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QUIVERS WITH RELATIONS FOR SYMMETRIZABLE CARTAN

MATRICES AND ALGEBRAIC LIE THEORY

CHRISTOF GEISS

Abstract. We give an overview of our effort to introduce (dual) semicanonical
bases in the setting of symmetrizable Cartan matrices.

1. Introduction

One of the original motivations of Fomin and Zelevinsky for introducing cluster
algebras was “to understand, in a concrete and combinatorial way, G. Lusztig’s
theory of total positivity and canonical bases” [Fo]. This raised the question of
finding a cluster algebra structure on the coordinate ring of a unipotent cell, and to
study its relation with Lusztig’s bases. In a series of works culminating with [GLS1]
and [GLS2], we showed that the coordinate ring of a unipotent cell of a symmetric
Kac-Moody group has indeed a cluster algebra structure, whose cluster monomials
belong to the dual of Lusztig’s semicanonical basis of the enveloping algebra of the
attached Kac-Moody algebra. Since the semicanonical basis is built in terms of
constructible functions on the complex varieties of nilpotent representations of the
preprojective algebra of a quiver, it is not straightforward to extend those results
to the setting of symmetrizable Cartan matrices, which appears more natural from
the Lie theoretic point of view. The purpose of these notes is to give an overview
of [GLS3] - [GLS7], where we are trying to make progress into this direction.

The starting point of our project was [HL], where Hernandez and Leclerc ob-
served that certain quivers with potential allowed to encode the q-characters of
the Kirillov-Reshetikhin modules of the quantum loop algebra Uq(Lg), where g

is a complex simple Lie algebra of arbitrary Dynkin type. This quiver with po-
tential served as model for the definition of our generalized preprojective algebras
Π = ΠK(C,D) associated to a symmetrizable Cartan matrix C with symmetrizer
D over an arbitrary field K, which extends the classical construction of Gelfand
and Ponomarev [GP]. After the completion of a preliminary version of [GLS3] we
learned that Cecotti and Del Zotto [CDZ] and Yamakawa [Yam] had introduced
similar constructions for quite different reasons. In comparison to the classical con-
structions of Dlab and Ringel [DR1], [DR3] for a symmetrizable Cartan matrix C,
we replace field extensions by truncated polynomial rings. Many of the core results
of representations of species carry over over to this setting if we restrict our atten-
tion to the so-called locally free modules, see [GLS3]. In particular, we have for
each orientation Ω of C an algebra H = HK(C,D,Ω) such that in many respects
Π can be considered as the preprojective algebra of H . Our presentation of these
results in Section 3 is inspired by the thesis [Geu], where Geuenich obtains similar
results for a larger class of algebras.
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2 CHRISTOF GEISS

Since our construction works in particular over algebraically closed fields, we can
extend to our algebras H and Π several basic results about representation varieties
of quivers and of varieties of nilpotent representations of the preprojective algebra
of a quiver in our new context, again if we restrict our attention to locally free
modules, see Section 4. Nandakumar and Tingley [NT] obtained similar results
by studying the set of K-rational points of the representation scheme of a species
preprojective algebra, which is defined over certain infinite, non algebraically closed
fields K.

In our setting we can take K = C, and study algebras of constructible functions
on those varieties of locally free modules and realize in this manner the universal
enveloping algebra U(n) of the positive part n of a complex semisimple Lie algebra,
together with a Ringel type PBW-basis in terms of the representations of H . For
arbitrary symmetrizable Cartan matrices we can realize U(n) together with a sem-
icanonical basis, modulo our support conjecture, see Section 5.

Conventions. We use basic concepts from representation theory of finite dimen-
sional algebras, like Auslander-Reiten theory or tilting theory without further refer-
ence. A good source for this material is [Ri1]. For us, a quiver is an oriented graph
Q = (Q0, Q1, s, t) with vertex setQ0, arrow setQ1 and functions s, t : Q1 → Q0 indi-
cating the start and terminal point of each arrow. We also write D = HomK(−,K).
We say that an A-module M is rigid if Ext1A(M,M) = 0.

2. Combinatorics of symmetrizable Cartan matrices

2.1. Symmetrizable Cartan matrices and quivers. Let I = {1, 2, . . . , n}. A
symmetrizable Cartan matrix is an integer matrix C = (cij) ∈ ZI×I such that the
following holds:

• cii = 2 for all i ∈ I and cij ≤ 0 for all i 6= j,
• there exist (ci)i∈I ∈ NI

+ such that diag(c1, . . . , cn) · C is a symmetric.

In this situation D := diag(c1, . . . , cn) ∈ ZI×I is called the symmetrizer of C. Note
that the symmetrizer is not unique. In particular, for all k ∈ N+ also kD is a
symmetrizer of C.

It is easy to see that the datum (C,D) of a symmetrizable Cartan matrix C and
its symmetrizer D is equivalent to displaying a weighted graph (Γ, d) with

• I the set of vertices of Γ,
• gij := gcd(cij , cji) edges between i and j,
• d : I → N+, i 7→ ci.

Here we agree that gcd(0, 0) = 0. We have then cij = −
lcm(ci,cj)

ci
gij for all i 6= j.

2.2. Bilinear forms, reflections and roots. We identify the root lattice of the
Kac-Moody Lie algebra g(C) associated to C with ZI = ⊕i∈IZαi, where the simple
roots (αi)i∈I form the standard basis. We define on Z

I by

(αi, αj)C,D = cicij ,

a symmetric bilinear form. The Weyl group W = W (C) is the subgroup of Aut(ZI),
which is generated by the simple reflections si for i ∈ I, where

si(αj) = αj − cijαi.

The real roots are the set
∆re(C) := ∪i∈IW (αi).
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The fundamental region is

F := {α ∈ N
I | supp(α) is connected, and (α, αi)C,D ≤ 0 for all i ∈ I}.

Here, supp(α) is the full subgraph of Γ(C) with vertex set {i ∈ I | α(i) 6= 0}. Then
the imaginary roots are by definition the set

∆im(C) := W (F ) ∪W (−F ).

Finally the set of all roots is

∆(C) := ∆re ∪ ∆im(C).

The positive roots are ∆+(C) := ∆(C) ∩ NI , and it is remarkable that ∆(C) =
∆+(C) ∪ −∆+(C).

A sequence i = (i1, i2, . . . , il) ∈ I l is called a reduced expression for w ∈ W
if w = sil · · · si2si1 and w can’t be expressed as a product of less than l = l(w)
reflections of the form si (i ∈ I). In this case we set

(2.1) βi,k := si1si2 · · · sik−1
(αik) and γi,k := silsil−1

· · · sik+1
(αik)

for k = 1, 2, . . . , l, and understand βi,1 = αi1 as well as γi,l = αil . It is a standard
fact that βi,k ∈ ∆+ for k = 1, 2, . . . , l, and that these roots are pairwise different.
Obviously,

w(βi,k) = −γi,k for k = 1, 2, . . . , l.

The following result is well known.

Proposition 2.1. For a connected, symmetrizable Cartan matrix C the following

are equivalent:

• C is of Dynkin type.

• The Weyl group W (C) is finite.

• The root system ∆(C) is finite

• All roots are real: ∆(C) = ∆re(C).

Moreover, if in this situation i is a reduced expression for w0, the longest element

of W , then ∆+ = {βi,1, βi,2, . . . , βi,l}.

2.3. Orientation and Coxeter elements. An orientation of C is a set Ω ⊂ I×I
such that

• |Ω ∩ {(i, j), (j, i)}| ⇐⇒ cij < 0,
• for each sequence i1, i2, . . . , ik+1 with (ij , ij+1) ∈ Ω for j = 1, 2, . . . , k we

have i1 6= ik+1.

The orientation Ω can be interpreted as upgrading the weighted graph (Γ, d) of

(C,D) to a weighted quiver (Q◦, d) with gij arrows α
(1)
ij , . . . α

(gij)
ij from j to i if

(i, j) ∈ Ω, such that Q◦ = Q◦(C,Ω) has no oriented cycles.
For an orientation Ω of the symmetrizable Cartan matrix C ∈ Z

I×I and i ∈ I
we define

si(Ω) := {(r, s) ∈ Ω | i 6∈ {r, s}} ∩ {(s, r) ∈ I × I | (r, s) ∈ Ω and i ∈ {r, s}}.

Thus, in Q◦(C, si(Ω)) the orientation of precisely the arrows in Q◦(C,Ω), which
are incident with i, is changed. If i is a sink or a source of Q◦(C,Ω) then si(Ω) is
also an orientation of C. It is convenient to define

Ω(−, i) := {j ∈ I | (j, i) ∈ Ω} and Ω(j,−) := {i ∈ I | (j, i) ∈ Ω}.
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We have on ZI the non-symmetric bilinear form

(2.2) 〈−,−〉C,D,Ω : ZI × Z
I → Z, (αi, αj) 7→











ci if i = j,

cicij if (j, i) ∈ Ω,

0 else.

We leave it as an exercise to verify that

(2.3) 〈α, β〉C,D,Ω = 〈si(α), si(β)〉C,D,si(Ω)

if i is a sink or a source for Ω.
We say that a reduced expression i = (i1, i2, . . . , il) of w ∈ W is +-admissible

for Ω if i1 is a sink of Q◦(C,Ω), and ik is a sink of Q◦(C, sik−1
· · · si2si1(Ω)) for

k = 2, 3, . . . , l. If moreover l = n and {i1, . . . , in} = I, we say that c = sin · · · si2si1
is the Coxeter element for (C,Ω).

2.4. Kac-Moody Lie algebras. For a symmetrizable Cartan matrix C ∈ ZI×I ,
the derived Kac-Moody Lie algebra g

′ = g
′(C) over the complex numbers has a

presentation by 3n generators ei, hi, fi (i ∈ I) subject to the following relations:

(i) [ei, fj] = δijhi;
(ii) [hi, hj ] = 0;

(iii) [hi, ej] = cijej, [hi, fj] = −cijfj ;
(iv) (ad ei)

1−cij (ej) = 0, (ad fi)
1−cij (fj) = 0 (i 6= j).

Note that for C of Dynkin type this is the Serre presentation of the corresponding
semisimple Lie algebra. In case rankC < |I| we have of g

′(C) 6= g(C) and the
latter has in this case a slightly larger Cartan subalgebra, which makes for a more
complicated definition, see for example [GLS6, Sec. 5.1] for a few more details. Of
course, the main reference is [Ka].

Let n = n(C) be the Lie subalgebra generated by the ei (i ∈ I). Then U(n) is
the associative C-algebra with generators ei (1 ≤ i ≤ n) subject to the relations

(2.4) (ad ei)
1−cij (ej) = 0, (i, j ∈ I, i 6= j).

U(n) is NI graded with deg(ei) = αi (i ∈ I). With

nα := n ∩ U(n)α for α ∈ ∆+(C)

we recover the usual root space decomposition of n.

3. Quivers with relations for symmetrizable Cartan matrices

We keep the notations from the previous section, in particular C ∈ ZI×I is a
symmetrizable Cartan matrix with symmetrizer D and Ω is an orientation for C.

3.1. A class of 1-Iwanaga-Gorenstein algebras. Let K be a field and Q =
Q(C,D,Ω) the quiver obtained from Q◦(C,D,Ω), see Section 2.3, by adding a loop
ǫi at each vertex i ∈ I. Then H = HK(C,D,Ω) is the path algebra KQ modulo
the ideal which is generated by the following relations:

• ǫcii for all i ∈ I

• ǫ
−cji/gji
i α

(k)
ij − α

(k)
ij ǫ

−cij/gij
j for all (i, j) ∈ Ω and k = 1, 2, . . . gij .



QUIVERS WITH RELATIONS FOR SYMMETRIZABLE CARTAN MATRICES 5

Recall that gij = gji = gcd(cij , cji), thus −cij/gij = lcm(ci, cj)/ci.
For (i, j) ∈ Ω let c′ij = cij/gij and c′ji = cji/gij . We may consider the following

symmetrizable Cartan matrix, symmetrizer and orientation:

C(i,j) =

(

2 c′ij
c′ji 2

)

, D(i,j) =

(

ci 0
0 cj

)

and Ω(i,j) = {(i, j)}.

Thus,

Q(i,j) := Q(C(i,j),Ω(i,j)) = iǫi ;; j
αijoo ǫjdd

and

H(i,j) := HK(C(i,j), D(i,j),Ω(i,j)) = KQ(i,j)/〈ǫcii , ǫ
cj
j , ǫ

−c′ji
i αij − αijǫ

−c′ij
j 〉.

Note, that with

iH
′
j := eiH

(i,j)ej and Hi = eiHiei = K[ǫi]/(ǫ
ci
i )

it is easy to see that iHj := iH
′
j
⊕gij is a Hi-Hj-bimodule, which is free of rank −cij

as a Hi-module, and free of rank −cji as Hj-(right)-module. If we define similarly

H(j,i) := HK(C(i,j), D(i,j), {(j, i)}) and jH
′
i := ejH

(j,i)ej, then jHi = jH
′
i
⊕gij is a

Hj-Hi-bimodule, which is free of rank −cji as Hj-module and free of rank −cij as
Hi-(left)-module. It is easy to see that we get an isomorphism of Hi-Hj-bimodules

iHj
∼= HomK(jHi,K).

The adjunction yields for Hk-modules Mk, for k ∈ {i, j}, a natural isomorphism of
vector spaces

(3.1) HomHi
(iHj ⊗Hj

Mj,Mi) → HomHj
(Mj , jHi ⊗Hi

Mi), f 7→ f∨.

Quite similarly to the representation theory of modulated graphs, in the sense of
Dlab and Ringel [DR1], we have the following basic results from [GLS3, Prp. 6.4]
and [GLS3, Prp. 7.1].

Proposition 3.1. Set H := HK(C,D,Ω). With S := ×i∈IHi we can consider

B :=
⊕

(i,j)∈Ω

iHj as an S-S-bimodule and find:

(a) H ∼= TS(B) :=
⊕

j∈N

B⊗Sj, i.e. H is a tensor algebra.

(b) There is a canonical short exact sequence of H-H-bimodules

0 → H ⊗S B ⊗S H
δ
−→ H ⊗S H

mult
−−−→ H → 0,

where δ(hl ⊗ b⊗ hr) = hlb⊗ hr − hl ⊗ bhr.

Note that the H-H-bimodules H ⊗S B ⊗S H and H ⊗S H are in general only
projective as H-left- or right-modules, but not as bimodules. Anyway, the above
sequence yields a functorial projective resolution for certain modules which we are
going to define now. We say that a H-module M is locally free if eiM is a free
Hi-module for all i ∈ I. In this case we define

rank(M) := (rankHi
(eiM))i∈I .

For example, there is a unique (indecomposable) locally free H-module Ei with
rank(Ei) = αi for each i ∈ I. For later use we define for all r ∈ NI the module

Er := ⊕i∈IE
r(i)
i , and observe that rank(Er) = r. Let us write down the following

consequences of Proposition 3.1, see [GLS3, Sec. 3.1] and [GLS3, Cor.7.1].
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Corollary 3.2. For H as above we have:

(a) The projective and injective H-modules are locally free. More precisely we

have

rank(Heik) = βi,k and rank(DeikH) = γi,k for k ∈ I,

where i is a reduced expression for the Coxeter element of (C,Ω).
(b) Each locally free H-module M has a functorial projective resolution

0 → H ⊗S B ⊗S M
δ⊗M
−−−→ H ⊗S M

mult
−−−→M → 0.

Moreover, if M is not locally free, then proj. dimM = ∞.

(c) H is 1-Iwanaga-Gorenstein, i.e. proj. dim(HDH) ≤ 1 and inj. dim(HH) ≤
1. Moreover an H-module M is locally free if and only if proj. dim(M) ≤ 1.

It follows that the Ringel (homological) bilinear form descends as the non-
symmetric bilinear form (2.2) to the Grothendieck group of locally free modules,
where we identify the classes of the generalized simples Ei with the coordinate
vector αi (i ∈ I), see also [GLS3, Prp. 4.1].

Corollary 3.3. If M and N are locally free H-modules, we have

dim HomH(M,N) − dim Ext1H(M,N) = 〈rank(M), rank(N)〉C,D,Ω.

By combining Corollary 3.2 with standard results from Auslander-Reiten theory
we obtain now the following result.

Corollary 3.4. Let M be an indecomposable, non projective, locally free H-module

such that the Auslander-Reiten translate τHM is locally free. Then

rank(τHM) = c · (rank(M)),

where c = sin · · · si1 is the Coxeter element for (C,Ω). Moreover, if we take R ∈
ZI×I , such that D ·R is the matrix of 〈−,−〉C,D,Ω with respect to the standard basis,

we get c = −R−1(C −R).

This is the K-theoretic shadow of a deeper connection between the Auslander-
Reiten translate and reflection functors, which we will discuss in the next subsection.

3.2. Auslander-Reiten theory and Coxeter functors. By Proposition 3.1 we
may view H = HK(C,D,Ω) as a tensor algebra. Thus, we identify a H-module M
naturally with a S-module M = ⊕i∈IMi together with an element (Mij)(i,j)∈Ω of

(3.2) H(M) :=
⊕

(i,j)∈Ω

∈ HomHi
(iHj ⊗Hj

Mj , Hi).

Write si(H) := Hk(C,D, si(Ω)) for any i ∈ I. If k is a sink of Q◦(C,Ω), we have
for each H-module M a canonical exact sequence
(3.3)

0 → Ker(Mk,in) →
⊕

j∈Ω(k,−)

kHj ⊗Hj
Mj

Mk,in
−−−→Mk, where Mk,in = ⊕j∈Ω(k,−)Mkj .

We can define now the BGP-reflection functor

F+
k : rep(H) → rep(si(H)), (F+

k M)i =

{

Mi if i 6= k,

Ker(Mk,in) if i = k.
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We can moreover define in this situation dually the left adjoint F−
k : rep(sk(H)) →

rep(H). Note that k is a source of Q◦(C, skΩ). See [GLS3, Sec. 9.2] for more
details. We observe that the definitions imply easily the following:

Lemma 3.5. If k is a sink for Ω and M is a locally free H-module which has no

direct summand isomorphic to Ek and F+
k (M) is locally free, then rank(F+

k M) =
sk(rank(M)).

The proof of [GLS3, Prp. 9.6] implies the following, less obvious result:

Lemma 3.6. Suppose that k is a sink for Ω and M a locally free rigid H-module,

with no direct summand isomorphic to Ek, then HomH(M,Ek) = 0.

We can interpret F+
k as a kind of APR-tilting functor [APR]. See [GLS3, Sec. 9.3]

for a proof of this non-trivial result.

Theorem 3.7. Let k be a sink of Q◦(C,Ω). Then X := HH/Hek ⊕ τ−Hek is

a classical tilting module for H. With B := EndH(X)op we have an equivalence

S : rep(sk(H)) → rep(B) such that the functors S ◦ F+
l and HomH(X,−) are iso-

morphic.

Standard tilting theory arguments and Auslander-Reiten theory, together with
Lemma 3.5 and Lemma 3.6 yield the following important consequence:

Corollary 3.8. Let k ∈ I be a sink for Ω and M a locally free rigid H-module,

then F+
k (M) is a rigid, locally free sk(H)-module.

Consider the algebra automorphism of H , which is defined by multiplying the
non-loop arrows of Q(C,Ω) by −1. It induces the so called twist automorphism
T : rep(H) → rep(H). Moreover, let sin · · · si2si1 be the Coxeter element for (C,Ω),
corresponding to the +-admissible sequence i1, i2, . . . , in, see Section 2.3. Now we
can define the Coxeter functor

C+ := F+
in

◦ · · · ◦ F+
i2

◦ F+
i1

: rep(H) → rep(H).

Following ideas of P. Gabriel and Ch. Riedtmann [Ga, Sec. 5], by a careful compar-
ison of the definitions of the reflection functors and Auslander-Reiten translate, we
obtain the following result. See [GLS3, Sec. 10] for the lengthy proof.

Theorem 3.9. With the H-H-bimodule Y := Ext1H(DH,H) we have an isomor-

phism of endofunctors of rep(H):

HomH(Y,−) ∼= T ◦ C+

If M is locally free, we have functorial isomorphisms

τH(M) ∼= HomH(Y,M) and τ−HM
∼= Y ⊗H M.

In particular, in this case the Coxeter functor C+ and the Auslander-Reiten trans-

late τ may be identified up to the twist T .

It is not true in general that the Auslander-Reiten translate of a locally free H-
module is again locally free. In [GLS3, 13.6-13.8] several examples of this behavior
are documented. This motivates the following definition. A H-module M is τ-
locally free if τkM is locally free for all k ∈ Z. In particular, rigid locally free
modules are τ -locally free. We call an indecomposable H-module preprojective,
resp. preinjective, if it is of the form τ−k(Hei) resp. τk(DeiH) for some k ∈ N0 and
i ∈ I. Thus, these modules are particular cases of rigid τ -locally free modules.
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3.3. Dynkin type. By combining the findings of previous section with standard
Auslander-Reiten theory and the characterization of Dynkin diagrams in Prop. 2.1,
we obtain the following analog of Gabriel’s theorem, see [GLS3, Thm. 11.10].

Theorem 3.10. Let H = HK(C,D,Ω) be as above. There are only finitely many

isomorphism classes of indecomposable, τ-locally free H-modules if and only if C
is of Dynkin type. In this case the map M 7→ rank(M) induces a bijection between

the isomorphism classes of indecomposable, τ-locally free modules and the positive

roots ∆+(C). Moreover, all these modules are preprojective and preinjective.

Note however, that even for C of Dynkin type, the algebra H(C,D,Ω) is in most
cases not of finite representation type, see [GLS3, Prp. 13.1] for details.

Let C be a symmetrizable Cartan matrix of Dynkin type and i = (i1, i2, . . . , ir)
a reduced expression for the longest element w0 of the Weyl group W , which is +-
admissible for the orientation Ω. With the notation of (2.1) we abbreviate βj = βi,j
for j = 1, . . . , r, and recall that this gives a complete list of the positive roots. By
Theorem 3.10 we have for each j a unique, locally free, indecomposable and rigid
representation M(βj) with rank(M(βj)) = βj .

Proposition 3.11. With the above notations we have

〈βi, βj〉C,D,Ω =

{

dim HomH(M(βi),M(βj)) if i ≤ j,

− dim Ext1H(M(βi),M(βj)) if i > j.

In particular, HomH(M(βi),M(βj)) = 0 if i > j and Ext1H(M(βi),M(βj)) = 0 if

i ≤ j.

In fact, by Theorem 3.7 and equation (2.3) we may assume that either i = 1
or j = 1. In any case M(β1) = Ei1 is projective. In the first case we have
Ext1H(E1,M(βj)) = 0. In the second case we have HomH(M(βi), Ei1) = 0 by
Lemma 3.6. Now our claim follows by Corollary 3.3.

The next result is an easy adaptation of similar results by Dlab and Ringel [DR2]
for species. The proof uses heavily Proposition 3.11 and reflection functors. This
version was worked out in Omlor’s Masters thesis [Om], see also [GLS7, Sec. 5].

Proposition 3.12. With the same setup as above let k ∈ {1, 2, . . . , r} and m =
(m1, . . . ,mr) ∈ Nr such that βk =

∑r
j=1mjβj and mk = 0. Then M(βk) admits a

non-trivial filtration by locally free submodules

0 = M(0) ⊂M(1) ⊂ · · · ⊂M(r) = M(βk)

such that M(j)/M(j−1)
∼= M(βj)

mj for j = 1, 2, . . . , r. It follows, that M(βk) has

no filtration by locally free submodules

0 = M (r) ⊂M (r−1) ⊂ · · · ⊂M (0) = M(βk),

such that rank(M (j−1)/M (j)) = mjβj for j = 1, 2, . . . , r.

3.4. Generalized preprojective algebras. Let Q = Q(C) be the quiver which
is obtained from Q(C,Ω) by inserting for each (i, j) ∈ Ω additional gij arrows

α
(1)
ji , . . . , α

(gij)
ji from i to j, and consider the potential

W =
∑

(i,j)∈Ω

gij
∑

k=1

(α
(k)
ji α

(k)
ij ǫ

−cij/gij
j − α

(k)
ij α

(k)
ji ǫ

−cji/gij
i ).
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The choice of Ω only affects the signs of the summands of W . Recall that for a
cyclic path α1α2 · · ·αl in Q by definition

∂cycα (α1α2 · · ·αl) :=
∑

i∈{j∈[1,l]|αj=α}

αi+1αi+2 · · ·αlα1α2 · · ·αi−1.

The generalized preprojective algebra of H is

Π = Π(Q,D) := KQ/〈∂cycα (W ) |α∈Q1
, ǫcii |i∈I〉.

It is easy to see that Π does not depend on the choice of Ω, up to isomorphism.
Notice that for (i, j) ∈ Ω we have

∂cyc
α

(k)
ji

(W ) = α
(k)
ij ǫ

−cij/gij
j − ǫ

−cji/gij
i α

(k)
ij .

It follows, that for any orientation Ω of C we can equip ΠK(C,D) with a N0-grading

by assigning each arrow α
(k)
ji with (i, j) ∈ Ω degree 1 and the remaining arrows get

degree 0. We write then

ΠK(C,D) =
∞
⊕

i=0

Π(C,D,Ω)i,

and observe that ΠK(C,D,Ω)0 = HK(C,D,Ω). We obtain from Theorem 3.9 the
following alternative description of our generalized preprojective algebra, which
justifies its name:

Proposition 3.13. Let C be a symmetrizable Cartan matrix with symmetrizer D,

and Ω an orientation for C. Then, with H = HK(C,D,Ω) we have

Π(C,D,Ω)1 ∼= Ext1H(DH,H)

as an H-H-bimodule, moreover

Π(C,D) ∼= TH(Ext1H(DH,H)) and HΠ(C,D) ∼=
⊕

i∈I,k∈N0

τ−k
H Hei.

Here the first isomorphism is an isomorphism of K-algebras, and the second one of

H-modules.

Similarly to Proposition 3.1 we have the following straightforward description
of our generalized preprojective algebra as a tensor algebra modulo canonical re-
lations [GLS3, Prp. 6.1], which yields a standard bimodule resolution. See [GLS3,
Sec. 12.1] for the proof, where we closely follow [CBSh, Lem. 3.1]. See also [BBK,
Sec. 4].

Proposition 3.14. Let C be a symmetrizable, connected Cartan matrix and Π :=
ΠK(C,D). With B := ⊕(i,j)∈Ω(iHj ⊕ jHi) we have Π ∼= TS(B)/〈∂cycǫi (W ) |i∈I〉,

where we interpret ∂cycǫi (W ) ∈ B ⊗S B in the obvious way. We obtain an exact

sequence of Π-Π-bimodules

(3.4) Π ⊗S Π
f
−→ Π ⊗S B ⊗S Π

g
−→ Π ⊗S Π

h
−→ Π → 0,

where

f(ei ⊗ ei) = ∂cycǫi (W ) ⊗ ei + ei ⊗ ∂cycǫi (W ), g(ei ⊗ b⊗ ej) = eib⊗ ej − ei ⊗ bej

and h is the multiplication map. Moreover Ker(f) ∼= HomΠ(DΠ,Π) if C is of

Dynkin type, otherwise f is injective.
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We collect below several consequences, which can be found with detailed proofs
in [GLS3, Sec. 12.2]. They illustrate that locally free Π-modules behave in many
aspects like modules over classical preprojective algebras. Note that part (b) is an
extension of Crawley-Boevey’s remarkable formula [CB, Lem. 1]

Corollary 3.15. Let C be a connected, symmetrizable Cartan matrix, and Π =
ΠK(C,D) as above. Moreover, let M and N be locally free Π-modules.

(a) If N finite-dimensional, we have a functorial isomorphism

Ext1Π(M,N) ∼= DExt1Π(N,M).

(b) If M and N are finite-dimensional, we have

dim Ext1Π(M,N) = dim HomΠ(M,N)+dim HomΠ(N,M)−(rank(M), rank(N))C,D.

(c) If C is not of Dynkin type, proj. dim(M) ≤ 2.
(d) If C is of Dynkin type, Π is a finite-dimensional, self-injective algebra and

repl.f.(Π) is a 2-Calabi-Yau Frobenius category.

Similar to Cor. 3.2 (b) the complex (3.4) yields (the beginning of) a functorial
projective resolution for all locally free Π-modules. Thus (a), (b) and (c) follow by
exploring the symmetry of the above complex. For (d) we note that in this case Π
is finite-dimensional and ΠΠ is a locally free module by Thm. 3.10 and Prp. 3.13.

4. Representation varieties

4.1. Notation. Let K be now an algebraically closed field. For Q a quiver and
ρj ∈ etj (KQ≥2)esj for j = 1, 2, . . . , l we set A = KQ/〈ρ1, . . . , ρl〉. Note, that every
finite dimensional basic K-algebra is of this form. We abbreviate Q0 = I and set
for d ∈ NI

0:

Rep(KQ,d) := ×a∈Q1 HomK(Kd(sa),Kd(ta)) and GLd := ×i∈I GLd(i)(K).

The reductive algebraic group GLd acts on Rep(KQ,d) by conjugation, and the
GLd-orbits correspond bijectively to the isoclasses of K-representations of Q. For
M ∈ Rep(KQ,d) and ρ ∈ eiKQej we can define M(ρ) ∈ HomK(Kd(j),Kd(i)) in a
natural way. We have then the GLd-stable, Zariski closed subset

Rep(A,d) := {M ∈ Rep(KQ,d) |M(ρi) = 0 for j = 1, 2, . . . , l}.

The GLd-orbits on Rep(A,d) correspond now to the isoclasses of representations
of A with dimension vector d. It is in general a hopeless task to describe the
irreducible components of the affine variety Rep(A,d).

4.2. Varieties of locally free modules for H. The set of locally free represen-
tations of H = HK(C,D,Ω) is relatively easy to describe. Clearly, for each locally
free M ∈ rep(H) we have dim(M) = D · rank(M).

Proposition 4.1. For r ∈ NI we have the open subset

Repl.f.(H, r) := {M ∈ rep(H,D · r) |M is locally free} ⊂ Rep(H,D · r),

which is irreducible and smooth with dim repl.f.(H, r) = dim GLD·r −
1
2 (r, r)C,D.

In fact, it is well known that the modules of projective dimension at most 1 form
always an open subset of rep(A,d). One verifies next that Repl.f.(H, r) is a vector

bundle over the GLD·r-orbit O(⊕i∈IE
r(i)
i ), with the fibers isomorphic to the vector

space H(r) := H(Er), see (3.2).
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This yields the remaining claims. Note that the (usually) non-reductive algebraic
group

Gr := ×i∈I GLr(i)(Hi) = AutS(⊕i∈IE
r(i)
i )

acts on the affine spaceH(r) naturally by conjugation, and the orbits are in bijection
with isoclasses of locally free H-modules with rank vector r.

As a consequence, if M and N are rigid, locally free modules with rank(M) =
rank(N), then already M ∼= N , since the orbits of rigid modules are open.

4.3. Varieties of E-filtered modules for Π. Recall the description of ΠK(C,D)
in Proposition 3.14. A H := TS(B)-module M is given by a S-module M = ⊕i∈IMi

such that Mi is a Hi-module for i ∈ I, together with an element (Mij)(i,j)∈Ω of

H(M) :=
⊕

(i,j)∈Ω

HomHi
(iHj ⊗Hj

Mj,Mi),

where Ω = Ω ∩ Ωop. Extending somewhat (3.3) we set

Mi,in :=





⊕

j∈Ω(i,−)

sgn(i, j)Mij



 :
⊕

j∈Ω(i,−)

iHj ⊗Hj
Mj →Mi and

Mi,out :=





∏

j∈Ω(−,i)

M∨
ji



 : Mi →
⊕

j∈Ω(−,i)

iMj ⊗Hj
Mj.

We define now for any S-module M, as above, the affine variety

Repfib(Π,M) := {(Mij)(i,j)∈Ω ∈ H(M) |Mk,in ◦Mk,out = 0 for all k ∈ I},

and observe that the orbits of the, usually non-reductive, group AutS(M) on

Repfib(Π,M) correspond to the isoclasses of possible structures of representations
of Π on M, since the condition Mk,in ◦Mk,out corresponds to the relation ∂cycǫk (W ).

Similarly to the previous section we can define the open subset

Repl.f.(Π, r) := {M ∈ Rep(Π, D · r) | M locally free} ⊂ Rep(Π, D · r),

and observe that Repl.f.(Π, r) is a fiber bundle over the GLD·r-orbit O(Er), with

typical fiber Repfib(Π,Er). Finally we define for any projective S-module M the
constructible subset

Π(M) = {(Mij)(i,j)∈Ω ∈ Repfib(Π,M) | ((Mij)ij ,M) is E-filtered}.

Here, a Π-module X is E-filtered if it admits a flag of submodules 0 = X(0) ⊂
X(1) ⊂ · · · ⊂ X(l) = X , such that for all k we have X(k)/X(k−1)

∼= Eik for
some i1, i2, . . . , il ∈ I. Note that for C symmetric and D trivial this specializes
to Lusztig’s notion of a nilpotent representation for the preprojective algebra of a
quiver. However, if C is not symmetric even in the Dynkin case there exist finite-
dimensional, locally free Π-modules which are not E-filtered, see [GLS6, Sec. 8.2.2]
for an example.

We consider Π(r) with the Zariski topology and call it by a slight abuse of
notation a variety. In any case, it makes sense to speak of the dimension of Π(r)
and we can consider the set

Irr(Π(r))max

of top-dimensional irreducible components of Π(r).
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Theorem 4.2. Let C be a symmetrizable generalized Cartan matrix with sym-

metrizer D and H = HK(C,D,Ω),Π = ΠK(C,D) for an algebraically closed field

K. For the spaces Π(r) of E-filtered representations of Π we have

(a) dim Π(r) = dimH(r) =
∑

i∈I

cir(i)
2 −

1

2
(r, r)C,D for all r ∈ NI .

(b) The set B :=
∐

r∈NI Irr(Π(r))max has a natural structure of a crystal of type

BC(−∞) in the sense of Kashiwara. In particular, we have

|Irr(Π(r))max| = dimU(n)r,

where U(n) the universal enveloping algebra of the positive part n of the

Kac-Moody Lie algebra g(C).

We will sketch in the next two sections a proof of these two statements, which
are the main result of [GLS6].

4.4. Bundle constructions. The bundle construction in this section is crucial. It
is our version [GLS6, Sec. 3] of Lusztig’s construction [L1, Sec. 12].

For m ∈ N we denote by Pm the set of sequences of integers p = (p1, p2, . . . , pt)
with m ≥ p1 ≥ p2 ≥ · · · ≥ pt ≥ 0. Obviously Pck parametrizes the isoclasses of
Hk-modules, and we define Hp

k = ⊕t
j=1Hk/(ǫ

pj

k ). For k ∈ I and M ∈ rep(Π) we set

fack(M) := Mk/ Im(Mk,in) and subk(M) := Ker(Mk,out).

With this we can define

Π(M)k,p = {M ∈ Π(M) | fack(M) ∼= Hp
k } and

Π(M)k,p = {M ∈ Π(M) | subk(M) ∼= Hp
k }

for p ∈ Pck . We abbreviate Π(M)k,m = Π(M)k,c
m
k . In what follows, we will focus

our exposition on the varieties of the form Π(M)k,p, however one should be aware
that similar statements and constructions hold for the dual versions Π(M)k,p.

For an E-filtered representation M ∈ rep(Π) there exists always a k ∈ I such
that fack(M), viewed as an Hk-module, has a non-trivial free summand. It is also
important to observe that Π(M)k,0 is an open subset of Π(M).

Fix now k ∈ I, let M be a projective S-module and U be a proper, projective
S-submodule of M with Uj = Mj for all j 6= k. Thus, M/U ∼= Er

k for some r ∈ N+,
and can choose a (free) complement Tk, such that Mk = Uk ⊕ Tk. For partitions

p = (crk, q1, q2, . . . , qt) and q = (q1, . . . , qt) in Pck we set moreover Hominj
S (U,M) :=

{f ∈ HomS(U,M) | f injective}, and define

Y k,p,q := {(U,M, f) ∈ Π(U)k,q×Repfib(Π,M)×Hominj
S (U,M) | f ∈ HomΠ(U,M)}.

Note that for (U,M, f) ∈ Y k,p,q we have in fact M ∈ Π(M)k,p, and that the group
AutS(U) acts freely on Y k,p,q via

g · (U,M, f) := ((giUij(id⊗g−1
j ))(i,j)∈Ω, M, g · f−1).

Lemma 4.3. Consider in the above situation the diagram

Y k,p,q

p′

vv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

p′′

%%❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

Π(U)k,q × Hominj
S (U,M) Π(M)k,p
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with p′(U,M, f) = (U, f) and p′′(U,M, f) = M . Then the following holds:

(a) p′ is a vector bundle of rank m, where

m =
∑

j∈Ω(−,k)

dimK HomK(Tk, kMj ⊗Hj
Mj) − dimK HomHk

(Tk, Im(Uk,in)).

(b) p′′ is a fiber bundle with smooth irreducible fibers isomorphic to

AutS(U) × GrTk

Hk
(Hp

k ),

where GrTk

Hk
(Hp

k ) := Homsurj
Hk

(Hp
k , Tk)/AutHk

(Tk).

Corollary 4.4. In the situation of Lemma 4.3, the correspondence

Z ′ 7→ p′′(p′
−1

(Z ′ × Hominj
S (U,M)) := Z ′′

induces a bijection between the sets of irreducible components Irr(Π(U)k,q) and

Irr(Π(M)k,p). Moreover we have then

dimZ ′′ − dimZ ′ = dimH(M) − dim(U).

Note, that this implies already part (a) of Theorem 4.2. In fact the Corollary

allows us to conclude by induction that dim Π(r) ≤ dim Repfib(H, r). On the other
hand, we can identify H(r) with an irreducible component of Π(r).

4.5. Crystals. For M ∈ rep(Π) and j ∈ I there are two canonical short exact
sequences

0 → Kj(M) → M → facj(M) → 0 and 0 → subj(M) →M → Cj(M) → 0.

We define recursively that M is a crystal module if facj(M) and subj(M) are locally
free for all j ∈ I, and Kj(M) as well as Cj(M) are crystal modules for all j ∈ I.
Clearly, if M is a crystal module, for all j ∈ I there exist ϕj(M), ϕ∗

j (M) ∈ N such
that

(4.1) subj(M) ∼= E
ϕj(M)
j and facj(M) ∼= E

ϕ∗

j (M)

j .

Note moreover, that crystal modules are by construction E-filtered. It is now easy
to see that for all projective S-modules M the set

Π(M)cr := {M ∈ Π(M) |M is a crystal representation}

is a constructible subset of Π(M). The following result from [GLS6, Sec. 4] is
crucial for the proof of Proposition 4.2 (b). It has no counterpart for the case of
trivial symmetrizers.

Proposition 4.5. For each projective S-module M the set Π(M)cr is a dense and

equidimensional subset of the union of all top dimensional irreducible components

of Π(M).

This allows us in particular to define for all Z ∈ Irr(Π(M))max and i ∈ I the value
ϕi(Z), see (4.1), such that for a dense open subset U ⊂ Z we have ϕi(M) = ϕi(Z)
for all M ∈ U . Similarly, we can define ϕ∗

i (Z).
Next we set

Irr(Π(r)i,p)max := {Z ∈ Irr(Π(r)i,p) | dimZ = dimH(r)}

for i ∈ I and p ∈ N0, and similarly Irr(Π(r)i,p. By Lemma 4.3 we get a bijection

e∗i (r, p) : Irr(Π(r)i,p)max → Irr(Π(r + αi)
i,p+1)max, Z 7→ p′′(p′−1(Z × J0))
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Similarly we obtain a bijection

ei(r, p) : Irr(Π(r)i,p)max → Irr(Π(r + αi)i,p+1)max.

This allows us to define for all r ∈ NI the operators

ẽi : Irr(Π(r))max → Irr(Π(r + αi)), Z 7→ ei(r, ϕi(Z))(Z◦),

where Z◦ ∈ Irr(Π(r)i,ϕi(Z))
max is the unique irreducible component with Z◦ = Z.

Similarly, we can define the operators ẽ∗i in terms of the bijections e∗i (r, p). We
define now

(4.2) B :=
∐

r∈N0

Irr(Π(r))max and wt: B → Z
I , Z 7→ rank(Z).

It is easy to see that (B,wt, (ẽi, ϕi)i∈I) is special case of a lowest weight crystal in
the sense of Kashiwara [K1, Sec. 7.2], namely we have

• ϕi(ẽi(b)) = ϕi(b) + 1, wt(ẽi(b)) = wt(b) + αi,
• with {b−} := Irr(Π(0))max, for each b ∈ B there exists a sequence i1, . . . , il

of elements of I with ẽi1 ẽi2 · · · ẽil(b−) = b,
• ϕi(b) = 0 implies b 6∈ Im(ẽi).

Similarly (B,wt, (ẽ∗i , ϕ
∗
i )i∈I) is a lowest weight crystal with the same lowest weight

element b−.

Lemma 4.6. The above defined operators and functions on B fulfill additionally

the following conditions:

(a) If i 6= j, then ẽ∗i ẽj(b) = ẽj ẽ
∗
i (b).

(b) For all b ∈ B we have ϕi(b) + ϕ∗
i (b) − 〈wt(b), αi〉 ≥ 0.

(c) If ϕi(b) + ϕ∗
i (b) − 〈wt(b), αi〉 = 0, then ẽi(b) = ẽ∗i (b).

(d) If ϕi(b) + ϕ∗
i (b) − 〈wt(b), αi〉 ≥ 1, then ϕi(ẽ

∗
i (b)) = ϕi(b) and

ϕ∗
i (ẽi(b)) = ϕ∗

i (b).
(e) If ϕi(b) + ϕ∗

i (b) − 〈wt(b), αi〉 ≥ 2, then ẽiẽ
∗
i (b) = ẽ∗i ẽi(b).

The proof of this Lemma in [GLS6, Sec. 5.6] uses the homological features of
locally free Π-modules from Corollary 3.15 in an essential way. Note that here, by
definition, 〈r, αi〉 = (C · r)i.

Altogether this means, by a criterion of Kashiwara and Saito [KS, Prp. 3.2.3],
which we use here in a reformulation due to Tingley and Webster [TW, Prp. 1.4],
that (B,wt, (ẽi, ϕi)i∈I) ∼= (B,wt, (ẽ∗i , ϕ

∗
i )i∈I) ∼= BC(−∞). Here, BC(−∞) is the

crystal graph of the quantum group Uq(n(C)). This implies part (b) of Theorem 4.2.

Remark 4.7. We did not give here Kashiwara’s general definition of a crystal
graph, or that of a lowest weight crystal associated to a dominant integral weight.
The reason is that, due to limitations of space, we can not to set up the, somehow
unwieldy, notations for the integral weights of a Kac-Moody Lie algebra. The
interested reader can look up the relevant definitions, in a form which is compatible
with these notes, in [GLS6, Sec. 5.1, 5.2].

5. Algebras of constructible functions

5.1. Constructible functions and Euler characteristic. Recall that the topo-
logical Euler characteristic, defined in terms of singular cohomology with com-
pact support and rational coefficients, defines a ring homomorphism from the
Grothendieck ring of complex varieties to the integers.
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By definition, a constructible function f : X → C on a complex algebraic variety
X has finite image, and f−1(c) ⊂ C is a constructible set for all c ∈ C. By the
above remark it makes sense to define

∫

x∈X

fdχ :=
∑

c∈C

c χ(f−1(c)).

If ϕ : X → Y is a morphism of varieties, we can define the push forward of con-
structible functions via (ϕ∗(f))(y) :=

∫

x∈ϕ−1(y)
fdχ. This is functorial in the sense

that (ψ ◦ ϕ)∗(f) = ψ∗(ϕ∗(f)) for ψ : Y → Z an other morphism, by result of
McPherson [MPh, Prp. 1]. See also [Jo, Sec. 3] for a careful discussion.

5.2. Convolution algebras as enveloping algebras. Let A = CQ as in Sec-
tion 4.1. We consider for a dimension vector d ∈ NI the vector space F(A)d of
constructible functions f : Rep(A,d) → C which are constant on GLd(C)-orbits
and set

F(A) :=
⊕

d∈Ni

F(A)d.

Following Lusztig [L1] F(A) has the structure of a unitary, graded associative
algebra. The multiplication is defined by

(f ∗ g)(X) =

∫

U∈GrA
d
(X)

f(U)g(X/U)dχ,

where f ∈ F(A)d, g ∈ F(A)e, X ∈ Rep(A,d + e), and GrAd (X) denotes the
quiver Grassmannian of d-dimensional subrepresentations of X . The associativity
of the multiplication follows easily from the functoriality of the push-forward of
constructible functions. We have an algebra homomorphism

(5.1) c : F(A) → F(A×A), with (c(f))(X,Y ) = f(X ⊕ Y ),

see for example [GLS5, Sec. 4.3]. The proof depends crucially on the Bia lynicki-
Birula result about the fixpoints of algebraic torus actions [BB, Cor. 2]. This fails
for example over the real numbers.

Remark 5.1. If X = (Xj)j∈J is a family of indecomposable representations of
A, we define the characteristic functions θj ∈ FdimXj

(A) of the GLdimXj
-orbit

O(Xj) ⊂ Rep(A, dimXj) and consider the graded subalgebra M(A) = MX(A) of
F(A), which is generated by the θj . Clearly, the homogeneous components of M
are finite dimensional. If j = (j1, j2, . . . , jl) is a sequence of elements of j we have
by the definition of the multiplication

θj1 ∗ θjl ∗ · · · ∗ θjl(X) = χ(FlAX,j(M)),

where FlAX,j(M) denotes the variety of all flags of submodules

0 = M (0) ⊂M (1) ⊂ · · · ⊂M (l) = M

with M (k)/M (k−1) ∼= Xjk for k = 1, 2, . . . , l. In particular, if M has no filtration
with all factors isomorphic to some Xj , we have f(M) = 0 for all f ∈ M(A)dimM .
See [GLS5, Lemma 4.2].

Lemma 5.2. The morphism c from (5.1) induces a comultiplication ∆: M(A) →
M(A) ⊗ M(A) with ∆(θj) = θj ⊗ 1 + 1 ⊗ θj for all j. With this structure M
is a cocommutative Hopf algebra, which is isomorphic to the enveloping algebra

U(P(M)) of the Lie algebra of its primitive elements P(M).
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See [GLS5, Prp. 4.5] for a proof. Recall, that an element x of a Hopf algebra is
called primitive iff ∆(x) = x ⊗ 1 + 1 ⊗ x. It is straightforward to check that the
primitive elements of a Hopf algebra form a Lie algebra under the usual commutator
[x, y] = xy − yx.

Remark 5.3. It is important to observe that, by the definition of the comul-
tiplication, the support of any primitive element of M consists of indecompos-
able, X-filtered modules. In fact, for f ∈ P(M) and M,N ∈ rep(A) we have
f(M ⊕N) = cf(M,N) = (f ⊗ 1 + 1 ⊗ f)(M,N). See [GLS5, Lem. 4.6].

We are here interested in the two special cases when A = HC(C,D,Ω) or A =
ΠC(C,D) and X = E = (Ei)i∈I . Note that by Remark 5.1 only locally free modules
can appear in the support of any f ∈ ME(H). Similarly, the support of any
f ∈ ME(Π) consists only of E-filtered modules. For this reason we will consider in
what follows, both ME(H) and ME(Π) as graded by rank vectors. In other words,
from now on

M(H) := ME(H) =
⊕

r∈NI

Mr(H) and M(Π) = ME(Π) =
⊕

r∈NI

Mr(Π),

where we may consider the the elements of Mr(H) := ME(H)D·r as constructible
functions on H(r). Similarly we may consider the elements of Mr(Π) := ME(Π)D·r

as constructible functions on Π(r).

5.3. ME(H) and a dual PBW-basis in the Dynkin case. We have the follow-
ing basic result from [GLS5, Cor. 4.10].

Proposition 5.4. Let C be a symmetrizable Cartan matrix, D a symmetrizer and

Ω an orientation for C. With H = HC(C,D,Ω) we have an surjective Hopf algebra

homomorphism

ηH : U(n(C)) → ME(H) defined by ei 7→ θi(i ∈ I).

The main point is to show that for the θi (i ∈ I) fulfill the Serre relations (2.4).
More precisely we need that the primitive elements

θij := (ad θi)
1−cij (θj) ∈ P(M(H))(1−cij)αi+αj

(i 6= j)

actually vanish. For this it is enough, by Remark 5.3, to show that there exists no
indecomposable, locally free H-module M with rank(M) = (1 − cij)αi + αj . This
is carried out in the proof of [GLS5, Prp. 4.9].

The proof of the following result, which is [GLS5, Thm. 6.1], occupies the major
part of that paper.

Proposition 5.5. Let C be a symmetrizable Cartan matrix of Dynkin type, D
a symmetrizer and Ω an orientation for C and H = HC(C,D,Ω). Then for

each positive root β ∈ ∆+ there exists a primitive element θβ ∈ P(M(H))β with

θβ(M(β)) = 1.

The idea of the proof is as follows: By [GLS4, Cor. 1.3] for any β ∈ ∆+(C)

and any sequence i in I, the Euler characteristic χ(FlHE,i(M(β))) is independent
of the choice of the symmetrizer D. So, we may assume that C is connected and
D minimal. In the symmetric (quiver) case, our claim follows now by Schofield’s
result [S], who showed that in this case P(M(H)) can be identified with n(C). By
Gabriel’s theorem in this case the θβ are the characteristic function of the GLβ-orbit
of M(β).
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In the remaining cases, we construct the θβ by induction on the height of β
in terms of (iterated) commutators of “smaller” θγ . Note however that in this
case this construction is delicate since the support of the θβ may contain several
indecomposable, locally free modules. See for example [GLS7, Sec. 13.2(d)].

Since in the Dynkin case all weight spaces of n(C) are one-dimensional, the main
result of [GLS5], Theorem 1.1 (ii), follows easily:

Theorem 5.6. If C is of Dynkin type, the Hopf algebra homomorphism ηH is an

isomorphism.

Recall the notation used in Proposition 3.11. In particular, i is a reduced expres-
sion for the longest element w0 ∈ W (C), which is +-adapted to Ω, and βk = βi,k
for k = 1, 2, . . . , r. Let us abbreviate

θm :=
1

mr! · · ·m1!
θmr

βr
∗ · · · ∗ θm1

β1
and M(m) := ⊕r

k=1M(βk)mk

for m = (m1,m2, . . . ,mr) ∈ Nr. By the above results (θm)m∈Nr is a normalized
PBW-basis of M(H) ∼= U(n(C)) in the Dynkin case.

Moreover we consider the graded dual M(H)∗ of M(H), and the evaluation form
δM(m) ∈ M(H)∗ with δm(f) := f(M(m)). By the definition of the comultiplication
in M(H), the graded dual is a commutative Hopf algebra, and δM(m) · δM(n) =
δM(m+n). Our next result is essentially [GLS7, Thm. 1.3].

Proposition 5.7. With the above notation we have

δM(m)(θn) = δm,n for all m,n ∈ N
r.

Thus (δM(m))m∈Nr is a basis of M(H)∗ which is dual to the PBW-basis (θm)m∈Nr ,

and M(H)∗ = C[δM(β1), . . . , δM(βr)].

In the quiver case (with trivial symmetrizer) this result is easy to prove, since
with Gabriel’s theorem and Proposition 3.11 follows quickly that θr is the character-
istic function of the orbit of M(r). However, in our more general setting, already the
θβk

are usually not the characteristic function of M(βk), as we observed above. The
more sophisticated Proposition 3.12 implies, by the definition of the multiplication
in ME(H), that θm(M(βk)) = 0 if m 6= ek, the k-th unit vector. The remaining
claims follow now by formal arguments, see the proof of [GLS7, Thm. 6.1].

Remark 5.8. For M ∈ repl.f.(H) and e ∈ NI we we introduce the quasi-projective
variety

GrlfHe (M) := {U ⊂M | U locally free submodule and rank(U) = e},

which is an open subset of the usual quiver Grassmannian GrHD·e(M). With this
notation we can define

FM :=
∑

e∈NI

χ(GrlfHe (M))Y e ∈ Z[Y1, . . . , Yn] and gM := −R · rank(M),

where R is the matrix introduced in Corollary 3.4. By the main result of [GLS7] this
yields for M = M(β) with β ∈ ∆+(C) the F -polynomial and g-vector, in the sense
of [FZ2], for all cluster variables of a finite type cluster algebra [FZ1] of type C with
respect to an acyclic seed defined by Ω. The proof is based on Proposition 5.7, and
on the description by Yang and Zelevinsky [YZ] of the F -polynomial of a cluster
variable in terms of generalized minors.
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5.4. Semicanonical functions and the support conjecture for ME(Π). Re-
call, that we abbreviate Π = ΠC(C,D) for a symmetrizable Cartan matrix C with
symmetrizer D. By definition M(Π) = ME(Π) ⊂ F(Π) is generated by the func-

tions θ̃i ∈ Mαi
(Π) for i ∈ I, where θ̃i is the characteristic function of the orbit of

Ei, viewed as a Π-module. We use here the notation θ̃i rather than θi to remind us
that the multiplication is now defined in terms of constructible functions on a larger
space. More precisely, we have for each r ∈ NI an injective AutS(Er)-equivariant,
injective morphism of varieties

ιr : H(r) → Π(d).

These morphisms induce, via restriction, a surjective morphism of graded Hopf
algebras

ι∗Ω : M(Π) → M(H), θ̃i 7→ θi for i ∈ I.

The proof of the following result is, almost verbatim, the same induction argument
as the one used by Lusztig [L2], see [GLS6, Lem. 7.1].

Lemma 5.9. Let r ∈ NI . For each Z ∈ Irr(Π(r))max there exists an open dense

subset UZ ⊂ Z and a function fZ ∈ Mr(Π) such that for Z,Z ′ ∈ Irr(Π(r))max and

any u′ ∈ UZ′ we have

fZ(u′) = δZ,Z′ .

In particular, the functions (fZ)Z∈Irr(Π(r))max are linearly independent in Mr(Π).

Note however, that the result is not trivial since we claim that the fZ ∈ Me(Π)
and not in the much bigger space F(Π)C·r. On the other hand, it is important to
observe that the inductive construction of the semicanonical functions fZ involves
some choices.

As in Section 5.3, we define now for each i 6= j in I the primitive element

θ̃ij = (ad θ̃i)
1−cij (θ̃j) ∈ P(M(Π)).

Unfortunately, we have the following result, which is a combination of Lemma 6.1,
Proposition 6.2 and Lemma 6.3 from [GLS6].

Lemma 5.10. Suppose with the above notations that cij < 0.

(a) If ci ≥ 2 then there exists an indecomposable, Π = Π(C,D)-module X =

X(ij) with rank(X(ij) = (1 − cij)αi + αj and θ̃ij(X(ij)) 6= 0.

(b) If M is crystal module with rank(M) = (1−cij)αi+αj we have θ̃ij(M) = 0.

This leads us to define in M(Π) the ideal I, which is generated by the homoge-

neous elements θ̃ij for i, j ∈ I with i 6= j. We set moreover

M(Π) = M(Π)/I andf̄ := f + I (f ∈ M(Π)).

Thus, by Proposition 5.4, the morphism ι∗Ω induces a surjective algebra homomor-

phism ῑ∗Ω : M(Π) → M(H). On the other hand, we can define for each r ∈ NI the
space of functions with non maximal support

Sr := {f ∈ Mr(Π) | dim supp(f) < dimH(r)} and S := ⊕r∈NISr.

Recall that dim Π(r) = dimH(r). Proposition 4.5 and Lemma 5.10 imply at least

that θ̃ij ∈ S. In view of Lemma 5.9 and Proposition 4.2 it is easy to show the
following result:
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Proposition 5.11. The following three conditions are equivalent:

(1) I ⊂ S, (2) I = S, (3) S is an ideal.

In this case the surjective algebra homomorphism

η : U(n) → M(Π), ei 7→ θ̃i + I

would be an isomorphism, and the (η−1(f̄Z))B would form a basis of U(n) which is

independent of the possible choices for the (fZ)Z∈B.

Thus we call the equivalent conditions of the above proposition our Support

conjecture.

Remark 5.12. Our semicanonical basis would yield, similarly to [L2, Sec. 3], in a
natural way a basis for each integrable highest weight representation L(λ) of g(C),
if the support conjecture is true. See [GLS6, Se. 7.3] for more details.
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