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Abstract
The authors examined the effect of external shading system on cognitive performance, alertness and
visual comfort of visual display terminal (VDT) users under two realistic office lighting settings in this
study. Daylight was the source of illumination being considered as the most significant and preferred
one. A total of 26 participants performed visual and cognitive demanding tasks as well as providing
subjective alertness, performance and visual evaluations in a full-scale mock-up VDT workstation.
Two trials (with and without shading system) were executed during one experimental session.
Results revealed that the use of a shading system improves the performance of a user on colour-
naming task requiring sustained attention, while no differential effects were observed on tasks involving
other cognitive skills such as search velocity and vigilance. Within-subject performance differences were
more pronounced during morning hours. Higher performance was reported in some cognitive tests
when the subjective sensation of visual discomfort was lower.
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Introduction

The visual display terminal (VDT) has been the most

convenient tool in human–computer interaction since

the 1980s. The use of VDTs, in particular office envi-

ronments, has shown an immense increase with the

wide availability of interaction and communication

technologies (ICT). Nowadays, VDTs are being uti-

lized for a variety of tasks by individuals on a daily

basis.1–3 These tasks generally involve a range of

activities which may require mental workload,

decision-making, sustained attention and stimuli inter-

pretation.4 The individual’s successful fulfilment of the

task is defined as cognitive task performance, which

indicates the measurable outcome on a task.

Measures of evaluating cognitive task performance

can be divided into three meaningful main

groups: performance (e.g. objectively measuring cogni-
tive and visual capacity), subjective (e.g. self-report
measures) and physiological (e.g. direct measurements
continuously). The use of multiple measures, e.g. phys-
iological arousal along with psychomotor vigilance test
(PVT), is recommended for more reliable results by
integrating the relative measures.5

At first glance, visual considerations can be consid-
ered first and foremost transmission path for
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evaluating work output since the tasks are visual.
Visual performance is known to increase as the inten-
sity of illumination increases, but light intensity does
not always bring positive impacts.6–8 It may, however,
produce for example, glare that pose problems such as
inability to perform a task or visual discomfort. Such
circumstances in poorly lit environments may even
force the necessity for poor sitting postures during
VDT work.9,10 Distribution of light in work environ-
ments, e.g. in which way it is delivered and whether
glare, reflections, or shadows are produced, is therefore
strongly influential upon how the visual performance
of individuals are manipulated.1,11

No VDT task, on the other hand, is solely visual,
rather both demanding and complex.12 Lighting itself
may not be able to create work output but influences
the overall performance by impairing or facilitating the
visual aspects of a task, and task performance is in fact
a combination of visual, cognitive and motor compo-
nents.8,13 Cognitive factors and visual functions, are
known to be influenced via light for its alerting
effects.4,6,7 Various studies have analysed the cognitive
functions in VDT users under artificial lighting condi-
tions. The influence of different illuminance values14–17

and light characteristics18–21 on cognitive performance
has been well documented. Studies concerning the
effect of daylighting on cognitive task performance in
work environments however are still very scarce
although daylight is recognized as the most preferred
in working spaces22 for being more efficient in visual,
physiological and psychological functions.23–25 Of the
available literature that dealt with the impact of day-
light on cognitive performance exclusively during VDT
work, Rodriguez et al.26 measured attention and work-
ing memory in two different scenarios (a neutral envi-
ronment and a glare demanding environment) in a
rotatable experimental module where participants per-
formed two different computer-based cognitive tasks.
Each experimental session lasted about 30min and
data collection took 40 mornings with a total number
of 32 participants. Comparison of results between
daylit and sunlit scenarios revealed only statistically
significant difference in reaction times (RTs) for incon-
gruent stimuli during sustained attention test, in which
higher performance was observed in daylit scenario
compared to sunlit scenario. Similar finding was
obtained in a study of Gou et al.27 as well, although
the task was performed on paper. Results of experi-
ments that were performed in morning hours indicated
that the performance on a task measuring concentra-
tion and cognition decreased as the light intensity
increased in the naturally-lit setting.

These findings suggest that, at least in some circum-
stances, higher illuminance might result in lower
performance in some cognitive tasks requiring skills,

e.g. attention and concentration, specifically during
morning hours. These results are likely to be associated
with particular demands of each cognitive task based
on the time of the day. In other words, some specific
tasks may require more illuminance than others where-
as some tasks may be more sensitive to bright light.
However, one should keep in mind that it remains
incoherent and ambiguous to draw a generalizable
conclusion from only a few studies.

Setting aside the struggles to find the optimal illumi-
nance clues, more multidimensional approaches incor-
porating human factors need to be adopted, since
presenting only illuminance data may be misleading28

while different physiological and psychological
responses of individuals to luminous environment
require continuous measurements from multiple analy-
sis types.29 A well-known example is Baron’s positive
affect theory30 suggesting that preferred environmental
lighting conditions induce a state of positive effect
which in turn influence several aspects of cognition
and behaviour. This theory was supported by the latter
study of Baron and Thomley31 and another parallel
study performed by Knez,20 which observed higher per-
formance in the conditions that caused better effect, that
is to say, more positive or less negative effect. Several
studies have also shown that mood,32 gender,33,34 age35

as well as time of day36 and time of year37,38 are quite
influential upon cognitive functions.

Together, illuminance effect on cognitive task per-
formance particularly in daylit environments where
lighting conditions are quite dynamic, is a multifaceted
issue. The International Commission on Illumination
(CIE)39 suggests very sensitive experimental designs to
identify the impact of lighting beyond the simple effects
on visual performance, as a possible way to overcome
such environmental and personal factors influencing
performance of any task. The present study was, there-
fore, designed to extend the current knowledge of
cognitive task performance depending on luminous
environment and behavioural factors in two different
ways. The first, through the exploration of the influence
of an external shading system (i.e. the influence of expo-
sure to different daylight levels) on the performance of a
range of visual and cognitive demanding VDT tasks.
The second, through the research of possible relation-
ships between psychological and physiological factors
such as subjective arousal and performance measures
and cognitive task performance.

Material and methods

Participants

A total of 26 (17 male and 9 female) undergraduate
and postgraduate students participated in the study.
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They were all healthy and had normal or corrected

visual acuity (Vision test; www.essilor.com). The par-

ticipants were between 20 and 30 years old (M¼ 23,

SD¼ 3.14) and were using a computer at least 8 h

every day. According to a validated light sensitivity

test by Fortuin,40 people within this age range have

the similar light sensitivity because of the ageing

effect on the eyes. None were aware of the scope of

the research and the expected outcomes of the study.

Participants were asked to keep their sleep–wake

schedule two days before the experimental session as

similar as possible to their sleep routine on workdays

(�30min) as stated in Munich Chronotype

Questionnaire (MCTQ).41 So that, the possibility of

confounding factors associated with general fatigue

that may be confused with the expected influence of

different illuminance levels during the experiment

would be strongly reduced.

Setting

The experiments were performed at the Lighting and

Acoustics Laboratory of the University of Pisa

(School of Engineering), where a full-scale mock-up

VDT workstation of 2.0� 2.0� 2.4m was installed.

Located on the top floor of a two-storey building, the

mock-up was lit by 115 degrees southeast-oriented

window, consisting of a double glass with a light trans-

mission coefficient of 0.75. There were no near exterior

obstructions in the surroundings which reduced access

to sunlight. In each experiment, the subject’s visual field

included the identical scenes consisting of a workstation,
a non-reflecting wall-like façade felt, and the same ceil-
ing mounted cladding. Figure 1 shows the plan and the

section layout of the mock-up laboratory setting.
The workstation was equipped with an office

chair, a desk (1.4m by 0.9m), and an Intel VR CoreTM

i5-7500 CPU @ 3.40GHz 3.41GHz desktop computer
with Asus 2400 Brilliance 15.600 LCD monitor, whose
display resolution was 1280� 1024 pixels at a fresh rate
of 60Hz. The desk was placed parallel to the windows
and participants faced the glazing, so that the impact of
changing daylighting conditions would be easily

observed through the eye movements. Adjustments of
the workstation including display height, working dis-
tance, angle, were made in accordance with EN ISO
9241–5:1998 and the VDT workstation design guide-
lines.3,10 Participants were allowed to choose their
own sitting height provided that the viewing distance

of around 60 cm for a sustained 30-min period was kept
the same. The layout of the workstation remained the
same throughout the whole experiment. To avoid
potential distractions due to the luminance distribution
surrounding the screen, surface properties were chosen
in a way to ensure a pleasant environment which min-

imizes the risks of veiling reflections, annoying bright-
ness etc. Vertical illuminance at the eye from all the
glare sources was measured every 5 s by using the
data logger Delta Ohm model HD2101.1 with the pho-
tometric probe LP 471 PHOT (general mismatch
index f01 and deviation in directional response index

f2, according to the international standard, ISO/CIE

Figure 1. Plan and section layout of the mock-up laboratory setting.
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19476:2014,42 lower than 6% and 3%, respectively),

which was placed on a tripod at the eye level. The

device was properly calibrated and normalized prior

to the study (calibration uncertainty lower than 4%).

Experimental design and procedure

All experiments were consistently conducted between

10:00 am and 12:00 am or 03:00 pm and 05:00 pm for

a period of 3weeks (from 8 May to 11 June 2018),

where an adequate amount of daylight was present

inside the mock-up. During the experiment, partici-

pants were asked to perform a series of tasks including

letter search, vigilance and sustained attention tests.

The sequence of activities performed was not random-

ized but the stimuli in each task was randomly dis-

played (e.g. text/colour combinations in sustained

attention test). The tasks were repeated twice for each

participant, as two sessions of the experimental stage,

one for each solar shading position (see Figure 2): (i)

with the shading system completely inactive and (ii)

with the shading system active, with the slats tilted 5�

downward to the exterior. The sequence of the shading

positions was randomized to avoid any order effects

occurring from the lighting conditions.
As the method was a repeated-measures design,

short practice trials for each task were employed

before the experiment began to minimize the risk of

unwanted learning effects which lead to increase par-

ticipants’ efficiencies over time with their experience in

earlier tests. The training session lasted about 5min

while participants familiarized with the procedure of

the experimental setting and achieved some expertise

on tasks for the adaptation time to the experimental

setting. Extended version of the practiced tasks was

used during the experimental study and one full session

lasted approximately 30-min consisting of two experi-

mental sessions (see Figure 3).
Apart from the objective measures, subjective task

performance (STP) questionnaires were filled in after

Figure 2. Experimental settings (left to right): shading system inactive, shading system active, focus on the tilted slats
(5� downward to the exterior).

Figure 3. Time schedule of the experimental stage.
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each task, to explore participants’ performance rating
on the tasks. Subjective sleepiness (KSS) and the level
of perceived visual discomfort (VAS) were assessed at
the beginning and the end of each experimental session
through an online set of questions. Finally, participants
were asked to complete a glare sensation vote (GSV)
scale to measure the level of perceived glare during
the experiment.

Dependent measures

A multi-dimensional approach based on objective and
subjective measures was adopted for exploring the
impact of a solar shading strategy on the performance
of various cognitive tasks during VDT use. Two groups
of key variables were chosen for being the most related
parameters to the performance and well-being of VDT
users: (i) cognitive task performance (i.e.: search veloc-
ity (SV), vigilance, RT) and (ii) subjective assessments
(i.e.: subjective alertness, STP, GSV).

Cognitive task performance. Cognitive efficiency
was measured by three different tasks requiring SV,
vigilance and sustained attention that involve typical
aspects of regular VDT works. Search accuracy and
character identification correspond to significant
amount of typical VDT work.

Regarding these measures, an approximately
5-minute letter search task in a variety of display set-
tings was conducted. It consisted of 50 search displays
with 5, 10, 15, or 20 items. Participants were instructed
to press to the space bar as fast as possible when they
saw the letter T only if it was ordinary upright position
and with orange colour. They were also told not to do
anything until the next setting was displayed if no T
was present. In this type of task, search time is expected
to increase in parallel with the large numbers of items
on the screen. SV (ms) of each search display (with 5,
10, 15 or 20 items) was recorded as output measures.

Subsequently, participants were engaged in a
Mackworth clock task,43,44 in which their vigilance
was assessed. They were instructed to press the space
bar immediately when the clock hand jumps more than
normally while monitoring the clock hand move
around. The test lasted 5min. The likelihood of an
unusual jump of the clock hand was set to around
40%. The score was calculated as the sum of missed
and wrongly detected skips. It was used as an out-
come variable.

Participants were then asked to respond to the STP
questionnaire describing their self-assessment on vigi-
lance test, and the last test was performed.

The Stroop test requires sustained attention and
executive function to name the colour of the appeared
word on screen. Participants were instructed to respond

to the print colour (green, yellow, red, blue) of the
displayed colour name (GREEN, YELLOW, RED,
BLUE) and press to the associated button on the key-
board (e.g. ‘G’ for green, ‘Y’ for yellow, ‘R’ for red, ‘B’
for blue) as rapidly and correctly as possible. A seman-
tic interference called ‘Stroop effect’ occurs once there
is an incongruity between the colour and word (e.g. the
word BLUE is shown in red colour), and it requires
participants to respond with increased effort so that the
natural tendency for reading the word name can be
avoided, and instead the incongruent colour of the
word written is able to be identified.45 This extra
effort refers to either slower response times or
decreased accuracy for incongruent trials when com-
pared to congruent ones.46 Using PsyToolkit,47,48 a
total of 50 trials were randomly displayed at the
centre of the screen in 20-pt Arial font. The test took
about 3-min and the RT to congruent and incongruent
stimuli were used as measure in the analysis of the cog-
nitive task performance.

Subjective alertness. Self-reported alertness was
measured with the Karolinska Sleepiness Scale
(KSS).49 The KSS is widely used to evaluate level of
arousal. It consists of a 9-point Likert scale assessment
of sleepiness with numbers from 1 to 9 having repre-
sentations; for example, where 1 indicates ‘extremely
alert’ and 9 stands for ‘almost sleeping’. Subjective
sleepiness level of participants was measured with a
modified Italian version of KSS in each session. This
was repeated twice for each setting (just prior to the
letter search test and just after the Stroop test), for a
total of two evaluations to determine whether there was
any decrease or increase in the level of arousal when
exposed to different light levels.

Subjective task performance. Participants were
asked to assess their cognitive efficiency at the end of
each task using a Visual Analogue Scale (VAS)
adopted from Huiberts et al.50 The original English
version of STP was translated into Italian in this
study. It consisted of four questions with response
options on a scale from 0 (not at all) to 100
(very much): how well participants thought they had
performed on the task, how motivated they were to
perform the task as well as possible, how well they
could concentrate on the task and how much mental
effort they had to put into the task. The Cronbach’s
alpha reliability measure for all items was between
a¼ 0.808 and a¼ 0.845.

GSV. Subjective sensation of visual discomfort was
examined at the end of each experimental session
by using a GSV scale. This measurement employs
a 4-point scale with response options from
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1 (imperceptible) to 4 (intolerable). It was originated
from the study of Hopkinson51 and stands for the per-
ceived glare sensation responded by participants.

Statistical analysis

Analysis approach

All the statistical analyses were performed using IBM
SPSS statistics software (version 17.0). Before running
the statistical analysis, all the variables were verified
with a normality test to decide on which statistical
analysis would be used. A Shapiro-Wilk test for nor-
mality was preferred due to the relatively small sample
size of less than 30. Based on results of normality tests,
parametric tests were applied to normal data (p> 0.05)
and non-parametric tests were applied to non-normally
distributed data (p< 0.05). Due to the small sample size
and a mainly non-normal data, a significance level of
p¼ 0.152,53 was adopted for the significance tests. Effect
sizes were calculated since p-values might not be sensi-
tive to effect sizes in such biased experimental groups
as in the present study. Keeping these limitations in
mind, in addition to p, the effect size r was employed
for analysing the significance of the data. The effect size
(r) can be derived by equation (1)54

r ¼ Z� score=N0:5 (1)

with Z-score the signed fractional number of standard
deviation for the observed data and N the number of
observations. According to Ferguson,55 obtained r
values indicate small (r� 0.20), moderate (r� 0.50)
and strong (r� 0.80) effect sizes.

A paired t-test analysis was used to compare self-
reported level of arousal at the beginning and at the end
of experimental sessions. To assess the statistical difference
of the repeated measurements with non-normal data,
Wilcoxon signed-rank test, non-parametric equivalent of
paired t-test, was used. Kruskal-Wallis and Mann-

Whitney U-test was performed to compare results across

different groups such as morning and afternoon.

The bivariate nonparametric correlations were calculated

by using Spearman’s rho correlation test to determine

the relationship between, e.g. objective parameters and

subjective ratings.

Results

To check the normality of distribution for illuminance

data in the case of shading-on and shading-off settings,

Shapiro-Wilk normality test was applied. The W-test

revealed data to be not normally distributed for shad-

ing-on (p¼ 0.006) but normally distributed for shading-

off setting (p¼ 0.403). Therefore, non-parametric

equivalent of one-way analysis of variance, Kruskal-

Wallis was used to explore the relationship between

received vertical illuminances in two shading settings.

The result (v2¼ 10.2, df¼ 1, p¼ 0.001, r¼ 0.196)

revealed a significant difference between received light

levels with a small effect size. Further, when the overall

data was grouped by the time of the day, the shading

settings had a statistically significant effect on vertical

illuminance both in the morning (v2¼ 4.278, df¼ 1,

p¼ 0.039, r¼ 0.194) and more pronouncedly in the

afternoon with a higher effect size (v2¼ 6.939, df¼ 1,

p¼ 0.008, r¼ 0.231).
Based on the statistically significant difference

between shading-on and shading-off settings, hereafter

in the following sections of this paper, the variables

referred to the different settings (shading-on and shad-

ing-off) are indicated as SON and SOFF, respectively.

Descriptive statistical values for the photometric data

measured throughout the experimental sessions are

provided in Table 1.

Subjective glare sensation. Firstly, the Mann-

Whitney U test was conducted to evaluate the relation-

ship between GSV scores and the shading setting in a

broad perspective. Results indicated that when the

Table 1. Descriptive statistical values for the illuminance data.

Vertical illuminance at eye level (lx)

Mean SD Median Minimum Maximum

SOFF

Overall 1296 602 1118 224 2646
Morning 1643 632 1661 426 2646
Afternoon 1041 404 1082 224 1677

SON

Overall 780 504 649 185 2033
Morning 969 667 671 282 2033
Afternoon 642 347 598 185 1425

SON: shading-on; SOFF shading-off.
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shading system was active, the self-reported glare rates

were found statistically significantly lower (p¼ 0.013,

Z¼ –2.494, r¼ 0.345).
Secondly, Wilcoxon signed-rank test was conducted

to explore the overall within-subject variations in

response to two different shading settings. Based on

the previous research, the glare sensation was predicted

to show a tendency to increase when the shading

system was not active. Results provided evidence that

differences in the level of glare perception between two

experimental stages were statistically significant

(p¼ 0.018, Z¼ –2.357, r¼ 0.462). When the shading

system was active, participants rated the experimental

space around 29% less disturbing.
Thirdly, to explore the effect of time of day on the

degree of glare acceptance, a Mann-Whitney U test was

employed by grouping the data in two, as morning and

afternoon. The results, like those obtained in a previ-

ous study of Kent et al.,56 showed statistically signifi-

cant effect of the time of day on glare sensation.

Experienced visual discomfort was more pronounced

during the morning (pmorning¼ 0.038, Z¼ –2.076,

r¼ 0.442) compared to afternoon (pafternoon¼ 0.093,

Z¼ –1.680, r¼ 0.306).
In Figure 4, the perceived glare is plotted in SOFF

and SON settings for morning and afternoon groups,

separately. Y-axis shows the number of participants

that rated the visual environment as: ‘Imperceptible’

or ‘Noticeable’ or ‘Disturbing’ or ‘Intolerable’ on the

GSV scale. This figure indicates that the positive effect

of the use of shading system is more visible giving that

participants experienced more visual discomfort during

morning hours when the shading system was not active,

whereas we see a less pronounced effect of the shading

in afternoon data.
Effect size of settings for each time factor was also

calculated using the procedure as described for Mann-

Whitney U test. Descriptive statistics and inferential

analyses of GSV ratings are provided in Table 2, show-

ing that the r and p-value are not necessarily consistent.

Cognitive task performance. Since experiments were

repeated twice in SON and SOFF settings, a within-

subject design analysis was conducted to investigate

Figure 4. Bar charts of the perceived glare obtained by the participants for (a) morning and (b) afternoon group in the cases
of SON and SOFF.

Table 2. Descriptive and inferential statistics obtained from the glare sensation votes.

Shading setting MeanON (SD) MeanOFF (SD) DM Z-score Effect size (r) p

SON vs. SOFF (overall) 1.73 (0.724) 2.23 (0.652) 0.50 –2.494 0.345 0.013
SON vs. SOFF (morning) 1.50 (0.512) 2.09 (0.610) 0.59 –2.076 0.442 0.038
SON vs. SOFF (afternoon) 1.66 (0.509) 1.90 (0.803) 0.24 –1.608 0.306 0.093

SON: shading-on; SOFF shading-off.

948 Indoor and Built Environment 29(7)



whether an effect of shading system could be detected
on cognitive performance, in different tasks that

require a basic set of skills during VDT work.
Outcome performance factors for letter search, vigi-

lance and sustained attention tasks were specified as
SV, error rate (ER) and response time, respectively.
Table 3 shows the descriptive statistics from the anal-

ysis of the cognitive task performance of participants in
two different shading settings. For each analysed per-

formance factor, Table 3 shows means and standard
deviations in two shading settings and the statistical
significance (p), effect size (r) and Z-score obtained

from Wilcoxon signed-rank test. From the data only
a significant decrease in RT of congruent trials was
observed during sustained attention test in SON setting

(p¼ 0.096). Not statistically significantly, but still, there
were also decrease in RT of incongruent trials with a

rate of 7% and decrease in ER in vigilance test with a
rate of 18% in SON setting. Oppositely, SV in SON set-
ting was greater in all stimuli including 5, 10, 15, 20

items when compared to SOFF setting.
To understand whether the time of day had an influ-

ence on the relationship between cognitive efficiency
and shading settings, a Mann-Whitney U tests was

employed, comparing the test results of each group
(morning and afternoon) separately. No significant dif-
ference was found between morning (11 participants)

and afternoon (15 participants) groups (p> 0.1 for all
variables). In addition, another Wilcoxon signed-rank
test was employed to test within-subject differences

both in the morning and the afternoon groups.
Shading setting, the within-subject variable, had only

significant effect on the RT of congruent trials during
sustained attention test in the morning group.
Participants gave faster responses in SON setting

(p¼ 0.062, Z¼ –1.867, r¼ 0.398).
Interestingly, when the potential influence of trial

order on objective cognitive performance was analysed,
the data revealed that learning effect was also

pronounced over time in terms of RTs of congruent
and incongruent trials in sustained attention test

(pcongruent¼ 0.092, pincongruent¼ 0.096). This practice
effect was also supported by the questionnaire results

indicating that the mental effort spent on the secondary
sustained attention test was around 15% lower than
the first trial, which may suggest that participants

needed less mental effort as being more efficient over
time by practice. In contrast, the overall results did not

show a systematic learning effect. For example, no sta-
tistically significant differences were observed between
trial order and letter search or vigilance tasks. This also

in line with earlier research indicating that learning
effect is a complicated matter occurring non-
systematically among different type of tasks,57 which

would appear to be consistent with results, indicating a
learning effect for sustained attention and letter search,

although not for vigilance. Then, what these results do
present is that such variations across the different task
types can be explained by the weakness of the learning

effect or the fact that some task efficiencies may be
more proper to be improved by practice than others.

Subjective task performance. After each task,

subjective task performance (STP) was assessed by the
participants on a scale from 0 to 100. The questionnaire

consisted of four questions measuring separately overall
success, motivation, concentration and mental effort,
respectively. No statistically significant differences were

observed between mean STP values in SON and SOFF

settings (p> 0.1 for all variables). In SOFF setting,
higher illuminance appeared to promote slightly

greater motivation, concentration and mental effort
levels during all the tasks except vigilance test (see

Figure 5). Considering Figure 5, the subjective self-
reports of performance indicators increased or remained
the same as the illuminance was increased. The main and

most visible inference from STP scores may be that the
participants rated their success and effort spent

Table 3. Within-subject cognitive task performance comparisons in SON and SOFF settings.

SON SOFF Within-subjects statistics (SOFF–SON)

Task types Mean SD Mean SD Z-score
Asymp. Sig.
(2-tailed)

Effect
size (r)

SV (ms) – with 5 items 808.53 452.32 728.65 107.07 –0.267 0.790 0.005
SV (ms) – with 10 items 930.34 341.08 869.42 187.10 –0.724 0.469 0.141
SV (ms) – with 15 items 1090.23 406.21 1051.92 309.74 –0.317 0.751 0.062
SV (ms) – with 20 items 1162.61 324.10 1105.11 193.35 –0.470 0.638 0.092
ER – total errors 3.19 2.05 3.88 4.61 –0.629 0.529 0.123

RT (ms) – incongruent 970.61 172.81 1040.46 204.87 –1.537 0.124 0.301
RT (ms) – congruent 869.26 158.08 949.30 161.80 –1.664 0.086 0.326

SV: search velocity; ER: error rate; RT: reaction time; SON: shading-on; SOFF shading-off.

Note: Correlation is significant for ‘Asymp. Sig. (2-tailed)’ <0.1.
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varyingly for all tasks, which somewhat agrees with the

argument demonstrating that each type of task requires

different amount of cognitive functions.
In a next step, a non-parametric correlation analysis

(Spearman’s rho) was performed with the GSV scores,

in order to assess whether self-reported performance

indicators were associated with lower GSV ratings.

Indeed, a significant negative correlation was found

between the GSV ratings and the replies on overall

success questions (see Table 4).
In the letter search task, participants rated them-

selves to be more successful as they felt more comfort-

able with the luminous environment. These findings

somewhat refer to the positive affect theory of

Baron,30 which implies that preferred environmental

conditions (e.g. lighting in this case) can lead to

better performance and higher effort.57

Not unexpectedly, self-rated overall score showed sig-

nificant negative correlations with the ER in vigilance

test (r¼ –0.320; p¼ 0.021) and the RT in sustained

attention test when stimuli were congruent (r¼ –0.301,

p¼ 0.30). Also, statistically significant positive correla-

tions were found between self-rated concentration score

and the letter search time in complex stimuli (r¼ 0.291;

p¼ 0.36) as well as RT in sustained attention test when

stimuli were congruent (r¼ 0.318, p¼ 0.22). Participants

also reported that they spent more mental effort in con-

gruent stimuli rather than incongruent stimuli during

sustained attention test (see Table 5).

Subjective sleepiness. Paired t-test using the data

from the KSS evaluations recorded at the beginning

and the end of each session was used to compare the

self-reported level of alertness. Results indicated that

Figure 5. Mean subjective performance scores on letter search, vigilance and sustained attention tests in SON and SOFF

settings (error bars represent 95% confidence intervals).

Table 4. Spearman’s rho correlation coefficients (r) and p-values for significantly correlated GSV ratings and STP indicators.

Task types

Overall success – GSV Motivation – GSV Concentration – GSV Mental effort – GSV

r

Sig.
(2-tailed) r

Sig.
(2-tailed) r

Sig.
(2-tailed) r

Sig.
(2-tailed)

Letter search –0.286 0.040 –0.109 0.443 0.243 0.083 0.258 0.065
Vigilance 0.133 0.347 –0.073 0.605 0.136 0.335 0.148 0.294
Sustained attention –0.063 0.657 –0.067 0.638 0.179 0.204 0.167 0.237

Note: Correlation is significant for ‘Sig. (2-tailed)’ <0.05.

GSV: glare sensation vote.
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while the received light level was almost two times more
in SOFF setting, subjective sleepiness increased over the
session (p< 0.1), see Table 6. This finding is surprising
and not consistent with most previous research, while
in line with a few others indicating that higher illumi-
nance do not necessarily induce alertness specifically in
short exposures. Subjective sleepiness (KSS) in SON set-
ting did not differ significantly when comparing
KSS-beginning (KSSB) with KSS-end (KSSE) scores
(p¼ 0.749) and was pafternoon¼ 0.225 in the afternoon
sample, which is relatively close to statistical signifi-
cance. In the morning data, mean KSS score remained
constant (pmorning¼ 1), which might be explained with

higher vitality in the early morning hours. Concerning
overall subjective sleepiness ratings including the whole
experimental sessions, no significant difference was
found between KSSB and KSSE (p> 0.3).

A non-parametric correlation analysis (Spearman’s
rho) between the KSS ratings and the subjective
performance ratings (STP) was performed once again.
To this purpose, subjective alertness ratings over the
period (KSSB and KSSE) were averaged per subject
during one experimental session. Results were
significant between motivation levels and KSS ratings.
Participants rated themselves more motivated in all
tasks when their levels of alertness were higher (see

Table 5. Spearman’s rho correlation coefficients (r) and p-values for significantly correlated STP indicators and cognitive
task performance variables.

Performance variables

Overall success Motivation Concentration Mental effort

r

Sig.
(2-tailed) r

Sig.
(2-tailed) r

Sig.
(2-tailed) r

Sig.
(2-tailed)

SV – with 5 items –0.006 0.968 –0.259 0.063 –0.146 0.300 –0.029 0.836
SV – with 10 items –0.049 0.730 0.005 0.973 0.198 0.158 0.266 0.056
SV – with 15 items –0.054 0.702 –0.067 0.637 0.099 0.485 0.138 0.330
SV – with 20 items –0.249 0.074 0.073 0.606 0.291 0.036 0.221 0.115
ER – total errors –0.320 0.021 –0.030 0.833 0.268 0.055 0.196 0.163
RT – congruent –0.301 0.030 –0.124 0.382 0.318 0.022 0.337 0.014
RT – incongruent –0.206 0.143 –0.178 0.207 0.105 0.459 0.100 0.478

Note: Correlation is significant for ‘Sig. (2-tailed)’ <0.05.

SV: search velocity; ER: error rate; RT: reaction time.

Table 6. Results from the paired t-test results of subjective alertness.

KSSB–KSSE KSSB KSSE Mean. Diff. t df
Sig.
(2-tailed)

Overall 3.5192 3.7884 –0.2692 –1.044 51 0.301
Shading: off [SOFF] 3.3076 3.9615 –0.6538 –1.799 25 0.084
Shading: on [SON] 3.7307 3.6153 0.1153 0.324 25 0.749
Morning sample 3.50 3.50 0 0 21 1
Afternoon sample 3.5333 4.00 –0.4666 –1.239 29 0.225

KSSB: KSS score at the beginning; KSSE: KSS score at the end of the session.

Note: Correlation is significant for ‘Sig. (2-tailed)’ <0.1.

Table 7. Spearman’s rho correlation coefficients (r) and p-values for significantly correlated KSS ratings and STP indicators.

Task types

Overall success – KSS Motivation – KSS Concentration – KSS Mental effort – KSS

r

Sig.
(2-tailed) r

Sig.
(2-tailed) r

Sig.
(2-tailed) r

Sig.
(2-tailed)

Letter search –0.563 0.001 –0.434 0.001 0.080 0.575 –0.064 0.652
Vigilance –0.254 0.069 –0.313 0.024 0.008 0.953 –0.043 0.761
Sustained attention –0.190 0.176 –0.444 0.001 –0.061 0.668 –0.047 0.743

Note: Correlation is significant for ‘Sig. (2-tailed)’<0.05; correlation is strong significant for ‘Sig. (2-tailed)’ <0.01.
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Table 7). Additionally, a negative correlation (r¼ –0.563)
was obtained between KSS and self-reported overall suc-
cess in visual search test.

Identical analysis was conducted to examine the cor-
relation between KSS and objective cognitive task per-
formance. Only statistically significant correlation was
found between the RT of incongruent trials during
sustained attention test and the KSS ratings. The cor-
relation was positive with a value of r¼ 0.355, impli-
cating that the RT for incongruent trials was higher
when the participants rated themselves sleepier.

Discussion

The current findings revealed that the use of a shading
system improved performance of a VDT user on a task
requiring sustained attention, while no significant
effects were observed on tasks involving other cognitive
skills such as SV and vigilance. One possible explana-
tion might be that, the daylit work environment has a
much slighter impact on SV and vigilance than on the
performance of a sustained-attention requiring task.
Sustained attention might be more sensitive towards
variations, even small ones, in the luminous environ-
ment. As daylight has a dynamic character, fluctua-
tions in illuminance is inevitable. Although daylight
illuminance is within acceptable ranges, in SON setting
small variations of the vertical illuminance were shown
with respect to the SOFF setting (see also Table 1).
Except for sustained attention and vigilance test, SV
performance of participants became worse under SON

setting. This might be a clue to show the triggering
effect of dynamic aspect of daylight on such tasks
requiring velocity for identifying targets during screen
work (which is also quite linked with acute alertness)
while other cognitive skills such as vigilance, concen-
tration and attention etc. require less variations and
more stability in the illuminance distribution for, e.g.
being more focused on such tasks requiring specific
demands. These opposite trends in performance are
in fact the expression of how optimal illuminances for
different brain functions may differ markedly.16

In case of time-of-day effects, although there was
not any significant performance difference between
morning and afternoon samples, within-subjects anal-
ysis revealed that morning group performed signifi-
cantly better on the sustained attention task in SON

setting. This result is in line with findings of previous
studies suggesting that lower illuminance levels during
morning hours promote higher performance in tasks
associated with sustained attention.26,27 SOFF setting
resulted in lower illuminance range and high daylight
variation which was two times higher than SON set-
ting. Considering the southeast orientation of work-
station receiving morning sunlight more intensely

than in the afternoon, therefore, in such cases, the

use of solar shading systems can be very useful espe-

cially during morning hours for increasing work pro-

ductivity as well as minimizing accidents in such VDT

works requiring high attention.
Another interesting observation of this study was

that despite the short practice session before tests for

familiarizing participants with the procedure, regard-

less of the illuminance, better performance on sustained

attention test was observed in the second sessions.

Similar improvement was not observed on other

tasks, yet, this carry over effect should be carefully

considered for further studies to minimize the risk of

potential confounding factors.
As expected, self-reported glare rates were signifi-

cantly higher in SOFF setting and, moreover, this was

more pronounced in the morning sessions (29% and

39%, respectively), or perhaps there was a higher tol-

erance toward the luminous environment during after-

noon hours. Besides, in the present study, participants

did not have the preference to manipulate the solar

shading setting during their experimental sessions,

instead, default settings were applied. Yet, a significant

correlation between GSV ratings and subjective perfor-

mance indices was found. Participants rated themselves

as more successful in letter search test when their sen-

sation of glare was lower. In a further study, employing

a user-set shading strategy in one of the sessions would

be a better research practice to explore the relative

impact of positive effect.30

Regarding the subjective performance indicators,

higher illuminance in SOFF setting generally appeared

to promote more concentration, motivation and

mental effort levels during performing tasks. Perhaps

by the nature of the awareness, participants’ self-

reported measures of task performance were signifi-

cantly correlated with the objective indicators.

Within-subjects analysis revealed no statistically sig-

nificant differences between mean STP values in SON

and SOFF settings.
With respect to subjective measure of alertness,

participants reported a lower level of alertness

during SOFF setting in which there were higher illumi-

nance inside. Despite major differences in material

and methods such as the light source and character-

istics of the light exposure (intensity, timing, duration

etc.), this result is different from what has been found

in earlier research and hence, requires a follow-up

investigation. Sound associations, on the other hand,

were found between alertness and both objective and

STP. A significant increase was observed on the level

of subjective motivation as well as on RTs in the

sustained attention test when participants reported a

higher level of alertness.
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Conclusions

There exists a knowledge gap in the literature, which
has not yet allowed a clear determination of the occur-
rence and direction of light effects on performance,
comfort and well-being of individuals under ever-
changing daylit conditions (where light intensity may
vary every second).

The main aim of this study was to evaluate whether
the use of an external shading system would have any
possible positive effect on cognitive performance, alert-
ness level and visual comfort of individuals in a daylit
VDT workstation. In order to pursue this aim, a full-
scale mock-up VDT workstation was realized. The
mock-up was used, under only daylight conditions,
for testing whether cognitive performance, alertness
and visual comfort of VDT users changed under two
different realistic office daylighting settings, when shad-
ings are active (SON) and inactive (SOFF). That leads us
to notice whether any significant differences might
happen when daylight illuminance changes or when
daylight variation happens. Findings show that even
subtle variations in daylight illuminance range (from
around 200 lx to 2600 lx at eye level) have remarkable
effect on cognitive performance. Sustained attention
and some degree of vigilance are found to be positively
affected by using shading devices with an average ver-
tical illuminance of 780 lx in SON setting. Oppositely,
performance in SV was prompted by higher illumi-
nance levels of 1300 lx in SOFF setting, although the
difference was not significant. The illuminance also
had a significant effect on the degree of perceived
glare; in SON setting, 780 lx at eye level promoted
more visual comfort than in SOFF with 1300 lx. At
most VDT workstations, however, there is an integrat-
ed situation between daylight and electric sources.
Visual sense holds a different function rather than,
e.g. thermal sense and individual variability in lighting
preferences has to be taken into consideration for light-
ing solutions. Future research should incorporate the
influence of light sources separately and/or together so
as to get a deeper insight into the relationship between
the lighting and human performance.

The current findings could provide some supportive
evidence to those focused on daylighting design of
VDT workplaces, on how to avoid unbalanced illumi-
nance distribution and minimize the occurrence of neg-
ative effects while maintaining a high level of task
performance and satisfaction. The results from this
study pave the way to the future design of daylit work-
places to avoid excessive daylight exposure by using
external shading, which can reduce the large variations
inherent in daylight. However, more research is needed
to validate the findings and to concretely determine the
influence of daylighting and its acute non-visual effects

on cognitive task performance, visual comfort and

alertness in general population of VDT office workers.
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