

3 0.055 0.035 0.015 -0.007 -0.028 -0.039 -0.055 -0.079 -0.093 -0.137 

RB11

1 

1 0.109 0.116 0.116 0.11 0.107 0.1 0.092 0.083 0.076 0.059 

2 0.077 0.09 0.094 0.093 0.092 0.088 0.085 0.084 0.051 0.042 

3 0.165 0.178 0.177 0.17 0.168 0.164 0.16 0.152 0.14 0.12 

tmin

min 
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 Cast1

3 (C) 

1 0.112 0.128 0.127 0.124 0.119 0.115 0.112 0.109 0.108 0.099 

2 -0.145 -0.14 -0.187 -0.215 -0.218 -0.238 -0.263 -0.278 -0.323 -0.382 

3 0.165 0.178 0.177 0.17 0.168 0.164 0.16 0.152 0.14 0.12 

Vbc02 1 -0.102 -0.13 -0.175 -0.176 -0.207 -0.224 -0.242 -0.26 -0.274 -0.329 

2 -0.103 -0.143 -0.169 -0.218 -0.26 -0.27 -0.325 0.33 -0.339 -0.347 

3 -0.456 -0.502 -0.481 -0.483 -0.501 -0.52 -0.555 -0.62 -0.635 -0.646 
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Table 12 - Calculation of lignin peroxidase activity first culture 

strains ε (M cm-1)  

 

Slope (min-1) 

 

Sample volume 

(L) 

LiP activity 

μM per min μM/L.min 

Cast13  45160 

 

0.025 

 

0.5. 10-3  0.11 221.61 

Cast13 

C 

45160 

 

0.002 

 

0.5. 10-3  0.012 24.09 

RB111 45160 

 

0.005 

 

0.5. 10-3    0.04 76.52 

VBC 

02 

45160 0.004 0.5. 10-3  0.14 294.71 

Calculation lignin peroxidase activity:  

Same calculation as laccase, with the change of the molar coefficient ε. 

Table 13 - Specific lignin peroxidase activity 

Specific LiP activity (U/mg) = LiP activity (U/L)/ Total protein (mg/L) 

Table 14 - Absorbance at 651 nm for lignin peroxidase activity (second culture) 

strain LiP activity (U/L) Total protein 

(mg/L) 

Specific LiP 

activity (U/mg) 

Cast13 221.61 4.87 45.47 

Cast13 C 24.09 1.09 22.06 

RB111 76.52 1.84 41.39 

VBC 02 294.71 3.27 89.92 

strain 5 10 15 20 25 30 35 40 45 60 

Cast13 0.016 0.027 0.032 0.038 0.043 0.039 0.049 0.049 0.049 0.05 

VBC02 

(C) 

0.212 0.277 0.242 0.316 0.292 0.236 0.215 0.176 0.232 0.212 

RB111 0.017 0.028 0.035 0.044 0.047 0.055 0.057 0.057 0.06 0.058 
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Table 15 - Absorbance at 270nm for Manganese peroxidase activity (first culture) 

 

Table 16 - Absorbance at 270nm for Manganese peroxidase activity (second 

culture) 

 

 

 

Cast13 

(C) 

0.017 0.019 0.035 0.037 0.041 0.04 0.037 0.045 0.046 0.046 

Vbc02 0.068 0.037 0.094 0.097 0.051 0.054 0.057 0.022 0.037 0.038 

strain 

        

0 1 5 10 15 20 25 

Cast13 -0.007 -.0.002 -0.002 -0.003 -0.002 -0.001 -0.001 

VBC02 

(C) 

0.004 0.001 0.001 0.001 0 0 0 

RB111 0.003 0.002 0.002 0.001 0 0 -0.001 

Cast13 

(C) 

0.007 0.007 0.005 0.002 0.001 0.001 0 

VBC 02 0.005 0.000 -0.001 -0.003 -0.001 -0.001 0 

strain 

        

0 1 5 10 15 20 25 

Cast13 0 -0.005 -0.005 -0.005 -0.006 -0.006 -0.006 

VBC02 

(C) 

0 0.001 0.002 -0.001 -0.001 -0.001 -0.001 

RB111 0 0.001 0.003 0.001 -0.001 -0.002 0 

Cast13 

(C) 

0 -0.003 -0.006 -0.005 -0.002 -0.002 0.002 

VBC 02 0.002 0.003 0.001 -0.001 -0.001 -0.002 -0.002 



Appendix 

60 

 

Table 17 - Calculation of molar coefficients of ABTS 

ABTS 

concentration 

(mM) 

0 0.001 0.002 0.003 0.004 0.005 

OD at 405nm 0 0.065 0.115 0.166 0.218 0.274 

 

 

Figure 41 - Absorbance at 405nm for ABTS. 

Table 18 - Calculation of molar coefficients of Azure B 

Azure B 

concentration 

(mM) 

0 0.005 0.007 0.008 0.01 0.015 

OD at 651nm 0 0.374 0.57 0.596 0.698 0.917 

 

 

 

 

Figure 42 - Absorbance at 651nm for Azure B. 

y = 55.164x
R² = 0.9978

0

0.05

0.1
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R² = 0.9518
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Appendix II : Calculation for Total protein content 

Table 19 - Calculation of total protein concentration  

BSA 

concentration 

(mg/L) 

0.005 0.035 0.071 0.152 0.227 0.306 0.355 

OD at 595nm 0.005 0.035 0.071 0.152 0.227 0.306 0.355 

 

 

Figure 43 - Standard curve for protein analysis using BSA as standard 

Table 20 - Calculation of total protein content for the first culture for each strain 

 

 

 

y = 0.0119x
R² = 0.995

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35

absorbance at 595nm

strain Cast13 VBC02 Cast13 C VBC02 C RB111 

1 0.056 0.036 0.011 0.02 0.015 

2 0.059 0.039 0.014 0.019 0.022 

3 0.058 0.043 0.013 0.02 0.03 

average 0.058 0.039 0.013 0.02 0.022 

Protein 

content 

(mg/L) 

4.87 

 

3.28 

 

1.09 

 

1.68 

 

1.84 

 

N°R 
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Table 21 - Calculation of total protein content for the second culture each strain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

strain Cast13 VBC02 Cast13 C VBC02 C RB111 

1 0.018 0.004 0.023 0.07 0.05 

2 0.015 0.003 0.024 0.07 0.051 

3 0.019 0.004 0.027 0.075 0.049 

average 0.017 0.004 0.025 0.072 0.05 

Protein 

content 

(mg/L) 

1.43 

 

0.34 

 

2.10 

 

6.05 4.20 

 

N°R 
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Appendix III: Apple infection measures 

Table 22 - Apples infection measures 

 

 

 

 

 

 

 

 

n° of days name of strain Cast13 

(mm) 

VBC02 

(mm) 

Cast13 C 

(mm) 

VBC02 C 

(mm) 

RB111 

(mm) 

Day 4 1 7;10 10;10 9;10 7;7 8;9 

2 8;10 8;8 9;10 7;8 9;10 

3 7;8 9;10 9;11 5;7 6;10 

average 7;9 9;9 9;10 6;7 8;10 

Day6 1 9;13 12;12 12;13 8;8 11;12 

2 10;13 10;11 11;12 9;9 11;13 

3 9;10 10;12 11;12 8;8 10;11 

average 9;12 11;12 11;12 8;8 11;12 

Day10 1 15;18 19;19 16;17 10;10 16;17 

2 13;18 19;28 15;17 11;11 15;18 

3 12;12 16;18 16;16 9;9 12;13 

average 13;16 18;22 16;17 10;10 14;16 

Infection(Cercle) 

Area(mm2) 

165.13 314.16 213.82 78.54 176.71 

N° R 
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Appendix IV: Lesions in Chestnut branches measures 

Table 23 - Measures of lesions after 6 days inoculation  

 

 

 

 

 

 

 

 

 

 

 

 

n° of days name of 

strains  

           

         N°R                

Cast13 

(cm) 

VBC02 

(cm) 

Cast13 C 

(cm) 

VBC02 C 

(cm) 

RB111 

(cm) 

Day 6 1 5.6;2.2 5.3;2.7 4;1.7 3.5;1.8 5.3;1.8 

2 4.5;1.9 5.4;2.5 3.6;1.4 3;1.6 4.1;1.8 

3 4.5;2.2 5;2.5 3.5;1.5 3.8;1.9 3.6;1.8 

average 4.9;2.2 5.2;26 3.7;1.5 3.4;1.8 4.3;1.8 

Lesion 

(Eclipse) 

area(cm2) 

8.47 10.62 4.36 4.81 6.08 
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Appendix V: BIOLOG microplate Data 

Table 24 – testing the viability of the mycelium used in BIOLOG by inoculation 

and counting the number of sections appeared in Petri dishes. 

Strains 

n° of 

sections/plate 

1 2 3 Average   n° of 

sections/ml 

Cast13 164 9 165 112.6 11260 

VBC02 65 101 5 57 5700 

Cast26 64 110 39 71 7100 

Cast13 C 53 149 138 113.3 11330 

VBC02 C 109 111 50 90 9000 

Cast26 C 91 100 48 79.6 7960 

RB111 75 106 10 63.6 6360 

Serra05 85 51 15 50.3 5030 

SR442 85 48 79 70.6 7060 
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Table 25 - Location of each carbon source in the FF microplate 

 A B C D E F 

1 Water Tween 80 N-acetyl-d-

galactosamine 

N-acetyl-d-

glucosamine 

N-acetyl-d-

mannosamine 

adonitol 

2 Alpha-

cyclodextrin 

Bêta-cyclodextrin dextrin I-erythritol D-fructose L-fucose 

3 Glusose-1-

phosphate 

glucuronamide D-glucuronic acid glycerol glycogen M-inositol 

4 D-mannitol D-mannose D-melezitose D-melibiose Alpha-methyl-d-

galactoside 

Bêta-methyl-d-

galactoside 

5 D-ribose salicin sedoheptulosan D-sorbitol L-sorbose stachyose 

6 Gamma-amino-

butyric acid 

bromosuccinic 

acid 

fumaric acid Beta-hydroxy-

butyric acid 

Gamma-hydroxy-

butyric acid 

P-hydroxyphenyl-

acetic acid 

7 D-saccharic acid sebacic acid succinamic acid succinic acid succinic acid 

mono-mehtyl 

ester 

n-acetyl-l-

glutamic acid 

8 glycyl-l-glutamic 

acid 

l-ornithine L-phenylalanine L-proline L-pyroglutamic 

acid 

L-serine 
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 G H I J K L 

1 Amygdalin d-arabinose l-arabinose D-arabitol arbutin D-cellobiose 

2 D-galactose D-galacturonic 

acid 

gentobiose D-gluconic acid D-glucosamine Alpha-d-glucose 

3 2-keto-d-gluconic 

acid 

Alpha-d-lactose Lactulose Maltitol Maltose maltotriose 

4 Alpha-methyl-d-

glusoside 

Bêta-methyl-d-

glucoside 

palatinose D-psicose D-raffinose L-rhamnose 

5 Sucrose D-tagatose D-trehalose turanose Xylitol D-xylose 

6 Alpha-keto-

glutaric acid 

d-lactic acid 

methyl ester 

L-lactic acid D-malic acid L-malic acid quinic acid 

7 alaninamide l-alanine L-alanyl-glycine l-asparagine L-aspartic acid L-glutamic acid 

8 l-threonine 2-amino ethanol Putrescine adenosine Uridine Adenosine-5´-

monophosphate 
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Table 26 - Absorbance at 490nm for the strain VBC02c after seven days of 

incubation at 25°C. 

 

Table 27 - Absorbance at 490nm for the strain VBC02 after seven days of 

incubation at 25°C. 

 A B C D E F G H I J K L 

1 0 0.533 0.029 0.626 0.055 0.105 0 0.02 0.528 0.442 0.888 0.206 

2 0.379 0.116 0.241 0.014 0.807 0 0.428 0 0.794 0.099 0.173 0.205 

3 0.739 0 0.583 0.044 0.578 0.003 0.018 0.049 0.611 0.334 0.267 0.663 

4 0.747 0.335 0.351 0.1 0.019 0.514 0.34 0.424 0.481 0.219 0.157 0.148 

5 0.522 0.028 0.168 0.536 0 0.128 0.035 0.27 0.951 0.607 0.183 0.866 

6 0.107 0.088 0.731 0 0.01 0 0.279 0 0.092 0.717 0.504 0.873 

7 0.119 0 0.353 0.363 0.36 0 0.445 0.469 0.109 0.136 0.406 0.423 

8 0.321 0.032 0.025 0.111 0.1 0.017 0 0 0 0.25 0.043 0.707 

 A B C D E F G H I J K L 

1 0 0.892 0 0.52 0.121 0.23 0.209 0.313 0.531 0.297 0.822 0.721 

2 0.264 0.201 0.667 0 0.307 0.029 0.226 0.024 0.585 0.156 0.046 0.581 

3 0.368 0 0.226 0.509 0.435 0.167 0.237 0.258 0.225 0.472 0.511 0.603 

4 0.437 0.503 0.531 0.111 0.2 0.19 0.231 0.506 0.617 0.151 0.406 0.194 

5 0.707 0.401 0.129 0.216 0.018 0.394 0.45 0.257 0.6 0.537 0.209 0.675 

6 0.102 0.024 0.302 0.936 0.79 0.133 1.044 0.374 0.115 0.429 0.237 0.605 

7 0.215 0.098 0.119 0.204 0 0 0.771 0.197 0.337 0.369 0.106 0.233 

8 0.156 0.214 0.132 0.093 0.009 0.064 0.05 0 0.162 0.185 0.039 0.611 
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Table 28 - Absorbance at 490nmm for cast13c after seven days of incubation at 

25°C. 

 A B C D E F G H I J K L 

1 0 0.644 0.056 0.441 0.185 1.297 0.006 0.972 0.673 0.502 0.451 1.638 

2 0.326 0.484 0.544 0.372 1.177 0.717 1.314 0.676 1.074 0.617 0.182 0.814 

3 1.058 0 1.275 0.683 0.509 0.255 0.321 1.165 0.714 0.854 0.452 0.534 

4 0.607 1.314 0.961 0.542 0.131 0.197 0.534 0.469 0.547 0.904 0.436 0.489 

5 1.763 0.182 0.909 1.19 0.153 0.401 1.091 0.874 0.619 0.838 0.99 1.424 

6 0.405 0.339 0.942 0.032 0.172 0.359 0.326 0.675 0.174 0.427 0.496 0.881 

7 0.507 0 0.346 0.441 0 0.221 0.507 1.368 0.74 0.664 0.159 0.415 

8 0.058 0.168 0.05 0.104 0.222 0.761 0.259 0 0.099 0.322 0 0.537 

 

Table 29 - Absorbance at 490nm for RB111 after seven days of incubation at 25°C. 

 A B C D E F G H I J K L 

1 0 0.934 0.1 0.589 0.2 0.411 0.294 0.438 0.74 0.532 0.589 0.914 

2 0.395 0.381 0.87 0.197 0.725 0.302 0.607 0.188 0.698 0.366 0.301 0.87 

3 1.33 0.059 0.296 0.303 0.673 0.507 0.277 0.495 0.311 0.61 0.72 0.697 

4 0.716 0.922 0.646 0.424 0.268 0.395 0.803 0.684 0.758 0.404 0.505 0.577 

5 0.712 0.679 0.283 0.466 0.26 0.673 0.961 0.449 0.778 0.966 0.526 0.874 

6 0.27 0.303 0.535 0.816 0.732 0.137 1.081 0.431 0.206 0.532 0.665 1.023 

7 0.046 0.341 0.326 0 0.37 0.249 0.974 0.297 0.75 0.55 0.267 0.336 

8 0.314 0.209 0.264 0.293 0.287 0.212 0.11 0 0.115 0.296 0.15 0.487 
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Table 30 - Absorbance at 490nm for Cast13 after seven days of incubation at 25°C. 

 A B C D E F G H I J K L 

1 0 0.822 0.111 0.962 0.168 0.455 0 0.298 0.692 0.518 0.695 0.67 

2 0.36 0.336 0.431 0.355 0.666 0.02 0.596 0.254 0.469 0.485 0.417 0.47 

3 1.105 0 0.295 0.324 0.705 0.378 0.504 0.395 0.461 0.629 0.321 0.469 

4 0.715 0.603 0.404 0.39 0.26 0.43 0.385 0.853 0.505 0.414 0.472 0.439 

5 0.88 0.324 0.187 0.56 0.506 0.536 0.561 0.413 0.501 0.536 0.487 0.766 

6 0.541 0.365 0.874 0.419 0.636 0.083 1.175 0.209 0.319 0.878 1.054 0.256 

7 0.233 0.276 0.324 0.682 0.264 0.209 0.672 0.537 0.52 0.751 0.235 0 

8 0.372 0.337 0.306 0.519 0.482 0.296 0.18 0 0.097 0.574 0.053 0.581 

 

Table 31 - Average of absorbance at 490 for each chemical group after seven days 

of incubation at 25°C. 

AWCDG Amines/Amides Amino 

acids 

Carbohydrates Carboxylic 

acids 

Miscellaneous Polymers 

  VBC02 c 0.18 0.16 0.36 0.34 0.27 0.49 

   VBC02 0.17 0.16 0.34 0.26 0.22 0.37 

Cast13c 0.19 0.41 0.75 0.46 0.38 0.50 

RB111 0.29 0.32 0.57 0.44 0.46 0.65 

Cast13 0.25 0.39 0.49 0.50 0.38 0.53 
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Table 32 - Margin of error in absorbance value for each chemical group. 

AWCDG Amines/Amides Amino 

acids 

Carbohydrates Carboxylic 

acids 

Miscellaneous Polymers 

 VBC02 c 0.12 0.03 0.03 0.08 0.07 0.13 

VBC02 0.08 0.04 0.04 0.07 0.09 0.08 

Cast13c 0.08 0.10 0.06 0.08 0.11 0.05 

RB111 0.14 0.045 0.03 0.08 0.11 0.11 

Cast13 0.11 0.05 0.03 0.08 0.10 0.1 
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Appendix VI: Statistical analyses of the results 

 

Figure 44 - Analyses of variance for chestnut branches results. 

 

Figure 45 - Analyses of variance for apple infection results. 
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Figure 46 - Analyses of variance for laccase activity results (first culture). 

 

Figure 47 - Analyses of variance for laccase activity results (second culture). 
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Figure 48 - Analyses of variance for lignin peroxidase activity results. 


