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Motivated by the constrained many-body dynamics, the stability of the localization-delocalization properties
to the inclusion of the soft constraints is addressed in random matrix models. These constraints are modeled
by correlations in long-ranged hopping with Pearson correlation coefficient different from zero or unity. Coun-
terintuitive robustness of delocalized phases, both ergodic and (multi)fractal, in these models is numerically
observed and confirmed by the analytical calculations. First, matrix inversion trick is used to uncover the origin
of such robustness. Next, to characterize delocalized phases a method of eigenstate calculation, sensitive to
correlations in long-ranged hopping terms, is developed for random matrix models and approved by numerical
calculations and previous analytical ansatz. The effect of the robustness of states in the bulk of the spectrum the
inclusion of to soft constraints is generally discussed for single-particle and many-body systems.

I. INTRODUCTION

Absence of thermalization in interacting many-body quan-
tum systems has attracted significant interest and boosted nu-
merous studies of different possibilities to violate eigenstate
thermalization hypothesis (ETH) both in static and driven sys-
tems. The first and most developed way to do this is to ran-
domize system parameters by including disorder. This phe-
nomenon is called many body localization (MBL) [1, 2]. Like
in single-particle case of Anderson localization [3] disorder
induces destructive interference and provokes emergent local
integrals of motion [4, 5] blocking the excitation transport.

An alternative way to break ETH in absence of disorder is to
add some hard constraints to the many-body system, that cru-
cially reduce the Hilbert space by separating the Hamiltonian
into the disjoint sub-block structure, see Fig. 1(a). These hard
constraints can be realized either by infinitely strong interac-
tions [6–9], additional integrals of motion [10–12], or gauge
invariance [13]. As a result, such hard constraints produce
special low-entanglement states (such as many-body scars)
in the bulk of the spectrum [6, 7], giving significant contri-
bution to the typical infinite-temperature states and revealing
themselves via infinitely long-lived oscillations in quenched
observables [14]. However, in real life none of barriers is in-
finite. The effect of soft constraints on the thermalization in
such systems is non-trivial and under hot debate nowadays as
the finite-energy barriers between disjoint Hilbert space sub-
blocks might be prevailed at high temperature, Fig. 1(c,e).

For this reason it is of fundamental importance to study a
simple model in which hard and soft constraints can be eas-
ily realized and corresponding localization properties can be
precisely investigated. This would provide efficient criteria to
characterize the effects of soft constraints in generic cases.

The straightforward analog of hard constraints in single-
particle systems is given, e.g., by fully-correlated long-ranged
hopping in random matrix models [15–19]. Indeed, in
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Figure 1. Sketch of constraints in (a, c, e) many-body systems
and (b, d, f) random matrix models. Hard constraint corresponds
to (a) the infinite barrier U = ∞ between blocks of Hamiltonian
(shown pictorially as parabolic potentials) at any temperature T and
(b) the absence of any fluctuations j0/j̃ = ∞ in long-ranged hop-
ping in random matrix analogs. The opposite limit of very small con-
straint allows large fluctuations in both cases (c, d) due to small ratios
U/T � 1 and j0/j̃ � 1. The most nontrivial case of soft constraint
with finite but large barrier U/T � 1 and j0/j̃ � 1 (e) provides
the way to overcome the barrier with thermal-activated rate in many-
body case, and (f) suggests that delocalization is determined by the
width of the distribution (Peff ), but not by its peak position (P ).

these models the complete correlations of all hopping terms,
Fig. 1(b), impose the hard constraints like in the case of many-
body scars and localize the states in the bulk of the spectrum.
However, due to the single-particle nature of these systems,
all states in the spectral bulk become localized [20]. Soft
constraints in this case can be easily realized by considering
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partial correlations of long-ranged hopping with non-integer
Pearson correlation coefficient. In this work we consider
such single-particle disordered models with partially corre-
lated long-ranged hopping, Fig. 1(d, f), investigate both nu-
merically and analytically their eigenstate statistics and phase
diagrams, and reveal unexpected robustness of delocalized
phases to soft constraints, Fig. 1(f).

In most random matrices the delocalized side of the lo-
calization transition (corresponding to ETH in many-body
systems) is represented by Gaussian Wigner-Dyson ensem-
bles [21]. One of most well-known examples of a d-
dimensional random matrix model confirming this statement
and demonstrating the Anderson localization transition (ALT)
at any d (including d ≤ 2) is the power-law random banded
matrix ensemble (PLRBM) [22],

Ĥ = ε̂+ ĵ, ε̂ =
∑
n

εn |n〉 〈n| , (1a)

ĵ =
∑
m,n

jmn |m〉 〈n| , (1b)

written in d-dimensional basis of N lattice sites |n〉. This
model is characterized by the independent Gaussian dis-
tributed hopping terms jmn, with the standard deviation
〈j2
mn〉1/2 ∝ |m − n|−a power-law decaying at large dis-

tances |m − n| � 1 and its ALT is governed by the decay
exponent a responsible for the ratio of the on-site disorder
εn = Hnn [23] and hopping terms. The system shows er-
godic (localized) wave-function statistics for a < d (a > d),
while the ALT point a = d is characterized by so-called non-
ergodic extended (multifractal) wave functions typical for the
ALT phase diagram at the criticality [24, 25].

However recently there have been found several mod-
els showing the whole nonergodic extended phases, see,
e.g., [19, 26]. The milestone random matrix example in this
row is the Rosenzweig-Porter ensemble (RP) [27]. This nom-
inally 1d model has infinitely long-ranged independent Gaus-
sian distributed hopping elements with the N -dependent vari-
ance 〈j2

mn〉 ∝ N−γ and apart from the ALT transition at
γ = 2 [28–34], it exhibits an ergodic transition (ET) at γ = 1
from the ergodic phase (γ < 1) to a whole phase of noner-
godic extended states (1 < γ < 2) characterized by a non-
trivial fractal support set [35, 36] of wave functions [26] with
the fractal Hausdorff dimension D = 2− γ, 0 < D < 1. This
behavior has been further confirmed by several analytical and
numerical papers [37–45].

The question of constraints (hopping correlations) imposed
in both above mentioned models has been considered recently
in [19]. Indeed, the new paradigm of the ALT suggested there
states that hopping correlations 〈jmnjm′n′〉−〈jmn〉 〈jm′n′〉 6=
0 shrink in general an ergodic phase towards smaller disor-
der strengths extending both localized and multifractal phases.
In the case when all hopping integrals are fully-correlated
(with unit Pearson’s coefficient) the localization at any dis-
order strength is restored [15, 18, 46] similar to the case of
the short-range Anderson model in d = 1, 2 [3, 47]. An ex-
ample of such random matrix models with fully-correlated
hopping elements jm6=n = C|m − n|−a, decaying with

the distance |m − n| as a power-law like in PLRBM, has
been suggested in a seminal paper by Burin and Maksimov
(BM) [15]. The infinitely long-ranged limit of this model
(analogous to RP) with complete correlations between hop-
ping terms jmn = CN−γ/2 has been shown to be exactly
integrable by Yuzbashyan and Shastry (YS) [16, 17]. Both
these models demonstrate localization for all eigenstates, ex-
cept measure zero, for all values of parameters a and γ. Note
that the statistics of the site-independent scalar C ∼ 1 does
not play any role here.

A representative type of correlations considered in Ref. [19]
is the hard constraint (correlations with Pearson’s coefficient
+1) of certain pairs, (m,n) and (m′, n′), of hopping terms,

jmn/jm′n′ = f(m,n)/f(m′, n′) > 0 . (2)

Here f(m,n) > 0 is the deterministic function of indices m,
n, and possibly of the system sizeN . For uncorrelated models
(like PLRBM and RP) the pairs are only (m′, n′) = (n,m),
while in fully-correlated examples (BM and YS) all pairs
of (m′, n′) and (m,n) are involved. In the intermediate
translation-invariant case |m′ − n′| = |m− n| [20].

In this paper we address a complimentary aspect of soft
constraints, namely partial hopping correlations of all pairs
of hopping terms

0 < 〈jmnjm′n′〉 <
√
〈j2
mn〉 〈j2

m′n′〉 . (3)

For this we consider both PLRBM and RP models with fi-
nite hopping average values that interpolate between origi-
nal uncorrelated PLRBM and RP ensembles and their fully-
correlated counterparts, BM and YS models [48].

The unexpected stability of the delocalized phases to soft
constraints in both cases is demonstrated. The delocaliza-
tion is shown to survive even for relatively narrow distribu-
tions with mean values j0 much larger than the width j̃, see
Fig. 1(f). The positions of the ALT and possible ET are shown
to be governed solely by the distribution width j̃, but not by
relative fluctuations j̃/j0, see Fig. 2 and Peff in Fig. 1(f). This
brings us to the conclusion that soft constraints added to the
initially delocalized phase do not break delocalization of any
state in the bulk of the spectrum, Fig. 1(e), even if the hard
constraint does, Fig. 1(a).

In order to uncover the origin of this counterintuitive re-
sult we first use the matrix inversion trick suggested in [19]
to rewrite the eigenproblem in the coordinate basis in an al-
ternative way. Furthermore we develop the self-consistent
method of eigenvector calculation based on the averaging
over off-diagonal matrix elements, allowing one to access
wave-function statistics and, in particular, confirming the phe-
nomenological ansatz known in the literature for RP ensem-
ble [42–44] (see also [38]). Unlike the standard renormaliza-
tion group analysis [22, 49] or the Wigner-Weisskopf approx-
imation [42] used in the literature before this self-consistent
method is sensitive to the hopping correlations. In the cur-
rent problem the full ALT diagram of previously mentioned
models is calculated with help of these methods.

The rest of the paper is organized as follows. In Sec. II
we formulate the random matrix models in the focus. Sec. III
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Figure 2. Phase diagram of RP model with partial correlations (5)
with average hopping j0 ∼ N−γ0/2 and its standard deviation j̃ ∼
N−γ̃/2. (left) both the Anderson localization transition, γeff = 2,
and the ergodic transition, γeff = 1, are governed solely by γ̃, while
γYS = max(γ0, 2) (12) affects wave-function profile only in the
localized phase at γYS < γ̃. Right panels show the behavior of γeff

along different cuts (I-IV) shown in left panel.

shows how the naive guess for the behavior of these models
fails, and provide numerical results along with localization-
delocalization phase diagrams. Sec. IV describes the matrix
inversion trick which explains the behavior of these models
and allows us to uncover the origin of unexpected stability
of delocalized phases. In Sec. V we demonstrate the self-
consistent method of eigenfunction calculation on the exam-
ple of RP ensemble with finite mean hopping values. In Con-
clusion we sum up or results and give an outlook.

II. MODELS

Throughout the text we focus on the generalized Ander-
son’s single-particle model with long-ranged hopping terms,
represented by the Hamiltonian (1). The uncorrelated diag-
onal disorder is given by independent identically distributed
random on-site energies εn with zero mean and fixed variance

〈εn〉 = 0 ,
〈
ε2
n

〉
= W 2. (4)

The summation in (1b) is taken over pairs of sites m, n cou-
pled by hopping integrals

jmn = j∗nm = j0(|m− n|) + hmnj̃(|m− n|) , (5)

characterized by the distant-dependent mean and standard de-
viation values, respectively

〈jmn〉 = j0(|m− n|) , σj = j̃(|m− n|) , (6)

where σ2
j =

〈
j2
mn

〉
− 〈jmn〉2. For simplicity we restrict our

consideration to d = 1, unless stated otherwise. Here and
further we denote by hmn i. i. d. random variables with zero
mean 〈hmn〉 = 0 and unit variance

〈
|hmn|2

〉
= 1.

The PLRBM and RP ensembles correspond to j0 = 0 and

j̃PLRBM =
1

|m− n|ã
and j̃RP = N−γ̃/2 , (7)

respectively, while for BM and YS models in contrast j̃ = 0,

j0
BM =

1

|m− n|a0
, and j0

YS = N−γ0/2 . (8)

As infinitely long-ranged models (like RP and YS) do not
have the notion of distance, the main tool used to characterize
the properties of their delocalized and localized phases is the
standard multifractal (MF) analysis. This analysis is based on
the spectrum of fractal dimensions [50]

f(α) = 1−α+ lim
N→∞

ln[P (|ψE(n)|2 = N−α)]/ lnN , (9)

defined via the distribution of wave-function ampli-
tudes P (|ψE(n)|2) with the N -scaling of eigenfunctions
|ψE(n)|2 ∝ N−α, see Fig. 3.

Other long-ranged models (like PLRBM and BM) provide
additional tools, e.g., the spatial decay of eigenfunctions with
the distance |n−n0| from its maximal value at n = n0 [18, 19]
given by the typical wave-function decay, see Fig. 4,

|ψE(n)|2typ ≡ exp
[〈

ln |ψE(n)|2
〉]
∼ |n− n0|−aeff . (10)

Here 〈. . .〉 denotes the average over disorder and over eigen-
states in the middle of the spectrum. The energy level statis-
tics (see, e.g., [51]) as basis-invariant characteristics gives the
definite information about the fully-ergodic (Wigner-Dyson)
phase and the phase localized in a certain basis with the Pois-
son level statistics [19, 52].

For RP-model the spectrum of fractal dimensions f(α) is
shown to be linear in α = − ln |ψE(n)|2/ lnN for γ̃ ≥ 1,
with the slope 1/2 [26]

f(α) =

{
1 + (α− γ̃)/2, αmin < α < γ̃
−∞, α < αmin or α > γ̃

, (11)

and an additional point f(0) = 0 for γ̃ > 2. Here αmin =
max(0, 2 − γ̃). The f(α) in the ergodic phase, γ̃ < 1, co-
incides with the one at γ̃ = 1 and is represented by the only
point f(1) = 1 [26].

The Yuzbashyan-Shastry (YS) ensemble (or as sometimes
called the Type-1 model) [16–18, 46, 53] characterized by
deterministic infinitely long-range hopping terms jmn =
j0gmgn, with the constants gm ∝ O(1) of order of one, is
exactly integrable [16, 17] and known to have all localized
states for j0 < 1/N and all, except one, localized states for
j0 > 1/N [17, 19, 46, 53]. The generalization of this ensem-
ble to N -dependent hopping elements (8) shows a single-site
localized phase for γ0 > 2 and a critical behavior at γ0 < 2
with the spectrum of fractal dimensions given by (11) with γ0

replaced by the following expression [19] (see Appendix A
for analytical derivations)

γYS = max(γ0, 2) ≥ 2 . (12)
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Figure 3. Spectrum of fractal dimensions f(α) of RP model with partial correlations (5) for different scaling of the average hopping j0 ∼
N−γ0/2 and its standard deviation j̃ ∼ N−γ̃/2. The finite-size data are numerically extrapolated to infinity from system sizes N = 29 . . . 214

withNr = 103 disorder realizations in each. Dashed lines show analytical predictions (11, 17a) for f(α). (a) the naively expected case of small
γ̃ < γ0, 2 with fluctuations j̃ � j0 dominating over correlated hopping j0 and determining the corresponding delocalized phase by γeff = γ̃.
(b) the case of large γ̃ > γ0, 2 where correlated hopping dominates j0 � j̃ and localized the system with γeff = γYS = max(γ0, 2) ≥ 2.
(c) non-trivial case min(γ0, 2) < γ̃ < max(γ0, 2) showing the dominant correlated hopping j0 � j̃, with the phase governed solely by
γeff = γ̃.
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Figure 4. Typical wave-function spatial decay ln |ψE(n)|2typ = 〈ln(|ψE(n)|2〉 vs n for PLRBM model with partial correlations (5)
for different power-law decay rates of the average hopping j0

n ∼ |n|−a0 and its standard deviation j̃n ∼ |n|−ã. The data are numerically
calculated for the system size N = 214 and Nr = 103 disorder realizations. Dashed lines show analytical predictions (13, 17b) of this power-
law decay. Panels show the cases similar to ones in Fig. 3: (a) small ã < 1, a0 with dominant fluctuations j̃ � j0 leading to the expected
ergodic phase and aeff = ã. (b) large ã > a0, 2 − a0 where correlated hopping dominates j0 � j̃ and the localized phase is governed by
aeff = aBM = max(a0, 2 − a0). (c) non-trivial case min(a0, 2 − a0) < ã < max(a0, 2 − a0) of dominant correlated hopping j0 � j̃
governed solely by aeff = ã. The data with ã < 1 in panels (a) and (c) is shifted with respect to each other for clarity.

PLRBM undergoes the ALT at a = 1, showing ergodic
behavior at a < 1 and power-law localization at a > 1 [24,
25], with the decay rate equal to the parameter a

|ψE(n)| ∝ |ψE(n0)|/|n− n0|a (13)

at the large distance |n−n0| � 1 from the maximal point n0,
maxn |ψE(n)| = |ψE(n0)|.

In BM-model [15, 18, 19, 46, 54–57], the fully-correlated
counterpart of PLRBM, which is determined by the Hamilto-
nian (1) with the hopping elements (8), all, except measure
zero of the states, are power-law localized (13) in the entire
region of the parameter a. However, the power-law decay rate
aBM is not equal to a, but instead is always larger than one
(see [18, 19] for details)

aBM = max(a, 2− a) ≥ 1 . (14)

III. INTUITIVE GUESS AND NUMERICAL RESULTS

What would be the phase diagram for general models (1 - 6)
with both finite mean j0 and fluctuating j̃ hopping terms? For

the first glance, it is natural to expect that the behavior of un-
correlated models (7) should be dominant as soon as j̃ � j0

(γ̃ < γ0 or ã < a0) as the distribution of hopping elements is
relatively wide and nearly centered at zero, see Fig. 1(d), and
vice versa the models with deterministic hopping (8) should
dominate at j̃ � j0 (γ̃ > γ0 or ã > a0) when the distribution
is relatively narrow and its width can be neglected, Fig. 1(b,f).

However, this is not the case. Indeed, from numerical cal-
culations one can see that these models undergo the ALT (and
the ET for RP case) at the same points as their uncorrelated
counterparts: γ̃ = 2 (γ̃ = 1) and ã = 1 irrespective to the
amplitude j0 as if all mean values are zero, j0 = 0, Fig. 2.
Moreover, the wave-function statistics of such models in all
phases, Figs. 3 and 4, coincides with the one of a simple mix-
ture of two uncorrelated long-ranged hopping models of the
type (7), with hopping terms

jmn = hmnj̃(|m− n|) + h0
mnj̃

0(|m− n|) , (15)

where the function j̃0(|m − n|) is described by (8) with the
parameters γ0 and a0 of fully-correlated models (YS and BM)
replaced by their effective values (12) and (14), respectively.
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Thus, in the leading approximation one can replace the mix-
ture of hopping elements by their maximum

jmn = hmn max
[
j̃(|m− n|), j̃0(|m− n|)

]
(16)

and map the model with partial correlations to the one with
zero mean (equivalent to RP and PLRBM) and parameters γ
and a in Eqs. (11, 13) replaced by effective ones

γeff = min(γ̃, γYS) = min (γ̃,max(γ0, 2)) , (17a)
aeff = min(ã, aBM) = min (ã,max(a0, 2− a0)) . (17b)

This is the main result of this paper shown here numerically,
Figs. 3 and 4, and confirmed further analytically.

The qualitative explanation of this unexpected stability of
delocalized states originates from the fact that the models with
deterministic long-range hopping terms (like YS and BM)
demonstrate only localized eigenfunction statistics in the bulk
of the spectrum, but never delocalized. As a result, in the
mixture these fully-correlated models can compete with their
uncorrelated counterparts only in the localized phase, ã > 1
or γ̃ > 2, Fig. 2, affecting the wave-function spatial profile in
the locator expansion [3, 49, 58] (see also [19] for more de-
tailed discussion). In terms of soft constraints this means that
as soon as typical states in the spectral bulk are considered the
infinite temperature corresponding to them prevail over the fi-
nite barrier of soft constraint between previously disjoint sub-
blocks of the Hamiltonian and brings the system to the phase
where it was before imposing constraints.

To understand the origin of the above mentioned behavior
of partially-correlated models (3), summarized in Eqs. (15 –
17a), in the next section we describe a matrix inversion
trick [19] providing an alternative representation of the eigen-
problem and apply it to the mixture of YS and RP model as
an example.

IV. MATRIX INVERSION TRICK

Here we restrict our consideration of the matrix inversion
trick to the case of the mixture of RP and YS models (for the
mixture of PLRBM and BM models please see Appendix B).
For the first time this method has been suggested by us in
Ref. [19] to analytically prove the duality of the eigenfunc-
tion power-law decay in the 1d BM-model (14) numeri-
cally discovered in Ref. [18] and to generalize both Ander-
son localization [3, 49, 58] and Mott ergodicity [59] princi-
ples for the models with correlated hopping. However re-
cently there have been found several many-body [60, 61] and
higher-dimensional, d > 1, single-particle models [62, 63],
applied to which this method easily uncovers their phase di-
agrams and the wave-function structure by the extension the
locator expansion validity range.

Let’s first consider the pure deterministic (BM or YS)
model (8). The matrix inversion trick is based on the spec-
tral properties of the hopping matrix

ĵ0 =
∑
〈m,n〉

j0(|m− n|) |m〉 〈n| ≡
∑
p

j0
p |p〉 〈p| (18)

Figure 5. Sketch of the spectrum of deterministic hopping (18),
(a) diverging from either (solid blue line) or both (blue and yellow
lines) sides, but has a finite gap. (b) spectrum of the inverse matrix
M̂ (19) with diminished divergence(s).

diagonalized in a certain basis |p〉 (momentum basis for BM
model). If the spectrum j0

p of this matrix diverges from either
side in the thermodynamic limit (e.g., j0

max = maxp j
0
p →

∞ for N → ∞ and j0
min = minp j

0
p is finite) or even from

both sides, but has a finite spectral gap, see Fig. 5(a), one can
diminish the effect of these divergent terms to the hopping
elements, inverting the matrix (1 + ĵ0/E0) ≡ M̂−1

M̂ = (1 + ĵ0/E0)−1 =
∑
p

|p〉 〈p|
1 + j0

p/E0
. (19)

This matrix inversion sends the diverging top-spectrum (or
edge-spectrum) terms close to j0

max to the denominator of the
sum while the condition E0 + j0

min > 0 avoids the diver-
gence of the contributions from the bottom (or states close to
the gap) of the spectrum, see Fig. 5(b). The optimization of
E0 ∼ Nβ over the parameter β [19] gives the smallest ef-
fective hopping terms at β = 0 in the whole parameter range
(please see Appendix B for details).

After the matrix inversion trick the problem takes the form[
(1 + ĵ0/E0)−1(E − ε̂+ E0)− E0

]
|ψE〉 = 0 . (20)

The diagonal part M0 of the matrix (1 + ĵ0/E0)−1
m,n =

Mm−n forms effective on-site disorder M0εn and eigenvalue
M0(E + E0) − E0 of the problem, while the hopping terms
are formed by Mm−n 6=0(E − εn + E0).

The main idea behind this matrix inversion trick uses the
fact that the eigenstates with large hopping energies |j0

p | � 1
are barely affected by the disorder ε̂. Thus, they nearly co-
incide with those hopping matrix eigenstates |p〉 that give the
main contribution to (18). All other eigenstates corresponding
to small hopping energies |j0

p | ∼ O(1) are orthogonal to these
large-energy states at the spectral edge and thus almost or-
thogonal to the main contribution to the hopping matrix given
by them. As a result the states in the bulk of the spectrum
“see” the hopping terms Mm−n 6=0(E − εn + E0) which are
significantly reduced compared to the initial ones j0

m−n.
For the case of YS model the rank-1 matrix ĵ0 has the only

non-zero eigenvalue j0
p=0 = N1−γ0/2 corresponding to the

zero-momentum state 〈n|0〉p = N−1/2 with arbitrary rest ba-
sis states |gk 6=0〉 orthonormal to |0〉p [64].
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The same matrix inversion trick (20) can be applied as well
to the model (6) with partial correlations (3)[

(1 + ĵ0/E0)−1(E − ε̂− ˆ̃j + E0)− E0

]
|ψE〉 = 0 , (21)

where we inverse only the deterministic hopping part with the
semi-infinite spectrum.

As a result Eq. (21) takes the predicted form of Eq. (15)[
ε̂+ ˆ̃j + ˆ̃j0 + r̂

]
|ψE〉 = E |ψE〉 . (22)

with the fluctuating elements of the matrix ˆ̃j0

j̃0
mn = − E − εn + E0

N + E0Nγ0/2
∼ N−γYS/2 , (23)

which do not break the locator expansion and the residual term
r̂ small compared to ˆ̃j

rmn =

∑
l j̃ln

N + E0Nγ0/2
∼ N (1−γ̃)/2

N + E0Nγ0/2
� j̃mn . (24)

In Eq. (23) γYS is given by (12). This derivation confirms our
numerical observation (15) and concludes this section. The
consideration of the mixture of PLRBM and BM models is
addressed in Appendix B.

To sum up, in this section we have shown that the effective
locator expansion result [19] analogous to (13) is applicable in
the case of the RP-YS mixture to calculate the wave function
in the whole localized phase coinciding with the one of the
uncorrelated model (γ̃ > 2) at any γ0, Fig. 2.

To calculate the wave-function statistics in all phases, in-
cluding delocalized ones, in the next section we develop a
self-consistent method sensitive to hopping correlations.

V. SELF-CONSISTENT EIGENSTATE CALCULATION

In this section we consider the self-consistent method of
the wave-function calculation, generalizing the perturbation
theory. For simplicity we restrict our consideration to the
mixture of RP and YS ensembles. For more general analy-
sis please see Appendix C. Separating hopping terms jmn =
j0 + hmnj̃ (5) in the Hamiltonian (1) into deterministic j0 =
j0
Y S = N−γ0/2 (8) and fluctuating j̃ = j̃RP = N−γ̃/2 (7)

parts in the eigenproblem

(En−εk)ψEn
(k) = j0

∑
l

ψEn
(l)+ j̃

∑
l

hklψEn
(l) , (25)

one can formally write its solution

ψEn
(k) = ψEn

(n)
Jkn

εn − εk + Jnn
, (26a)

Jkn ≡ an + Pkn + j̃hkn . (26b)

in terms of the sums

an = j0
∑
l

ψEn
(l)/ψEn

(n) , (27a)

Pkn = j̃
∑
l 6=n

hklψEn
(l)/ψEn

(n) (27b)

and En − εn = Jnn given by (26b), that should be calculated
self-consistently. Here and further we choose the index n in
the energy En in such a way that in absence of off-diagonal
elements j0 = j̃ = 0 the wave function is localized at k = n,
ψEn

(k) = δk,n, with the energy En = εn.
Averaging (26) over the hopping elements hmn with fixed

bare energies εn gives the following expression for the wave-
function intensity〈

|ψEn
(k)|2

〉
hkn

∼
〈
|ψEn

(n)Jkn|2
〉

(εn − εk + ∆En)2 + Γ2
n

. (28)

Here we assume that the sums Pmn and an are self-averaging
and thus they are uncorrelated from each other and from hkl.
For RP model itself this approximation of self-averaging over
hopping terms has been used in several papers [37, 38] and
confirmed there by other methods. The fluctuating energy
shift Jnn = En − εn after this averaging leads both to the en-
ergy shift ∆En and the level broadening Γn in Eq. (28). Both
∆En and Γn are of the same order as En − εn and in princi-
ple contain contributions from all cumulants of Pnn and an,
however for our analysis it is enough to consider only mean
values and the first-order perturbation theory term j̃hnn with
standard deviation j̃ taken into account (for further details see
Appendix C)

Γn ' 〈an〉+ 〈Pnn〉+ j̃ . (29)

Here Γn plays a role of the level broadening. This level broad-
ening determines the size of the miniband of almost fully-
correlated eigenfunctions like in RP-model [26, 44]. The
factor

〈
|ψEn(n)Jkn|2

〉
in the numerator of Eq. (28) guaran-

tees the wave-function normalization and not important for
the wave-function statistics.

Focusing on the N -scaling of Γn ∼ ∆En one can show
that the localized state realizes at Γn smaller than the mean
level spacing δ ' W/N of the model without hopping, the
ergodic state corresponds to Γn large compared to the bare
band of the systemW ∼ O(1), while the fractal phase appears
at intermediate values:

Γn � δ ⇔ localized phase
δ � Γn � Nδ ∼W ⇔ fractal phase

Γn � Nδ ⇔ ergodic phase
(30)

In order to estimate the scaling of the level broadening and
identify the corresponding phases one can make use of the
self-consistent equations for Pkn and an which could be ob-
tained by substituting expressions (26) for ψEn(k) and En to
(27). The resulting equations read as

an = j0

1 +
∑
l 6=n

an + j̃hln + Pln
εn − εl + Jnn

 , (31a)

Pkn =
∑
l 6=n

j̃hkl(an + Pln + j̃hln)

εn − εl + Jnn
. (31b)

The next essential step is to average these equations over
hnm relying on the above-mentioned self-averaging proper-
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ties of these sums. As a result, Eqs. (31) take the form

〈Pkn〉 = j̃2S1δk,n , (32a)

〈an〉 =
1

(j0)−1 − S1
∼ min

(
j0, S−1

1

)
, (32b)

with the sum S1 given by

S1 =
∑
l

1

εn − εl + Γn
. (33)

The latter can be calculated, e.g., in two limiting cases of
(i) the completely rigid spectrum εn−εm = (n−m)δ, with δ
being a bare mean level spacing without hopping, and (ii) the
Poisson statistics of εn. Up to prefactors unimportant for the
multifractal analysis S1 takes the form

S1(Γn) ∼
{

1/δ Γn � Nδ
N/Γn Γn & Nδ

. (34)

Considering cases (30) and substituting (34) into (32)
and (29) one easily obtains the result up to prefactors O(1)

Γn ∼

 N−min(γ̃,γYS)/2 γ̃ > 2, localized
N1−γ̃ 1 < γ̃ < 2, fractal
N (1−γ̃)/2 γ̃ < 1, ergodic

, (35)

with γYS = max(γ0, 2) given by (12).
Comparison of the resulting Γn with the one of the RP

model shows the same N -scaling with the parameter γ̃ re-
placed by γeff from Eq. (17a). One can also check it by the
direct calculation of the multifractal spectrum. Indeed, the re-
sulting approximate wave function (28) scales as〈

|ψEn(k)|2
〉
hkn

∼ N−γ̃ +N−γYS

N−p + Γ2
n

, (36)

where the scaling of ∆En ∼ Γn is given by (35) and we
parameterized (εn − εk) ∼ N−p/2 with the parameter p. For
a certain distribution of the diagonal terms εn with the width
W ∼ O(1) the scaling of the probability reads as

P (εn − εk)dεn = P (N−p/2)N−p/2dp ∼ N−p/2dp (37)

for positive p > 0 as P (εn → 0) ∼ O(1). For negative
p < 0 the probability is at least exponentially small in εn and
thus, for multifractal analysis one should neglect it focusing
on p ≥ 0. As a result the spectrum of fractal dimensions

Nf(α)−1dα = P
(
|ψEn |

2 ∼ N−α
)
d(|ψEn

(k)|2) (38)

can be found from the expression

Nf(α)−1dα = dP

(
N−α ∼ N−γ̃ +N−γYS

N−p + Γ2
n

)
= max

p>0
N−p/2dα , (39)

where the maximization in r.h.s. is taken with respect to
the condition N−α ∼ (N−γ̃ + N−γYS)/(N−p + Γ2

n). The

maximal probability is given by the condition 0 < p <
−2 ln Γn/ lnN leading to p = γeff − α and to the result (11)
with γeff given by (17a). Moreover the boundaries 0 < p <
−2 ln Γn/ lnN provide the correct bounds for α

max(0, 2− γeff) < α < γeff . (40)

This analysis confirms numerical results shown in Fig. 3 and
concludes this section. Note that the method developed in
this section is powerful and accurate for the multifractal anal-
ysis as one can take into account cumulants of any order of
the sums (31) fluctuating with the hopping terms and sensi-
tively distinguish models with slightly different hopping cor-
relations.

VI. CONCLUSION AND DISCUSSIONS

To sum up, in this work we address the effect of soft con-
straints on the phase diagram of random matrix models with
long-ranged correlated hopping. We demonstrate unexpected
robustness of the delocalized phases to partial hopping cor-
relations imposed by soft constraints and determine wave-
function statistics and corresponding phase diagrams of mile-
stone disordered long-range models, power-law banded ran-
dom matrix and Rosenzweig-Porter ensembles. This main re-
sult (17) is confirmed by both numerical calculations and two
analytical approaches. The matrix-inversion trick developed
in [19] uncovers the effective Hamiltonian (22) and confirms
the wave-function behavior in the localized phase. The self-
consistent method allows to calculate wave-function statistics
in delocalized phases as well and confirm the main result of
the paper.

A parallel drown between constrained random-matrix mod-
els and many-body systems, brings us to the conclusion that
in general soft constraints added to the initially delocalized
phase do not break delocalization of any typical (infinite tem-
perature) state, even if the hard constraint does. Indeed, the
infinite temperature corresponding to the typical states in the
spectral bulk prevail over the finite barrier of soft constraint
between previously-disjoint sub-blocks of the Hamiltonian
and brings the system to the phase where it was before impos-
ing constraints. However, the relations of slow-dynamics phe-
nomena [65] to hard and soft constraints both in many-body
systems [6–13, 66–69] and in closely related single-particle
disordered models [44, 70] is still under debates and consider-
ation. The question of the dynamics and relaxation of highly
non-local operators [71] is also in the focus of the research in
the community.

Another intriguing question is how the interplay between
partial correlations in hopping and interaction amplitudes
could affect localization properties in many-body systems
with either or both hopping and interaction terms being long-
ranged in the coordinate space. Specifically, the limiting fully-
correlated case of the interacting version of Burin-Maksimov
model was recently analyzed in [60, 72–76], and the opposite
situation without any constraints was considered in details in
[77–82]. However, the intermediate regime represented by
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both finite means and dispersion in distribution functions of
matrix elements needs deep consideration.

Finally, in order to more precisely investigate the role of
partial correlations in long-range random matrix models, it
would be insightful to construct the corresponding effective
field-theoretic description with imposed soft constraints. For
instance, this approach may naturally incorporate ergodicity-
breaking phenomena in gauge-invariant lattice models [13].
Although the desirable theory is more technically involved
than usual super-symmetric non-linear sigma model due to
finite means of hopping and effective non-locality, several
attempts were made to describe systems with correlations
in off-diagonal terms [53, 83]. Moreover, so-called “virial
expansion” for almost diagonal random matrices developed
in [84, 85] seems to be a suitable candidate for an appropriate
representation of constrained models with disjoint sub-blocks

in Hilbert space.
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Appendix A: Yuzbashyan-Shastry model

1. Model
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H0 = diag ε+ j0gT g∗ , (A1)

with a random real vector ε = (ε1, . . . , εN ) and determin-
istic complex vector g = (g1, . . . , gN ) with N -independent
elements. εi are statistically independent entries with a zero
mean and a unit variance

〈εk〉 = 0, 〈ε2
k〉 = 1, (A2)

while j0 scales with the matrix size N as j0 ∝ N−γ0/2. Note
that the translation-invariant case of g = (1, . . . , 1) corre-
sponds to the finite mean j0 of the hopping elements (plus
additional unimportant shift of energy).

As Type-1 Hamiltonian [16, 17] H0 provides an exact
eigenproblem solution [16]

ψEn
(k) = Cn

g∗k
En − εk

, (A3)

with the (possibly N -dependent) normalization constant
Cn = j0

∑
m gmψEn(m),

|Cn|−2 =
∑
k

|gk|2

(En − εk)2
, (A4)

and the secular equation for the spectrum E = En∑
m

|gm|2

E − εm
=

1

j0
∼ Nγ0/2 , (A5)

giving all eigenvalues (except the highest one EN > εN ) ly-
ing between adjacent bare levels

εm < Em < εm+1 . (A6)

Here we assumed εm to be ordered in ascending order εm <
εm+1, m = 1, N − 1. Note that this model includes the lim-
iting case a = 0 of long-range deterministic hoppings con-
sidered in [18] both for positive (gm = 1) and staggering
(gm = (−1)m) hopping elements.
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2. Spectral statistics

To find the spectrum En one should consider the secular
equation in more details. Let’s assume that all gk are of the
same order gk ' g ∼ N0 and consider the variation of En
from its bare value εn as

Γn = En − εn, 0 ≤ Γn < εn+1 − εn . (A7)

Separating positive and negative summands of the sum (A5)
for E = En we obtain

1

j0
=
|gn|2

Γn
+
∑
k>0

[
|gn−k|2

εn − εn−k + Γn
− |gn+k|2

εn+k − εn − Γn

]
' |g|

2

Γn
+
∑
k>0

[
|g|2

εn − εn−k + Γn
− |g|2

εn+k − εn − Γn

]
.

(A8)

Now we have to estimate a typical value of the sum taking
into account the inequality (A7). To do so we consider two
limiting cases.

(i) In the limit of a completely rigid spectrum εn = nδ,
with the mean level spacing δ ∼ 1/[ρ(0)N ] and the density
of states at the Fermi level ρ(0), the sum (A8) can be taken
explicitly

1

|g|2j0
=

π

δ tan(πΓn/δ)
(A9)

giving

Γn =
δ

π
arctan(π|g|2j0/δ) ∼ N−γYS/2 , (A10)

where

γYS = max(γ0, 2) . (A11)

Analogously the normalization constant governed by (A4)
takes the form

1

|g|2|Cn|2
'
∑
k

1

(Γn + εn − εk)2

' 1

Γ2
n

+
π2

δ2 sin2(πΓn/δ)
' 1

Γ2
n

. (A12)

In the latter equality we neglect prefactors, focus only on the
N -scaling and take into account that Γn . δ.

(ii) In the opposite limit of uncorrelated eigenstates one can
calculate (A8) as follows

1

|g|2j0
=

1

Γn
+N

∫
|ω|>δ

ρ(εn − ω)dω

ω + Γn
'

1

Γn
+Nρ(0)

∫ ∞
δ

dω

[
1

ω + Γn
− 1

ω − Γn

]
=

1

Γn
+

1

δ
ln

(
δ − Γn
δ + Γn

)
, (A13)

where we take into account (A7) in the lower limits of inte-
gration. Here the density of states is

ρ(ε) =
1

N

∑
k

〈δ(ε− εk)〉 . (A14)

Again considering only N -scaling of Γn in (A13) one can
obtain

Γn ∼ N−γYS/2 . (A15)

Analogously the normalization constant governed by (A4)
takes the form of (A12)

1

|g|2|Cn|2
1

Γ2
n

+Nρ(0)

∫ ∞
δ

dω

[
1

(ω + Γn)2
− 1

(ω − Γn)2

]
=

1

Γ2
n

+
1

δ

(
1

δ + Γn
− 1

δ − Γn

)
' 1

Γ2
n

. (A16)

As the scaling (A10, A15) of the energy deviation Γn (A7)
and of the normalization constant Cn (A12, A16) are the
same in both limiting cases, we conclude that these param-
eters weakly depends on the statistics of bare levels εn.

3. Eigenstate statistics

Using the results (A3) and (A12) one can calculate the spec-
trum of fractal dimensions f(α) for the wave function inten-
sity

|ψEn(k)|2 =
|Cn|2|g|2

(En − εk)2
' 1

[(εn − εk)NγYS/2 − 1]2
≡ N−α .

(A17)
Indeed, as the probability of εn − εk ∼ N−p/2 for p > 0 is

dP (εn − εk ∼ N−p/2) ∼ P (p)dp ∼ N−p/2dp , (A18)

one can easily find

α =

{
γYS − p, p < γYS

0, p > γYS
(A19)

and

Nf(α)−1 = dP (p(α)) ∼ N−p(α)/2 = N (α−γYS)/2 (A20)

for p = γYS − α > 0, giving the spectrum of fractal dimen-
sions of the form of [26]

f(α) = 1 +
α− γYS

2
, 0 < α < γYS , (A21)

with γYS given by (A11).
As a result, unlike the Rosenzweig-Porter model, the YS

model (A1) shows only localized and critical wave functions
of all eigenstates, except the only top energy state at γ0 <
2 [17]. At γ0 > 2 the wave-function statistics (A21) coincides
with the one of the RP, with γYS = γ0, while at all γ0 < 2
instead of the delocalized phases YS model shows the critical
localization with γYS = 2.
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Appendix B: Matrix inversion trick

In this Appendix we first give general estimate of the op-
timal parameter β, E0 ∼ Nβ and then apply the matrix in-
version trick [19] to the PLRBM model with partial correla-
tions (3)

1. Optimization over E0 in the matrix inversion trick

Let’s focus for simplicity on the case of E ∼ W ∼ N0.
The effective hopping matrix Jm−n = Mm−n(E + E0 −
εn)/M0 in Eq. (20)[

(1 + ĵ0/E0)−1(E − ε̂+ E0)− E0

]
|ψE〉 = 0 . (B1)

can be estimated as follows

Ĵ =
∑
p

|p〉 〈p| E + E0

M0(E0 + j0
p)
≡
∑
p

Jp |p〉 〈p| (B2)

Here we neglected the term εn for simplicity asE ∼ εn ∼ N0

and divided Eq. (20) by

M0 =
1

N

∑
p

1

E0 + j0
p

' 1

E0 + j0
p,min

(B3)

in order to have diagonal disorder in the standard form of εn.
Here j0

p,min is the typical hopping energy level andE0 is taken
to be in the gap of the hopping spectrum or beyond it (see
Fig. 5).

Each term in the sum (B2) can be minimized overE0 giving

E0 ∼ min(|j0
p,min|, |E|), Jp '

E|j0
p,min|

j0
p,min + j0

p

. (B4)

However, one should take into account that E0 has to be be-
yond the spectrum |E0| & |j0

p,min|, leading to the final result

E0 ' j0
p,min, Jp '

(E + j0
p,min)j0

p,min

j0
p,min + j0

p

. (B5)

In the case of BM or YS deterministic hopping ĵ0, the typical
energy level j0

p,min ∼ N0, thus, the optimal E0 ∼ N0 and
this confirms the statement given in the main text.

2. Matrix inversion for PLRBM model with partial
correlations

We start with the model (1, 6) with j̃mn = |m − n|−ã,
j0
mn = |m− n|−a0 and compute matrix elements j̃0

mn + rmn
of the effective Hamiltonian (22)

ˆ̃j0 + ˆ̃j + r̂ =
(

1 + ĵ0/E0

)−1 (
E − ε̂+ E0 + ˆ̃j

)
. (B6)

The first terms in the brackets of r.h.s.(
1 + ĵ0/E0

)−1

(E − ε̂+ E0) scales as |n|−(2−a) at

a < 1 and correspond to (1 − α)ˆ̃j0 with a certain constant α
of order of one. The calculation of it is given in [19]. Further
we consider the rest part

αˆ̃j0 + ˆ̃j + r̂ ≡
(

1 + ĵ0/E0

)−1 ˆ̃j . (B7)

In order to simplify the calculations we provide the up-
per bound of this term by replacing the oscillating amplitudes
hmn of j̃mn = hmn/|m−n|ã by their maximal absolute value
hmn = 1. Within this approximation the result can be easily
derived in the momentum space, since both matrices are diag-
onal in that basis. For purposes of clarity we reproduce main
steps of similar calculations presented in [19] specifically for
the case of our interest.

We start by writing down the Fourier-transformed hopping
amplitude j0 (in case of j̃ one needs to replace a0 by ã) in
different asymptotic regimes

j0
p/2 ' ζa0 +Aa0

(
N

|p|

)1−a0
, for |p| � N , (B8)

j0
p/2 ' j0

min+Ba0

(
2q

N

)2

, for q = |N/2−p| � N , (B9)

where the corresponding constants are given for a0 > 0 by

Aa0 = (2π)a0−1Γ1−a0 sin
πa0

2
, (B10)

for a0 6= 2m+ 1,m ∈ N and

j0
min = 2(21−a0 − 1)ζa0 < 0 , (B11)

Ba0 = 8π2(1− 23−a0)ζa0−2 ' 2π2a0 > 0 . (B12)

Here ζa0 is the Riemann zeta function.
The next step is to estimate the long-range asymptotic be-

havior of the effective Hamiltonian (1 − α)ˆ̃j0 + ˆ̃j + r̂ given
by

(1− α)j̃0
n + j̃n + rn = C0(a0, ã) +

2

N
Re

N/2∑
p=1

j̃p e
2πipn/N

E0 + j0
p

(B13)
with the zero-momentum contribution

C0(a0, ã) =
ζã +N1−ã/(1− ã)

N(E0/2 + ζa0) +N2−a0/(1− a0)
. (B14)

The last term in (B13) can be split into three parts correspond-
ing to different regimes of j̃p and j0

p . However, not all of the
resulting terms are equally important in the limit 1� n� N .
One can easily show that summation only over sufficiently
small momenta |p| < αN (where 0 < α < 1/2) contributes
to the long-range behavior of matrix elements. The rest of
the summation results in the gives small contribution to the
residue term rn and is unimportant. Thus, we focus only on
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the following sum

S(a0, ã) =
2ζã
N

Re
Nα1∑
p=1

e2πipn/N

E0/2 + ζa0 +Aa0(p/N)a0−1

+
2Aã
N

Re
Nα1∑
p=1

(p/N)ã−1e2πipn/N

E0/2 + ζa0 +Aa0(p/N)a0−1
. (B15)

In the case of our main interest (a0 < 1) an additional mo-
mentum scale pc = N [E0/2Aa0 + ζa0/Aa0 ]−1/(1−a0) ≤ N
emerges, and for p < pc the denominator is represented by
the power-law contribution. Contrary, for p > pc a constant
term is dominant and we get

S(Nα, a0 < 1, ã) ≈ ζãAa0−1

πAa0

1

|n|2−a0

+
AãA1−ã

π(E0/2 + ζa0)

1

|n|ã
+
AãAa0−ã
πAa0

1

|n|1−a0+ã
, (B16)

which for a0 < 1 leads to the effective parameter governing
the long-range tails of typical wave functions:

aeff = min (ã, 2− a0) (B17)

in full agreement with the result (17b) mentioned in the main
text. The last term in (B16) contribute to the residual term
as it is small compared to the second term ∼ |n|−ã in the
considered interval a0 < 1.

Appendix C: Self-consistent method

In this Appendix we use the formulation of the eigenprob-
lem in terms of exact Eqs. (26 - 31) in order to derive ex-
pressions for scaling (35) of the broadening factor Γn in the
average wave-function intensity (28).

In the first part we restrict our consideration to the first and
second moments of the parameters an, Pkn, calculate sums
S1 (34) and S2 (see below) in two limiting cases of (i) the
completely rigid spectrum εn − εm = (n −m)δ, and (ii) the
Poisson statistics of εn, derive the mean expressions (32)
for the RP model with partial correlations and the effective
expression (35) for the broadening parameter Γn depending
solely on S1. Next, we explicitly calculate N -scaling (35) of
Γn.

1. Decoupling of correlations

In order to solve Eqs. (31) we assume that Pkn and an are
uncorrelated from each other and from hlm and calculate the
mean and the variance for each of them averaging over off-
diagonal matrix elements hkn = hnk assumed to be real and
taking into account 〈hlm〉 = 0,

〈
h2
lm

〉
= 1. As a result for

k 6= n,

〈Pkn〉 =
∑
l 6=n

j̃ 〈hkl〉
〈
an + Pln + j̃hln

〉
ωnl + Γn

= 0 ,

〈Pnn〉 =
∑
l 6=n

j̃ 〈hnl〉 〈an + Pln〉+ j̃2
〈
h2
ln

〉
ωnl + Γn

≡ j̃2S1 ,

〈an〉
j0

= 1 +
∑
l 6=n

〈an〉+ j̃ 〈hln〉+ 〈Pln〉
ωnl + Γn

≡ 1 + 〈an〉S1 ,

〈
P 2
kn

〉
=

j̃2
∑
l,l′ 6=n

〈hklhkl′〉
〈
(an + Pln + j̃hln)(an + Pl′n + j̃hl′n)

〉
(ωnl + Γn)(ωnl′ + Γn)

= j̃2
∑
l 6=n

〈
a2
n

〉
+
〈
P 2
ln

〉
+ j̃2

〈
h2
ln

〉
(ωnl + Γn)2

≡ j̃2S2

(
〈an〉2 + σ2

a +
〈
P 2
ln

〉
+ j̃2

)
,

σ2
P =

〈
P 2
nn

〉
− 〈Pnn〉2 =

j̃2
∑
l,l′ 6=n

〈
hnlhnl′

(an + Pln + j̃hln)(an + Pl′n + j̃hl′n)

(ωnl + Γn)(ωnl′ + Γn)

〉
−j̃4S2

1

= j̃2
∑
l 6=n

〈
a2
n

〉
+
〈
P 2
ln

〉
+ 3j̃2

(ωnl + Γn)2
+
∑

l 6=l′ 6=n

j̃4

(ωnl + Γn)(ωnl′ + Γn)
−j̃4S2

1

= j̃2S2

(
〈an〉2 + σ2

a +
〈
P 2
ln

〉
+ 2j̃2

)
,

σa
(j0)2

=

〈
a2
n

〉
− 〈an〉2

(j0)2
=

∑
l,l′ 6=n

〈
(an + Pln + j̃hln)(an + Pl′n + j̃hl′n)

(ωnl + Γn)(ωnl′ + Γn)

〉
−
〈
an − j0

〉2
=

∑
l 6=n

〈
P 2
ln

〉
+ j̃2

(ωnl + Γn)2
+
∑
l,l′ 6=n

〈
a2
n

〉
− 〈an〉2

(ωnl + Γn)(ωnl′ + Γn)
=

(〈
P 2
ln

〉
+ j̃2

)
S2 + σ2

aS
2
1 .

Here and further we use the notation ωnl = εn−εl for brevity.
This gives the following self-consistency equations

〈Pkn〉 = j̃2S1δkn , (C1a)

〈an〉 =
1

(j0)−1 − S1
∼ min(j0, S

−1
1 ) , (C1b)

〈
P 2
kn

〉
=
〈an〉2 + σ2

a + j̃2

1− (j̃2S2)−1

∼
(
〈an〉2 + σ2

a + j̃2
)

min
(
1, j̃2S2

)
, (C1c)

σ2
P =

〈
P 2
kn

〉
+ j̃4S2 , (C1d)

σ2
a =

(〈
P 2
ln

〉
+ j̃2

)
S2

(j0)−2 − S2
1

∼ S2

S2
1

(〈
P 2
ln

〉
+ j̃2

)
min

(
1, (j0S1)2

)
, (C1e)
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with the sums

S1 =
∑
l 6=n

1

ωnl + Γn
, S2 =

∑
l 6=n

1

(ωnl + Γn)2
.

While averaging the denominators ωnl + Γn we estimate
only N -scaling of the broadening parameter as follows

Γn ∼ j̃ + 〈an〉+ 〈Pnn〉+ σa + σP (C2)

and we consider the typical energy position εn to lie a bit
asymmetrically in the middle of the spectrum, thus the sum-
mation would be in the limits W1 < ωnl < W2, with
|W1 −W2| ∼ O(1) and W1 +W2 = W .

To estimate a typical value of the sums (33) we consider
two limiting cases.

(i) In the limit of the completely rigid spectrum εn = nδ,
with the mean bare level spacing δ ∼ 1/[ρ(0)N ] ∼W/N and
the density of states at the Fermi level ρ(0), the sums can be
taken explicitly

S1 =

{
ln(W2/W1)

δ + π
δ tan(πΓn/δ)

− 1
Γn
, Γn �W

N
Γn
, Γn �W

S2 =

{
π2

δ2 + π2

δ2 sin2(πΓn/δ)
− 1

Γ2
n
, Γn �W

N
Γ2
n
, Γn �W

and provide the following asymptotics

S1 ∼
{

1
δ , Γn �W
N
Γn
, Γn �W

(C3a)

S2 ∼
{ 1

δ2 , Γn �W
N
Γ2
n
, Γn �W

(C3b)

(ii) In the opposite limit of uncorrelated eigenstates one can
calculate (33) as follows

S1 =

N

2

[∫ −δ
−W1

ρ(εn − ω)dω

ω + Γn
+

∫ W2

δ

ρ(εn − ω)dω

ω + Γn

]
'

Nρ(0)

2

[∫ W1

δ

dω

ω + Γn
−
∫ W2

δ

dω

ω − Γn

]
=

1

2δ

[
ln

∣∣∣∣W1 + Γn
W2 − Γn

∣∣∣∣− ln

∣∣∣∣δ − Γn
δ + Γn

∣∣∣∣] .
S2 =

N

2

[∫ −δ
−W1

ρ(εn − ω)dω

(ω + Γn)2
+

∫ W2

δ

ρ(εn − ω)dω

(ω + Γn)2

]
'

Nρ(0)

2

[∫ W1

δ

dω

(ω + Γn)2
+

∫ W2

δ

dω

(ω − Γn)2

]
=

N

(Γn −W1)(Γn −W2)
− 1

Γ2
n − δ2

.

Unlike YS model (A13) here the broadening parameter can be
both smaller and larger than bare mean level spacing δ, thus,
during the calculation we just take into account the fact that
En − εk = ω + Γn is off-resonant. Here the density of states
is ρ(ε) =

∑
k 〈δ(ε− εk)〉 /N .

In this case asymptotics read as follows

S1 ∼
{

1
δ , Γn �W
N
Γn
, Γn �W

(C4a)

S2 ∼


1
δ2 , Γn � δ
1

Γ2
n

+ 1
δ , δ � Γn �W

N
Γ2
n
, Γn �W

(C4b)

Note that the expressions for sum S1 are the same in both
cases, while S2 are different only in the non-ergodic extended
phase. Let’s show that this difference do not affect the re-
sult (35) for the broadening parameter Γn. In order to prove
it we consider the expression (C2) in more details substituting
the expressions (C1) one by one.

First, let’s substitute σP

Γn ∼ j̃ + 〈an〉+ 〈Pnn〉+ σa + j̃2
√
S2+(

〈an〉+ σa + j̃
)

min
(

1, j̃
√
S2

)
.

As min
(
1, j̃
√
S2

)
≤ 1 one can neglect the whole last sum-

mand corresponding to
√
〈P 2
kn〉 which not larger than 〈an〉+

σa + j̃. Next, we substitute σa

Γn ∼ j̃ + 〈an〉+ 〈Pnn〉+√
S2

S1

(√
〈P 2
kn〉+ j̃

)
min

(
1, j0S1

)
+ j̃2

√
S2 .

As S2
1 ≥ S2 in all phases of both limiting cases, one can

neglect j̃2
√
S2 comparing to 〈Pnn〉 ∼ j̃2S1 and the whole σa

term comparing to 〈an〉+ j̃ as
(√
S2/S1

)
min

(
1, j0S1

)
≤ 1.

As a result we come to the expression (35)

Γn ∼ j̃ + 〈an〉+ 〈Pnn〉 ∼ j̃ + min(j0, S
−1
1 ) + j̃2S1 , (C5)

depending solely on S1. This confirms the statement given in
the main text and concludes this section.

2. Calculation of N -scaling (35) of Γn

Using Eq. (C5) and expressions (C3, C4) for S1, in this
section we calculate the scaling (35) of Γn in all three phases:

1. Γn � W . In this case S1 = N/Γn and Eq. (C5) takes
the form

Γn ∼ N−γ̃/2 + min

(
N−γ0/2,

Γn
N

)
+
N1−γ̃

Γn
, (C6)

The second term does not play any role as it is less than
Γn/N � Γn, while the third term dominates over the
first one and gives Γn ∼ N (1−γ̃)/2 and thus γ̃ < 1.
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2. δ � Γn �W . In this case S1 = 1/δ ∼ N leading to

Γn ∼ N−γ̃/2 + min
(
N−γ0/2, δ

)
+N1−γ̃ . (C7)

As in the previous case the second term does not play
any role as it is less than δ � Γn, while the third term
dominates over the first one and gives Γn ∼ N1−γ̃ and
thus 1 < γ̃ < 2.

3. Γn � δ. Here S1 ∼ 1/δ leading to γ̃ > 2 and

Γn ∼ N−γ̃/2 + min
(
N−γ0/2, δ

)
+N1−γ̃ . (C8)

In this case the first term dominates over the third one
and the concurrence of the first two terms gives the de-
sired result Γn ∼ N−γ̃/2 +N−γYS/2 ∼ N−γeff/2, with
γeff given by (17a).


