
Pramana – J. Phys.           (2019) 93:87 © Indian Academy of Sciences
https://doi.org/10.1007/s12043-019-1854-8

Counterstreaming beams in magnetised Vlasov plasma
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Abstract. In this paper, we investigate nonrelativistic, kinetic, linear phase of the filamentation instability when an
external magnetic field is present in the direction of the counterstreaming electron beams using Vlasov simulations
in 1D-3V space. We first investigate the growth rate of instability. In the linear growth regime, our results correspond
to the previous conclusions that with the increase in strength of the ambient magnetic field, there is a suppression of
instability. Interestingly, we established that at a critical/threshold magnetic field, Vlasov simulations and particle-
in-cell (PIC) simulations differ in their instability behaviour. At this particular magnetic field, there is a complete
suppression of the growth of instability in Vlasov results compared to PIC simulations, where a strong growth of
instability is shown. It is believed that thermal noise in the PIC leads to the growth. However, Vlasov simulations
show wave–wave coupling which stabilises the modes. In this work, our focus is to demonstrate the difference in
this behaviour and to thoroughly analyse the spectra and wave generation for the same.
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1. Introduction

The Weibel instability [1], named after E S Weibel
who first showed analytically the growth of instabil-
ity in an unmagnetised plasma with a temperature
anisotropy, is often referred to as the filamentation
instability (FI) or the beam-Weibel instability when
counterstreaming beams play the role of anisotropy. The
filamentation instability has been proposed as a mech-
anism to magnetise the early Universe [2], to provide
strong magnetic fields for the afterglow emission of
γ -ray bursts [3] and supernovae explosions [4], and
to explain the heating processes in the pulsar winds
[5]. The FI has also been investigated to explain the
generation of quasistatic magnetic fields in the interac-
tion of ultrashort and ultraintense laser pulses with an
underdense plasma [6–8]. FI is present in laser fusion
plasmas. Stabilisation effects due to the coupling of
the self-generated magnetic field by Weibel instability
with the laser wave field has also been shown explicitly
[9]. Two-stream instability generated from FI is shown
to be present in laser Wakefield-driven plasma waves
as well [10]. In very different conditions, it has been

reconsidered under the name of ‘Chromo-Weibel
instability’ in relativistic heavy-ion collision experi-
ments, having been reformulated within a quantum
chromodynamic framework [11].

The free energy stored in the counterstreaming elec-
trons in the presence of static background ions is
released by the well-known two-stream electrostatic
instability and by the transverse electromagnetic FI.
The two-stream instability in an unmagnetised plasma is
completely electrostatic while it has an electromagnetic
nature in magnetised plasmas when the stream velocities
become relativistic [12]. The physical mechanism that
drives the electromagnetic perturbations can be under-
stood by remembering that, when the electric currents
carried by the two electron streams are displaced, one
with respect to the other, by a transversal disturbance, the
repulsion of the two oppositely directed currents rein-
forces the initial displacement. As a result, the magnetic
field grows in time.

The FI has been thoroughly investigated analyti-
cally and numerically within the fluid [13,14] model.
The literature on numerical investigations of the FI
in the kinetic regime is also vast. The FI has been

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s12043-019-1854-8&domain=pdf
http://orcid.org/0000-0002-7125-8338


   87 Page 2 of 10 Pramana – J. Phys.           (2019) 93:87 

investigated with a one-dimensional (1D) Vlasov code
[15,16] and with 1D [17,18] and two-dimensional [19]
particle-in-cell (PIC) codes. It has also been studied with
3D PIC simulations [20]. Laboratory experiments have
also been made to study the counterstreaming instability
[21].

In the present paper, we extend the previous work
on FI and investigate the system in detail when a
background external magnetic field is present. The non-
relativistic, kinetic, linear phase of the instability is
analysed. Vlasov simulations in 1D-3V phase space are
used where only the electrons are considered to be in
motion while the ions are fixed at the background.

We assume two opposite streams of electrons. We
consider identical absolute velocities for both streams,
and equal densities, because it was shown in earlier stud-
ies [14] that the growth rate of the FI, relative to that
of the two-stream and oblique modes, is largest if both
beams have equal density, composition and temperature.
In the absence of a static electric field perpendicular
to the magnetic field lines, the background magnetic
field is assumed to be parallel to the streaming direc-
tion. In this constrained 1D configuration, we assume
periodic boundary conditions along the direction of the
FI wave number. The electric field generated by the FI
is in the direction perpendicular to the direction of FI
while the two-stream instability would generate an elec-
tric field in the same direction as FI. In reality, the FI
competes with the two-stream instability and it cannot
be observed in an isolated form, even if the equal beam
density case favours the FI over the two-stream insta-
bility [22]. However, in our simple 1D configuration, as
the spatial dependence is only along one direction, i.e.
the direction of streaming beams, we cannot observe
the two-stream instability. Thus, the dynamics of our
system becomes relatively simpler as we only see the
FI. An electrostatic field is generated but it is not due to
the two-stream instability but due to the electromagnetic
perturbations themselves, as described in ref. [23].

The present paper consists of two main sections. The
first part looks into the growth rate of instability, and how
the magnitude of the ambient magnetic field affect the
FI. In this part of the work, we show that when an initial
magnetic field is applied along the streaming direction,
the FI develops, and the strength of the magnetic field
generated by the instability decreases as the magni-
tude of the ambient magnetic field increases. Above a
critical magnetic field, the FI is no longer excited. In
earlier works [24] it was suggested that at the critical
magnetic field there is a growth of instability due to
‘simulation noise’. From our Vlasov simulation runs,
where thermal noise is absent, we first verify that the
temperature effects stabilise the FI. Then, in order to
determine whether an initial strong noise characteristic

of PIC simulations could be the cause of the threshold
effect described in ref. [24], we performed a number of
Vlasov numerical runs adding different levels of wave
noise in the form of density and magnetic field pertur-
bations at the initial time. However, no difference in our
simulation results were observed as we varied the initial
amplitude of the perturbations. Thus, we interpret that
the presence of an initial noise per se is not sufficient
to explain the mode growth at the threshold found in
ref. [24]. Hence, we argue that the PIC simulations and
Vlasov simulations give different results because PIC
codes have thermal noise due to the random motion of
the particles compared to the wave noise due to random
waves in Vlasov code. Our arguments have been dis-
cussed and confirmed by studying all the different kinds
of waves generated during the process and also with var-
ious detailed spectral analysis of the waves in the linear
regime.

This paper is structured as follows: Governing equa-
tions and numerical model of the system are discussed
in §2 which is followed by the numerical results in §3.
Section 4 concentrates on some of preliminary results
on the saturation phase of instability and finally conclu-
sions are drawn in §5.

2. Simulation model

A homogeneous plasma equilibrium configuration is
considered with two counterpropagating symmetric
(identical) beams moving along the y direction. Colli-
sions are neglected and the plasma evolution is described
by the Vlasov–Maxwell system of equations taking the
ions to be a fixed at the background. The integration
of the Vlasov–Maxwell equations is performed in the
(x, vx , vy, vz) phase space of electrons with the follow-
ing initial conditions:

f0(x,v,0)= fM(vx ,vy,vz)

[
1+

( N∑
n=1

ci sin(knx+χn)

)]
,

kn = 2πn/Lx , (1)

where fM is the initial (non-relativistic) bi-Maxwellian
given by

fM(vx,vy,vz) = ne
2 π3/2v3

the

e−(v2
x+v2

z )/v
2
the[e−(vy−v0)

2/v2
the

+ e−(vy+v0)
2/v2

the], (2)

where vthe is the thermal velocity and v0 is the velocity
of the electron streams. We take v0/c = 0.2 > vthe/c,
where c is the speed of light. We also apply an initial
magnetic noise in the form of randomly oriented
magnetic fields:
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By(x, t = 0) =
N∑

n=1

ai [cos(knx + ψn)], (3)

Bz(x, t = 0) =
N∑

n=1

bi [cos(knx + φn)] (4)

with small perturbed initial amplitudes ai , bi and ci and
ψn , φn and χn are random phases. The initial electric
field and the electric current are set to zero.

3. Numerical results

3.1 Linear evolution of instability

The numerical parameters used are as follows: x direc-
tion has Nx = 64 grid points and the total length of
the simulation box is Lx = 10πde, where de = c/ωpe
is the electron collisionless skin depth, so that the grid
spacing is dx = 0.49de and the lowest wave number
is dk = 2π/Lx . The number of grid points in veloc-
ity space are Nvx = Nvz = 25 and Nvy = 100. The
number of modes is N = 30. Although, the number
of grid points is low and number of modes chosen is
less than what should be available, the lower number of
available modes do not change our study on the critical
magnetic field significantly. We let the system evolve up
to t = 250ω−1

pe . The initial amplitude of the fields is set
at ai = bi = ci = 10−2. In the following we use nor-
malised quantities. We use the plasma frequency ωpe
and the velocity of light c as characteristic frequency
and velocity. Therefore, the electron skin depth c/ωpe
is the characteristic length scale. The electric and mag-
netic fields are normalised to Ē = cB̄ = mecωpe/e.
The wave number (k) is normalised to the electron skin
depth (c/ωpe).

Table 1 shows the linear growth rate obtained by our
numerical simulations for different strengths of ambi-
ent magnetic fields imposed to the system with thermal
velocities, vthe/c = 0.03 (which is approximately equal
to the cold fluid limit) and vthe/c = 0.1. The table also
includes the analytical values of growth. The analyti-
cal growth rate for kinetic and fluid limits is calculated
using the equation given in [24].

γana =
{
−1

2
(ω2

ce+ω2
pe+k2c2)+

[
(ω2

ce+ω2
pe+k2c2)2

4

−k2c2ω2
ce−ω2

peω
2
ce+ω2

pek
2
(

v2
0+v2

the

2

)]1/2}1/2

.

(5)

The values of the numerical and analytical growth rates
differ maximum by 10% and that too in the fluid limit,

Table 1. A comparison of the numerical growth rates with
Nx = 64.

B0 vthe kmax γ Num
max γ Ana

kin γ Ana
flu

0.0 0.03 1.2 0.25 0.154 0.153
0.1 1.0 0.15 0.150 0.140

0.1 0.03 1.2 0.20 0.117 0.116
0.1 1.0 0.13 0.111 0.019

0.15 0.03 1.2 0.075 0.037 0.033
0.1 1.0 0.045 – –

vthe = 0.03. This difference is reduced to 4% as we
move towards stronger ambient magnetic fields. The dif-
ference is only 2% in the kinetic limit with vthe = 0.1.
Growth rates decrease as the magnetic field is increased
from B0 = 0 to 0.15. The growth rate at B0 = 0
is almost thrice as that of the growth of instability at
B0 = 0.15. However, the wave mode at which the max-
imum growth rate is observed is found to be at kmax = 1
for all cases with thermal velocity vthe = 0.1, inde-
pendent of B0. We also see that when we decrease the
thermal velocity from vthe = 0.1 to 0.03, the numerical
growth rate increases by a factor of almost two, and the
wave mode corresponding to the maximum growth rate
increases, thereby showing the stabilising effect of the
beam’s temperature. In figure 1 the numerical disper-
sion relation for B0 = 0.0 and 0.1 is plotted and we
found that the behaviour of the system changes when it
goes from unmagnetised to magnetised system. In the
top panel we see that at low k region, 0 < k < 0.2,
the growth of the wave is actually a little higher when
the system is under strong thermal effect, but then for
high k values the growth is always stronger for lower
thermal velocity. However, in magnetised system, even
at low k values, the growth is higher for vthe = 0.03
and hence we can observe a stabilisation of tempera-
ture. The physical reason for the quenching of the FI at
high wave numbers is the thermal motion of the parti-
cles. The repulsion of counterstreaming particles tries
to create the filaments, while their thermal motion tries
to counteract this rearrangement. At large k, the ther-
mal effects are the strongest. It is difficult for filaments
to form. However, thermal effects are small for long
wavelengths and hence growth rate is strong for the FIs.

The growth of the fastest waves has also been stud-
ied using grid point Nx = 128, with number of modes
N = 60. Comparison of the growth rates is shown
in table 2. The growth rates are better approximated
with higher resolution. The difference in the numerical
and analytical rates is just around 1% in the absence
of ambient magnetic field. However, this difference is
approximately 5% as we advance to higher magnetic
field and also at the critical magnetic field. Using larger
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Figure 1. Top panel: Numerical Vlasov growth rate for
unmagnetised plasma, where diamonds stand for vthe = 0.03
and stars stand for vthe = 0.1. Bottom panel: Numerical
Vlasov growth rate for magnetised plasma (B0 = 0.1).

Table 2. Numerical growth rates with Nx = 128.

B0 vthe kmax γ Num
max

0.0 0.03 1.2 0.150
0.1 0.8 0.085

0.1 0.03 1.2 0.130
0.1 0.8 0.064

0.15 0.03 1.2 0.085
0.1 0.8 0.040

number of grid points results in a progressively smaller
difference between the analytical growth rates. Qualita-
tively, however, the results and trends remain the same.
Our goal, in this case, is to demonstrate that the growth
of instability is suppressed as the background magnetic

field is increased, and specifically, there is no growth of
instability at the critical magnetic field.

3.2 Stable modes at the critical magnetic field

As we increase the strength of the magnetic field, the
FI is suppressed and above a critical magnetic field
the growth of the wave is inhibited and the system
becomes stable. This is confirmed using our Vlasov sim-
ulation with the magnetic field B0 = 0.5. In this case,
ωce > ωpev0/c. Hence, we have a critical magnetic field
Bc above which the instability vanishes. In dimensional
units, Bc is expressed as

Bc = (4πnme)
1/2v0 (6)

which corresponds to the magnetic field energy density
becoming equal to the beams’s kinetic energy density.
The FI is stable for B0 > Bc because the electrons
are magnetically confined and cannot redistribute them-
selves in space, which is required for the development
of the FI. Quantitatively, this stabilisation can be traced
back to the fact that in the presence of an ambient mag-
netic field, the conservation of the beams’s canonical
momentum along z requires that in order to displace
the beams along x , energy should be transferred to the
particle motion along z.

In a real plasma, at marginal stability, a large increase
in the electron density fluctuations can be expected from
the thermal noise [25] due to the ‘phase-space gran-
ularity’. For example, in the context of the study of
ballooning stability in an igniting plasma, it was shown
[26] that magnetic fluctuations driven by the fusion
reaction products and capable of achieving significant
amplitudes can be excited in a plasma regime close to the
so-called ‘second stability’ region. Similar type of fluc-
tuations has apparently also been observed in the 1D PIC
simulations of the FI in a magnetised plasma reported
in ref. [24] where an unexpected growth of magnetic
fluctuations at the critical magnetic field B0 = Bc was
found. Hence, it is interesting to see whether this effect
can be reproduced in a Vlasov code where the mean-
field Maxwell equations are integrated as in PIC codes
but the numerical noise, due to the finite number of orbits
sampled in PIC codes, is absent.

From ref. [24] we found that the threshold magnetic
field is obtained when ωce = (ωpe/c)(v2

0 + v2
the/2)1/2.

So, when thermal effects are neglected (v0 � vthe), we
arrive at the fluid limit of the threshold magnetic field,
i.e., ωce = ωpev0/c. As vthe is increased, threshold mag-
netic field will rather depend on vthe instead of v0. For
vthe = 0.03 and v0 = 0.2, the cold limit threshold is
Bc = 0.2 and including thermal effects, the critical
magnetic field is at Bc = 0.201. Hence we consider
both to be approximately the same. We take the ambient
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Table 3. Simulation runs which show that instability sta-
bilises at the threshold and no marginal instability exists.

B0 vthe ai = bi = ci γ Num
max

0.18 0.03 10−2 0.020
0.19 0.03 10−2 0.019
0.2 0.03 10−2 –
0.21 0.03 10−2 –
0.22 0.03 10−2 –

magnetic field at its threshold value, B0 = 0.2. In the
first set of simulation runs we consider the initial wave
noise of the magnetic field and the electron density to be
of order 10−4 and consider both low and high thermal
velocities, vthe = 0.03 and 0.1 respectively. However,
no amplification of the fluctuations is observed even
when the initial noise of the density and magnetic field
fluctuations is increased up to order 10−1. In order to
cross check that the critical magnetic field is exactly
at ωce = ωpev0/c (according to fluid calculations), we
made some additional simulation runs by increasing and
decreasing the ambient magnetic field by 5 and 10%, as
shown in table 3. At B0 = 0.18 and 0.19 we still observe
the growth of magnetic field regardless of the fact that
the growth rate is reduced. Above the threshold value,
we see no such growth even in the presence of a strong
initial noise in both the electron density and in the mag-
netic field. To show that marginal instability is indeed
due to the numerical noise in PIC codes, we carried out
some additional simulations adding random fluctuations
in the Vlasov code. We also tried by adding external elec-
trostatic forces at different times at a threshold magnetic
field with B0 = v0 = 0.2. However, in this case too we
did not observe any growth of instability. This is sugges-
tive of a different mechanism for the marginal instability
observed by PIC codes. The noise, which is not present
in Vlasov codes, is caused by the granular structure
of the phase space density distribution in PIC simula-
tions. Some recent studies throw light in this direction.
Recently, it has been observed that gyrokinetic simula-
tions of electron temperature gradient (ETG) turbulence
with PIC code yielded different results from flux-tube
continuum code simulations, despite similar parameters.
This difference in their results was attributed to insuf-
ficient phase-space resolution and was shown to result
from discrete particle noise [27], which is a numerical
artifact. A convergence study has also been done in this
regard. Similar work has been also shown by Bottino
et al [28], and have shown that global, nonlinear, PIC
simulations of electron temperature-driven turbulence
recover the same level of transport as flux-tube codes
when the level of the statistical noise, associated with
the PIC discretisation is sufficiently small. Hence, we

believe PIC codes will result in similar numerical arti-
fact for any kinetic instabilities. In general, particle noise
present in PIC simulation yields results that differ from
continuum models.

Consider a computational particle. It has a localised
charge and current density distribution and it moves
around and drives waves. Their phase speed thus equals
the particle speed. Most electrons are slower than the
phase velocity of the Langmuir wave and the waves
driven by the electron motion are thus damped modes
because they are too slow to get onto the dispersion
relation of the Langmuir mode. These damped waves
thus disappear rapidly as we go away from the particle
(strong imaginary k). So each computational particle
drags with it a small electric and magnetic field pulse.
Other particles, which are moving across this particle,
will get a small kick by the wave fields. If a particle col-
lides with many of these, it gets a series of random kicks.
This type of wave–particle collision shows up, because
PIC codes solve the Klimontovich equation and not the
Vlasov equation. This is illustrated in ref. [29]. Further,
a Vlasov code cannot model the thermal noise, which
reflects the random motion of individual particles. In
Vlasov model, we place random waves in the system,
which will then propagate as linearly undamped Bern-
stein mode waves and upper hybrid waves. So Vlasov
model has wave noise rather than thermal noise, which
causes marginal instability in PIC codes. This is fur-
ther verified using spectral analysis in the following
subsection.

3.3 Spectra and wave generations

The magnitudes of the background magnetic field were
chosen to be B0 = 0.1 and 0.5, for the spectral study,
such that the ratio of plasma frequency and the cyclotron
frequency is of the order of 10 and 2 respectively. The
thermal velocity considered is vthe = 0.1. x direction
has Nx = 1024 grid points and total length of the box
selected is Lx = 100πde, so that grid spacing dx =
0.03de and the lowest wave number dk = 2π/Lx . The
number of grid points in the velocity space are Nvx =
Nvz = 30 and Nvy = 50. The number of modes N =
250. Let the system evolve up to t = 450ω−1

pe . The initial
amplitude of the fields is set at ai = bi = ci = 10−4.

Contour plots of electric fields for B0 = 0.1 in
(ωr − k) plane are shown in figure 2. The electric
field Ey is the inductive field of the FI. The beams flow
along y, the magnetic field grows along z and the only
part of the rotational B is the Ey-component. This one
couples to Ey of the O-mode. It grows proportionally
to rotational B and, thus, to B. The electric field Ey
can otherwise only grow along x during the non-linear
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(a)

(b)

(c)

Figure 2. Contour plots of the electric fields in (ωr−k) plane
for B0 = 0.1.

growth phase of the FI. We observe a clear electromag-
netic mode with ω ∼ k propagating along Ey,k . This
is the ordinary mode arising due to the magnetic field
present in the system. The FI grows exponentially in
time and can nonresonantly drive a wide spectrum of
modes, provided their electric field polarisation matches
that of the instability. On the other hand, if we see
the electric vectors perpendicular to k, i.e Ez,k , the
propagation of electromagnetic mode is noticed which
is nothing but the X-mode. The propagation of Bern-
stein mode is clearly noticed in the spectrum of Ex,k

along with the X-wave. The wave coupling is caused
by the presence of multiple wave modes in the mag-
netised plasma. In a fluid model, we have only the
slow extraordinary and the fast extraordinary modes at
low wave numbers. The fast X-mode approaches the
O-mode at high k while the slow X-mode converges
to the upper hybrid frequency at high k. In a kinetic
framework they encounter the Bernstein mode (electron
cyclotron) waves at higher k. The Bernstein modes are
subdivided in two types. The nth extraordinary Bern-
stein mode starts at the nth harmonic of the cyclotron
frequency, and its frequency decreases slightly with
increase in k, eventually converging at high k to the
nth harmonic of the cyclotron frequency. These modes
are electromagnetic in nature. The nth ordinary Bern-
stein modes below the upper hybrid frequency starts at
the (n + 1)th harmonic of the cyclotron frequency and
converges to the nth harmonic at large k. The nth har-
monic above the upper hybrid frequency starts at the
nth harmonic of ωce, goes through a maximum and
converges again with the nth harmonic. The ordinary
Bernstein modes are electrostatic, except at low k and
close to the upper hybrid frequency. The slow X-mode
couples to the ordinary Bernstein mode wave branch
that contains the upper hybrid frequency. In our result,
what we see at low k < 0.1 is the slow X-mode at
0.95ωr and the fast X-mode at 1.05ωr . At k = 1,
the two Bernstein mode branches are separated in fre-
quency. To ensure that the coupling is coming from the
instability, we have performed a PIC simulation which
computes the spectrum for a single-Maxwellian distri-
bution of electrons. Hence, the distribution is stable
and not related to any of the instability observed in
Vlasov model. What we obtain in the PIC simulation
is the noise at a frequency resolution where there is no
instability and the growing wave has no effect on it.
This noise distribution illustrates the distribution of the
Bernstein modes and of the electromagnetic modes as
shown in figure 3. No coupling of the waves is observed
at high k unlike the Vlasov model. Therefore, unlike
the PIC codes, the Vlasov code shows wave–wave cou-
pling which feeds the undamped modes. For further
confirmation, we have shown in figure 4 the power
spectra for B = 0.2. If we have no noise, as we assume
in the linear dispersion relation, the electron will always
orbit around the magnetic field at the electron cyclotron
frequency. However, we have noise in the PIC simula-
tion and this affects the particle motion. The particle
gets little kicks along the orbit and it changes its veloc-
ity in time. The consequence is that the particle does
not gyrate with a constant frequency. It gyrates with
an average frequency close to the cyclotron frequency.
The gyration is no longer characterised by a single
frequency but by a distribution of frequencies. Here,
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Figure 3. Results from PIC simulations for the magnetic
field spectrum in (ωr − k) space. Top panel: B0 = 0.2 and
bottom panel: B0 = 0.0.

Figure 4. Power spectrum from PIC simulations for the case
with B0 = 0.2.

they are perturbed over a broader range due to the impact
of the broadband thermal noise. Interestingly, we do
not observe this coupling of the filamentation mode
to the high-frequency modes for strong magnetic field
cases (for example B0 = 0.5 as shown in figure 5).
The exponential growth rate of the FI is smaller. Thus,

(a)

(b)

Figure 5. Magnetic field spectrum for B0 = 0.5.

the Fourier transform along time gives us a frequency
spectrum that is concentrated in lower frequencies. The
high-frequency part is much weaker and cannot couple
well to the O-mode.

4. Nonlinear phase of the instability

The time evolution of Fourier-transformed magnetic
fields Bz,k , By,k and electric field Ex,k at their corre-
sponding dominant k-mode are shown in figure 6. The
perturbed magnetic field Bz,k grows exponentially with
the growth rate γmax ∼ 0.06 at the maximum mode
kmax = k1 = 1 which start to saturate from t ∼ 150.
At long times the field saturates completely. The sce-
nario for the saturation mechanism can be explained as
follows: if the orbits of the particles are straight, the par-
ticles can form current filaments, which generate current
filaments around themselves. Thus, the magnetic field
strength grows consistently as long as the orbits of parti-
cles can be regarded as straight. On the other hand, once
the magnetic field becomes strong enough to deflect the
orbits of the particles, the particles cannot form current
filaments. Hence, it is expected that the magnetic field
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Figure 6. Growth of the magnetic and electric fields for
B0 = 0.1.

Figure 7. Magnetic field spectrum Bz,k and By,k for
B0 = 0.1 (top panel) and B0 = 0.5 (bottom panel). Here,
k is normalised to c/ωpe.

strength will be saturated when the Larmor radius rL of a
particle becomes comparable to the characteristic scale
length l of the plasma. An electrostatic field Ex,k is also
present which does not grow initially and starts growing
only after t ∼ 90 when the magnetic field has reached a
large amplitude, at a growth rate which is twice as that
of the magnetic field, γ = 0.13 at k2 = kmax = 2k1.
Electron beams flowing in the y direction cannot drive

Figure 8. Field spectrum Bz,k and Ex,k for B0 = 0.1 (top
panel) and B0 = 0.5 (bottom panel). Here, k is normalised to
c/ωpe.

an electrostatic two-stream instability in the x direc-
tion. This implies that Ex,k is driven by the FI. After
saturation, the electric field starts decreasing accompa-
nied with oscillations. It is interesting to see that the
growth of By,k generating along the streaming beams,
has approximately the same growth rate as that of the
electrostatic field. The amplitude of By,k is greater than
Ex,k but less than Bz,k . A Fourier spectrum in k-space
is shown in figure 7 at t = 300 for Bz,k (blue) and
By,k (red) for B0 = 0.1 (top panel) and Bz,k (blue)
and By,k (red) for B0 = 0.5 (bottom panel). We see
a difference in spectrum for the two different ambient
magnetic field cases. For B0 = 0.1, which is lower than
the marginal stability magnetic field, Bc has a growth
peak at k ≈ 1 and then stabilises. On the other hand, for
B0 = 0.5 > Bc, there is no growth of the fields initially,
as discussed in the linear regime. However, there is still
some stabilisation after k ≈ 1, which implies that there
is some effect of the ambient magnetic field in its satu-
ration region. The same is observed in figure 8 where
Bz,k (blue) and Ex,k (red) for B0 = 0.1 (top panel)
and Bz,k (blue) and Ex,k (red) for B0 = 0.5 (bottom
panel) are shown. Unlike the case of B0 = 0.1, when the
ambient magnetic field becomes stronger (B0 = 0.5),
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at low k, the spectrum is dominated by the magnetic
field Bz,k while in the interval 2 ≤ k ≤ 5, the sys-
tem is dominated by both Ex,k and By,k . However, at
high k, structures become predominantly electrostatic.
The Ex component grows in a k-interval that coincides
with the high-k tail of the Bz spectrum. The overlap
suggests that the Ex field is connected to rapid (high-
k) variations of the Bz , while the slow Bz variations
do not give rise to Ex . Once Ex has reached a high
power, both the wave spectra shift towards lower k (not
shown).

5. Conclusions

This work is mainly focussed on the linear phase of
the FI and has shown that at a threshold magnetic field,
the FI gets stabilised in Vlasov simulations unlike in
PIC simulations where instability continues to grow as
the strength of the magnetic field goes on increasing.
We considered a 1D-3V system with periodic boundary
conditions and involve only electrons in motion in a uni-
form positively charged background. We found a close
agreement of the two methods, i.e. the Vlasov runs and
the PIC runs, when the strength of the external magnetic
field is low. Both methods show that with increasing
ambient magnetic field there is a suppression of the FI.
Using Vlasov simulations, we have found the growth
rates and the modes at which the growth is maximum for
the cases with B0 = 0.0, 0.1 and 0.15. The dispersion
relation behaves differently as the system converts from
an unmagnetised to magnetised plasma. In the longer
wavelength regions it is shown that unlike unmagne-
tised plasma, in the magnetised plasma, stabilisation of
instability is stronger when the thermal velocity is on
the higher side than when the thermal velocity is lower.

Most interestingly, at a threshold/critical magnetic
field: ωce = (ωpe/c)(v2

0 + v2
the/2)1/2 it is seen that

the PIC simulations still show a growth in the insta-
bility. However, Vlasov simulation shows a complete
rescindment of the same. Considering the fact that PIC
simulations have thermal noise in them, which may be
the reason for the instability generation, some initial ran-
dom noise is added continuously to the Vlasov code at
regular intervals. But, the simulations do not show any
kind of instability development at the critical magnetic
field, suggesting a different mechanism for the growth
of instability in the PIC simulation. This argument is
verified with a detailed spectral analysis using Vlasov
simulations and comparing with the PIC results. The
thermal noise in the PIC simulations is due to the gran-
ular structure of the phase-space density distribution and
reflects the random motion of individual particles. On
the other hand, Vlasov model has random waves in the

system, which propagate as Bernstein waves and upper
hybrid waves. These waves couple with each other and
this wave–wave coupling leads to the stabilisation of
the system. However, at a very strong ambient magnetic
field, because of the weak FI, high frequency range is
unsubstantial to couple with the ordinary mode. Some
initial results on the effect of background magnetic field
on the stabilisation of instability is also shown in the
saturation phase. However, a detailed explanation and
analyses of the nonlinear regime of the FI is in progress
and will be presented in our next work.
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