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16

17 Abstract

18 We investigated the effects of seasonal changes in soil moisture and temperature on the morphological growth traits of 

19 fine roots (<2 mm in diameter) and vascular cambium activity of stems and coarse roots in a mature Quercus ilex L. 

20 stand in the South of Italy. Fine roots were sampled by a soil core method, and cambium tissues were carefully 

21 collected by hammer and chisel. Mean annual fine root mass and length were 115 g m-2 (live 45g m-2; dead 70 g m-2) 

22 and 471 m m-2 (live 244 m m-2, dead 227 m m-2), respectively. Mean diameter size of fine root necromass was higher 

23 than for fine root biomass. Mean specific root length (SRL) was 6.8 m g-1 and turnover rate was 3 year-1. Fine root traits 

24 displayed a complex pattern related to season. In particular, biomass and length peaked in summer and late autumn. The 

25 summer maximum was characterized by an increase of the thinner part of the root population (smallest diameter size 

26 and highest SRL) and was mainly driven by soil temperature. Our results suggest that Q. ilex adopted an intensive 

27 strategy modifying the root length per unit mass, channelling carbon preferentially into the production of very fine 

28 roots. This allowed trees to exploit transient periods of low soil water content by accessing a greater soil volume and 

29 thereby facilitating nutrient and water uptake. The autumn maximum was characterized by an increase in mean 

30 diameter size of the fine root population (largest mean diameter size and lowest SRL). Thus, once precipitation 

31 sufficiently recharged soil moisture, it is reasonable to state that in addition to trees producing new roots, their 

32 percentage of very fine roots that did not die after the summer flush continued their growth in a radial pattern to 

33 function for starch storage. Shoot and root cambial activity strongly varied during the season from the winter minimum 

34 (4.8 shoot and 4.7 root cambial cell number) to three- and two-fold higher values measured during the summer 

35 maximum, and higher values but of lesser magnitude measured in autumn. Periods of cambial activity significantly 

36 matched fine root phenology. Matching these growth traits with soil temperature and water content within a natural 

37 stand of Q. ilex enables this species to survive the typically dry summer in the Mediterranean area, which is likely to 

38 become drier and longer given the increase in temperature expected this century.

39

40 Keywords: Quercus ilex, cambium, intensive strategy, specific root length, turnover rate, soil temperature, soil water 

41 content
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43 1. Introduction

44 In perennial woody plants, the vascular cambium is a coherent lateral sheet of meristematic tissue just a few cells thick 

45 occurring between the secondary phloem and the secondary xylem. This tissue occurs from the roots, through the stem, 

46 and up to the tips of branches. For trees outside the belt of tropical rain forests, the cambium generally undergoes a 

47 seasonal activity cycle with a dormant and an active period each year. Following winter dormancy, the cambium of 

48 temperate zone trees is reactivated, forming new phloem cells to the outside and xylem cells to the inside through cell 

49 divisions. New annual increments of xylem and phloem are thus inserted between old layers of these tissues, causing 

50 the stem, branches, and major roots to increase in thickness (Pallardy, 2008). Tree cambium produces an enormous 

51 amount of biomass. FAO, (2016) estimates the global aboveground woody biomass is 531 billion m3. In the complex 

52 process of cambial activity, exogenous and endogenous factors are interacting and responsible not only for the 

53 quantitative wood formation but for also anatomical features such as vessels and fibers. Indeed, declines in water 

54 availability during the growing season have been shown to affect xylem quality and quantity (Balducci et al., 2013; 

55 2014), as well as many phenological events, such as leafing, flowering (Bernal et al., 2011; Peñuelas et al., 2002), and 

56 fine root elongation (Montagnoli et al., 2012a, 2014). Effects of drought stress on wood formation have shown a 

57 seasonal co-dependency as well as an inter- and intra-specific component. For example, in Populus only one or two 

58 cambial cell derivatives occurred under drought stress in early summer and none subsequently occurred under drought 

59 stress in late summer (Arend and Fromm, 2007). In Pinus halepensis L., the number of differentiated tracheids as well 

60 as the cambial cell production was characterized by two major growth phases, one in spring and another in autumn, 

61 interrupted during the summer drought period when the cambium might remain active but cell divisions occur at a very 

62 low rate (de Luis et al., 2011). In Pinus sylvestris L. and Betula spp. L., cambium dynamics measured along a south-

63 north transect in Finnish Lapland were characterized by the highest growth rate in the second half of June and the first 

64 half of July, respectively (Schmitt et al. 2004). Recently Liang et al., (2016) reviewed that precipitation occurring at the 

65 beginning or during the earliest part of the growing season is crucial for tree-ring growth in semiarid areas. Under 

66 Mediterranean climate, xylem growth tends to show a typical bimodal pattern caused by subsequent cambial 

67 reactivations closely following spring and autumn precipitation (Camarero et al., 2010). Investigations that link cell 

68 structure and variations in precipitation or drought stress are numerous (Balducci et al., 2013; Eckstein et al., 2004; 

69 Eilmann et al., 2011; Fonti et al., 2010; Gea-Izquierdo et al., 2012; Giovannelli et al., 2007; Lautner, 2013; Liang et al. 

70 2016; Liang and Eckstein, 2006). On the contrary, studies examining cambial activity in roots and its relation to 

71 cambial activity in shoots, as well as investigations concerning the effect of moisture and temperature on the temporal 

72 dynamics of cambial activity are scarce or absent. Thus, xylogenesis requires more examination, especially in regions 

73 or ecosystems where drought events occur regularly. 
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74 Fine roots (<2 mm in diameter) of forest trees are short-lived, non-woody, associated with mycorrhizae (Finér et al. 

75 2011) and a good indicator of forest adaptation to climate change (Eissenstat et al., 2000, 2013; Brunner et al., 2015; 

76 Montagnoli et al., 2016). Their function of absorbing water and nutrients plays a crucial role in plant survival potential 

77 and seedlings establishment after out planting (Montagnoli et al., 2018). In addition, fine root exudation of 

78 carbohydrates stimulates microbial decomposition of soil organic matter, induces heterotrophic respiration (Sun et al., 

79 2017), and improves nutrient availability in the rhizosphere (Kaiser et al., 2015). Similar to cambial cell activity, fine 

80 root development is subject to seasonal fluctuations because of endogenous (e.g., genotype of plant species) and 

81 exogenous (e.g., temperature, precipitation, soil properties, nutrient availability, and competition among plants) factors 

82 (Burke and Raynal, 1994; Chiatante et al., 2005; Kuhns et al., 1985; Majdi et al., 2005; Steele et al., 1997; Teskey and 

83 Hinckley, 1981; Tierney et al., 2003). For Quercus cerris L. and Fagus sylvatica L., we previously demonstrated that 

84 fine root occurrence has a multimodal pattern related to soil temperature and water content (Montagnoli et al. 2012a, 

85 2014). Changes in soil moisture may also induce changes in the diameter of the root population (Amendola et al., 2017; 

86 Ostonen et al., 2007). Under drier soil conditions, plants produce longer and finer roots, the belowground equivalent of 

87 thin leaves (Ostonen et al., 2007; Withington et al., 2006), which results in a relatively greater length per unit mass 

88 thereby leading to an increase in specific root length (Metcalfe et al., 2008). Indeed, specific root length (SRL mg-1), 

89 intended as the length-to-mass ratio of a root fragment, is a good indicator of the benefit/cost analysis (Ostonen et al., 

90 2007) where root length is assumed to be proportional to resource acquisition (benefit) and root mass to construction 

91 and maintenance (cost) (Eissenstat and Yanai, 1997). Thus, a stress-tolerant plant adopts an ‘extensive’ strategy, 

92 shifting carbon allocation towards roots or an ‘intensive’ strategy with morphological adaptation of the fine roots to 

93 increase soil exploitation area and thus water uptake under harsh soil conditions (Montagnoli et al., 2012a; Ostonen et 

94 al., 2007).

95 Very little is known about the belowground compartment of Mediterranean ecosystems (Canadell and Rodá, 1991) and 

96 even less about the root systems of sclerophyllous species, such as Quercus ilex L., which is able to tolerate the summer 

97 and winter drought periods that characterize the Mediterranean climate (López et al., 1998). In the light of on-going and 

98 projected climate change, having an improved understanding of the turnover rate at which fine roots die and contribute 

99 to soil carbon pools is important. In addition, woody plants undergo cycles of cambium dormancy and reactivation that 

100 are cued by environmental signals (Chaffey, 1999; Savidge, 1996, 2001), but studies that link the growth resumption of 

101 the cambial zone to moisture availability are scarce (Ren et al., 2015). This is unfortunate because such information 

102 may provide important insight regarding possible species-specific drought tolerance strategies, which would allow for a 

103 better planning of management approaches for forest adaptation to climate change. To date and the best of our 

104 knowledge, no literature concerning the comparison of fine root dynamics and cambium activity of stems and roots 
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105 exists. Thus, in the present work, we hypothesized that seasonal dynamics of the fine root system, devoted to provide 

106 water and nutrient uptake during the drought period and to accumulate starch just prior to the onset of the dormancy 

107 period, is supported by cambial activity in both stems and roots. To test our hypothesis, we evaluate the seasonal 

108 variation of (1) cambial activity through the measurement of cell numbers in stems and roots, (2) fine-root mass and 

109 length, (3) specific root length and fine root diameter. Furthermore, additional information on the annual fine-root 

110 production and turnover rates was evaluated. 

111 2. Materials and methods

112 2.1 Site description, study plots, and sampling schedule

113 In the Mediterranean Basin and Middle East, Q. ilex extends longitudinally from Portugal to Syria and latitudinally 

114 from Morocco to France. The species occurs throughout Italy, preferring acid soils and forming pure forests or mixed 

115 forests with other broadleaved species: Quercus pubescens Willd., Fraxinus ornus L., and Ostrya carpinifolia Scop. 

116 (Pignatti, 1982; Pirone, 1995). Our study was conducted at the Oriented Natural Reserve – Bosco delle Pianelle (Puglia 

117 region, Murge, southeastern Italy, 40º 38′ 36″N, 17º 14′ 2″E) at an altitude of 440 m with little slope. The soil is 

118 classified as Luvisols, (Haplic Luvisols (Chromic), IUSS/ISRIC/FAO 2006) characterized by shallow bedrock and 

119 abundant stoniness; these soils were the traditional source of rocks used to build walls around fields (Costantini et al., 

120 2013). The overstory is dominated by Q. ilex (canopy cover > 75%) forming a high forest stand that was unmanaged for 

121 5 years prior to our experiment and having a mean tree density of 1066 trees ha-1, a mean DBH of 13.6 cm, and a mean 

122 height of 10.6 m. The main understory species are Viburnus tinus L., Phillyrea latifolia L., Arbutus unedo L., Ruscus 

123 aculeatus L., Pistacia lentiscus L., Asparagus acutifolius L., and Cyclamen neapolitanum Ten. During our sampling 

124 period (2013-2014), Mediterranean climatic conditions prevailed, with temperatures and precipitation (concentrated in 

125 autumn and spring with a summer drought spanning from May to September; Bagnouls and Gaussen, 1953) in 

126 accordance with the general trend and magnitude of the past 75 years (Fig. 1a, weather data from Rete 

127 Agrometeorologica Regionale – MTA32 – Martina Franca, 40°38'04'' N, 17°16'40'' E).

128 We established eight, permanent, 10 m x 10 m plots that were separated by a mean distance of 40-50 m, equal to 4.25 

129 times the mean height of the Q. ilex on the site. Each plot was considered an independent replicate based on Sudmeyer 

130 et al., (2004). Plots were sampled approximately every 30 days from September 2013 through September 2014; 13 

131 sampling periods total. On each sample date, soil moisture and temperature were measured in each plot at three depths 

132 (0-10, 10-20 and 20-30 cm) hereafter reported as mean 30 cm depth, proximal to a soil core sampling point described 

133 below. Volumetric soil water content (%) was recorded with a ThetaProbe type ML2 (Delta-T Devices, Cambridge, 
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134 UK). Soil temperature (°C) was recorded with Checktemp 1 thermometer with an NTC thermistor sensor (± 0.3 °C; 

135 Hanna Instruments, Villafranca Padovana (PD), Italy). 

136 2.2 Fine-root measurements

137 On each sample date, we randomly collected two soil samples within each plot (8 plots x 2 cores × 12 dates = 192 

138 cores). Due to the presence of stones, a motor-driven percussion hammer (BOSCH 5-40 DCE Professional, Stuttgart, 

139 Germany) with a 10-cm square-shaped stainless steel blade was used for cutting the soil and obtains cube-shaped soil 

140 cores (10 cm x 10 cm x 30 cm deep). After cutting edges of each core, the soil was carefully collected by hand. Samples 

141 were stored in plastic bags at 4 °C until processed (within 20 days of collection). For processing, each sample was 

142 placed in a nylon bag (300µm mesh) and washed automatically using a washing machine (adapted from Benjamin and 

143 Nielsen 2004). Fine roots (d < 2mm) were separated by hand from rocks and sand and were examined at the 

144 stereomicroscope and divided into two main groups: Quercus and other species. Fine roots from Quercus were 

145 classified “live” (hereafter biomass) or “dead” (hereafter necromass) depending on their color, texture, and shape (Vogt 

146 and Persson, 1991). All fine root samples were scanned submerged in water at a resolution of 800 dpi with a calibrated 

147 flatbed scanner coupled to a transparency unit for image acquisition (Epson Expression 10000 XL) and analyzed by 

148 using WinRhizo Pro V. 2007d (Regent Instruments Inc., Quebec, Canada). Live and dead fine root lengths were 

149 calculated together with a mean diameter of the fine root population. Samples were then oven-dried and weighed to 

150 obtain biomass and necromass. Finally, specific root length (SRL), defined as the fine root length to dry mass ratio was 

151 calculated. 

152 Annual fine root production was estimated using the minimum–maximum method. This method calculates, and sums in 

153 case of multimodal seasonal pattern, only significant differences between seasonal minimum and maximum fine-root 

154 dry mass (live biomass plus necromass) (Edwards and Harris, 1977; Hertel and Leuschner, 2002; McClaugherty et al., 

155 1982). Mean standing biomass was calculated as the average of annual live fine root standing crop. Fine root turnover 

156 rates of live biomass were calculated as annual root production divided by mean standing biomass (Brunner et al., 

157 2013).

158 2.3 Cambium tissue sampling and measurements

159 On each sample date, one tree from each plot (8 trees total) was randomly selected for cambium tissue sampling. Using 

160 a hammer and chisel, we removed a 30 mm x 10 mm x 10 mm sample from the stem at breast height and from a main, 

161 coarse root at 20–30 cm from the root collar. Each sample contained the inner part of the living bark, the cambium, the 

162 current xylem increment, and at least one previous fully formed xylem growth ring. Sampling was done with care to 
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163 avoid compression of cambial tissue or separation of the bark from the wood. Immediately after removal, samples were 

164 fixed in formalin–acetic acid–alcohol (FAA, 5:5:90). Wood samples were further reduced in size (about 5 mm x 5 mm 

165 x 5 mm) and tender and heterogeneous tissues (e.g. bark–cambium wood) were dehydrated and embedded in Technovit 

166 7100 (Bio-Optica, Milan, Italy) before cutting. Fixed wood was immersed in a series of technovit–ethanol solutions 

167 (progressively 30, 60, 100%) and left in each solution for 24 hours. After polymerization, a sliding microtome (Leica 

168 SM 2400, Leica Biosystems Nussloch GmbH, Germany) was used to produce cross-sectioned cuts with a 15µm-

169 thickness. Sections were photographed using an Olympus BX63 light microscope equipped with an Olympus DP72 

170 camera. Images were analyzed by ImageJ 1.41o software (Wayne Rasbanb, National Institute of Health, USA). For 

171 each root section, the cambial cell number was calculated considering all cells having a thin wall and a small radial 

172 diameter (Morel et al., 2015).

173 2.4 Statistical analysis 

174 Each of the eight permanent plots was considered a replicate. At each sampling date and within each plot, the two soil 

175 cores were pooled. Fine root and cambial cell data were not normally distributed nor did they meet the assumption of 

176 homoscedasticity. Thus, fine root data were square-root or log-transformed to ensure normal distributions and equal 

177 variances to allow the use of parametric statistics. Analysis of variance (one-way ANOVA) for effect of time on fine-

178 root traits (biomass, necromass, live root length, dead root length) and cambial cell number was carried out with time as 

179 a fixed effect and sampling plot as a random effect. To test the significance of each peak in the fine root seasonal 

180 pattern, the Dunnett’s test (unilateral alternative, p < 0.05 and p < 0.1) was applied to differences among the maximum 

181 value of the peak (reference mean) and both prior and subsequent first minimum values (Montagnoli et al. 2012a, 

182 2012b). A post-hoc Bonferroni test was applied to test differences in cambial cell number among each sampling date. 

183 Differences were considered significant at p < 0.05 unless otherwise stated. Statistical analyses were carried out with 

184 SPSS 17.0 (SPSS Inc, Chicago IL, USA). 

185 3. Results

186 3.1 Soil moisture and temperature

187 As a result of fall rainfall events in 2013 (Fig. 1a), volumetric soil water content (SWC) increased from 4 September 

188 (20%) to a maximum on 18 November (35%), and then remained constant to 7 May 2014 (35%; Fig. 1b) even as 

189 rainfall decreased. Then, SWC dropped to its lowest recorded value (19%) on 8 July 2014. Thereafter SWC increased 

190 again to 25% on 8 September 2014. Soil and air temperatures showed the same seasonal variation: decreasing from 4 

191 September to 16 December 2013 and then being constant until the 2 April 2014. Air and soil temperatures warmed 

https://doi.org/10.1016/j.foreco.2018.06.044
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192 significantly from 7 May 2014 to the maximum values recorded on 5 August 2014. Summer drought (i.e. precipitation 

193 is insufficient to compensate for losses through evapotranspiration) spanned from early September to half October in 

194 2013 and from end of  May to early September in 2014. (Fig. 1a, b).

195 3.2 Fine root production and morphological characteristics

196 Annual fine root production was 135 gm-2; the average lifespan of fine roots was 4 months (i.e., a turnover rate of 3 

197 year-1). The annual mean fine root biomass was lower (65 %) than the annual mean fine root necromass (Table 1). Mean 

198 annual length of live roots was slightly higher than the mean length of necromass (Table 1). Mean annual specific root 

199 length was 6.8 and 3.7 m g-1, for live and dead fine roots, respectively (Table 1). Time significantly affected fine root 

200 biomass and length (p < 0.001; Table 2), while the random effect of sampling plot was not significant (p = 0.20 and 

201 0.25 respectively; Table 2). From the beginning of the season to the seasonal maximum, fine root biomass and length 

202 increased their values almost three and five-fold respectively with two statistically significant (p < 0.05) distinct peaks 

203 (Fig. 2a, b). In particular, fine root biomass and length increased from the beginning of September to mid-October and 

204 then decreased until the end of February. This fall peak occurred during the transition from the dry to the wet season on 

205 18 November for biomass and 15 October for length (Fig. 2a, b). Subsequently, fine root biomass and length peaked a 

206 second time (p < 0.05) on 8 July (Fig. 2a, b) during the summer transition from the wet to dry season. Then, fine root 

207 biomass and length decreased up to the end of the sampling period (8 September 2014). Similarly, to the live fine roots, 

208 length of dead fine roots was significantly affected by time (p = 0.022; Table 2), showing two peaks (p < 0.1) 

209 corresponding in timing with fine root necromass. Specific root length showed a complex seasonal variation (Fig. 3a) 

210 with three peaks occurring 15 October, 25 February-2 April, and 8 July, although only the latter was statistically 

211 significant (p < 0.05). Specific root length increased slightly, however, throughout the growing season. The diameter 

212 size of the fine root population also showed seasonal variation with three distinct significant peaks (p < 0.05) occurring 

213 in fall, spring, and summer, with a general tendency of decreasing throughout the growing season (Fig. 3b, solid line). 

214 Throughout the growing season, mean diameter size of fine root necromass showed higher values than those measured 

215 for fine root biomass (Figure 3b, dotted line).

216 3.3 Cambial cell number

217 Shoot and root cambial cell number were significantly affected by time (p < 0.001; Table 2) but not by the random 

218 effect of the plot (p = 0.229 and 0.373, respectively; Table 2). From 4 September, we observed a significant increase in 

219 the number of cells in the cambial zone of the roots and shoots, which peaked markedly to 15 October 2013 (Fig. 4; Fig. 

220 5a, b). Shoot and root cambial cell number, after their peak in October declined until minimum values were reached on 

https://doi.org/10.1016/j.foreco.2018.06.044
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221 16 December (4.8 ± 0.2) and 20 January (4.7 ± 0.1), respectively (Fig. 4; Fig. 5c, d). Thereafter, shoot and root cambial 

222 cell numbers increased significantly throughout 2014, 11 June and 8 July (p < 0.05) respectively (Fig. 4). On these 

223 dates, cambial cell number reached maximum, i.e., about three and two fold the minimal number (Fig. 5e, f). After this, 

224 for shoot and root, the numbers of new cells formed declined significantly to 5 August (p < 0.05; Figure 5g, h) and 

225 reached the same value measured during the previous year’s fall (Fig. 4). 

226

227

228 4. Discussion

229 The activity of vascular cambium of roots has been scarcely investigated (Evert, 2006) in comparison with the stem (De 

230 Micco et al., 2016; De Swaef et al., 2013; Sanchez et al., 2012), and, to the best of our knowledge, its seasonal pattern 

231 has yet to be described. Thus in our study, each month through one seasonal cycle, we explored the dynamics of shoot 

232 and root cambial activity of Quercus ilex growing in a natural forest in relation to fine roots, soil water content, and soil 

233 temperature. Cambial cell numbers measured in shoots and roots significantly changed during the season. From 16 

234 December onward, the increase in soil temperature together with high soil water content corresponded to a continuous 

235 increase in the number of cells in the cambial zone of shoots and roots. The activity of root cambium seemed to be 

236 shifted in time in respect to the shoots. Indeed, shoot cambial cell number reached its minimum on 16 December with a 

237 first significant increase occurring at the following sampling point (20 January). In the case of roots cambial cell 

238 number, seasonal minimum was reached on 20 January while the first significant increment occurred right after on 25 

239 February. Such a time-shift might be due to the buffer effect of the soil that, in comparison with air, has a larger storage 

240 term especially with a higher content of water (Al-Kayssi et al., 1990; Campbell and Normann, 1998), having a strong 

241 influence on all biological process (Koorevaar et al., 1983; Pregitzer et al., 2000). A significant growth increment of 

242 root and shoot cambium occurred with a dramatic increase in temperatures after 7 May and cambial cell number 

243 reached its maximum, i.e. three- and two-fold the minimal number in winter. Thereafter, cambium cell number declined 

244 through August until a second increment of lower magnitude was detected after rainfall resumed in August and 

245 September. This bimodal seasonal growth pattern concurs with the classification of tree-ring formation in 

246 Mediterranean environments proposed by Cherubini et al., (2003): cambial activity, triggered by the increase in 

247 temperature and soil water availability from spring rainfall, stop when extreme and prolonged drought conditions occur. 

248 The cambium is reactivated when soil water becomes available again but deactivates once temperature becomes 

249 prohibitive during the winter. Moreover, while cambial activity of the stem has been linked to radial increments 

https://doi.org/10.1016/j.foreco.2018.06.044
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250 (Oberhuber et al., 2014; Steppe et al., 2006), environmental factors (Battipaglia et al., 2010, 2014; De Micco and 

251 Aronne, 2012), and leaf phenology (Morel et al., 2015), our study can now also offer some insight into the linkage of 

252 cambial growth and fine root phenology.

253 We found that fine root activity (mass and length) also followed a well-defined bimodal seasonal growth pattern that 

254 overlapped cambial cell growth, with significant peaks in summer and autumn. Our findings concur with the general 

255 pattern of fine root growth observed in northern temperate forests (Brassard et al., 2010) and in Italy for Q. cerris 

256 (Montagnoli et al., 2012a) and F. sylvatica (Montagnoli et al., 2014). Specific root length for Q. ilex also showed a 

257 complex seasonal variation as in the case of fine root biomass and fine root length. Comparing summer and autumn, 

258 specific root length was greater in summer that in autumn, whereas fine root diameters were smaller in summer than in 

259 autumn. This suggests that the higher summer soil temperature seemed to trigger fine root growth. During summer in 

260 the Mediterranean environment, when soil water content decreases and temperature increases and subsequent carbon 

261 gain is lowered by the reduction in stomatal conductance, carbon is preferentially channeled into fine root elongation 

262 (longitudinal growth) (Dickson and Tomlinson, 1996; Di Iorio et al., 2011; Montagnoli et al., 2012a, 2014; Thomas and 

263 Gausling, 2000). Thus, at the root level, Q. ilex adopted an intensive strategy by increasing specific root length (i.e. 

264 increase of the volume of soil exploited per unit biomass) when soil moisture content decreased to the lowest value of 

265 the growing season (Comas et al., 2002; Comas and Eissenstat, 2004; Curt and Prevosto, 2003; Montagnoli et al., 

266 2012a; Ostonen et al., 2007). This concurs with Bjork et al., (2007) and Makita et al., (2011) who reported a 

267 morphological plasticity of roots, especially in the finest fine root fraction. On the contrary, in autumn, when water is 

268 available and temperatures are cooler, the growth rate of fine root biomass was greater than that of length, with the 

269 lowest values of specific root length and the highest values of mean diameter measured during the season. Thus, fine 

270 root growth is mainly of the radial type (Amendola et al., 2016; Montagnoli et al., 2012a, 2014) as plant production is 

271 primarily invested in starch accumulation (Terzaghi et al., 2016). In our study, the seasonal peaks of fine roots lasted 

272 only few weeks, suggesting that most of the newly produced fine roots are of a ‘short-lived’ type. If so, the amount of 

273 very fine and fine roots surviving the winter and those at the beginning of the growing season (spring) might represent 

274 the ‘long-lived’ fine root portion of the root system. Similarly to previous works (Eissenstat and Yanai, 1997; Guo et 

275 al., 2008; Montagnoli et al., 2012a; Montagnoli et al., 2014), our results show that Q. ilex fine roots borne in winter 

276 generally lived longer (ca. 130 days) than roots borne in early fall (ca. 75 days) resulting in differently aged fine root 

277 pools (Joslin et al., 2006).

278 Thus, the almost complete overlap of fine root phenology with seasonal activity of both vascular cambia observed in 

279 our study demonstrates that they are interrelated, but the variation in fine root morphology suggests that the nature of 
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280 this interrelationship differs between spring and autumn. Both cambial activity and fine root growth are synchronously 

281 triggered by the increase in temperature and soil water availability from spring rainfall, entering into a stasis when 

282 extreme and prolonged drought conditions occur during summer, and resuming growth again in late summer with lower 

283 temperature and soil water recharges. In particular, we infer that during the late spring–summer period, with a further 

284 rise in temperature and rainfall events, fine root development, along with an enlarging xylem component (Larson, 2012; 

285 Pallardy, 2008), provides the means for water and nutrient transport to the plant canopy. In autumn, when air 

286 temperature began to decline, photosynthates produced in the canopy are directed basipetally through the newly 

287 enlarged phloem (Larson, 2012; Pallardy, 2008) toward growth of fine roots that serve to store starch.

288 In our stand, annual production of fine roots (135 g m-2) was only about about half that measured by López et al., 

289 (2001a) Mean standing fine root mass (115 g m-2), including dead and live roots, was only about 20% to 72% of that 

290 reported for Q. cerris (Montagnoli et al., 2012a; Claus and George, 2005), Q. robur (Bakker, 1998), Fagus (Montagnoli 

291 et al., 2014), and other forest species (Jackson et al., 1997; Finér et al., 2011). The mean total live fine root biomass we 

292 observed (45 g m-2) was of the same magnitude but slightly lower than that measured by López et al., (2001a). These 

293 low values could be related, however, to the high content of rock fragments that reduce the soil available to root 

294 colonization (López et al., 2001a; Burke and Raynal, 1994). In our study, biomass of dead fine roots was 50% greater 

295 than living ones, and this might be the result of the high turnover rate (3 year-1), similar to that reported by López et al., 

296 (2001b), which implies high dead mass accumulation (Godbold et al., 2003).

297 To more accurately predict ecological factors on a biome scale, such as carbon storage or adaptation to climate change, 

298 it is necessary to link root biomass with fine root length (Jackson et al., 1997), but such an estimation is still frequently 

299 missing in the literature. Our field fine root length (244 m m-2), was almost four-fold higher than that reported for Q. 

300 ilex in the north of Spain at the same soil depth (López et al., 2001c). For specific root length in trees, the meta-analysis 

301 by Ostonen et al., (2007) found fine root (d<2mm) values ranged widely from about 4 to 32 m g-1 and our observation 

302 (6.8 m g-1), while falling within the range for broad-leaved species, was lower than values found for other oak species 

303 (Bakker et al., 1998; Montagnoli et al., 2012a; Claus and George, 2005). Certainly more work is required to improve 

304 the quality of root-related research. 

305 5. Conclusions

306 To the best of our knowledge, we describe for the first time an almost complete overlap of fine root phenology with 

307 seasonal activity of shoot and root vascular cambia. Our study demonstrates that cambial growth and fine roots 

308 phenology are interrelated, but the variation in fine root morphology suggests that the nature of this interrelationship 

https://doi.org/10.1016/j.foreco.2018.06.044
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309 differs between spring and autumn. During the late spring–summer period, with a further rise in temperature and 

310 rainfall events, fine root development, along with an enlarging xylem component (Larson, 2012; Pallardy, 2008), 

311 provides the means for water and nutrient transport to the plant canopy, whereas in autumn, when air temperature began 

312 to decline, photosynthates produced in the canopy are directed basipetally through the newly enlarged phloem (Larson, 

313 2012; Pallardy, 2008) toward growth of fine roots that serve to store starch. 
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513 Figure captions

514 Figure 1. Inner panel a) Monthly average air temperature (solid line) and rainfall (broken line) for the period 1930–

515 2005. Data from www.agrometeopuglia.it Assocodipuglia); a) Monthly average air temperature (solid line) and rainfall 

516 (broken line) during the 2013–2014 experimental period. b) Seasonal variation of soil water content (broken line) and 

517 temperature (solid line) at each sampling date plotted for 0-30 cm soil depth. Data are means ± 1SD

518 Figure 2. A) Seasonal patterns of live (solid line) and dead (broken line) fine root biomass (g m-2). B) Seasonal patterns 

519 of live (solid line) and dead (broken line) fine root length (m m-2). Data refer to 0-30 cm soil depth. Each sampling date 

520 is represented as means (n=8) ±1 SE. Asterisks indicate statistically significant peaks (Dunnett’s test, *p < 0.1, **p < 

521 0.05)

522 Figure 3. A) Seasonal pattern of specific root length (SRL; m g-1) of live fine root. B) Seasonal pattern of live (solid 

523 line) and dead (broken line) mean diameter size of fine root population (mm). Each sampling date is represented as 

524 means (n=8) ±1 SE. Asterisks indicate statistically significant peaks (Dunnett’s test, *p < 0.1, **p < 0.05)

525 Figure 4. Seasonal pattern of cambial cell number for shoots (broken line) and roots (solid line). Each point is the mean 

526 of eight samples (n=8) ±1 SE. Different letters indicate significant difference for shoots (a ‒ g) and roots (w ‒ z) 

527 between each sampling date (Bonferroni test, p < 0.05).

528 Figure 5. Anatomical sections of shoot and root sampled between 2013 and 2014. Cambial cells (cc), phloem cells (ph) 

529 and xylem cells (xy) measured for shoot and root (columns) at different sampling date (rows). (a) and (b) 15 October 

530 2013; (c) 16 December 2013; (d) 20 January 2014; (e) 11 June 2014; (f) 8 July 2014; (g) and (h) 5 August 2014.

531 Supplementary Figure 1. As already observed by López et al., (2001b) for Quercus ilex, we found the presence of 

532 large lignotubers that store non-structural carbohydrates and nutrients to ensure a rapid response to favourable growing 

533 conditions. Screwdriver represents a scale of about 20 cm.

https://doi.org/10.1016/j.foreco.2018.06.044

http://www.agrometeopuglia.it


https://doi.org/10.1016/j.foreco.2018.06.044



https://doi.org/10.1016/j.foreco.2018.06.044



https://doi.org/10.1016/j.foreco.2018.06.044



https://doi.org/10.1016/j.foreco.2018.06.044



https://doi.org/10.1016/j.foreco.2018.06.044



https://doi.org/10.1016/j.foreco.2018.06.044



Table 1. Mean (±SE) seasonal fine root characteristics of Quercus ilex. Total dry mass values include live and 
dead tissue.  Net production is according to the minimum–maximum method. Turnover rate is the quotient 
of net production and standing biomass.

Total dry mass

Peak
minimum

Peak
maximum

Season (g m-2)

Net 
production

(g m-2 year-1)

Standing 
biomass
(g m-2)

Standing 
length
(m m-2)

Specific root 
length
(m g-1)

Turnover 
rate

(year-1)

Autumn 66.9 149.2 82.3
Summer 77.6 130.9 53.3

Annual 135.6 Live: 45.0 ±2.6 Live: 244 ±16 Live 6.8 ±0.6 3.0
Dead: 69.8 ±4.4 Dead: 227 ±13 Dead 3.7 ±0.2
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Table 2. General linear model values (two-way ANOVA) obtained testing effects 
of time and sampling plot on different fine-root traits and cambial cell number.

Source of variations
Time Sampling plot

Parameter F p value F p value

Biomass
Fine root biomass (FRB) 3.698 < 0.001 1.398 0.206
Fine root length (FRL) 6.210 < 0.001 1.310 0.247
Specific root length (SRL) 3.202 0.001 1.248 0.281
Mean root diameter (d) 4.100 < 0.001 0.812 0.607

Necromass
FRB 1.278 0.255 5.647 0.152
FRL 2.227 0.022 4.325 0.223
SRL 1.864 0.059 1.101 0.373
d 2.099 0.031 1.683 0.109

Cambial cell number
Shoot 8.219 < 0.001 1.519 0.229
Root 14.345 < 0.001 1.134 0.373
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