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Abstract. Relativistic particles with higher spin can be described in first quantization using
actions with local supersymmetry on the worldline. First, we present a brief review of these
actions and their use in first quantization. In a Dirac quantization scheme the field equations
emerge as Dirac constraints on the Hilbert space, and we outline how they lead to the description
of higher spin fields in terms of the more standard Fronsdal-Labastida equations. Then, we
describe how these actions can be extended so that the propagating particle is allowed to take
different values of the spin, i.e. carry a reducible representation of the Poincaré group. This
way one may identify a four dimensional model that carries the same degrees of freedom of the
minimal Vasiliev’s interacting higher spin field theory. Extensions to massive particles and to
propagation on (A)dS spaces are also briefly commented upon.

1. Introduction
Spinning particle actions based on local supersymmetry on the worldline [1, 2] identify amusing
systems that exemplify several theoretical constructions and form an arena where to test various
methods and ideas. From this perspective they attracted the interest of Victor, who wanted
to use them to test quantization methods whose development he had contributed to [3]. These
models can be employed to study higher spin field theories in first quantization.

Higher spin theories have recently attracted much interest in a desire to understand better
Vasiliev’s constructions of interacting theories of higher spin fields [4, 5] and their use in
AdS/CFT dualites [6, 7]. Vasiliev’s theories are non-lagrangian, and it is at present unclear
how to perform their quantization. A first quantized approach, similar to the one used in string
theory, might be welcome to address the problem. With this perspective in mind, we have
analyzed first quantization of the (higher) spinning particles in a series of paper [8, 9, 10, 11],
whose content will be summarized in the following. After that we discuss how to modify
the action to allow the particle to take different values of the spin, i.e. carry a reducible
representation of the Poincarè group. Ideally, one would like to construct a system that carries
the same degrees of freedoms of the Vasiliev’s theories, be it a particle, string or more general
mechanical system, as a first step towards a first quantized realization of interacting higher spin
theories. Here we will find a particle model that carries the same degrees of freedom of a four
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dimensional Vasiliev’s theory, though the model is constructed in flat space and extension to
AdS remains unclear.

2. Actions
The class of higher spin particles that we are going to discuss are singled out by actions with
an O(N)-extended supersymmetry on the worldline. They are constructed as supersymmetric
extensions of the usual relativistic scalar particle action. The latter has a geometrical
interpretation: it is proportional to the length of the worldline. In natural units it is given
by

S = −m
∫
ds (1)

where ds =
√
−ẋµẋµ, with xµ(τ) the functions that describe the worldlines in a flat spacetime

with cartesian coordinates xµ. The parameter τ is largely arbitrary, as one can perform
reparametrizations of the form

τ → τ ′ = τ ′(τ) , xµ(τ)→ x′
µ
(τ ′) = xµ(τ) (2)

as long as these transformations are invertible. This is a local symmetry that is crucial to
keep Lorentz invariance manifest and recover unitarity of the quantum theory. Indeed one
may use the freedom of selecting which parameter to use, and choose τ = x0 so that x0 stops
being a dynamical variable. Then, the action takes the following standard form without gauge
symmetries

S[x(t)] = −m
∫
dt
√

1− ẋ(t) · ẋ(t) (3)

where t ≡ x0 is the time and x the space coordinates. However, it is often preferable to keep a
manifest Lorentz invariance, and accept a redundancy in the description of the system, by using
all of the xµ(τ) as dynamical variables. The local symmetry in (2) manifests itself in the form
of a first class constraint when considering the hamiltonian formulation, a preliminary step for
canonical quantization. Computing the conjugate momenta pµ from (1), one finds a constraint,
the mass-shell constraint, and a vanishing canonical hamiltonian Hc

pµ =
∂L

∂ẋµ
=

mẋµ√
−ẋ2

→ pµp
µ +m2 = 0 , Hc = pµẋ

µ − L = 0 . (4)

The nontrivial dynamics is fully contained in the constraint, traditionally called H and
normalized as

H ≡ 1

2
(pµp

µ +m2) = 0 . (5)

It generates the gauge transformations (the reparametrizations) in phase space. The phase space
action takes the form

S[xµ, pµ, e] =

∫
dτ (pµẋ

µ − eH) (6)

where e is the Lagrange multiplier (the einbein) that implements the constraint H = 0. It is
a gauge field, since under reparametrizations it transforms as the derivative of the infinitesimal
gauge parameter ζ

δxµ = ζpµ , δpµ = 0 , δe = ζ̇ . (7)

Eliminating the momenta by their algebraic equations of motion pµ = e−1ẋµ, one finds the
configuration space action

S[xµ, e] =

∫
dτ

1

2
(e−1ẋµẋµ − em2) (8)
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which has the advantage over (1) of having a smooth massless limit, just as the phase space
action. It can be put in an arbitrarily curved space, and in that form was used in [12] to develop
a worldline approach to scalar fields coupled to background gravity.

The N = 1 supersymmetric extension of the scalar model produces an action for a spin 1/2
particle. One introduces fermionic partners ψµ to the bosonic coordinates xµ, and gauges the
supersymmetry that relates them. The action in phase space takes the form

S =

∫
dτ

(
pµẋ

µ +
i

2
ψµψ̇

µ − eH − iχQ
)

(9)

where the first class constraints given by

H =
1

2
p2 , Q = pµψ

µ (10)

are gauged by the einbein e and gravitino χ. Both the ψµ’s and χ are real Grassmann valued
variables, and Q is called the susy charge as it generates supersymmetry transformations on the
worldline. The constraints realize the N = 1 susy algebra in one dimension through the Poisson
brackets

{Q,Q} = −2iH . (11)

Upon quantization the ψµ play the role of the gamma matrices, and the constraintQ = 0 becomes
the massless Dirac equation in the Dirac quantization scheme. A mass term can be introduced by
dimensional reduction. This action was formulated in [13], and its quantum mechanics analysed
in [14]. It is used in [15, 16] for developing a worldline description of quantum Dirac fields
coupled to background gravity.

The extension to N = 2 supersymmetries is quite instructive, as it contains additional
elements useful for understanding the general case. One introduces complex fermionic parterns
ψµ and ψ̄µ to the coordinates xµ, and gauges the full N = 2 extended supersymmetry that
relates them. The action in phase space takes the form

S =

∫
dτ
(
pµẋ

µ + iψ̄µψ̇
µ − eH − iχ̄Q− iχQ̄− a(J − c)

)
(12)

where the first class constraints

H =
1

2
pµp

µ , Q = pµψ
µ , Q̄ = pµψ̄

µ , J = ψ̄µψµ . (13)

are gauged by the variables e, χ̄, χ, a. The constraints realize the N = 2 extended susy algebra

{Q, Q̄} = −2iH , {J,Q} = iQ , {J, Q̄} = −iQ̄ (14)

(other Poisson brackets vanish). Note that there is a U(1) ∼ SO(2) group, the so-called R-
symmetry group, generated by the charge J that is gauged by the U(1) gauge field a. The latter
is allowed to have an additional Chern-Simons coupling constant c, whose net effect is to modify
the constraint implemented by a from J = 0 to J − c = 0. The action is manifestly Poincaré
invariant in target space and thus identifies a relativistic model. The H,Q, Q̄ constraints
guarantee unitarity, as they can be used to eliminate the negative norm states generated by
the variables x0, ψ0, ψ̄0, while the J constraint guarantees irreducibility of the model, i.e. it
describes a particle that carries an irreducible representation of the Poincaré group of target
space. It is seen that this model describes a spin 1 massless particle through the free Maxwell
equations. Let us explain how this arises in some detail, considering a spacetime of dimension
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D = 4 for simplicity. Wave functions can be seen as depending on the generalized coordinates
xµ and ψµ

φ(x, ψ) = F (x) + Fµ(x)ψµ +
1

2
Fµν(x)ψµψν +

1

3!
Fµνρ(x)ψµψνψρ +

1

4!
Fµνρσ(x)ψµψνψρψσ (15)

whose Taylor expansion in the ψ’s stops, as the latter are Grassmann variables. The momenta
pµ = −i ∂∂xµ and ψ̄µ = ∂L

∂ψµ act as derivatives (we use left derivatives for the Grassmann variables,

meaning that we remove the increment from the left). Now, the classical constraints C become

differential operators Ĉ that select physical wave functions by requiring Ĉφphys(x, ψ) = 0. The J
constraint suffers from quantum ordering ambiguities, so that using the antisymmetric ordering
J = 1

2(ψ̄µψµ − ψµψ̄µ) one finds the differential operator Ĵ = 2 − ψµ ∂L∂ψµ . Choosing a vanishing

Chern-Simons coupling, one finds the constraint Ĵφphys(x, ψ) = 0 which is solved by

φphys(x, ψ) =
1

2
Fµν(x)ψµψν . (16)

Then, the constraints Q̂φphys = 0 gives integrability conditions on the surviving tensor Fµν(x)
(Bianchi identities upon the introduction of a gauge potential)

∂ρFµν + ∂µFνρ + ∂νFρµ = 0 (17)

and the constraint Q̂†φphys = 0, arising form quantizing Q̄, produces the remaining free Maxwell
equations

∂µFµν = 0 . (18)

Thus we see how the standard description of a free spin 1 massless particle emerges in first
quantization. More generally, one can use different values of the quantized Chern-Simons
coupling to describe differential p-forms satisfying generalized Maxwell equations in arbitrary
dimensions [17]. This description was used in [18, 19] to treat spin 1 and antisymmetric tensor
fields coupled to gravity in first quantization.

The general case, where one introduces N real fermionic partners ψµi (i = 1, ..., N) associated
to the bosonic coordinates xµ, and gauges the resulting O(N)-extended supersymmetry present
on the worldline, was discussed in [1, 2], and describes a particle of spin s = N

2 . The action in
phase space takes the form

S =

∫
dτ

(
pµẋ

µ +
i

2
ψiµψ̇

µ
i − eH − iχiQi −

1

2
aijJij

)
(19)

where the first class constraints

H =
1

2
pµp

µ , Qi = pµψ
µ
i , Jij = iψµi ψjµ (20)

are gauged by the fields e, χi, aij . The Poisson bracket algebra of the constraints is indeed that
of the O(N)-extended supersymmetry

{Qi, Qj} = −2iδijH , {Jij , Qk} = δjkQi − δikQj
{Jij , Jkl} = δjkJil − δikJjl − δjlJik + δilJjk . (21)

Quantization à la Dirac shows that the model describes a massless particle with spin s = N
2 in

terms of the Bargmann-Wigner equations [20]. Let us review briefly the analysis for integer spin
s. In this case one can form complex combinations of the fermionic variables

ψµI =
1√
2

(ψµi + iψµi+s) , ψ̄µI =
1√
2

(ψµi − iψ
µ
i+s) , I = i = 1, .., s (22)
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and have s pairs (indexed by I) of fermionic creation/annihilation operators (of course, each
pair has an additional spacetime index acting as a spectator). In this basis only the subgroup
U(s) ⊂ SO(2s) is manifest. As in the N = 2 case, one can take the ψµI as fermionic coordinates,

on which a generic wave function may depend, and ψ̄Iµ = ∂
∂ψµI

as corresponding momenta, realized

as left derivatives with respect to the coordinates. Then it follow that the generic wave function
R(x, ψ) contains all possible tensors having s blocks of antisymmetric indices, as the indices of
each block arise from the Taylor expansion of the same type of fermion, (i.e. a fermion with
the same internal index I), in a way similar to what seen in eq. (15). Then one must impose
the quantum constraints on the wave function. The constraints due to the SO(N) charges Jij
select the tensor with s blocks of d = D

2 indices, implying that a nontrivial solution is present
for even spacetime dimensions D only

Rµ11..µ1d,...,µ
s
1..µ

s
d
. (23)

In addition, the Jij constraints require this tensor to be totally traceless and with the symmetries
of a Young tableau with d rows and s columns. The susy charges can also be split in pairs
of complex conjugate charges, just like the fermions. The contraints from the susy charges
QI = pµψ

µ
I imply integrability conditions of the form

∂[µRµ11..µ1d],...,µs1..µ
s
d

= 0 (24)

for each block (interpreted as Bianchi identities once solved). The other half of susy charges
Q̄I = pµψ̄

µ
I produce “Maxwell equations” of the form

∂µRµµ12..µ1d,...,µ
s
1..µ

s
d

= 0 . (25)

The H constraint is satisfied identically as consequence of the algebra. These are the geometric
equations that describe a free field of spin s, equivalent to the massless Bargmann-Wigner
equations, usually given with the wave function in a multispinor basis [20]. They are called
geometric as the tensors R can be interpreted as linearized curvatures. A proper analysis of
these equations, showing in particular that they are equivalent to the Fronsdal-Labastida ones
and that they propagate the correct degrees of freedom, has been carried out in [21, 22, 23],
also reviewed in [24]. The above equations have also the property of being conformal invariant
[25, 26]. They can be related to the more standard description in terms of the Fronsdal-Labastida
equations [27, 28], as we are going to describe next.

3. Fronsdal-Labastida equations
In this section we discuss how the Fronsdal-Labastida equations, describing the propagation of
a massless particle of integer spin s = N

2 , emerge from solving some of the constraints of the
canonical analysis of the previous section. In analogy with the case of the electromagnetism, we
introduce the gauge potential

ϕ(x, ψ) := ϕ(x)µ11..µ1d−1
,...,µs1..µ

s
d−1

ψ
µ11
1 ..ψ

µ1d−1

1 · · ·ψµ
s
1
s ..ψ

µsd−1
s (26)

with the symmetries of a rectangular Young tableau with d − 1 rows and s columns, and we
solve the condition (24) by setting

R(x, ψ) = Q1 · · ·Qsϕ(x, ψ) (27)

where we have used the complex charges QI with I = 1, ...s. A generalisation of the Poincaré
lemma assures that this solution is unique, modulo the equivalence relation, or gauge symmetry,
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of the form ϕ(x, ψ) ∼ ϕ(x, ψ) +QIξ
I(x, ψ). Observe now that the curvature must vanish when

we trace over the sectors I and J , making the tensor in (23) totally traceless: this condition is
encoded into the SO(N) constraint JIJ and produces the following equation

∂

∂ψρI

∂

∂ψJρ
R(x, ψ) = 0 → Q1..QI−1QI+1..QJ−1QJ+1..Qs(Gϕ(x, ψ)) = 0 (28)

where the charges QI and QJ are missing, and where we have introduced the Fronsdal-Labastida
operator defined by

G := −2H +QIQ̄
I +

1

2
QIQJJ

IJ . (29)

The next task is to get rid of the operator on the left of the Fronsdal-Labastida operator in (28).
This can be achieved by introducing a new independent field, called the compensator

ρIJK(x, ψ) := wµνδ(x)
∂

∂ψµI

∂

∂ψνJ

∂

∂ψδK
ρ(x, ψ) (30)

where ρ(x, ψ) has the same symmetries and expansion of the gauge potential given in (26). The
compensator parametrizes elements in the kernel of the operator in (28) acting on Gϕ(x, ψ).
Thus, one may rewrite eq. (28) as

Gϕ(x, ψ) = QIQJQKρ
IJK(x, ψ) . (31)

This is the Fronsdal-Labastida equation with compensator. The latter was introduced in this
context in [29, 30]. One can also use part of the gauge symmetry to set the compensator to zero,
and recover the original Fronsdal-Labastida system

Gϕ(x, ψ) = 0 (32)

that enjoys the residual gauge invariance with a traceless gauge parameter

δϕ = QIξ
I(x, ψ) , with J [IJξK](x, ψ) = 0 . (33)

Note that, for consistency, the gauge field has to be doubly traceless JIJJKLϕ(x, ψ) = 0. This
condition is a consequence of (32). In four dimensions the gauge field is a completely symmetric
tensor ϕµ1···µs , and eq. (32) translates into the Fronsdal equation

∂ν∂νϕµ1···µs − (∂µ1∂
νϕνµ2···µs + · · ·) + (∂µ1∂µ2ϕ

ν
νµ3···µs + · · ·) = 0 (34)

where the brackets contain s and 1
2s(s − 1) terms, respectively, needed for symmetrizing the µ

indices. Of course, the gauge field must be doubly traceless, i.e. ϕνδνδµ5···µs = 0.
We have presented the analysis for integer spins only, but a similar program can be carried

out for the case of half-integer spins as well [31]. The equivalent BRST quantization for this
model is described in [32, 33]. In particular, in [33] one uses it to construct second quantized
actions for any spin in flat spaces of arbitrary dimensions. Quantized point particles of any spin
have been treated also in [34].

4. Other gaugings and the case of U(s)
We have seen that the constraints of the O(N) spinning particle allow to recover a unitary
irrep of the Poincaré group, corresponding to a massless particle with fixed spin (helicity).
Unitarity is guaranteed by the hamiltonian constraint H and the susy constraints Qi, as they
can be used to remove the dangerous polarizations in the wave function generated by the x0
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and ψ0
i quantum variables. The additional constraints due to the O(N) charges Jij can be

relaxed without destroying unitarity of the quantum theory, as they serve the only purpose of
selecting an irreducible representation of the Poincaré group. In fact, one may actually prefer
to describe the propagation of a multiplet of states, especially if one imagines that they could
be made interacting somehow. One example was treated in [35] for the O(4) particle in D = 4.
As O(4) ∼ SU(2) ⊗ SU(2), Pashnev and Sorokin gauged only a SU(2) factor, finding that
the emerging model propagates a graviton and three scalars. In general, one may investigate
the consequences of gauging different subgroups of the O(N) symmetry group. For example,
one may not gauge anything at all, and thus find the propagation of a maximum number of
states with different spins. A more refined option is to gauge the U(1)s subgroup of O(N)
(we consider even N = 2s, restricting ourselves to bosonic particles). Each factor U(1) may
have an additional independent Chern-Simons coupling, useful to project to the subsector of the
wave functions containing a fixed number of antisymmetric indices of each favour (different I’s
indicate different flavours). This projection was briefly discussed earlier for the N = 2 case, and
constitutes a useful method to project to a desired subsector of the Hilbert space. It has been
used often in worldline applications, as in [36] and [37].

In this section we are going to analyze, as a particular example, the gauging of a U(s) subgroup
of the full R-symmetry group O(2s). In the previous sections the O(2s) generators were split
in U(s) covariant form as Jij = (JIJ , J

IJ , JIJ), where JIJ and JIJ insert the metric tensor and
compute a trace in the IJ family of indices, respectively, while JIJ is the U(s) generator that
performs anti-symmetrization of indices between the aforementioned families (we recall that an
upper index J is equivalent to a lower index J̄). By gauging only the JIJ generators one gains
the freedom of adding a Chern-Simons coupling c, as in the N = 2 model, see eq. (12). The
phase space action will thus read

S =

∫
dτ
(
pµẋ

µ + iψ̄Iµψ̇
µ
I − eH − iχ̄

IQI − iχIQ̄I − aIJ(JJI − c δJI )
)
. (35)

The presence of the Chern-Simons coupling allows to set the eigenvalue of the number operators
NI := JII with fixed I (i.e. no summation) to any desired value. In particular, by setting
c = p+1−D/2 one obtains curvature tensors described by rectangular Young tableaux with p+1
rows and s columns in any spacetime dimension D. Indeed, the covariant Dirac quantization of
the model gives as physical field a curvature R, which forms an irreducible GL(D) tensor with
the symmetries of the rectangular Young tableau described above, obeying the Maxwell-like
equations

QI R = Q̄I R = 0 . (36)

These Maxwell-like fields propagate a multiplet of single-particle states, as the trace constraint
is not imposed. This is analogous to the case of the U(N) spinning particles, introduced in [38]
and analyzed in [39], modelling particles in a euclidean complex space, which do not have any
natural trace operator (see refs. [40, 41] for further analysis of these amusing systems). As field
theory models, these Maxwell-like fields were introduced at the level of gauge potentials in [42]
following ideas developed in [43], while their curvature description was studied in [44, 45].

In the following we perform a light-cone analyses of the particle model in order to count
the physical degrees of freedom. We define light-cone coordinates in target space as x± :=

1√
2
(x1∓x0), while xa denote transverse coordinates, such that A ·B = A+B−+A−B+ +AaBa.

By using worldline reparametrizations one can gauge fix x+ = τ and solve the corresponding
constraint H = 0 by setting p− = −papa

2p+
, since p+ is assumed to be invertible in light-cone

analysis. Now one can use the local supersymmetries to gauge fix ψ+I = ψ̄I+ = 0, and solve
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QI = Q̄I = 0 with ψ−I = −paψaI
p+

and ψ̄I− = −paψ̄Ia
p+

. The action thus reduces to

S =

∫
dτ

(
p+ẋ

+ + paẋ
a − papa

2p+
+ iψ̄Iaψ̇

a
I − aIJ(ĴJI − c δJI )

)
, (37)

where we have defined the reduced U(s) generator as ĴIJ = ψaJ ψ̄
I
a. At the quantum level this

generator suffers from an ordering ambiguity, for which we choose again the anti-symmetric
ordering, such that

ĴIJ =
1

2
[ψaJ , ψ̄

I
a] = ψaJ ψ̄

I
a − δIJ

D − 2

2
,

and the quantum constraint ĴIJ − c δIJ acts as the differential operator (ψaI
∂
∂ψaJ
− p δJI ), for

c = p + 1 − D
2 . One can see then that the states are tensors of GL(D − 2), and the constraint

ĴIJ − c δIJ provides GL(D − 2) irreducibility by fixing the length of the columns to be p, and by
gluing the columns together in a rectangular Young tableau with p rows and s columns. The
physical state consists thus of a massless irreducible tensor of GL(D − 2) with the symmetries
spelled above. Its particle spectrum is provided by the branching of the rectangular Young
tableau of GL(D− 2) into traceless SO(D− 2) representations. In particular, for p = 1 we have
a symmetric GL(D−2) tensor of rank s, and the spectrum is given by massless particles of spin
s, s − 2, s − 4, .. down to spin zero or one, according to if s is even or odd, respectively. It is
rather interesting to note that taking even spin s and sending s→∞ one finds the spectrum of
the Vasiliev’s minimal bosonic models, that contain even spins ranging from zero to infinity [5].

To summarize this section, we have discussed how a unitary spectrum is maintained by
relaxing the gauging of the full O(N) R-symmetry group to a subgroup G ⊂ O(N). There are
many options to choose from, and we have indicated only a few without the pretention of being
complete. As a final example to check further how relaxing the gauging increases the unitary
spectrum, one may consider the simple case of O(4) in D = 4 dimensions. Gauging the full
O(4) group produces the spectrum of a pure spin s = 2 (2 dof (degrees of freedom)), gauging a
U(2) ⊂ O(4) with p = 1, as discussed above, produces the Maxwell-like spectrum containing a
spin 2 and a spin 0 (3 dof), gauging a SUL(2) ⊂ SUL(2)⊗SUR(2) = O(4) produces the Pashnev-
Sorokin spectrum of a graviton plus 3 scalars (5 dof), while gauging nothing at all gives the
spectrum with a maximum number of propagating states consisting in a graviton, four vectors,
and six scalars (16 dof). As final curiosity, one may check that gauging the subgroup U(1)2, as
indicated at the beginning of the section, one obtains the unitary propagation of massless spins
s = 2, s = 1, and s = 0 (5 dof), that includes a vector on top of the Maxwell-like spectrum.
This is achieved by fixing the two independent Chern-Simons couplings, allowed in the present
situation, to have physical states (in light-cone quantization) with occupation number p = 1 for
each flavor of worldline fermions.

5. Massive particles and couplings to AdS
A class of actions for massive particles of higher spins can be obtained by dimensionally
reducing the massless model through the Scherk-Schwarz mechanism [46]. The massive particle
lives in odd dimensions, as the original massless model with the fully gauged O(N)-extended
supersymmetry lives in even dimensions. Further, taking the massless limit produces a model
propagating several helicities. This procedure gives another method for generating actions for
the propagation of a multiplet of particle states [11]. In addition, one might add the option
of gauging a smaller subgroup of the R-symmetry group, thus producing an extended range of
possibilities. We are not going to analyze them further here.

A different option to construct worldline models for higher spinning particles is that of gauging
some part of the symmetry algebra of the Sp(2N) quantum mechanics described in [47], where
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instead of anticommuting variables ψµi one uses complex commuting variables zµi and z̄µi . This
approach has been analyzed in [48].

A key problem is to study allowed interactions of massless particles of higher spin. As already
mentioned, a set of consistent interacting models has been produced by Vasiliev, that constructed
suitable nonlinear field equations on (A)dS backgrounds. At the first quantized level, an initial
step it to study how the O(N) spinning particles could be coupled to a nontrivial background.
For a while it was thought that no coupling could be allowed at all, but eventually a way to couple
them to the (A)dS spaces [49], and more generally to conformally flat spaces [9], was found. In
[9] the method employed was that of covariantizing the constraint algebra in phase space, and
check if the algebra could be still of first class. On (A)dS the algebra becomes quadratic, with
the only modification with respect to the flat space case (21) sitting in the Poisson brackets of
the susy charges

{Qi, Qj} = −2iδijH + ib
(
JikJjk −

1

2
δijJklJkl

)
(38)

where the constant b is related to the (A)dS curvature scalar by b = R
D(D−1) . On conformally

flat backgrounds, the algebra acquires more complicated structure functions. The model can be
quantized, and in [10] we have used it to study the one-loop effective action on (A)dS spaces,
computing the first few Seeley-DeWitt coefficients, namely the ones that are related to the
diverging terms in four dimensions. A similar calculation presumably could be carried out for
the massive models introduced in [11], though the gauge fixing procedure may be more difficult
because of the more complicated structure functions. We expect that restricting the calculation
of the effective action to the (A)dS spaces from the start (in [10] we have kept the background
arbitrary, and restricted to the (A)dS case only at the end) one might push the calculation to
the next perturbative order (a three loop calculation on the worldline). The conterterms to be
used for such a calculation are already available [50]. On an arbitrary geometry a three loop
calculation is quite demanding [51], but the simplications due to restricting to (A)dS spaces
make it much more manageable [52]. We plan to report on that task in the near future.
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