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QUIVERS WITH RELATIONS FOR SYMMETRIZABLE CARTAN
MATRICES AND ALGEBRAIC LIE THEORY

CHRISTOF GEISS

ABSTRACT. We give an overview of our effort to introduce (dual) semicanonical
bases in the setting of symmetrizable Cartan matrices.

1. INTRODUCTION

One of the original motivations of Fomin and Zelevinsky for introducing cluster
algebras was “to understand, in a concrete and combinatorial way, G. Lusztig’s
theory of total positivity and canonical bases” [Fo]. This raised the question of
finding a cluster algebra structure on the coordinate ring of a unipotent cell, and to
study its relation with Lusztig’s bases. In a series of works culminating with [GLSI]
and [GLS2], we showed that the coordinate ring of a unipotent cell of a symmetric
Kac-Moody group has indeed a cluster algebra structure, whose cluster monomials
belong to the dual of Lusztig’s semicanonical basis of the enveloping algebra of the
attached Kac-Moody algebra. Since the semicanonical basis is built in terms of
constructible functions on the complex varieties of nilpotent representations of the
preprojective algebra of a quiver, it is not straightforward to extend those results
to the setting of symmetrizable Cartan matrices, which appears more natural from
the Lie theoretic point of view. The purpose of these notes is to give an overview
of [GLS3] - [GLS7], where we are trying to make progress into this direction.

The starting point of our project was [HL], where Hernandez and Leclerc ob-
served that certain quivers with potential allowed to encode the g-characters of
the Kirillov-Reshetikhin modules of the quantum loop algebra U,(Lg), where g
is a complex simple Lie algebra of arbitrary Dynkin type. This quiver with po-
tential served as model for the definition of our generalized preprojective algebras
IT = I, (C, D) associated to a symmetrizable Cartan matrix C' with symmetrizer
D over an arbitrary field K, which extends the classical construction of Gelfand
and Ponomarev [GP]. After the completion of a preliminary version of [GLS3] we
learned that Cecotti and Del Zotto and Yamakawa had introduced
similar constructions for quite different reasons. In comparison to the classical con-
structions of Dlab and Ringel [DR1], [DR3] for a symmetrizable Cartan matrix C,
we replace field extensions by truncated polynomial rings. Many of the core results
of representations of species carry over over to this setting if we restrict our atten-
tion to the so-called locally free modules, see [GLS3]. In particular, we have for
each orientation Q of C an algebra H = Hg (C, D, Q) such that in many respects
II can be considered as the preprojective algebra of H. Our presentation of these
results in Section B]is inspired by the thesis [Geu], where Geuenich obtains similar
results for a larger class of algebras.

2010 Mathematics Subject Classification. Primary 16G20, 17B67 Secondary 13F60, 14M15.
1


http://arxiv.org/abs/1803.11398v1

2 CHRISTOF GEISS

Since our construction works in particular over algebraically closed fields, we can
extend to our algebras H and II several basic results about representation varieties
of quivers and of varieties of nilpotent representations of the preprojective algebra
of a quiver in our new context, again if we restrict our attention to locally free
modules, see Section @l Nandakumar and Tingley [NT] obtained similar results
by studying the set of K-rational points of the representation scheme of a species
preprojective algebra, which is defined over certain infinite, non algebraically closed
fields K.

In our setting we can take K = C, and study algebras of constructible functions
on those varieties of locally free modules and realize in this manner the universal
enveloping algebra U(n) of the positive part n of a complex semisimple Lie algebra,
together with a Ringel type PBW-basis in terms of the representations of H. For
arbitrary symmetrizable Cartan matrices we can realize U(n) together with a sem-
icanonical basis, modulo our support conjecture, see Section [Bl

Conventions. We use basic concepts from representation theory of finite dimen-
sional algebras, like Auslander-Reiten theory or tilting theory without further refer-
ence. A good source for this material is [Ril]. For us, a quiver is an oriented graph
Q = (Qo, Q1, s,t) with vertex set Qo, arrow set ()1 and functions s, t: @1 — Qo indi-
cating the start and terminal point of each arrow. We also write D = Homg (—, K).
We say that an A-module M is rigid if Extly(M, M) = 0.

2. COMBINATORICS OF SYMMETRIZABLE CARTAN MATRICES

2.1. Symmetrizable Cartan matrices and quivers. Let I = {1,2,...,n}. A
symmetrizable Cartan matriz is an integer matrix C' = (c;;) € Z'*! such that the
following holds:

o ¢ci;=2foralli el and ¢;; <0 forall i # j,

e there exist (¢;)ier € Nfr such that diag(cy,...,¢,) - C is a symmetric.
In this situation D := diag(cy, ... ,c,) € Z!*1 is called the symmetrizer of C. Note
that the symmetrizer is not unique. In particular, for all £ € N also kD is a
symmetrizer of C.

It is easy to see that the datum (C, D) of a symmetrizable Cartan matrix C' and

its symmetrizer D is equivalent to displaying a weighted graph (T, d) with

e [ the set of vertices of T,

o g;; = ged(cij, ¢ji) edges between ¢ and j,

o d: I - Ny, i— g
Here we agree that gcd(0,0) = 0. We have then ¢;; = —w

Gij for all 7 7§ ]

2.2. Bilinear forms, reflections and roots. We identify the root lattice of the
Kac-Moody Lie algebra g(C) associated to C with Z! = @;cZa;, where the simple
roots («;);es form the standard basis. We define on 7! by

(a4, 05)c,p = €icij,

a symmetric bilinear form. The Weyl group W = W (C) is the subgroup of Aut(Z!),
which is generated by the simple reflections s; for ¢ € I, where

si(aj) = 0y — CijQy.

The real roots are the set
Are(C) = Uie 1 W ().
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The fundamental region is
F := {a € N/ | supp(a) is connected, and (o, a;)o,p < 0 for all i € T}.

Here, supp(«) is the full subgraph of I'(C') with vertex set {i € I | a(i) # 0}. Then
the imaginary roots are by definition the set

Ain(C) =W (F)UW (-F).
Finally the set of all roots is
A(C) := Are U Aj ().
The positive roots are A*(C) := A(C) N NI, and it is remarkable that A(C) =
AT(CYU —-AT(O).
A sequence i = (i1,12,...,1;) € I' is called a reduced expression for w € W

if w=s; 8,8, and w can’t be expressed as a product of less than | = I(w)
reflections of the form s; (¢ € I). In this case we set

(21) ﬁiJC =80y Sip .Sik—l(aik) and Visk = SiySip_1 " Sigy (aik)

for k =1,2,...,l, and understand §;; = oy, as well as y;; = o,. It is a standard
fact that B € AT for k = 1,2,...,1, and that these roots are pairwise different.
Obviously,

w(Bi,k) = i,k for k = 1, 2, ceey l.

The following result is well known.

Proposition 2.1. For a connected, symmetrizable Cartan matriz C' the following
are equivalent:

o C is of Dynkin type.

o The Weyl group W (C) is finite.

e The root system A(C) is finite

e All roots are real: A(C) = Ao(C).

Moreover, if in this situation i is a reduced expression for wp, the longest element

of W, then AT = {Bi,1, Bi2s -5 Bia}-

2.3. Orientation and Coxeter elements. An orientation of C'isaset Q C I x 1
such that

o [2N{(i,4), (7,0} <= cij <O,

e for each sequence 41,1, ...,i5+1 with (4;,4;41) € Q for j = 1,2,...

have il 75 ik-i—l'
The orientation 2 can be interpreted as upgrading the weighted graph (T, d) of
(C, D) to a weighted quiver (Q°,d) with g;; arrows ozz(-;), - ag”)
(i,7) € Q, such that Q° = Q°(C, ) has no oriented cycles.
For an orientation 2 of the symmetrizable Cartan matrix C' € Z'*! and i € I

we define

si(Q) :=={(r,s) € Qi g {r,s}in{(s,r) €I xI]|(r,s)eQandiec {rs}}.

Thus, in Q°(C,s;(2)) the orientation of precisely the arrows in Q°(C,$2), which
are incident with 4, is changed. If ¢ is a sink or a source of Q°(C,2) then s;(Q) is
also an orientation of C. It is convenient to define

Q(—,i):={jel]| (i) eQ}tand Q,—):={iel]| () €Q}.

k we

)

from j to ¢ if
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We have on Z! the non-symmetric bilinear form

¢ if i = 7,
(2.2) (=, —)opa: ZF x 21 — Z, (i, ) = { cicyy  if (4,1) € Q,
0 else.
We leave it as an exercise to verify that
(2.3) (o, B)e.p.a = (si(@),5:(8))c,p,s ()
if 7 is a sink or a source for Q.
We say that a reduced expression i = (i1,42,...,4) of w € W is +-admissible
for © if 41 is a sink of Q°(C, ), and i is a sink of Q°(C,si,_, - Siy i, (2)) for
k=2,3,...,1. If moreover | =n and {i1,...,i,} = I, we say that c=s;, -+ $;,8i,

is the Cozeter element for (C, Q).
2.4. Kac-Moody Lie algebras. For a symmetrizable Cartan matrix C' € Z*1,
the derived Kac-Moody Lie algebra g’ = ¢'(C) over the complex numbers has a
presentation by 3n generators e;, h;, f; (i € I) subject to the following relations:
(i) [es, fi] = dijha;
(ii) [hi, hy] = 0;
(111) [hz, ej] = Cij€y, [h,“ fJ] = _Cijfj;
(iv) (ade;))'i(e;) =0, (adfi)!~(f;) =0 (i #).
Note that for C' of Dynkin type this is the Serre presentation of the corresponding
semisimple Lie algebra. In case rankC' < |I| we have of g'(C) # g(C) and the
latter has in this case a slightly larger Cartan subalgebra, which makes for a more
complicated definition, see for example [GLS6l Sec. 5.1] for a few more details. Of
course, the main reference is [Kal.
Let n = n(C) be the Lie subalgebra generated by the e; (i € I). Then U(n) is
the associative C-algebra with generators e; (1 < ¢ < n) subject to the relations

(2.4) (ade;)t =% (e;) = 0, (i,7 € 1,i# 7).
U(n) is N7 graded with deg(e;) = a; (i € I). With
ne :=nNU(n), for a € AT(0O)

we recover the usual root space decomposition of n.

3. QUIVERS WITH RELATIONS FOR SYMMETRIZABLE CARTAN MATRICES

We keep the notations from the previous section, in particular C' € Z*! is a
symmetrizable Cartan matrix with symmetrizer D and €2 is an orientation for C.

3.1. A class of 1-Iwanaga-Gorenstein algebras. Let K be a field and Q =
Q(C, D, Q) the quiver obtained from Q°(C, D, ), see Section 2-3] by adding a loop
€; at each vertex i € I. Then H = Hi(C, D, Q) is the path algebra K@ modulo
the ideal which is generated by the following relations:

o ¢ foralliel

o ¢; Q) oWl for all (4,5) € Qand k=1,2,...g;;.
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Recall that 9ij = Gji = ng(Cij; Cji); thus _Cij/gij = lcm(cl-, Cj)/Ci.
For (i,7) € Q let ¢; = cij/gi; and c; = ¢ji/gij. We may consider the following

symmetrizable Cartan matrix, symmetrizer and orientation:

i 2 . - c; 0 .

(i,9) — ij (i,3) — [ “ (69) — £(; 5

C <03‘i 5 > , D (0 Cj) and {(i,7)}-
Thus,
Q) .= (O QUd)) = ECZ BRI Sj

and

’

H9) HK(C(i,j),D(i,j),Q(i,j)) — KQ(’i,j)/<ez?i7€;j7€i_cjiaij — Oél'jej_cij>.
Note, that with
lHJ’ = eiH(ivj)ej and H; =e¢;H;e; = K[Ez]/(ec)

it is easy to see that ;H; := ZH]' D915 g a H;-Hj-bimodule, which is free of rank —c;;

as a H;-module, and free of rank —c;; as H;-(right)-module. If we define similarly

HGD .= Hi (CHD, DO {(5,4)}) and jH] == e;HG e, then jH; = ;H/® is a

Hj-H;-bimodule, which is free of rank —cj; as H;-module and free of rank —c;; as

H;-(left)-module. It is easy to see that we get an isomorphism of H;-H ;-bimodules
iHj = HOIHK(]‘HZ', K)

The adjunction yields for Hi-modules My, for k € {i,j}, a natural isomorphism of
vector spaces

(31) HomHi(iHj ®Hj Mj,Mi) — HOHlHj (Mj,jHi QH, Ml), f— fv.

Quite similarly to the representation theory of modulated graphs, in the sense of
Dlab and Ringel [DRI], we have the following basic results from [GLS3| Prp. 6.4]
and [GLS3|, Prp. 7.1].

Proposition 3.1. Set H := Hg(C,D,Q). With S := X;crH; we can consider
B = @ iH; as an S-S-bimodule and find:
(i,5)€Q
(a) H=Ts(B) := @B®Sj, i.e. H is a tensor algebra.
JEN
(b) There is a canonical short exact sequence of H-H-bimodules

mult

0> HosBosH S Hos H ™ H 0,
where 6(h; @b h,.) = hib® h, — h; @ bh,..

Note that the H-H-bimodules H ®s B ®s H and H ®g H are in general only
projective as H-left- or right-modules, but not as bimodules. Anyway, the above
sequence yields a functorial projective resolution for certain modules which we are
going to define now. We say that a H-module M is locally free if e;M is a free
H;-module for all ¢ € I. In this case we define

rank(M) := (rankgy, (e;M));cr.
For example, there is a unique (indecomposable) locally free H-module E; with
rank(E;) = «; for each i € I. For later use we define for all r € N/ the module

E" := @ieIEf(i), and observe that rank(E") = r. Let us write down the following
consequences of Proposition Bl see [GLS3| Sec. 3.1] and [GLS3| Cor.7.1].
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Corollary 3.2. For H as above we have:
(a) The projective and injective H-modules are locally free. More precisely we
have
rank(He;, ) = fir  and rank(De; H) =i for k €I,
where i is a reduced expression for the Cozeter element of (C, ).
(b) Each locally free H-module M has a functorial projective resolution

0 HogBog M 22 Heg M 2 A 0.

Moreover, if M is not locally free, then proj.dim M = oco.

(¢) H is 1-Iwanaga-Gorenstein, i.e. proj.dim(gDH) <1 and inj.dim(gH) <
1. Moreover an H-module M is locally free if and only if proj. dim(M) < 1.

It follows that the Ringel (homological) bilinear form descends as the non-
symmetric bilinear form ([2.2)) to the Grothendieck group of locally free modules,
where we identify the classes of the generalized simples E; with the coordinate
vector «; (i € I), see also [GLS3| Prp. 4.1].

Corollary 3.3. If M and N are locally free H-modules, we have
dim Homp (M, N) — dim Exty, (M, N) = (rank(M), rank(N))c.p.o-

By combining Corollary B2l with standard results from Auslander-Reiten theory
we obtain now the following result.

Corollary 3.4. Let M be an indecomposable, non projective, locally free H-module
such that the Auslander-Reiten translate Ty M is locally free. Then

rank(tg M) = ¢ - (rank(M)),

where ¢ = s;, -+ 8 is the Coxeter element for (C,§). Moreover, if we take R €
ZI*T such that D- R is the matriz of (—, —)c.p.q with respect to the standard basis,
we get c = —R™YC — R).

This is the K-theoretic shadow of a deeper connection between the Auslander-
Reiten translate and reflection functors, which we will discuss in the next subsection.

3.2. Auslander-Reiten theory and Coxeter functors. By Proposition [3.1] we
may view H = Hg (C, D, Q) as a tensor algebra. Thus, we identify a H-module M
naturally with a S-module M = @©;c7M; together with an element (M;;); j)eq of

(3.2) H(M) := EB € Hompy, (;H; ®pu, M;, H;).
(i,5)€Q

Write s;(H) := Hy(C, D, s;(Q)) for any ¢ € I. If k is a sink of Q°(C, ), we have
for each H-module M a canonical exact sequence
(3.3)

My in
0— Ker(Mkﬁin) — @ rH; ®m; M; —— M}, where My, i, = @jeﬂ(k,—)Mkj'

jEQ(k,—)

We can define now the BGP-reflection functor
M; ifi £k,

Fy: vep(H) — rep(si(H)),  (FM): = {Ker(Mk' ) iti=k.
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We can moreover define in this situation dually the left adjoint F, : rep(sx(H)) —
rep(H). Note that k is a source of Q°(C,si2). See [GLS3| Sec. 9.2] for more
details. We observe that the definitions imply easily the following:

Lemma 3.5. If k is a sink for Q and M is a locally free H-module which has no
direct summand isomorphic to Ej, and F;" (M) is locally free, then rank(F;f M) =
si(rank(M)).

The proof of [GLS3| Prp. 9.6] implies the following, less obvious result:

Lemma 3.6. Suppose that k is a sink for Q and M a locally free rigid H-module,
with no direct summand isomorphic to Ey, then Homgy (M, Ey) = 0.

We can interpret F}' as a kind of APR-tilting functor [APR]. See [GLS3| Sec. 9.3
for a proof of this non-trivial result.

Theorem 3.7. Let k be a sink of Q°(C,Q). Then X := yH/Hey, & 7~ Hey, is
a classical tilting module for H. With B := Endy(X)°P we have an equivalence
S: rep(si(H)) — rep(B) such that the functors S o F;" and Hompy (X, —) are iso-
morphic.

Standard tilting theory arguments and Auslander-Reiten theory, together with
Lemma and Lemma yield the following important consequence:

Corollary 3.8. Let k € I be a sink for Q and M a locally free rigid H-module,
then F;f (M) is a rigid, locally free si(H)-module.

Consider the algebra automorphism of H, which is defined by multiplying the
non-loop arrows of Q(C, ) by —1. It induces the so called twist automorphism
T: rep(H) — rep(H). Moreover, let s;, ---8;,8;, be the Coxeter element for (C, Q2),
corresponding to the +-admissible sequence i1, 12, . . ., iy, see Section 2.3l Now we
can define the Cozeter functor

Ct:=Fo---oF! oF': rep(H) — rep(H).

Following ideas of P. Gabriel and Ch. Riedtmann [Gal Sec. 5], by a careful compar-
ison of the definitions of the reflection functors and Auslander-Reiten translate, we
obtain the following result. See [GLS3, Sec. 10] for the lengthy proof.

Theorem 3.9. With the H-H-bimodule Y := Ext},(DH, H) we have an isomor-
phism of endofunctors of rep(H):

Hompy (Y, )= ToCt
If M s locally free, we have functorial isomorphisms
(M) =2 Hompy(Y,M) and ;M =Y ®u M.

In particular, in this case the Coxeter functor CT and the Auslander-Reiten trans-
late T may be identified up to the twist T.

It is not true in general that the Auslander-Reiten translate of a locally free H-
module is again locally free. In [GLS3| 13.6-13.8] several examples of this behavior
are documented. This motivates the following definition. A H-module M is 7-
locally free if TFM is locally free for all k € Z. In particular, rigid locally free
modules are 7-locally free. We call an indecomposable H-module preprojective,
resp. preinjective, if it is of the form 77%(He;) resp. 7%(De; H) for some k € Ny and
1 € I. Thus, these modules are particular cases of rigid 7-locally free modules.



8 CHRISTOF GEISS

3.3. Dynkin type. By combining the findings of previous section with standard
Auslander-Reiten theory and the characterization of Dynkin diagrams in Prop. 2]
we obtain the following analog of Gabriel’s theorem, see [GLS3, Thm. 11.10].

Theorem 3.10. Let H = Hg(C, D, Q) be as above. There are only finitely many
isomorphism classes of indecomposable, T-locally free H-modules if and only if C
is of Dynkin type. In this case the map M — rank(M) induces a bijection between
the isomorphism classes of indecomposable, T-locally free modules and the positive
roots AT (C). Moreover, all these modules are preprojective and preinjective.

Note however, that even for C' of Dynkin type, the algebra H(C, D, Q) is in most
cases not of finite representation type, see [GLS3| Prp. 13.1] for details.

Let C be a symmetrizable Cartan matrix of Dynkin type and i = (41,42, ...,4)
a reduced expression for the longest element wq of the Weyl group W, which is +-
admissible for the orientation Q. With the notation of (2.1 we abbreviate 8; = 5; ;
for j =1,...,r, and recall that this gives a complete list of the positive roots. By
Theorem we have for each j a unique, locally free, indecomposable and rigid
representation M (3;) with rank(M(8;)) = B;.

Proposition 3.11. With the above notations we have
dim Homp (M (8:), M (8;)) if i < j,
— dim Exty, (M (8;), M(B;)) if i > j.

In particular, Hompg (M (B;), M(B;)) = 0 if i > j and Exty (M(8;), M(B;)) = 0 if
i<

(Bis Bj)e,pa = {

In fact, by Theorem B7 and equation (Z3]) we may assume that either ¢ = 1
or j = 1. In any case M(81) = E;, is projective. In the first case we have
Exty(Ey, M(B;)) = 0. In the second case we have Hompy (M (B;), Fi,) = 0 by
Lemma Now our claim follows by Corollary

The next result is an easy adaptation of similar results by Dlab and Ringel [DR2]
for species. The proof uses heavily Proposition B.I1] and reflection functors. This
version was worked out in Omlor’s Masters thesis [Oml], see also [GLS7], Sec. 5].

Proposition 3.12. With the same setup as above let k € {1,2,...,r} and m =
(m1,...,my) € N” such that B, = Z;Zl m;B; and my =0. Then M(B) admits a
non-trivial filtration by locally free submodules

0= Mgy C My C-- C Myy=M(B)
such that M /M;_1y = M(B;)™ for j = 1,2,...,r. It follows, that M(By) has
no filtration by locally free submodules
0=M"D cMYc...c MO = M(B),
such that rank(MU=Y /MUY =m;B3; for j =1,2,...,r.

3.4. Generalized preprojective algebras. Let Q = Q(C) be the quiver which

is obtained from Q(C, Q) by inserting for each (i,j) € Q additional g;; arrows
(1) (g

i Q 757) from i to 4, and consider the potential

« i

Gij

k) (k) _—cij/gij k) (k) _—cji/gij

W= 3 d(aae 0 —alfaile ),
(i,§) € k=1
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The choice of 2 only affects the signs of the summands of W. Recall that for a
cyclic path ajas -+ - a; in Q by definition

8gyc(a1a2-~-o¢l) = Z Q1042 - - 1+ - 1.
ie{j€[L,l]|a;=a}
The generalized preprojective algebra of H is
IT = H(Qu D) = K@/<a;yo(w) |Oz€@1’ Efi |i€1>'
It is easy to see that IT does not depend on the choice of 2, up to isomorphism.

Notice that for (i,7) € 2 we have

cyc _ (k) —cij/gij —cji/gij (k)
0 i (W) = ;i € —¢; ;i
i

It follows, that for any orientation € of C' we can equip Ik (C, D) with a Ny-grading

by assigning each arrow ozgf) with (¢, 7) € Q degree 1 and the remaining arrows get
degree 0. We write then

x(C,D) = EPT(C, D, ),
1=0

and observe that IIx (C, D, Q) = Hg(C, D, ). We obtain from Theorem [3.9] the
following alternative description of our generalized preprojective algebra, which
justifies its name:

Proposition 3.13. Let C be a symmetrizable Cartan matriz with symmetrizer D,
and Q an orientation for C. Then, with H = Hk(C, D, Q) we have

I1(C, D,Q); = Exth (DH, H)
as an H-H -bimodule, moreover
II(C, D) = Ty (Exty(DH,H)) and pII(C,D)= & 75" He..
iel,keNg
Here the first isomorphism is an isomorphism of K -algebras, and the second one of

H-modules.

Similarly to Proposition Bl we have the following straightforward description
of our generalized preprojective algebra as a tensor algebra modulo canonical re-
lations [GLS3| Prp. 6.1], which yields a standard bimodule resolution. See |[GLS3,
Sec. 12.1] for the proof, where we closely follow [CBSh, Lem. 3.1]. See also [BBK|
Sec. 4].

Proposition 3.14. Let C' be a symmetrizable, connected Cartan matriz and 11 :=
HK(C, D) Wlth B = @(i,j)eﬂ(iHj @]Hl) we hcwe H = Ts(B)/<a€CZyC(W) |i6[>7
where we interpret OFY¢(W) € B ®g B in the obvious way. We obtain an eract
sequence of TI-II-bimodules
(3.4) HosTHHesBosTS IeslS I -0,
where

flei®e;) =07 (W) ®@ei +e; @07 (W), glei®@b®ej) =eib®e;j —e; @ bey
and h is the multiplication map. Moreover Ker(f) = Homp(DILII) if C is of
Dynkin type, otherwise f is injective.
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We collect below several consequences, which can be found with detailed proofs
in |[GLS3| Sec. 12.2]. They illustrate that locally free II-modules behave in many
aspects like modules over classical preprojective algebras. Note that part (b) is an
extension of Crawley-Boevey’s remarkable formula [CB|, Lem. 1]

Corollary 3.15. Let C' be a connected, symmetrizable Cartan matriz, and 11 =
Ik (C, D) as above. Moreover, let M and N be locally free II-modules.

(a) If N finite-dimensional, we have a functorial isomorphism
Extf (M, N) 2 D Exty (N, M).
(b) If M and N are finite-dimensional, we have
dim Exty; (M, N) = dim Homp (M, N)+dim Homy (N, M)—(rank(M), rank(N))c.p.
(¢) If C is not of Dynkin type, proj.dim(M) < 2.
(d) If C is of Dynkin type, 11 is a finite-dimensional, self-injective algebra and
rep, ¢ (I1) is a 2-Calabi- Yau Frobenius category.

Similar to Cor. (b) the complex ([B4]) yields (the beginning of) a functorial
projective resolution for all locally free II-modules. Thus (a), (b) and (c) follow by
exploring the symmetry of the above complex. For (d) we note that in this case II
is finite-dimensional and II is a locally free module by Thm. B.10 and Prp. B.13

4. REPRESENTATION VARIETIES

4.1. Notation. Let K be now an algebraically closed field. For @ a quiver and
pj € e;(KQ>2)es, for j =1,2,...,1 weset A= KQ/(p1,...,p). Note, that every
finite dimensional basic K-algebra is of this form. We abbreviate Q9 = I and set
for d € N{:

Rep(KQ,d) := X4eq, Homp (K469 K49)) and  GLq := xie7 GLagy (K).

The reductive algebraic group GLg acts on Rep(K @, d) by conjugation, and the
GLg-orbits correspond bijectively to the isoclasses of K-representations of ). For
M € Rep(KQ,d) and p € ¢;KQe; we can define M(p) € Hom (K90, K9(0)) in a
natural way. We have then the GLg-stable, Zariski closed subset

Rep(4,d) := {M € Rep(KQ,d) | M(p;) =0 for j =1,2,...,1}.

The GLg-orbits on Rep(A4,d) correspond now to the isoclasses of representations
of A with dimension vector d. It is in general a hopeless task to describe the
irreducible components of the affine variety Rep(A, d).

4.2. Varieties of locally free modules for H. The set of locally free represen-
tations of H = Hg (C, D, Q) is relatively easy to describe. Clearly, for each locally
free M € rep(H) we have dim(M) = D - rank(M).

Proposition 4.1. For r € NI we have the open subset
Rep,; (H,r) :== {M €rep(H,D -r) | M is locally free} C Rep(H,D - r),
which is irreducible and smooth with dimrep, ¢ (H,r) = dim GLp.» —3(r,T)c,p.

In fact, it is well known that the modules of projective dimension at most 1 form
always an open subset of rep(A,d). One verifies next that Rep, ¢ (H,r) is a vector
bundle over the GL p..-orbit O(@ieIE;(Z)), with the fibers isomorphic to the vector
space H(r) := H(E"), see (32).



QUIVERS WITH RELATIONS FOR SYMMETRIZABLE CARTAN MATRICES 11

This yields the remaining claims. Note that the (usually) non-reductive algebraic
group
Gr := Xic1 GLyi) (H;) = AUtS(@ieIE:(l))
acts on the affine space H(r) naturally by conjugation, and the orbits are in bijection
with isoclasses of locally free H-modules with rank vector r.
As a consequence, if M and N are rigid, locally free modules with rank(M) =
rank(N), then already M =2 N, since the orbits of rigid modules are open.

4.3. Varieties of E-filtered modules for II. Recall the description of g (C, D)
in Proposition3.14l A H := Ts(B)-module M is given by a S-module M = ®;¢; M;
such that M; is a H;-module for i € I, together with an element (Mij)(i,j)eﬁ of
H(M) = @ HOInHi(iHj ®Hj Mj,Mi),
(i,4)€Q

where Q = Q N Q°P. Extending somewhat (3.3) we set

M, in = @ Sgn(i,j)Mij : @ iHj H; M; — M; and
jE€Q(i,—) F€Q(i,—)
Mi,out = H M]\i M, — @ iMj ®Hj Mj.
JEQ(—,1) JEQ(=,1)

We define now for any S-module M, as above, the affine variety
Rep™ (I, M) := {(My;) ; jyeq € H(M) | My in © My ou; = 0 for all k € I},

and observe that the orbits of the, usually non-reductive, group Autg(M) on

Repﬁb(H, M) correspond to the isoclasses of possible structures of representations

of IT on M, since the condition M, i, © My out corresponds to the relation 95Y¢(W).
Similarly to the previous section we can define the open subset

Rep, ¢ (II,x) := {M € Rep(I, D - r) | M locally free} C Rep(Il, D - r),

and observe that Rep,; (I, r) is a fiber bundle over the GLp.,-orbit O(E"), with
typical fiber Repﬁb(H, E"). Finally we define for any projective S-module M the
constructible subset

(M) = {(My;); jyeq € Rep™ (ILM) | ((Mi;)i5, M) is E-filtered}.

Here, a II-module X is E-filtered if it admits a flag of submodules 0 = X (o) C
Xay € -+ € Xy = X, such that for all k& we have X)/X(x—1) = Ej, for
some i1,1%9,...,4; € I. Note that for C' symmetric and D trivial this specializes
to Lusztig’s notion of a nilpotent representation for the preprojective algebra of a
quiver. However, if C is not symmetric even in the Dynkin case there exist finite-
dimensional, locally free II-modules which are not E-filtered, see [GLS6l Sec. 8.2.2]
for an example.

We consider TI(r) with the Zariski topology and call it by a slight abuse of
notation a variety. In any case, it makes sense to speak of the dimension of II(r)
and we can consider the set

Trr(TI(r))™a*

of top-dimensional irreducible components of II(r).
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Theorem 4.2. Let C' be a symmetrizable generalized Cartan matriz with sym-
metrizer D and H = Hg (C, D,Q),II1 = I (C, D) for an algebraically closed field
K. For the spaces 1(r) of E-filtered representations of 11 we have

1
(a) dimTI(r) = dim H(r) = Z cir(i)? — 5(1‘,1‘)0)[) for all r € NT.
icl
(b) The set B := [],cpr Irr(I(r))™** has a natural structure of a crystal of type
Beo(—00) in the sense of Kashiwara. In particular, we have

|Trr (TI(r))™**| = dim U (n)y,

where U(n) the universal enveloping algebra of the positive part n of the
Kac-Moody Lie algebra g(C).

We will sketch in the next two sections a proof of these two statements, which
are the main result of [GLSG].

4.4. Bundle constructions. The bundle construction in this section is crucial. It
is our version [GLSE, Sec. 3] of Lusztig’s construction [L1], Sec. 12].

For m € N we denote by P,, the set of sequences of integers p = (p1,p2,.--,Dt)
with m > p; > p2 > -+ > p, > 0. Obviously P., parametrizes the isoclasses of
Hj-modules, and we define Hy = &%_, Hy./(€;’). For k € I and M € rep(II) we set

fack (M) = Mk/Im(Mk,in) and subk(M) = Ker(Mkyout).
With this we can define
II(M)*P = {M € TI(M) | facy (M) = HP} and
O(M)gp = {M € II(M) | sub, (M) = HP}
for p € P.,. We abbreviate II(M)*™ = II(M)%¢". Tn what follows, we will focus
our exposition on the varieties of the form II(M)*P_ however one should be aware
that similar statements and constructions hold for the dual versions II(M) p.

For an E-filtered representation M € rep(Il) there exists always a k € I such
that facy (M), viewed as an Hi-module, has a non-trivial free summand. It is also
important to observe that II(M)* is an open subset of TI(M).

Fix now k € I, let M be a projective S-module and U be a proper, projective
S-submodule of M with U; = M; for all j # k. Thus, M/U = EJ for some r € N,
and can choose a (free) complement T}, such that My = Uy @ Ty. F_or_ partitions
p=(c,q,92,---,q¢)and q = (q1,...,q) in P, we set moreover Homg' (U, M) :=
{f € Homgs(U, M) | f injective}, and define
YEPa .= (U, M, f) € TI(U)*%Rep® (IT, M) x Hom$ (U, M) | f € Homy (U, M)}.
Note that for (U, M, f) € Y*P:9 we have in fact M € II(M)*P, and that the group
Auts(U) acts freely on Y*P-9 via

9- (UM, f):= ((9:Ui;(id®9; ")) s jyeas Ms g+ 7).
Lemma 4.3. Consider in the above situation the diagram

YFPpa

’ "
/ p

I[(U)*9 x Hom{' (U, M) II(M)%-P
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with p'(U, M, f) = (U, f) and p" (U, M, f) = M. Then the following holds:
(a) p’ is a vector bundle of rank m, where
m = Z dim g HomK(Tk,ij ®H]. Mj) — dimg HOHlHk (Tk71m(Uk,in))-
jeﬁ(_)k)
(b) p" is a fiber bundle with smooth irreducible fibers isomorphic to
Autg(U) x Grif (HP),
where Gr}}“k (HP) := Homi}l,:j(Hlf, Ti)/ Autg, (Tk).
Corollary 4.4. In the situation of Lemmal[].3 the correspondence
Z' = p" (" (2" x Hom™(U,M)) := 2"
induces a bijection between the sets of irreducible components Irr(II(U)%9) and
Irr(II(M)*P). Moreover we have then
dim Z"” — dim Z' = dim H(M) — dim(U).
Note, that this implies already part (a) of Theorem In fact the Corollary

allows us to conclude by induction that dim II(r) < dim Rep™”(H,r). On the other
hand, we can identify H(r) with an irreducible component of II(r).

4.5. Crystals. For M € rep(Il) and j € I there are two canonical short exact
sequences
0— K;(M)— M — fac;(M) -0 and 0—sub;(M)— M — C;(M)— 0.

We define recursively that M is a crystal module if fac; (M) and sub; (M) are locally
free for all j € I, and K;(M) as well as C;(M) are crystal modules for all j € I.
Clearly, if M is a crystal module, for all j € I there exist ¢;(M), ¢} (M) € N such
that

(4.1) sub; (M) = Efj
Note moreover, that crystal modules are by construction E-filtered. It is now easy
to see that for all projective S-modules M the set

(M) :={M € II(M) | M is a crystal representation}

is a constructible subset of II(M). The following result from [GLS6, Sec. 4] is
crucial for the proof of Proposition (b). It has no counterpart for the case of
trivial symmetrizers.

) and fac; (M) = Ef;(M).

Proposition 4.5. For each projective S-module M the set II(M)°" is a dense and
equidimensional subset of the union of all top dimensional irreducible components

of II(M).

This allows us in particular to define for all Z € Irr(II(M))™** and ¢ € I the value
©i(Z), see (@), such that for a dense open subset U C Z we have ¢;(M) = ¢;(Z)
for all M € U. Similarly, we can define ¢} (Z).

Next we set

Irr (I (r)“P)™8* .= {Z € Trr(M(r)"?) | dim Z = dim H(r)}
for ¢ € I and p € Ny, and similarly Irr(II(r); ,. By Lemma 3] we get a bijection
ef(r,p): Trr(M(r)“P)™* — Trr(M(r + a;)"PT)™> Z s 9" (p' "1 (Z x Jp))
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Similarly we obtain a bijection
ei(r,p): Irr(I(r); )™ — Irr(IL(r + ;) pt1) ™.
This allows us to define for all r € N’ the operators
é;: Trr(TI(r))™® — Irr(IL(r + ;)), Z +— ei(r, 0i(2))(Z°),

where Z° € Irr(II(r); », (2))™* is the unique irreducible component with 7Z°=7Z.
Similarly, we can define the operators &f in terms of the bijections e} (r,p). We
define now

(4.2) B = H Irr(TI(r))™® and wt: B — Z!, Z s rank(Z).
reNg

It is easy to see that (B, wt, (&, ¢;)icr) is special case of a lowest weight crystal in
the sense of Kashiwara [K1l, Sec. 7.2], namely we have

o Gi(@)) = @iB) + 1, wh(@s(b)) = wh(b) + a,

o with {b_} := Irr(TII(0))™*, for each b € B there exists a sequence iy,. ..,

of elements of I with é;,&,, - - - &;,(b_) = b,

e ©;(b) =0 implies b & Im(é;).
Similarly (B, wt, (€7, ¢¥)icr) is a lowest weight crystal with the same lowest weight
element b_.

Lemma 4.6. The above defined operators and functions on B fulfill additionally
the following conditions:
(a) Ifi+# j, then é5é;(b) = é;é5(b).
(b) For all b € B we have ¢;(b) + ¢ (b) — (wt(b), a;) > 0.
(©) If #i(b) + @7 (b) = (wt(b), i) = 0, then &;(b) = &;(b).
(d) If ¢i(b) + @5 (b) — (wt(b), ai) = 1, then pi(€&; (b)) = i(b) and
@i (€i(b)) = i (b).
(€) If @i(b) + ¢} (b) — (wt(b), i) > 2, then €&} (b) = &jei(b).

The proof of this Lemma in [GLS6, Sec. 5.6] uses the homological features of
locally free II-modules from Corollary [3.15] in an essential way. Note that here, by
definition, (r,q;) = (C - r);.

Altogether this means, by a criterion of Kashiwara and Saito [KS, Prp. 3.2.3],
which we use here in a reformulation due to Tingley and Webster [TW] Prp. 1.4],
that (B, wt, (€;, pi)icr) =2 (B, wt, (€F, ¢f)icr) = Be(—o00). Here, Bo(—00) is the
crystal graph of the quantum group U, (n(C)). This implies part (b) of Theorem 2

Remark 4.7. We did not give here Kashiwara’s general definition of a crystal
graph, or that of a lowest weight crystal associated to a dominant integral weight.
The reason is that, due to limitations of space, we can not to set up the, somehow
unwieldy, notations for the integral weights of a Kac-Moody Lie algebra. The
interested reader can look up the relevant definitions, in a form which is compatible
with these notes, in [GLS6, Sec. 5.1, 5.2].

5. ALGEBRAS OF CONSTRUCTIBLE FUNCTIONS

5.1. Constructible functions and Euler characteristic. Recall that the topo-
logical Euler characteristic, defined in terms of singular cohomology with com-
pact support and rational coefficients, defines a ring homomorphism from the
Grothendieck ring of complex varieties to the integers.
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By definition, a constructible function f: X — C on a complex algebraic variety
X has finite image, and f~!(c) C C is a constructible set for all ¢ € C. By the
above remark it makes sense to define

[ sac=3exs e

zeX ceC

If o: X — Y is a morphism of varieties, we can define the push forward of con-
structible functions via (p.(f))(y) := fmegrl(y) fdx. This is functorial in the sense
that (¢ o ©).(f) = 1u(x(f)) for 1b: Y — Z an other morphism, by result of
McPherson [MPhl Prp. 1]. See also [Jod, Sec. 3] for a careful discussion.

5.2. Convolution algebras as enveloping algebras. Let A = CQ as in Sec-
tion LIl We consider for a dimension vector d € N/ the vector space F(A)q of
constructible functions f: Rep(4,d) — C which are constant on GL4(C)-orbits

and set
F(A) = P F(Aa.
deN?
Following Lusztig [LI] F(A) has the structure of a unitary, graded associative
algebra. The multiplication is defined by

e = [0,

where f € F(A)a, g € F(A)e, X € Rep(A,d + e), and Grj(X) denotes the
quiver Grassmannian of d-dimensional subrepresentations of X. The associativity
of the multiplication follows easily from the functoriality of the push-forward of
constructible functions. We have an algebra homomorphism

(5.1) c: F(A) — F(A x A), with (c(f))(X,Y) = f(X DY),

see for example [GLS5| Sec. 4.3]. The proof depends crucially on the Bialynicki-
Birula result about the fixpoints of algebraic torus actions [BB Cor. 2]. This fails
for example over the real numbers.

Remark 5.1. If X = (X;);es is a family of indecomposable representations of
A, we define the characteristic functions 6; € Faimx;(A) of the GLgimx,-orbit
O(X;) C Rep(A,dimX;) and consider the graded subalgebra M(A) = Mx(A) of
F(A), which is generated by the 6;. Clearly, the homogeneous components of M
are finite dimensional. If j = (j1,j2,..., 1) is a sequence of elements of j we have
by the definition of the multiplication

9j1 * 9jz ook 9jz (X) = X(Flg,j(M))v
where Flﬁﬁ ;(M) denotes the variety of all flags of submodules
0=MOD c O ...c MO = M

with M®) /M*E=D =~ X, for k = 1,2,...,1. In particular, if M has no filtration
with all factors isomorphic to some X, we have f(M) =0 for all f € M(A)dimm-
See |[GLSH, Lemma 4.2].

Lemma 5.2. The morphism ¢ from (BI) induces a comultiplication A: M(A) —
M(A) @ M(A) with A(B;) = 0; @ 1 +1R® 6; for all j. With this structure M
is a cocommutative Hopf algebra, which is isomorphic to the enveloping algebra

U(P(M)) of the Lie algebra of its primitive elements P(M).
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See |[GLS5, Prp. 4.5] for a proof. Recall, that an element x of a Hopf algebra is
called primitive iff A(x) =z ® 1+ 1® x. It is straightforward to check that the
primitive elements of a Hopf algebra form a Lie algebra under the usual commutator
[z,y] = 2y — ya.

Remark 5.3. It is important to observe that, by the definition of the comul-
tiplication, the support of any primitive element of M consists of indecompos-
able, X-filtered modules. In fact, for f € P(M) and M,N € rep(A) we have
fIM@N)=cf(M,N)=(f®@1+1® f)(M,N). See [GLS5, Lem. 4.6].

We are here interested in the two special cases when A = H¢(C,D,Q) or A =
IIc(C, D) and X = E = (E;)icr. Note that by Remark Bl only locally free modules
can appear in the support of any f € Mg(H). Similarly, the support of any
f € Mg(II) consists only of E-filtered modules. For this reason we will consider in
what follows, both Mg(H) and Mg(II) as graded by rank vectors. In other words,
from now on

M(H) := Mu(H) = @ Me(H) and  M(IT) = Me(IT) = ) M.(1),
reN/ reN!
where we may consider the the elements of M, (H) := Mg(H)p.,» as constructible
functions on H(r). Similarly we may consider the elements of My (II) := Mg(I)p.r
as constructible functions on II(r).

5.3. Mg(H) and a dual PBW-basis in the Dynkin case. We have the follow-
ing basic result from [GLS5| Cor. 4.10].

Proposition 5.4. Let C' be a symmetrizable Cartan matriz, D a symmetrizer and
Q an orientation for C. With H = H¢(C, D, Q)) we have an surjective Hopf algebra
homomorphism

ne: Um(C)) = Mg(H) defined by e; — 0;(i € I).

The main point is to show that for the 8; (i € I) fulfill the Serre relations (2.4).
More precisely we need that the primitive elements

0i5 = (ad 6;)' %9 (6;) € P(M(H))(1—cpyovito; (0 7 5)
actually vanish. For this it is enough, by Remark 5.3 to show that there exists no
indecomposable, locally free H-module M with rank(M) = (1 — ¢;5)a; + ;. This
is carried out in the proof of [GLS5l Prp. 4.9].

The proof of the following result, which is [GLS5, Thm. 6.1], occupies the major
part of that paper.

Proposition 5.5. Let C' be a symmetrizable Cartan matriz of Dynkin type, D
a symmetrizer and Q an orientation for C and H = Hc(C,D,Q). Then for
each positive oot 3 € A there exists a primitive element 65 € P(M(H))p with
0p(M(B)) =1.

The idea of the proof is as follows: By [GLS4, Cor. 1.3] for any 8 € AT(C)
and any sequence i in I, the Euler characteristic x(Flgyi(M (8))) is independent
of the choice of the symmetrizer D. So, we may assume that C is connected and
D minimal. In the symmetric (quiver) case, our claim follows now by Schofield’s
result [S], who showed that in this case P(M(H)) can be identified with n(C'). By

Gabriel’s theorem in this case the 63 are the characteristic function of the GLg-orbit
of M ().
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In the remaining cases, we construct the 6z by induction on the height of
in terms of (iterated) commutators of “smaller” 6,. Note however that in this
case this construction is delicate since the support of the §g may contain several
indecomposable, locally free modules. See for example [GLS7) Sec. 13.2(d)].

Since in the Dynkin case all weight spaces of n(C) are one-dimensional, the main
result of [GLS5], Theorem 1.1 (ii), follows easily:

Theorem 5.6. If C is of Dynkin type, the Hopf algebra homomorphism nyg is an
isomorphism.

Recall the notation used in Proposition3.11l In particular, i is a reduced expres-
sion for the longest element wy € W(C'), which is +-adapted to Q, and By = Bik
for k=1,2,...,r. Let us abbreviate

brm = ﬁ O - w051 and  M(m) := Sy M(B)™
for m = (my,me,...,m,) € N". By the above results (0 )men- is a normalized
PBW-basis of M(H) = U(n(C)) in the Dynkin case.

Moreover we consider the graded dual M(H)* of M(H), and the evaluation form
Op(m) € M(H)* with 0m,(f) := f(M(m)). By the definition of the comultiplication
in M(H), the graded dual is a commutative Hopf algebra, and dp/(m) - Oprn) =
00 (m4n)- Our next result is essentially [GLS7, Thm. 1.3].

Proposition 5.7. With the above notation we have
Op(m)(fn) = Omn for allm,n € N".

Thus (0pf(m))menr s a basis of M(H)* which is dual to the PBW-basis (0m)menr,
and M(H)* = C[5M(61)7 ce 5M(,8T)]'

In the quiver case (with trivial symmetrizer) this result is easy to prove, since
with Gabriel’s theorem and PropositionB.I1lfollows quickly that 6, is the character-
istic function of the orbit of M (r). However, in our more general setting, already the
0, are usually not the characteristic function of M (8), as we observed above. The
more sophisticated Proposition implies, by the definition of the multiplication
in Mg(H), that 0, (M(Bk)) = 0 if m # ey, the k-th unit vector. The remaining
claims follow now by formal arguments, see the proof of [GLS7, Thm. 6.1].

Remark 5.8. For M € rep, ; (H) and e € N! we we introduce the quasi-projective
variety

Crlff (M) := {U ¢ M | U locally free submodule and rank(U) = e},

which is an open subset of the usual quiver Grassmannian Grf _(M). With this
notation we can define

Fy =Y x(Grlfl (M))Y® € Z[Y3,...,Y,] and gy = —R - rank(M),
eeN/!

where R is the matrix introduced in Corollary[34l By the main result of [GLS7] this
yields for M = M (B) with 8 € AT(C) the F-polynomial and g-vector, in the sense
of [FZ2], for all cluster variables of a finite type cluster algebra [FZ1] of type C' with
respect to an acyclic seed defined by 2. The proof is based on Proposition 5.7 and
on the description by Yang and Zelevinsky [YZ] of the F-polynomial of a cluster
variable in terms of generalized minors.
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5.4. Semicanonical functions and the support conjecture for Mg (II). Re-
call, that we abbreviate II = II¢(C, D) for a symmetrizable Cartan matrix C' with
symmetrizer D. By definition M(II) = Mg(II) C F(II) is generated by the func-
tions 6; € Mg, (IT) for i € I, where 6; is the characteristic function of the orbit of
FE;, viewed as a I[I-module. We use here the notation éz rather than 6; to remind us
that the multiplication is now defined in terms of constructible functions on a larger
space. More precisely, we have for each r € N! an injective Autg(EF)-equivariant,
injective morphism of varieties

tr: H(r) — II(d).

These morphisms induce, via restriction, a surjective morphism of graded Hopf
algebras

15 M) — M(H), 6;+6; foriel.
The proof of the following result is, almost verbatim, the same induction argument
as the one used by Lusztig [L2], see [GLS6l Lem. 7.1].

Lemma 5.9. Let r € N, For each Z € Trr(Il(r))™®* there exists an open dense
subset Uz C Z and a function fz € M(IT) such that for Z,Z' € Irr(II(r))™** and
any u' € Uz we have

fz(u) =622
In particular, the functions (fz)zetr(mi(r))mex are linearly independent in M. (II).

Note however, that the result is not trivial since we claim that the fz € Me(II)
and not in the much bigger space F(II)c... On the other hand, it is important to
observe that the inductive construction of the semicanonical functions fz involves
some choices.

As in Section 5.3l we define now for each i # j in I the primitive element

0ij = (ad §,)' =7 (6;) € P(M(ID)).
Unfortunately, we have the following result, which is a combination of Lemma 6.1,
Proposition 6.2 and Lemma 6.3 from [GLS6].
Lemma 5.10. Suppose with the above notations that c;; < 0.
(a) If ¢; > 2 then there exists an indecomposable, 11 = II(C, D)-module X =
X(ij) with M(X(ij) = (1 — cij)ai + «; and 91']‘ (X(ij)) 75 0.
(b) If M is crystal module with rank(M) = (1—c;j)o; +a;j we have 6;;(M) = 0.
This leads us to define in M(II) the ideal Z, which is generated by the homoge-
neous elements 6;; for 4, j € I with i # j. We set moreover

M) = M(I)/T andf := f+Z (f € M(II)).

Thus, by Proposition [5.4] the morphism ¢, induces a surjective algebra homomor-
phism 25y : M(II) — M(H). On the other hand, we can define for each r € N’ the
space of functions with non maximal support

S = {f € M (Il) | dimsupp(f) < dim H(r)} and S := @penrSe.

Recall that dimII(r) = dim H(r). Proposition and Lemma [5.10/ imply at least
that 6;; € S. In view of Lemma [5.9 and Proposition it is easy to show the
following result:
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Proposition 5.11. The following three conditions are equivalent:
(1)ZcS, (2) =S, (3) S is an ideal.
In this case the surjective algebra homomorphism
n: Un) — M), e; — 0; + T

would be an isomorphism, and the (N~ (fz))s would form a basis of U(n) which is
independent of the possible choices for the (fz)zes.

Thus we call the equivalent conditions of the above proposition our Support
conjecture.

Remark 5.12. Our semicanonical basis would yield, similarly to [L2, Sec. 3], in a
natural way a basis for each integrable highest weight representation L(X) of g(C),
if the support conjecture is true. See [GLS6, Se. 7.3] for more details.
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