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Abstract. Zero-curvature representations (ZCRs) are one of the main tools in the theory of integrable
PDEs. In particular, Lax pairs for (1+1)-dimensional PDEs can be interpreted as ZCRs.

For any (1+1)-dimensional scalar evolution equation E , we define a family of Lie algebras F(E) which
are responsible for all ZCRs of E in the following sense. Representations of the algebras F(E) classify all
ZCRs of the equation E up to local gauge transformations. To achieve this, we find a normal form for
ZCRs with respect to the action of the group of local gauge transformations.

As we show in other publications, using these algebras, one obtains some necessary conditions for
integrability of the considered PDEs (where integrability is understood in the sense of soliton theory) and
necessary conditions for existence of a Bäcklund transformation between two given equations. Examples of
proving non-integrability and applications to obtaining non-existence results for Bäcklund transformations
are presented in other publications as well.

In our approach, ZCRs may depend on partial derivatives of arbitrary order, which may be higher than
the order of the equation E . The algebras F(E) generalize Wahlquist-Estabrook prolongation algebras,
which are responsible for a much smaller class of ZCRs.

In this paper we describe general properties of F(E) and present generators and relations for these
algebras. In other publications we study the structure of F(E) for equations of KdV, Krichever-Novikov,
Kaup-Kupershmidt, Sawada-Kotera types. Among the obtained algebras, one finds infinite-dimensional
Lie algebras of certain matrix-valued functions on rational and elliptic algebraic curves.

1. Introduction

Zero-curvature representations and Bäcklund transformations belong to the main tools in the theory
of integrable PDEs (see, e.g., [5, 22, 30]). This paper along with [10, 11, 12] is part of a research program
on investigating the structure of zero-curvature representations (ZCRs) for partial differential equations
(PDEs) of various types. The study of ZCRs performed in this paper leads to some results on Bäcklund
transformations and integrability, which are described in [11, 12].
Here we study (1+1)-dimensional scalar evolution equations

(1) ut = F (x, t, u0, u1, . . . , ud), u = u(x, t),
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where we use the notation

(2) ut =
∂u

∂t
, u0 = u, uk =

∂ku

∂xk
, k ∈ Z≥0.

The number d ≥ 1 in (1) is such that the function F may depend only on x, t, uk for k ≤ d. The symbol
Z≥0 denotes the set of nonnegative integers.
Methods of this paper can also be applied to (1+1)-dimensional multicomponent evolution PDEs,

see [10].

Remark 1. When we consider a function Q = Q(x, t, u0, u1, . . . , ul) for some l ∈ Z≥0, we always assume
that this function is analytic on an open subset of the space with the coordinates x, t, u0, u1, . . . , ul. For
example, Q may be a meromorphic function, because a meromorphic function is analytic on some open
subset.

PDEs of the form (1) have attracted a lot of attention in the last 50 years and have been a source of
many remarkable results on integrability. In particular, some types of equations (1) possessing higher-
order symmetries and conservation laws have been classified (see, e.g., [19, 20, 25] and references therein).
However, the problem of complete understanding of all integrability properties for equations (1) is still
far from being solved.
Examples of integrable PDEs of the form (1) include the Korteweg-de Vries (KdV), Krichever-

Novikov [15, 28], Kaup-Kupershmidt [13], Sawada-Kotera [26] (Caudrey-Dodd-Gibbon [1]) equations.
Many more examples can be found in [19, 20, 25] and references therein.
In the present paper, integrability is understood in the sense of soliton theory and the inverse scattering

method. (This is sometimes called S-integrability.) It is well known that, in order to investigate possible
integrability properties of (1), one needs to consider ZCRs. (In particular, Lax pairs for equations (1)
can be interpreted as ZCRs.)
Let g be a finite-dimensional Lie algebra. For an equation of the form (1), a zero-curvature represen-

tation (ZCR) with values in g is given by g-valued functions

(3) A = A(x, t, u0, u1, . . . , up), B = B(x, t, u0, u1, . . . , up+d−1)

satisfying

(4) Dx(B)−Dt(A) + [A,B] = 0.

The total derivative operators Dx, Dt in (4) are

(5) Dx =
∂

∂x
+
∑

k≥0

uk+1
∂

∂uk
, Dt =

∂

∂t
+
∑

k≥0

Dk
x

(

F (x, t, u0, u1, . . . , ud)
) ∂

∂uk
.

The number p in (3) is such that the function A may depend only on the variables x, t, uk for k ≤ p.
Then equation (4) implies that the function B may depend only on x, t, uk′ for k

′ ≤ p+ d− 1.
Such ZCRs are said to be of order ≤ p. In other words, a ZCR given by A, B is of order ≤ p iff

∂A

∂ul
= 0 for all l > p.

The right-hand side F = F (x, t, u0, . . . , ud) of (1) appears in condition (4), because F appears in the
formula for the operator Dt in (5). Note that (4) can be written as [Dx + A, Dt + B] = 0, because
[Dx, Dt] = 0. See also Remark 2 for another interpretation of equation (4).
We study the following problem. How to describe all ZCRs (3), (4) for a given equation (1)?
In the case when p = 0 and the functions F , A, B do not depend on x, t, a partial answer to this

question is provided by the Wahlquist-Estabrook prolongation method (WE method for short). Namely,
for a given equation of the form ut = F (u0, u1, . . . , ud), the WE method constructs a Lie algebra so that
ZCRs of the form

(6) A = A(u0), B = B(u0, u1, . . . , ud−1), Dx(B)−Dt(A) + [A,B] = 0

correspond to representations of this algebra (see, e.g., [2, 9, 14, 29]). It is called theWahlquist-Estabrook

prolongation algebra. Note that in (6) the function A = A(u0) depends only on u0.
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To study the general case of ZCRs (3), (4) with arbitrary p for any equation (1), we need to consider
gauge transformations.
Without loss of generality, one can assume that g is a Lie subalgebra of glN for some N ∈ Z>0, where

glN is the algebra of N × N matrices with entries from R or C. So our considerations are applicable
to both cases glN = glN (R) and glN = glN(C). And we denote by GLN the group of invertible N × N
matrices.
Let K be either C or R. Then glN = glN(K) and GLN = GLN(K). In this paper, all algebras are

supposed to be over the field K.

Remark 2. So we suppose that functions A, B in (4) take values in g ⊂ glN . Then condition (4) implies
that the auxiliary linear system

∂x(W ) = −AW, ∂t(W ) = −BW

is compatible modulo (1). Here W =W (x, t) is an invertible N ×N matrix-function.

Let G ⊂ GLN be the connected matrix Lie group corresponding to the Lie algebra g ⊂ glN . (That
is, G is the connected immersed Lie subgroup of GLN corresponding to the Lie subalgebra g ⊂ glN .) A
gauge transformation is given by a matrix-function G = G(x, t, u0, u1, . . . , ul) with values in G.
For any ZCR (3), (4) and any gauge transformation G = G(x, t, u0, . . . , ul), the functions

(7) Ã = GAG−1 −Dx(G) ·G
−1, B̃ = GBG−1 −Dt(G) ·G

−1

satisfy Dx(B̃)−Dt(Ã) + [Ã, B̃] = 0 and, therefore, form a ZCR. Moreover, since A, B take values in g

and G takes values in G, the functions Ã, B̃ take values in g. (This is well known, but for completeness
we prove this in Lemma 1.)
The ZCR (7) is said to be gauge equivalent to the ZCR (3), (4). For a given equation (1), formulas (7)

determine an action of the group of gauge transformations on the set of ZCRs of this equation.

Remark 3. So we study gauge transformations with values in G. Alternatively, one can take some other
Lie group G̃ ⊂ GLN whose Lie algebra is g and consider gauge transformations with values in G̃. The
results of this paper will remain valid, if one replaces G by G̃ everywhere.

The WE method does not use gauge transformations in a systematic way. In the classification of
ZCRs (6) this is acceptable, because the class of ZCRs (6) is relatively small.
The class of ZCRs (3), (4) is much larger than that of (6). Gauge transformations play a very

important role in the classification of ZCRs (3), (4). Because of this, the classical WE method does not
produce satisfactory results for (3), (4), especially in the case p > 0.
To overcome this problem, we find a normal form for ZCRs (3), (4) with respect to the action of the

group of gauge transformations. Using the normal form of ZCRs, for any given equation (1), we define
a Lie algebra F

p for each p ∈ Z≥0 so that the following property holds.
For every finite-dimensional Lie algebra g, any g-valued ZCR (3), (4) of order ≤ p is locally gauge

equivalent to the ZCR arising from a homomorphism F
p → g.

More precisely, as is discussed below, we define a Lie algebra F
p for each p ∈ Z≥0 and each point a

of the infinite prolongation E of equation (1). So the full notation for the algebra is F
p(E , a). (The

family of Lie algebras F(E) mentioned in the abstract of this paper consists of the algebras Fp(E , a) for
all p ∈ Z≥0, a ∈ E .)
Recall that the infinite prolongation E of equation (1) is an infinite-dimensional manifold with the

coordinates x, t, uk for k ∈ Z≥0. The precise definitions of the manifold E and the algebras F
p(E , a)

for any equation (1) are presented in Section 2. For every p ∈ Z≥0 and a ∈ E , the algebra F
p(E , a) is

defined in terms of generators and relations. (To clarify the main idea, in Example 1 we consider the
case p = 1.)
For every finite-dimensional Lie algebra g, homomorphisms Fp(E , a) → g classify (up to gauge equiv-

alence) all g-valued ZCRs (3), (4) of order ≤ p, where functions A, B are defined on a neighborhood of
the point a ∈ E . See Section 2 for details.



LIE ALGEBRAS RESPONSIBLE FOR ZERO-CURVATURE REPRESENTATIONS 4

According to Section 2, the algebras F
p(E , a) for p ∈ Z≥0 are arranged in a sequence of surjective

homomorphisms

(8) · · · → F
p(E , a) → F

p−1(E , a) → · · · → F
1(E , a) → F

0(E , a).

According to Theorem 3, for each p ∈ Z>0, the algebra F
p(E , a) is responsible for ZCRs of order ≤ p,

and the algebra F
p−1(E , a) is responsible for ZCRs of order ≤ p − 1. The surjective homomorphism

F
p(E , a) → F

p−1(E , a) in (8) reflects the fact that any ZCR of order ≤ p − 1 is at the same time of
order ≤ p. The homomorphism F

p(E , a) → F
p−1(E , a) is defined by formulas (71), using generators of

the algebras Fp(E , a), Fp−1(E , a).
As we show in the preprints [12, 11], using F

p(E , a), one obtains some necessary conditions for inte-
grability of equations (1) and necessary conditions for existence of a Bäcklund transformation between
two given equations. To get such results, one needs to study certain properties of ZCRs (3), (4) with
arbitrary p, and we do this by means of the algebras F

p(E , a). As explained above, the classical WE
method (which studies ZCRs of the form (6)) is not sufficient for this.
Applications of Fp(E , a) to obtaining necessary conditions for integrability of equations (1) are pre-

sented in [12]. Examples of the use of these conditions in proving non-integrability for some equations
of order 5 are presented in [12] as well. Applications to obtaining non-existence results for Bäcklund
transformations between two given equations are described in [11].
In this paper and in [12, 11] we present also a number of results on the structure of the algebras

F
p(E , a) for some classes of scalar evolution equations of orders 3, 5, 7 and concrete examples. In

particular, the KdV equation is considered in Theorem 7 in this paper. The Krichever-Novikov equation
is discussed in [11]. In [12, 11] we study also the algebras F

p(E , a) and integrability properties for a
parameter-dependent 5th-order scalar evolution equation, which was considered by A. P. Fordy [7] in
connection with the Hénon-Heiles system. The problem to study this equation was suggested to us by
A. P. Fordy.
Relations of the algebras Fp(E , a) with parameter-dependent ZCRs are discussed in [12].
We suppose that the variables x, t, uk take values in K. A point a ∈ E is determined by the values of

the coordinates x, t, uk at a. Let

a = (x = xa, t = ta, uk = ak) ∈ E , xa, ta, ak ∈ K, k ∈ Z≥0,

be a point of E . In other words, the constants xa, ta, ak are the coordinates of the point a ∈ E in the
coordinate system x, t, uk.

Example 1. To clarify the definition of Fp(E , a), let us consider the case p = 1. To this end, we fix an
equation (1) and study ZCRs of order ≤ 1 of this equation.
According to Theorem 1, any ZCR of order ≤ 1

(9) A = A(x, t, u0, u1), B = B(x, t, u0, u1, . . . , ud), Dx(B)−Dt(A) + [A,B] = 0

on a neighborhood of a ∈ E is gauge equivalent to a ZCR of the form

Ã = Ã(x, t, u0, u1), B̃ = B̃(x, t, u0, u1, . . . , ud),(10)

Dx(B̃)−Dt(Ã) + [Ã, B̃] = 0,(11)

∂Ã

∂u1
(x, t, u0, a1) = 0, Ã(x, t, a0, a1) = 0, B̃(xa, t, a0, a1, . . . , ad) = 0.(12)

Moreover, according to Theorem 2, for any given ZCR of the form (9), on a neighborhood of a ∈ E there is

a unique gauge transformation G = G(x, t, u0, . . . , ul) such that the functions Ã = GAG−1−Dx(G)·G
−1,

B̃ = GBG−1 −Dt(G) ·G
−1 satisfy (10), (11), (12) and G(xa, ta, a0, . . . , al) = Id, where Id ∈ GLN is the

identity matrix. Therefore, we can say that properties (12) determine a normal form for ZCRs (9) with
respect to the action of the group of gauge transformations on a neighborhood of a ∈ E .
A similar normal form for ZCRs (3), (4) with arbitrary p is described in Theorem 1 and Remark 5.
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Since the functions Ã, B̃ from (10), (12) are analytic on a neighborhood of a ∈ E , these functions are
represented as absolutely convergent power series

Ã =
∑

l1,l2,i0,i1≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
i0(u1 − a1)

i1 · Ãl1,l2
i0,i1

,(13)

B̃ =
∑

l1,l2,j0,...,jd≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
j0 . . . (ud − ad)

jd · B̃l1,l2
j0...jd

.(14)

Here Ãl1,l2
i0,i1

and B̃l1,l2
j0...jd

are elements of a Lie algebra, which we do not specify yet.
Using formulas (13), (14), we see that properties (12) are equivalent to

(15) Ãl1,l2
i0,1

= Ãl1,l2
0,0 = B̃0,l2

0...0 = 0 ∀ l1, l2, i0 ∈ Z≥0.

To define F
1(E , a), we regard Ãl1,l2

i0,i1
, B̃l1,l2

j0...jd
from (13), (14) as abstract symbols. By definition, the Lie

algebra F
1(E , a) is generated by the symbols Ãl1,l2

i0,i1
, B̃l1,l2

j0...jd
for l1, l2, i0, i1, j0, . . . , jd ∈ Z≥0. Relations for

these generators are provided by equations (11), (15). A more detailed description of this construction
is given in Section 2.

As discussed above, the algebra F
p(E , a) is defined by a certain set of generators and relations arising

from a normal form of ZCRs. In Theorem 4 we describe a smaller subset of generators for Fp(E , a).

Example 2. Consider the case p = 1. According to the above definition of F1(E , a), the algebra F
1(E , a)

is given by the generators Ãl1,l2
i0,i1

, B̃l1,l2
j0...jd

and the relations arising from (11), (15). According to Theorem 4,

the algebra F
1(E , a) coincides with the subalgebra generated by Ãl1,0

i0,i1
for l1, i0, i1 ∈ Z≥0, and a similar

result is valid also for Fp(E , a) for every p.

This result helps us to describe the structure of Fp(E , a) and the homomorphisms (8) more explicitly
for some PDEs. Consider equations of the form

(16) ut = u2q+1 + f(x, t, u0, u1, . . . , u2q−1), q ∈ {1, 2, 3},

where f is an arbitrary function. Examples of such PDEs include

• the KdV equation ut = u3 + u0u1,
• the Kaup-Kupershmidt equation [13] ut = u5 + 10u0u3 + 25u1u2 + 20u20u1,
• the Sawada-Kotera equation [26] ut = u5+5u0u3+5u1u2+5u20u1 (which is sometimes called the
Caudrey-Dodd-Gibbon equation [1]).

Many more examples of integrable PDEs of this type can be found in [19, 20] and references therein.
Equations of the form (16) are considered in Theorem 6, which is proved in [12]. Theorem 6 implies

that, for any such equation with q ∈ {1, 2, 3},

• for every p ≥ q + δq,3 the algebra F
p(E , a) is obtained from F

p−1(E , a) by central extension,

• for every p ≥ q + δq,3 the algebra F
p(E , a) is obtained from F

q−1+δq,3(E , a) by applying several
times the operation of central extension.

Here δq,3 is the Kronecker delta. So δ3,3 = 1, and δq,3 = 0 if q 6= 3.
Applications of Theorem 6 to obtaining some necessary conditions for integrability of equations (16)

are described in [12]. Results similar to Theorem 6 can be proved for many other evolution PDEs as
well. For instance, in [11] we present a similar result for the Krichever-Novikov equation.
Let L, L1, L2 be Lie algebras. One says that L1 is obtained from L by central extension if there is an

ideal I ⊂ L1 such that I is contained in the center of L1 and L1/I ∼= L. Note that I may be of arbitrary
dimension.
We say that L2 is obtained from L by applying several times the operation of central extension if there

is a finite collection of Lie algebras g0, g1, . . . , gk such that g0 ∼= L, gk ∼= L2 and gi is obtained from gi−1

by central extension for each i = 1, . . . , k.
Consider the infinite-dimensional Lie algebra sl2(K[λ]) ∼= sl2(K) ⊗K K[λ], where K[λ] is the algebra

of polynomials in λ. (If we regard K as a rational algebraic curve with coordinate λ, the elements
of sl2(K[λ]) can be identified with polynomial sl2(K)-valued functions on this rational curve.) For the
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KdV equation, in Lemma 8 we prove that F
0(E , a) is isomorphic to the direct sum of sl2(K[λ]) and a

3-dimensional abelian Lie algebra.
To obtain this result, we use the following fact. If the function F in (1) does not depend on x, t,

then the algebra F
0(E , a) is isomorphic to a certain subalgebra of the Wahlquist-Estabrook prolongation

algebra for (1) (see Theorem 5 for details).
The explicit structure of the Wahlquist-Estabrook prolongation algebra for the KdV equation is given

in [3, 4] and contains sl2(K[λ]). This helps us to describe F0(E , a) for KdV in Lemma 8. Then Theorem 6
implies that, for every p ∈ Z>0, the algebra F

p(E , a) for KdV is obtained from sl2(K[λ]) by applying
several times the operation of central extension. See Theorem 7 for more details.
For the Krichever-Novikov equation, in [11] we show that some infinite-dimensional Lie algebra of

certain matrix-valued functions on an elliptic curve, which arises from the elliptic ZCR [15, 21] of this
equation, plays the main role in the description of Fp(E , a).
Somewhat similar (but not the same) ideas on ZCRs and Bäcklund transformations were considered

by one of us in [8], mostly for a few scalar evolution PDEs of order 3. As we show in [12, 11], the theory
of this paper has more applications than that of [8].
For the Burgers and KdV equations, ZCRs of the form

(17) A = A(u0, u1, u2, . . . ), B = B(u0, u1, u2, . . . ), Dx(B)−Dt(A) + [A,B] = 0

(where A and B may depend on any finite number of the coordinates uk) were studied in [6]. However,
gauge transformations were not considered in [6]. Because of this, the paper [6] had to impose some
additional constraints on the functions A, B in (17).

2. ZCRs, gauge transformations, and the algebras F
p(E , a)

Recall that x, t, uk take values in K, where K is either C or R. Let K∞ be the infinite-dimensional
space with the coordinates x, t, uk for k ∈ Z≥0. The topology on K∞ is defined as follows.
For each l ∈ Z≥0, consider the space K

l+3 with the coordinates x, t, uk for k ≤ l. One has the natural
projection πl : K

∞ → Kl+3 that “forgets” the coordinates uk′ for k
′ > l.

Since K
l+3 is a finite-dimensional vector space, we have the standard topology on K

l+3. For any
l ∈ Z≥0 and any open subset V ⊂ Kl+3, the subset π−1

l (V ) ⊂ K∞ is, by definition, open in K∞. Such
subsets form a base of the topology on K∞. In other words, we consider the smallest topology on K∞

such that the maps πl, l ∈ Z≥0, are continuous.
Let U ⊂ Kd+3 be an open subset such that the function F (x, t, u0, u1, . . . , ud) from (1) is defined on U.

The infinite prolongation E of equation (1) is defined as follows E = π−1
d (U) ⊂ K∞. So E is an open

subset of the space K∞ with the coordinates x, t, uk for k ∈ Z≥0. The topology on E is induced by the
embedding E ⊂ K

∞.
A point a ∈ E is determined by the values of x, t, uk at a. Let

(18) a = (x = xa, t = ta, uk = ak) ∈ E , xa, ta, ak ∈ K, k ∈ Z≥0,

be a point of E . The constants xa, ta, ak are the coordinates of the point a ∈ E in the coordinate system
x, t, uk.
We continue to use the notations introduced in Section 1. In particular, g ⊂ glN is a matrix Lie

algebra, and G ⊂ GLN is the connected matrix Lie group corresponding to g, where N ∈ Z>0.
For any l ∈ Z≥0, a matrix-function G = G(x, t, u0, u1, . . . , ul) with values in G is called a gauge

transformation. Equivalently, one can say that a gauge transformation is given by a G-valued function
G = G(x, t, u0, . . . , ul). See also Remark 3 about gauge transformations with values in other matrix Lie
groups.
In this section, when we speak about ZCRs, we always mean ZCRs of equation (1). For each i = 1, 2,

let

Ai = Ai(x, t, u0, u1, . . . ), Bi = Bi(x, t, u0, u1, . . . ), Dx(Bi)−Dt(Ai) + [Ai, Bi] = 0
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be a g-valued ZCR. The ZCR A1, B1 is said to be gauge equivalent to the ZCR A2, B2 if there is a gauge
transformation G = G(x, t, u0, . . . , ul) such that

A1 = GA2G
−1 −Dx(G) ·G

−1, B1 = GB2G
−1 −Dt(G) ·G

−1.

The following lemma is known, but for completeness we present a proof of it.

Lemma 1. Let

(19) A = A(x, t, u0, u1, . . . , up), B = B(x, t, u0, u1, . . . , up+d−1), Dx(B)−Dt(A) + [A,B] = 0

be a ZCR of order ≤ p for some p ∈ Z≥0 such that the functions A, B take values in g. Here Dx and

Dt are given by (5).
Then for any G-valued function

(20) G = G(x, t, u0, u1, . . . , up−1)

depending on x, t, u0, . . . , up−1, the functions

(21) Ã = GAG−1 −Dx(G) ·G
−1, B̃ = GBG−1 −Dt(G) ·G

−1

form a g-valued ZCR of order ≤ p. That is,

(22) Ã = Ã(x, t, u0, u1, . . . , up), B̃ = B̃(x, t, u0, u1, . . . , up+d−1), Dx(B̃)−Dt(Ã) + [Ã, B̃] = 0,

and Ã, B̃ take values in g. Formulas (21) determine an action of the group of G-valued gauge transfor-

mations (20) on the set of g-valued ZCRs of order ≤ p.

Proof. Since A, B take values in g and G takes values in the connected Lie group G ⊂ GLN corresponding
to the Lie algebra g ⊂ glN , the functions

(23) GAG−1, GBG−1,
∂

∂x
(G) ·G−1,

∂

∂t
(G) ·G−1,

∂

∂uk
(G) ·G−1 ∀ k

take values in g. Hence the functions Ã, B̃ given by (21) take values in g as well. Using formulas (5),
(19), (21) and the fact that G may depend only on x, t, u0, . . . , up−1, we easily get (22).

One has Dx + Ã = G(Dx + A)G−1 and Dx + B̃ = G(Dt + B)G−1, which implies that formulas (21)
determine an action of the group of G-valued gauge transformations (20) on the set of g-valued ZCRs
of order ≤ p. �

Remark 4. For any l ∈ Z≥0, when we consider a function Q = Q(x, t, u0, u1, . . . , ul) defined on a
neighborhood of a ∈ E , we always assume that the function is analytic on this neighborhood. For
example, Q may be a meromorphic function defined on an open subset of E such that Q is analytic on a
neighborhood of a ∈ E . In particular, this applies to the functions A, B considered in Theorem 1 below.

Let s ∈ Z≥0. For a function M = M(x, t, u0, u1, u2, . . . ), the notation M
∣

∣

∣

uk=ak, k≥s
means that we

substitute uk = ak for all k ≥ s in the function M . Also, sometimes we substitute x = xa or t = ta in
such functions. For example, if M =M(x, t, u0, u1, u2, u3), then

M
∣

∣

∣

x=xa, uk=ak , k≥2
=M(xa, t, u0, u1, a2, a3).

Theorem 1. Let g ⊂ glN be a matrix Lie algebra and G ⊂ GLN be the connected matrix Lie group

corresponding to g, where N ∈ Z>0. Let

(24) A = A(x, t, u0, u1, . . . , up), B = B(x, t, u0, u1, . . . , up+d−1), Dx(B)−Dt(A) + [A,B] = 0

be a ZCR of order ≤ p for some p ∈ Z≥0 such that the functions A, B are defined on a neighborhood of

a ∈ E and take values in g.

Then there is a G-valued function G = G(x, t, u0, u1, . . . , up−1) on a neighborhood of a ∈ E such that

the functions

(25) Ã = GAG−1 −Dx(G) ·G
−1, B̃ = GBG−1 −Dt(G) ·G

−1
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satisfy

∂Ã

∂us

∣

∣

∣

∣

uk=ak, k≥s

= 0 ∀ s ≥ 1,(26)

Ã
∣

∣

∣

uk=ak , k≥0
= 0,(27)

B̃
∣

∣

∣

x=xa, uk=ak , k≥0
= 0,(28)

and one has

(29) G
∣

∣

∣

x=xa, t=ta, uk=ak , k≥0
= Id.

Note that, according to Lemma 1, the functions (25) form a g-valued ZCR of order ≤ p. That is,

Ã = Ã(x, t, u0, u1, . . . , up), B̃ = B̃(x, t, u0, u1, . . . , up+d−1),(30)

Dx(B̃)−Dt(Ã) + [Ã, B̃] = 0,(31)

and Ã, B̃ take values in g. Furthermore, in Theorem 2 below we will show that a G-valued function G
satisfying the above properties is unique.

Proof. To explain the main idea, let us consider first the case p = 2. So A = A(x, t, u0, u1, u2).
Consider the ordinary differential equation (ODE)

(32)
∂G1

∂u1
= G1 ·

(

∂A

∂u2

∣

∣

∣

∣

uk=ak, k≥2

)

with respect to the variable u1 and an unknown function G1 = G1(x, t, u0, u1). The variables x, t, u0 are
regarded as parameters in this ODE.
Let G1(x, t, u0, u1) be a local solution of the ODE (32) with the initial condition G1(x, t, u0, a1) = Id.

Since ∂A/∂u2 takes values in g, the function G1(x, t, u0, u1) takes values in G. Set

(33) Â = G1AG
−1
1 −Dx(G1) ·G

−1
1 , B̂ = G1BG

−1
1 −Dt(G1) ·G

−1
1 .

As G1 takes values in G, the functions Â, B̂ take values in g. Using (33) and (32), we get

(34)
∂Â

∂u2

∣

∣

∣

∣

uk=ak , k≥2

= G1

(

∂A

∂u2

∣

∣

∣

∣

uk=ak, k≥2

)

G−1
1 −

(

∂

∂u2

(

Dx(G1)
)

∣

∣

∣

∣

uk=ak , k≥2

)

G−1
1 =

= G1

(

∂A

∂u2

∣

∣

∣

∣

uk=ak , k≥2

)

G−1
1 −

∂G1

∂u1
G−1

1 = G1

(

∂A

∂u2

∣

∣

∣

∣

uk=ak , k≥2

)

G−1
1 −G1

(

∂A

∂u2

∣

∣

∣

∣

uk=ak , k≥2

)

G−1
1 = 0.

Now consider the ODE

(35)
∂G0

∂u0
= G0 ·

(

∂Â

∂u1

∣

∣

∣

∣

uk=ak, k≥1

)

with respect to the variable u0 and an unknown function G0 = G0(x, t, u0), where x, t are regarded as
parameters.
Let G0(x, t, u0) be a local solution of the ODE (35) with the initial condition G0(x, t, a0) = Id. Since

∂Â/∂u1 takes values in g, the function G0(x, t, u0) takes values in G. Set

(36) Ā = G0ÂG
−1
0 −Dx(G0) ·G

−1
0 , B̄ = G0B̂G

−1
0 −Dt(G0) ·G

−1
0 .

Then (34), (35), (36) yield

∂Ā

∂us

∣

∣

∣

∣

uk=ak, k≥s

= 0 ∀ s ≥ 1.

Furthermore, as G0 takes values in G, the functions Ā, B̄ take values in g.



LIE ALGEBRAS RESPONSIBLE FOR ZERO-CURVATURE REPRESENTATIONS 9

Let G̃ = G̃(x, t) be a local solution of the ODE

∂G̃

∂x
= G̃ ·

(

Ā
∣

∣

∣

uk=ak, k≥0

)

with the initial condition G̃(xa, t) = Id, where t is viewed as a parameter. Set

(37) Ǎ = G̃ĀG̃−1 −Dx(G̃) · G̃
−1, B̌ = G̃B̄G̃−1 −Dt(G̃) · G̃

−1.

Then
∂Ǎ

∂us

∣

∣

∣

∣

uk=ak , k≥s

= 0 ∀ s ≥ 1, Ǎ
∣

∣

∣

uk=ak , k≥0
= 0.

Now let Ĝ = Ĝ(t) be a local solution of the ODE

(38)
∂Ĝ

∂t
= Ĝ ·

(

B̌
∣

∣

∣

x=xa, uk=ak, k≥0

)

with the initial condition Ĝ(ta) = Id. Since Ā takes values in g, the function G̃ takes values in G. Then

we see that Ǎ, B̌ given by (37) take values in g, which implies that Ĝ takes values in G. Set

(39) Ã = ĜǍĜ−1 −Dx(Ĝ) · Ĝ
−1, B̃ = ĜB̌Ĝ−1 −Dt(Ĝ) · Ĝ

−1.

Then Ã, B̃ obey (26), (27), (28) and take values in g.

Let G = Ĝ · G̃ ·G0 ·G1. Then equations (33), (36), (37), (39) imply

Ã = GAG−1 −Dx(G) ·G
−1, B̃ = GBG−1 −Dt(G) ·G

−1.

Furthermore, since

G1(x, t, u0, a1) = G0(x, t, a0) = G̃(xa, t) = Ĝ(ta) = Id,

we have G(xa, ta, a
1
0, a

2
0) = Id. Thus G = Ĝ · G̃ · G0 · G1 satisfies all the required properties in the case

p = 2.
This construction can be easily generalized to the case of arbitrary p. One can define G as the product

G = Ĝ · G̃ ·G0 ·G1 . . . Gp−1, where the G-valued functions

Gq = Gq(x, t, u0, . . . , uq), q = 0, 1, . . . , p− 1, G̃ = G̃(x, t), Ĝ = Ĝ(t)

are defined as solutions of certain ODEs similar to the ODEs considered above. �

Fix a point a ∈ E given by (18), which is determined by constants xa, ta, ak.
A ZCR

(40) A = A(x, t, u0, u1, . . . ), B = B(x, t, u0, u1, . . . ), Dx(B)−Dt(A) + [A,B] = 0

is said to be a-normal if A, B satisfy the following equations

∂A

∂us

∣

∣

∣

∣

uk=ak, k≥s

= 0 ∀ s ≥ 1,(41)

A

∣

∣

∣

uk=ak, k≥0
= 0,(42)

B

∣

∣

∣

x=xa, uk=ak , k≥0
= 0.(43)

Remark 5. For example, the ZCR Ã, B̃ described in Theorem 1 is a-normal, because Ã, B̃ obey (26),
(27), (28). Theorem 1 implies that any ZCR on a neighborhood of a ∈ E is gauge equivalent to an
a-normal ZCR. Therefore, we can say that properties (41), (42), (43) determine a normal form for ZCRs
with respect to the action of the group of gauge transformations on a neighborhood of a ∈ E .

Analyzing properties (41), (42), (43) of a-normal ZCRs, it is easy to prove the following lemma.



LIE ALGEBRAS RESPONSIBLE FOR ZERO-CURVATURE REPRESENTATIONS 10

Lemma 2. Let p1, p2 ∈ Z≥0. For each i = 1, 2, let

Ai = Ai(x, t, u0, . . . , upi), Bi = Bi(x, t, u0, . . . , upi+d−1), Dx(Bi)−Dt(Ai) + [Ai,Bi] = 0

be an a-normal ZCR of order ≤ pi such that the functions Ai, Bi are defined on a neighborhood of a ∈ E
and take values in g.

Suppose that on a neighborhood of a ∈ E there is a function G = G(x, t, u0, . . . , ul) with values in G
such that

A1 = GA2G
−1 −Dx(G) ·G−1, B1 = GB2G

−1 −Dt(G) ·G−1.

In other words, we suppose that the a-normal ZCR A1,B1 is gauge equivalent to the a-normal ZCR A2,B2

by means of a gauge transformation G = G(x, t, u0, . . . , ul).
Then the function G is actually a constant element of the group G (that is, G does not depend on x,

t, uk), and we have

A1 = GA2G
−1, B1 = GB2G

−1.

Theorem 2. We use here the notations introduced in Theorem 1. Let

(44) A = A(x, t, u0, . . . , up), B = B(x, t, u0, . . . , up+d−1), Dx(B)−Dt(A) + [A,B] = 0

be a ZCR of order ≤ p such that the functions A, B are defined on a neighborhood of a ∈ E and take

values in g.

Then on a neighborhood of a ∈ E there is a unique gauge transformation G = G(x, t, u0, . . . , ul) such
that G(a) = Id and the functions

(45) Ã = GAG−1 −Dx(G) ·G
−1, B̃ = GBG−1 −Dt(G) ·G

−1

form an a-normal ZCR. (That is, the functions (45) satisfy (26), (27), (28), (31).) Furthermore, G
depends only on x, t, u0, . . . , up−1, and the ZCR (45) is of order ≤ p.
Note that, according to our definition of gauge transformations, the function G takes values in G. The

property G(a) = Id means that G(xa, ta, a0, . . . , ap−1) = Id.

Proof. Existence of the required gauge transformation follows from Theorem 1. Let us prove uniqueness
of it.
Suppose that we have two gauge transformations

G1 = G1(x, t, u0, . . . , ul1), G2 = G2(x, t, u0, . . . , ul2)

such that G1(a) = G2(a) = Id and for each i = 1, 2 the ZCR given by the functions

(46) Ai = GiAG
−1
i −Dx(Gi) ·G

−1
i , Bi = GiBG

−1
i −Dt(Gi) ·G

−1
i

is a-normal.
Relations (46) say the following. For each i = 1, 2, applying the gauge transformation Gi to the ZCR

A,B, we get the ZCR Ai,Bi. Therefore, applying the gauge transformation G1G
−1
2 to the ZCR A2,B2,

we get the ZCR A1,B1. That is, from (46) one obtains

A1 = (G1G
−1
2 )A2(G1G

−1
2 )−1 −Dx(G1G

−1
2 ) · (G1G

−1
2 )−1,

B1 = (G1G
−1
2 )B2(G1G

−1
2 )−1 −Dt(G1G

−1
2 ) · (G1G

−1
2 )−1,

which means that the a-normal ZCR A1,B1 is gauge equivalent to the a-normal ZCR A2,B2 by means
of the gauge transformation G1G

−1
2 . Then, by Lemma 2, the G-valued function G1G

−1
2 is a constant

element of the group G. Since G1(a) = G2(a) = Id, this implies G1 = G2. �

Remark 6. According to Remark 4, the g-valued functions (24) are analytic on a neighborhood of a ∈ E .
The construction of G = G(x, t, u0, . . . , up−1) in the proof of Theorem 1 implies that G is analytic as

well. Then the g-valued functions Ã, B̃ given by (25) are also analytic on a neighborhood of a ∈ E .

Since Ã, B̃ are analytic and are of the form (30), these functions are represented as absolutely
convergent power series

Ã =
∑

l1,l2,i0,...,ip≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
i0 . . . (up − ap)

ip · Ãl1,l2
i0...ip

,(47)
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B̃ =
∑

l1,l2,j0,...,jp+d−1≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
j0 . . . (up+d−1 − ap+d−1)

jp+d−1 · B̃l1,l2
j0...jp+d−1

,(48)

Ãl1,l2
i0...ip

, B̃l1,l2
j0...jp+d−1

∈ g.

For each k ∈ Z>0, we set

(49) Vk =
{

(i0, . . . , ik) ∈ Z
k+1
≥0

∣

∣

∣
∃ r ∈ {1, . . . , k} such that ir = 1, iq = 0 ∀ q > r

}

.

In other words, for k ∈ Z>0 and i0, . . . , ik ∈ Z≥0, one has (i0, . . . , ik) ∈ Vk iff there is r ∈ {1, . . . , k} such
that (i0, . . . , ir−1, ir, ir+1, . . . , ik) = (i0, . . . , ir−1, 1, 0, . . . , 0). Set also V0 = ∅. So the set V0 is empty.
Using formulas (47), (48), we see that properties (26), (27), (28) are equivalent to

(50) Ãl1,l2
0...0 = B̃0,l2

0...0 = 0, Ãl1,l2
i0...ip

= 0, (i0, . . . , ip) ∈ Vp, l1, l2 ∈ Z≥0.

Remark 7. Let L be a Lie algebra. Consider a formal power series of the form

C =
∑

l1,l2,i0,...,im≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
i0 . . . (um − am)

im · C l1,l2
i0...im

, C l1,l2
i0...im

∈ L.

Set

Dx(C) =
∑

l1,l2,i0,...,im

Dx

(

(x− xa)
l1(t− ta)

l2(u0 − a0)
i0 . . . (um − am)

im
)

· C l1,l2
i0...im

,(51)

Dt(C) =
∑

l1,l2,i0,...,im

Dt

(

(x− xa)
l1(t− ta)

l2(u0 − a0)
i0 . . . (um − am)

im
)

· C l1,l2
i0...im

.(52)

The expressions

(53)
Dx

(

(x− xa)
l1(t− ta)

l2(u0 − a0)
i0 . . . (um − am)

im
)

,

Dt

(

(x− xa)
l1(t− ta)

l2(u0 − a0)
i0 . . . (um − am)

im
)

are functions of the variables x, t, uk. Taking the corresponding Taylor series at the point (18), we
regard (53) as power series. Then (51), (52) become formal power series with coefficients in L.
According to (5), one has Dt =

∂
∂t

+
∑

k≥0D
k
x(F )

∂
∂uk

, where F = F (x, t, u0, . . . , ud) is given in (1).

When we apply Dt in (52), we view F as a power series, using the Taylor series of the function F .
Consider another formal power series

R =
∑

q1,q2,j0,...,jm≥0

(x− xa)
q1(t− ta)

q2(u0 − a0)
j0 . . . (um − am)

jm · Rq1,q2
j0...jm

, Rq1,q2
j0...jm

∈ L.

Then the Lie bracket [C,R] is defined as follows

[C,R] =
∑

l1,l2,i0,...,im,
q1,q2,j0,...,jm

(x− xa)
l1+q1(t− ta)

l2+q2(u0 − a0)
i0+j0 . . . (um − am)

im+jm ·
[

C l1,l2
i0...im

, Rq1,q2
j0...jm

]

.

Remark 8. The main idea of the definition of the Lie algebra F
p(E , a) can be informally outlined as

follows. According to Theorem 1 and Remark 6, any ZCR (24) of order ≤ p is gauge equivalent to a
ZCR given by functions Ã, B̃ that are of the form (47), (48) and satisfy (31), (50).

To define Fp(E , a), we regard Ãl1,l2
i0...ip

, B̃l1,l2
j0...jp+d−1

from (47), (48) as abstract symbols. By definition, the

algebra F
p(E , a) is generated by the symbols Ãl1,l2

i0...ip
, B̃l1,l2

j0...jp+d−1
for l1, l2, i0, . . . , ip, j0, . . . , jp+d−1 ∈ Z≥0.

Relations for these generators are provided by equations (31), (50). The details of this construction are
presented below.

Let F be the free Lie algebra generated by the symbols Al1,l2
i0...ip

and B
l1,l2
j0...jp+d−1

for all

l1, l2, i0, . . . , ip, j0, . . . , jp+d−1 ∈ Z≥0.
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Consider the following power series with coefficients in F

A =
∑

l1,l2,i0,...,ip≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
i0 . . . (up − ap)

ip ·Al1,l2
i0...ip

,

B =
∑

l1,l2,j0,...,jp+d−1≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
j0 . . . (up+d−1 − ap+d−1)

jp+d−1 ·Bl1,l2
j0...jp+d−1

.

Then the power series Dx(B), Dt(A), [A,B] are defined according to Remark 7. We have

Dx(B)−Dt(A) + [A,B] =
∑

l1,l2,q0,...,qp+d≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
q0 . . . (up+d − ap+d)

qp+d · Zl1,l2
q0...qp+d

for some elements Zl1,l2
q0...qp+d

∈ F.
Let I ⊂ F be the ideal generated by the elements

Zl1,l2
q0...qp+d

, A
l1,l2
0...0, B

0,l2
0...0, l1, l2, q0, . . . , qp+d ∈ Z≥0,

A
l1,l2
i0...ip

, (i0, . . . , ip) ∈ Vp, l1, l2 ∈ Z≥0.

Set Fp(E , a) = F/I. Consider the natural homomorphism ψ : F → F/I = F
p(E , a) and set

A
l1,l2
i0...ip

= ψ
(

A
l1,l2
i0...ip

)

, B
l1,l2
j0...jp+d−1

= ψ
(

B
l1,l2
j0...jp+d−1

)

.

The definition of I implies that the power series

A =
∑

l1,l2,i0,...,ip≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
i0 . . . (up − ap)

ip · Al1,l2
i0...ip

,(54)

B =
∑

l1,l2,j0,...,jp+d−1≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
j0 . . . (up+d−1 − ap+d−1)

jp+d−1 · Bl1,l2
j0...jp+d−1

(55)

satisfy

(56) Dx(B)−Dt(A) + [A,B] = 0.

Remark 9. The Lie algebra F
p(E , a) can be described in terms of generators and relations as follows.

Equation (56) is equivalent to some Lie algebraic relations for Al1,l2
i0...ip

, Bl1,l2
j0...jp+d−1

. The algebra F
p(E , a)

is given by the generators Al1,l2
i0...ip

, Bl1,l2
j0...jp+d−1

, the relations arising from (56), and the following relations

(57) A
l1,l2
0...0 = B

0,l2
0...0 = 0, A

l1,l2
i0...ip

= 0, (i0, . . . , ip) ∈ Vp, l1, l2 ∈ Z≥0.

Note that condition (57) is equivalent to the following equations

∂A

∂us

∣

∣

∣

∣

uk=ak, k≥s

= 0 ∀ s ≥ 1,(58)

A

∣

∣

∣

uk=ak, k≥0
= 0,(59)

B

∣

∣

∣

x=xa, uk=ak , k≥0
= 0.(60)

Note that, according to Remark 7, the definition of the power series Dt(A) in (56) uses the Taylor
series of the function F = F (x, t, u0, . . . , ud) from (1), because Dt is determined by F . So the constructed
generators and relations for the algebra F

p(E , a) are determined by the Taylor series of the function F
at the point (18).

Remark 10. Let L be a Lie algebra. If A, B are functions with values in L and satisfy (24) then A, B
constitute a ZCR of order ≤ p with values in L.
Instead of functions with values in L, one can consider formal power series with coefficients in L.

Then one gets the notion of formal ZCRs with coefficients in L.
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More precisely, a formal ZCR of order ≤ p with coefficients in L is given by formal power series

A =
∑

l1,l2,i0,...,ip≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
i0 . . . (up − ap)

ip · Al1,l2
i0...ip

,(61)

B =
∑

l1,l2,j0,...,jp+d−1≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
j0 . . . (up+d−1 − ap+d−1)

jp+d−1 · Bl1,l2
j0...jp+d−1

(62)

such that Al1,l2
i0...ip

,Bl1,l2
j0...jp+d−1

∈ L and

(63) Dx(B)−Dt(A) + [A,B] = 0.

If the power series (61), (62) satisfy (41), (42), (43) then this formal ZCR is said to be a-normal.

For example, since (54), (55) obey (56), (58), (59), (60) and A
l1,l2
i0...ip

,Bl1,l2
j0...jp+d−1

∈ F
p(E , a), the power

series (54), (55) constitute an a-normal formal ZCR of order ≤ p with coefficients in F
p(E , a).

Remark 11. Let g be a finite-dimensional Lie algebra. Let µ : F
p(E , a) → g be a homomorphism from

F
p(E , a) to g. Applying µ to the coefficients of the power series (54), (55), we get the following power

series with coefficients in g

A =
∑

l1,l2,i0,...,ip

(x− xa)
l1(t− ta)

l2(u0 − a0)
i0 . . . (up − ap)

ip · µ
(

A
l1,l2
i0...ip

)

,(64)

B =
∑

l1,l2,j0,...,jp+d−1

(x− xa)
l1(t− ta)

l2(u0 − a0)
j0 . . . (up+d−1 − ap+d−1)

jp+d−1 · µ
(

B
l1,l2
j0...jp+d−1

)

.(65)

Since (54), (55) obey (56), (58), (59), (60), the power series (64), (65) satisfy (41), (42), (43), (63).
Therefore, (64), (65) constitute an a-normal formal ZCR of order ≤ p with coefficients in g.
A homomorphism µ : F

p(E , a) → g is said to be regular if the power series (64), (65) are absolutely
convergent in a neighborhood of a ∈ E . In other words, µ is regular iff (64), (65) are analytic functions
with values in g on a neighborhood of a ∈ E .
For a regular homomorphism µ, the analytic functions (64), (65) form an a-normal g-valued ZCR of

order ≤ p. We denote this ZCR by Z(E , a, p, µ). Formulas (64), (65) imply that the ZCR Z(E , a, p, µ)
takes values in the Lie subalgebra µ

(

F
p(E , a)

)

⊂ g.

Remark 12. Let g be a finite-dimensional matrix Lie algebra. By Theorems 1, 2, for any g-valued
ZCR (24) of order ≤ p on a neighborhood of a ∈ E , there is a unique gauge transformation G such that
G(a) = Id and the functions (25) form an a-normal ZCR. (That is, the functions (25) satisfy (26), (27),
(28), (31).)
Consider the Taylor series (47), (48) of the functions (25). Properties (31), (50) imply that the

following homomorphism

(66) µ : F
p(E , a) → g, µ

(

A
l1,l2
i0...ip

)

= Ãl1,l2
i0...ip

, µ
(

B
l1,l2
j0...jp+d−1

)

= B̃l1,l2
j0...jp+d−1

,

is well defined. Here Ãl1,l2
i0...ip

, B̃l1,l2
j0...jp+d−1

∈ g are the coefficients of the power series (47), (48).

Since (47), (48) are the Taylor series of the analytic functions (25), the homomorphism (66) is regu-
lar. According to Remark 11, we get also the g-valued ZCR Z(E , a, p, µ) corresponding to the regular
homomorphism (66). The ZCR Z(E , a, p, µ) coincides with the ZCR given by the functions (25).
Since the ZCR (24) is gauge equivalent to the ZCR given by (25), we see that the ZCR (24) is gauge

equivalent to the ZCR Z(E , a, p, µ).

Theorem 3. Let g ⊂ glN be a matrix Lie algebra and G ⊂ GLN be the connected matrix Lie group

corresponding to g, where N ∈ Z>0. In what follows, all ZCRs are defined on a neighborhood of a ∈ E .
Let p ∈ Z≥0. Consider g-valued ZCRs of order ≤ p

(67) A = A(x, t, u0, . . . , up), B = B(x, t, u0, . . . , up+d−1), Dx(B)−Dt(A) + [A,B] = 0.

We have the following correspondence between g-valued ZCRs (67) and homomorphisms

µ : F
p(E , a) → g.
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• In Remark 12, for any g-valued ZCR (67), we have canonically defined a regular homomor-

phism µ : F
p(E , a) → g, so that the ZCR (67) is gauge equivalent to the ZCR Z(E , a, p, µ) de-

fined in Remark 11. The ZCR Z(E , a, p, µ) is a-normal and takes values in the Lie subalgebra

µ
(

F
p(E , a)

)

⊂ g.

• In Remark 11, for any homomorphism µ : F
p(E , a) → g, we have canonically defined a formal

ZCR of order ≤ p with coefficients in g. This formal ZCR is given by the formal power se-

ries (64), (65) and is a-normal. If the homomorphism µ is regular, then this formal ZCR is

analytic and coincides with the ZCR Z(E , a, p, µ).
• For each i = 1, 2, let

(68) Ai = Ai(x, t, u0, . . . , up), Bi = Bi(x, t, u0, . . . , up+d−1), Dx(Bi)−Dt(Ai) + [Ai, Bi] = 0

be a g-valued ZCR of order ≤ p. Let µi : F
p(E , a) → g be the regular homomorphism associated

with the ZCR (68) by the construction in Remark 12.

Then we have the following property. The ZCR A1, B1 is gauge equivalent to the ZCR A2, B2

iff there is an element G ∈ G such that

(69) µ1(v) = G · µ2(v) ·G
−1 ∀ v ∈ F

p(E , a).

Proof. We need to prove only the last statement of the theorem, because the other statements follow
from Remarks 11, 12.
According to Remark 11, for each i = 1, 2 the ZCR Ai, Bi is gauge equivalent to the a-normal ZCR

Z(E , a, p, µi). Therefore, the ZCR A1, B1 is gauge equivalent to the ZCR A2, B2 iff Z(E , a, p, µ1) is gauge
equivalent to Z(E , a, p, µ2).
If there is an element G ∈ G satisfying (69), then Z(E , a, p, µ1) is gauge equivalent to Z(E , a, p, µ2) by

means of the constant gauge transformation equal to G.
Conversely, if Z(E , a, p, µ1) is gauge equivalent to Z(E , a, p, µ2) by means of some gauge transformation,

then existence of an elementG ∈ G satisfying (69) follows from Lemma 2, because the ZCRs Z(E , a, p, µ1)
and Z(E , a, p, µ2) are a-normal. Indeed, by Lemma 2, if Z(E , a, p, µ1) is gauge equivalent to Z(E , a, p, µ2)
by means of some gauge transformation, then this gauge transformation is actually a constant element
G ∈ G obeying

(70) Z(E , a, p, µ1) = G · Z(E , a, p, µ2) ·G
−1.

The definition of Z(E , a, p, µ) in Remark 11 implies that (70) is equivalent to (69). �

Remark 13. Since we assume g ⊂ glN for some N ∈ Z>0, homomorphisms µ : F
p(E , a) → g are

representations of the Lie algebra F
p(E , a). So from Theorem 3 we see that g-valued ZCRs of order ≤ p

are classified by g-valued representations of Fp(E , a).

Suppose that p ≥ 1. According to Remark 9, the algebra F
p(E , a) is given by the generators Al1,l2

i0...ip
,

B
l1,l2
j0...jp+d−1

and the relations arising from (56), (57). Similarly, the algebra F
p−1(E , a) is given by the

generators Âl1,l2
i0...ip−1

, B̂l1,l2
j0...jp+d−2

and the relations arising from

Dx

(

B̂
)

−Dt

(

Â
)

+
[

Â, B̂
]

= 0,

Â
l1,l2
0...0 = B̂

0,l2
0...0 = 0, Â

l1,l2
i0...ip−1

= 0, (i0, . . . , ip−1) ∈ Vp−1, l1, l2 ∈ Z≥0,

where

Â =
∑

l1,l2,i0,...,ip−1

(x− xa)
l1(t− ta)

l2(u0 − a0)
i0 . . . (up−1 − ap−1)

ip−1 · Âl1,l2
i0...ip−1

,

B̂ =
∑

l1,l2,j0,...,jp+d−2

(x− xa)
l1(t− ta)

l2(u0 − a0)
j0 . . . (up+d−2 − ap+d−2)

jp+d−2 · B̂l1,l2
j0...jp+d−2

.

This implies that the map

(71) A
l1,l2
i0...ip−1ip

7→ δ0,ip · Â
l1,l2
i0...ip−1

, B
l1,l2
j0...jp+d−2jp+d−1

7→ δ0,jp+d−1
· B̂l1,l2

j0...jp+d−2
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determines a surjective homomorphism F
p(E , a) → F

p−1(E , a). Here δ0,ip and δ0,jp+d−1
are the Kronecker

deltas.
According to Theorem 3, the algebra F

p(E , a) is responsible for ZCRs of order ≤ p, and the
algebra F

p−1(E , a) is responsible for ZCRs of order ≤ p − 1. The constructed homomorphism
F
p(E , a) → F

p−1(E , a) reflects the fact that any ZCR of order ≤ p− 1 is at the same time of order ≤ p.
Thus we obtain the following sequence of surjective homomorphisms of Lie algebras

(72) · · · → F
p(E , a) → F

p−1(E , a) → · · · → F
1(E , a) → F

0(E , a).

Other approaches to the study of the action of gauge transformations on ZCRs can be found in [16,
17, 18, 23, 24, 27] and references therein. For a given ZCR with values in a matrix Lie algebra g, the
papers [16, 17, 23] define certain g-valued functions, which transform by conjugation when the ZCR
transforms by gauge. Applications of these functions to construction and classification of some types of
ZCRs are described in [16, 17, 18, 23, 24, 27].
To our knowledge, the theory of [16, 17, 18, 23, 24, 27] does not produce any infinite-dimensional Lie

algebras responsible for ZCRs. So this theory does not contain the algebras Fp(E , a).

3. Generators of the algebras F
p(E , a)

We continue to study the Lie algebras Fp(E , a), p ∈ Z≥0, defined in Section 2. Here E is the infinite
prolongation of equation (1), and a ∈ E is given by (18). According to Remark 9, the algebra F

p(E , a)
is given by the generators

(73) A
l1,l2
i0...ip

, B
l1,l2
j0...jp+d−1

, l1, l2, i0, . . . , ip, j0, . . . , jp+d−1 ∈ Z≥0,

and the relations arising from (56), (57). Using (5), we can rewrite equation (56) as

(74)
∂

∂x
(B) +

p+d−1
∑

k=0

uk+1
∂

∂uk
(B)−

∂

∂t
(A)−

p
∑

k=0

Dk
x

(

F (x, t, u0, . . . , ud)
) ∂

∂uk
(A) + [A,B] = 0,

where F (x, t, u0, . . . , ud) is the right-hand side of equation (1). We regard F = F (x, t, u0, . . . , ud) as a
power series, using the Taylor series of the function F at the point (18).
According to Remark 9, the algebra F

p(E , a) is generated by the elements (73). Theorem 4 says that
the elements (75) generate the algebra F

p(E , a) as well. This fact is very useful in computations of
F
p(E , a) for concrete equations, because the set of the elements (75) is much smaller than that of (73).

Theorem 4 is used in Section 4 of this paper and in the proof of Theorem 6 given in [12].

Theorem 4. The elements

(75) A
l1,0
i0...ip

, l1, i0, . . . , ip ∈ Z≥0,

generate the algebra F
p(E , a).

Proof. For each l ∈ Z≥0, denote by Al ⊂ F
p(E , a) the subalgebra generated by all the elements A

l1,l2
i0...ip

with l2 ≤ l. To prove Theorem 4, we need several lemmas.

Lemma 3. Let l1, l2, j0, . . . , jp+d−1 ∈ Z≥0 be such that j0 + · · ·+ jp+d−1 > 0. Then B
l1,l2
j0...jp+d−1

∈ Al2.

Proof. For any j0, . . . , jp+d−1 ∈ Z≥0 satisfying j0 + · · · + jp+d−1 > 0, denote by Φ(j0, . . . , jp+d−1) the
maximal integer r ∈ {0, 1, . . . , p+ d− 1} such that jr 6= 0. Set also Φ(0, . . . , 0) = −1.
Differentiating (74) with respect to up+d, we obtain ∂

∂up+d−1
(B) = ∂F

∂ud
· ∂

∂up
(A), which implies

B
l1,l2
j0...jp+d−1

∈ Al2 for all l1, l2, j0, . . . , jp+d−1 obeying Φ(j0, . . . , jp+d−1) = p+ d− 1.

Let m ∈ {0, 1, . . . , p+ d− 1} be such that

(76) B
l1,l2
j′
0
...j′

p+d−1

∈ Al2 for all l1, l2, j
′
0, . . . , j

′
p+d−1 ∈ Z≥0 satisfying Φ(j′0, . . . , j

′
p+d−1) > m.

We are going to show that

B
l1,l2
̃0...̃p+d−1

∈ Al2
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for all l1, l2, ̃0, . . . , ̃p+d−1 ∈ Z≥0 satisfying Φ(̃0, . . . , ̃p+d−1) = m.
For any power series C of the form

C =
∑

l1,l2,d0,...,dk≥0

(x− xa)
l1(t− ta)

l2(u0 − a0)
d0 . . . (uk − ak)

dk · C l1,l2
d0...dk

, C l1,l2
d0...dk

∈ F
p(E , a),

set

S(C) =
( ∂

∂um+1

(C)
)

∣

∣

∣

∣

uk=ak , k≥m+1

.

That is, in order to obtain S(C), we differentiate C with respect to um+1 and then substitute uk = ak
for all k ≥ m+ 1. Property (57) implies

(77) S
( ∂

∂t
(A)
)

= 0.

Combining (74) with (77), we get

(78) S
(

Dx(B)
)

= S

( p
∑

k=0

Dk
x(F )

∂

∂uk
(A)

)

− S
(

[A,B]
)

.

Using (55), one obtains

(79) S
(

Dx(B)
)

=
∑

l1,l2,j0,...,jp+d−1≥0,
Φ(j0,...,jp+d−1)=m

jm(x− xa)
l1(t− ta)

l2(u0 − a0)
j0 . . . (um − am)

jm−1
B
l1,l2
j0...jp+d−1

+

+ S

(

∑

l1,l2,j0,...,jp+d−1≥0,
Φ(j0,...,jp+d−1)>m

(t− ta)
l2Dx

(

(x− xa)
l1(u0 − a0)

j0 . . . (up+d−1 − ap+d−1)
jp+d−1

)

· Bl1,l2
j0...jp+d−1

)

.

From (57) it follows that S(A) = 0, which yields

(80) S
(

[A,B]
)

=
[

S(A), B
∣

∣

∣

uk=ak, k≥m+1

]

+
[

A

∣

∣

∣

uk=ak , k≥m+1
, S(B)

]

=
[

A

∣

∣

∣

uk=ak, k≥m+1
, S(B)

]

.

In view of (79), (80), for any l1, l2, ̃0, . . . , ̃p+d−1 ∈ Z≥0 satisfying Φ(̃0, . . . , ̃p+d−1) = m the element

B
l1,l2
̃0...̃p+d−1

appears only once on the left-hand side of (78) and does not appear on the right-hand side

of (78). Combining (78), (79), (80), we see that the element Bl1,l2
̃0...̃p+d−1

is equal to a linear combination

of elements of the form

(81) A
l′
1
,l′
2

i0...ip
, B

l̂1,l̂2
̂0...̂p+d−1

,
[

A
l′
1
,l′
2

i0...ip
,Bl̂1,l̂2

̂0...̂p+d−1

]

, l′2 ≤ l2, l̂2 ≤ l2, Φ(̂0, . . . , ̂p+d−1) > m.

Obviously, for any l̂2 ≤ l2 one has Al̂2
⊂ Al2 . Taking into account assumption (76), we obtain that the

elements (81) belong to Al2 . Hence B
l1,l2
̃0...̃p+d−1

∈ Al2 .

The proof of the lemma is completed by induction. �

Lemma 4. For all l1, l2 ∈ Z≥0, one has B
l1,l2
0...0 ∈ Al2.

Proof. According to (57), we have B
0,l2
0...0 = 0. Therefore, it is sufficient to prove B

l1,l2
0...0 ∈ Al2 for l1 > 0.

Note that property (57) implies

(82) A

∣

∣

∣

uk=ak , k≥0
= 0,

∂

∂t
(A)

∣

∣

∣

∣

uk=ak , k≥0

= 0.

In view of (55), one has

(83)
∂

∂x
(B)

∣

∣

∣

∣

uk=ak , k≥0

=
∑

l1>0, l2≥0

l1(x− xa)
l1−1(t− ta)

l2 · Bl1,l2
0...0.

Substituting uk = ak for all k ∈ Z≥0 in (74) and using (82), (83), we get
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(84)
∑

l1>0, l2≥0

l1(x− xa)
l1−1(t− ta)

l2 · Bl1,l2
0...0 =

= −

( p+d−1
∑

k=0

uk+1
∂

∂uk
(B)

)
∣

∣

∣

∣

uk=ak, k≥0

+

( p
∑

k=0

Dk
x(F )

∂

∂uk
(A)

)
∣

∣

∣

∣

uk=ak, k≥0

.

Combining (54), (55), (84), we see that for any l1 > 0 and l2 ≥ 0 the element Bl1,l2
0...0 is equal to a linear

combination of elements of the form

(85) A
l′1,l2
i0...ip

, B
l′1,l2
j0...jp+d−1

, l′1, i0, . . . , ip, j0, . . . , jp+d−1 ∈ Z≥0, j0 + · · ·+ jp+d−1 = 1.

According to Lemma 3 and the definition of Al2 , the elements (85) belong to Al2 . Thus B
l1,l2
0...0 ∈ Al2 . �

Lemma 5. For all l1, l, i0, . . . , ip ∈ Z≥0, we have A
l1,l+1
i0...ip

∈ Al.

Proof. Using (54), we can rewrite equation (74) as
∑

l1,l,i0,...,ip≥0

(l + 1)(x− xa)
l1(t− ta)

l(u0 − a0)
i0 . . . (up − ap)

ip · Al1,l+1
i0...ip

=

=
∂

∂x
(B) +

p+d−1
∑

k=0

uk+1
∂

∂uk
(B)−

p
∑

k=0

Dk
x(F )

∂

∂uk
(A) + [A,B].

This implies that Al1,l+1
i0...ip

is equal to a linear combination of elements of the form

(86) A
l̂1,l̂2
ı̂0...̂ıp

, B
l̃1,l̃2
̃0...̃p+d−1

,
[

A
l̂1,l̂2
ı̂0...̂ıp

,Bl̃1,l̃2
̃0...̃p+d−1

]

, l̂2 ≤ l, l̃2 ≤ l, ı̂0, . . . , ı̂p, ̃0, . . . , ̃p+d−1 ∈ Z≥0.

Using Lemmas 3, 4 and the condition l̃2 ≤ l, we get Bl̃1,l̃2
̃0...̃p+d−1

∈ Al̃2
⊂ Al. Therefore, the elements (86)

belong to Al. Hence A
l1,l+1
i0...ip

∈ Al. �

Now we return to the proof of Theorem 4. According to Lemmas 3, 4 and the definition of Al, we
have A

l1,l2
i0...ip

,Bl1,l2
j0...jp+d−1

∈ Al2 for all l1, l2, i0, . . . ip, j0, . . . , jp+d−1 ∈ Z≥0. Lemma 5 implies that

Al2 ⊂ Al2−1 ⊂ Al2−2 ⊂ · · · ⊂ A0.

Therefore, Fp(E , a) is equal to A0, which is generated by the elements (75). �

4. Relations between F
0(E , a) and the Wahlquist-Estabrook prolongation algebra

Consider a scalar evolution equation of the form

ut = F (u0, u1, . . . , ud), u = u(x, t), uk =
∂ku

∂xk
, u0 = u.(87)

Note that the function F in (87) does not depend on x, t.
Let E be the infinite prolongation of equation (87). Recall that x, t, uk are regarded as coordinates

on the manifold E . A point a ∈ E is determined by the values of x, t, uk at a. Let

(88) a = (x = xa, t = ta, uk = ak) ∈ E , xa, ta, ak ∈ K, k ∈ Z≥0,

be a point of E . The constants xa, ta, ak are the coordinates of a in the coordinate system x, t, uk.
The Wahlquist-Estabrook prolongation algebra of equation (87) at the point (88) can be defined in

terms of generators and relations as follows. Consider formal power series

(89) A =
∑

i≥0

(u0 − a0)
i · Ai, B =

∑

j0,...,jd−1≥0

(u0 − a0)
j0 . . . (ud−1 − ad−1)

jd−1 · Bj0...jd−1
,

where

(90) Ai, Bj0...jd−1
, i, j0, . . . , jd−1 ∈ Z≥0,
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are generators of a Lie algebra, which is described below. The equation

(91) Dx(B)−Dt(A) + [A,B] = 0

is equivalent to some Lie algebraic relations for (90). The Wahlquist-Estabrook prolongation algebra
(WE algebra for short) is given by the generators (90) and the relations arising from (91). A more
detailed definition of the WE algebra is presented in [9]. We denote this Lie algebra by Wa.
Then (89), (91) is called the formal Wahlquist-Estabrook ZCR with coefficients in Wa.
The right-hand side F = F (u0, u1, . . . , ud) of (87) appears in equation (91), because F appears in the

formula Dt =
∂
∂t
+
∑

k≥0D
k
x(F )

∂
∂uk

for the total derivative operator Dt. We are going to show that the

algebra F
0(E , a) for equation (87) is isomorphic to some subalgebra of Wa.

According to Remark 9, the algebra F
0(E , a) is generated by A

l1,l2
i , Bl1,l2

j0...jd−1
. According to (57), one

has Al1,l2
0 = B

0,l2
0...0 = 0 for all l1, l2.

Since equation (87) is invariant with respect to the change of variables x 7→ x − xa, t 7→ t − ta, we

can assume xa = ta = 0 in (88). Since A
l1,l2
0 = B

0,l2
0...0 = 0 and xa = ta = 0, in the case p = 0 the power

series (54), (55), (56) are written as

A =
∑

l1,l2≥0, i>0

xl1tl2(u0 − a0)
i · Al1,l2

i ,(92)

B =
∑

l1,l2,j0,...,jd−1≥0

xl1tl2(u0 − a0)
j0 . . . (ud−1 − ad−1)

jd−1 · Bl1,l2
j0...jd−1

, B
0,l2
0...0 = 0,(93)

Dx(B)−Dt(A) + [A,B] = 0, A
l1,l2
i , Bl1,l2

j0...jd−1
∈ F

0(E , a).(94)

The next lemma follows from the definition of F0(E , a).

Lemma 6. Let L be a Lie algebra. Consider formal power series of the form

P =
∑

l1,l2≥0, i>0

xl1tl2(u0 − a0)
i · P l1,l2

i , P l1,l2
i ∈ L,

Q =
∑

l1,l2,j0,...,jd−1≥0

xl1tl2(u0 − a0)
j0 . . . (ud−1 − ad−1)

jd−1 ·Ql1,l2
j0...jd−1

, Ql1,l2
j0...jd−1

∈ L, Q0,l2
0...0 = 0.

If Dx(Q) −Dt(P ) + [P,Q] = 0, then the map A
l1,l2
i 7→ P l1,l2

i , B
l1,l2
j0...jd−1

7→ Ql1,l2
j0...jd−1

determines a homo-

morphism from F
0(E , a) to L.

Let L be a Lie algebra. A formal ZCR of Wahlquist-Estabrook type with coefficients in L is given by
formal power series

M =
∑

i≥0

(u0 − a0)
i ·Mi, N =

∑

j0,...,jd−1≥0

(u0 − a0)
j0 . . . (ud−1 − ad−1)

jd−1 ·Nj0...jd−1
,(95)

Mi, Nj0...jd−1
∈ L,

satisfying

(96) Dx(N)−Dt(M) + [M,N ] = 0.

The next lemma follows from the definition of the WE algebra Wa.

Lemma 7. Any formal ZCR of Wahlquist-Estabrook type (95), (96) with coefficients in L determines a

homomorphism Wa → L given by Ai 7→Mi, Bj0...jd−1
7→ Nj0...jd−1

.

Remark 14. For any Lie algebra L, there is a (possibly infinite-dimensional) vector space V such that
L is isomorphic to a Lie subalgebra of gl(V ). Here gl(V ) is the algebra of linear maps V → V .
For example, one can use the following construction. Denote by U(L) the universal enveloping algebra

of L. We have the injective homomorphism of Lie algebras

ξ : L →֒ gl(U(L)), ξ(v)(w) = vw, v ∈ L, w ∈ U(L).

So one can set V = U(L).
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Denote by F the vector space of formal power series in variables z1, z2 with coefficients in F
0(E , a).

That is, an element of F is a power series of the form
∑

l1,l2∈Z≥0

zl11 z
l2
2 C

l1l2 , C l1l2 ∈ F
0(E , a).

The space F has the Lie algebra structure given by
[

∑

l1,l2

zl11 z
l2
2 C

l1l2 ,
∑

l̃1,l̃2

z l̃11 z
l̃2
2 C̃

l̃1 l̃2

]

=
∑

l1,l2,l̃1,l̃2

zl1+l̃1
1 zl2+l̃2

2

[

C l1l2, C̃ l̃1 l̃2

]

, C l1l2, C̃ l̃1 l̃2 ∈ F
0(E , a).

We have also the following homomorphism of Lie algebras

(97) ν : F → F
0(E , a), ν

(

∑

l1,l2∈Z≥0

zl11 z
l2
2 C

l1l2

)

= C00.

For i = 1, 2, let ∂zi : F → F be the linear map given by ∂zi
(
∑

zl11 z
l2
2 C

l1l2
)

=
∑

∂
∂zi

(

zl11 z
l2
2

)

C l1l2 .
Let D be the linear span of ∂z1 , ∂z2 in the vector space of linear maps F → F. Since the maps ∂z1 , ∂z2

commute, the space D is a 2-dimensional abelian Lie algebra with respect to the commutator of maps.
Denote by L the vector space D⊕ F with the following Lie algebra structure

[X1 + f1, X2 + f2] = X1(f2)−X2(f1) + [f1, f2], X1, X2 ∈ D, f1, f2 ∈ F.

An element of L can be written as a sum of the following form
(

y1∂z1 + y2∂z2
)

+
∑

zl11 z
l2
2 C

l1l2 , y1, y2 ∈ K, C l1l2 ∈ F
0(E , a).

Theorem 5. Let R ⊂ Wa be the subalgebra generated by the elements

(98) (adA0)
k(Ai), k ∈ Z≥0, i ∈ Z>0.

Then the map (adA0)
k(Ai) 7→ k! · Ak,0

i , k ∈ Z≥0, determines an isomorphism between R and F
0(E , a).

(Note that for k = 0 we have (adA0)
0(Ai) = Ai, hence Ai ∈ R for all i ∈ Z>0.)

Proof. We have Dx = ∂
∂x

+
∑

k≥0 uk+1
∂

∂uk
and Dt =

∂
∂t

+
∑

k≥0D
k
x(F )

∂
∂uk

, where F = F (u0, u1, . . . , ud)

is given in (87). Equation (94) is equivalent to

(99)
∑

l1,l2,j0,...,jd−1

∂

∂x

(

xl1tl2
)

(u0 − a0)
j0 . . . (ud−1 − ad−1)

jd−1 · Bl1,l2
j0...jd−1

+

+
∑

l1,l2,j0,...,jd−1

xl1tl2Dx

(

(u0 − a0)
j0 . . . (ud−1 − ad−1)

jd−1

)

· Bl1,l2
j0...jd−1

−
∑

l1,l2,i

∂

∂t

(

xl1tl2
)

(u0 − a0)
i ·Al1,l2

i −
∑

l1,l2,i

xl1tl2Dt

(

(u0 − a0)
i
)

· Al1,l2
i + [A,B] = 0.

We regard the expressions

Ã = ∂z1 +
∑

i>0

(u0 − a0)
i ·

(

∑

l1,l2

zl11 z
l2
2 A

l1,l2
i

)

,(100)

B̃ =

(

∂z2 +
∑

l1,l2

zl11 z
l2
2 B

l1,l2
0...0

)

+
∑

j0,...,jd−1≥0,
j0+···+jd−1>0

(u0 − a0)
j0 . . . (ud−1 − ad−1)

jd−1 ·

(

∑

l1,l2

zl11 z
l2
2 B

l1,l2
j0...jd−1

)

(101)

as formal power series with coefficients in L.
Since the function F in (87) does not depend on x and t, equation (99) is equivalent to

Dx

(

B̃
)

−Dt

(

Ã
)

+
[

Ã, B̃
]

= 0,

which implies that the power series (100), (101) constitute a formal ZCR of Wahlquist-Estabrook type
with coefficients in L.
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Applying Lemma 7 to this formal ZCR, we obtain the homomorphism

ϕ : Wa → L, ϕ(A0) = ∂z1 , ϕ(Ai) =
∑

l1,l2

zl11 z
l2
2 A

l1,l2
i , i > 0,(102)

ϕ(B0...0) =

(

∂z2 +
∑

l1,l2

zl11 z
l2
2 B

l1,l2
0...0

)

, ϕ(Bj0...jd−1
) =

(

∑

l1,l2

zl11 z
l2
2 B

l1,l2
j0...jd−1

)

, j0 + · · ·+ jd−1 > 0.

Clearly, F is a Lie subalgebra of L = D⊕ F. In view of (102), for any k ∈ Z≥0 and i ∈ Z>0 one has

(103) ϕ
(

(adA0)
k(Ai)

)

=
(

ad ∂z1
)k

(

∑

l1,l2

zl11 z
l2
2 A

l1,l2
i

)

=
(

∂z1
)k

(

∑

l1,l2

zl11 z
l2
2 A

l1,l2
i

)

∈ F.

Since R ⊂ Wa is generated by the elements (98), property (103) implies ϕ(R) ⊂ F ⊂ L. Using the
homomorphism (97) and property (103), we get

(104) ν ◦ ϕ
∣

∣

R
: R → F

0(E , a), (ν ◦ ϕ)
(

(adA0)
k(Ai)

)

= k! · Ak,0
i , k ∈ Z≥0, i ∈ Z>0.

Using Remark 14, we can assume that Wa is embedded in the algebra gl(V ) for some vector space V .
Let S be the vector space of power series of the form

(105)
∑

l1,l2,i0,...,ik≥0

xl1tl2(u0 − a0)
i0 . . . (uk − ak)

ik · C l1,l2
i0...ik

, C l1,l2
i0...ik

∈ gl(V ), k ∈ Z≥0.

Note that S contains the power series (105) for all k ∈ Z≥0. For each C ∈ S, the power series
Dx(C), Dt(C) ∈ S are defined according to Remark 7.
Recall that gl(V ) consists of linear maps V → V . Since gl(V ) is an associative algebra with respect to

the composition of maps, the space S is an associative algebra with respect to the standard multiplication
of formal power series.
Also, using Remark 7 and the Lie bracket on gl(V ), we obtain a Lie bracket on the space S.
We set B0 = B0...0, where B0...0 is the free term of the power series B from (89). Since

Ai, Bj0...jd−1
∈ Wa ⊂ gl(V ) for all i, j0, . . . , jd−1 ∈ Z≥0, the power series exA0 , etB0 , and (89) belong

to S. Set

(106) P = −etB0A0e
−tB0 + etB0exA0Ae−xA0e−tB0 , Q = −B0 + etB0exA0Be−xA0e−tB0 .

Using (106), we get

Dx(Q) = etB0
[

A0, e
xA0Be−xA0

]

e−tB0 + etB0exA0Dx(B)e
−xA0e−tB0 ,(107)

Dt(P ) = −
[

B0, e
tB0A0e

−tB0
]

+
[

B0, e
tB0exA0Ae−xA0e−tB0

]

+ etB0exA0Dt(A)e−xA0e−tB0 .(108)

Recall that Dx(B)−Dt(A)+ [A,B] = 0 according to (91). Combining this with (106), (107), (108), one
obtains

(109) Dx(Q)−Dt(P ) + [P,Q] = etB0exA0
(

Dx(B)−Dt(A) + [A,B]
)

e−xA0e−tB0 = 0.

Formulas (89), (106) yield

(110) P = −etB0A0e
−tB0 +

∑

i≥0

(u0 − a0)
i · etB0exA0Aie

−xA0e−tB0 =

=
∑

l1,l2≥0, i>0

xl1tl2(u0 − a0)
i 1

l1!l2!
(adB0)

l2

(

(adA0)
l1(Ai)

)

.

(111) Q = −B0 +
∑

j0,...,jd−1≥0

(u0 − a0)
j0 . . . (ud−1 − ad−1)

jd−1 · etB0exA0Bj0...jd−1
e−xA0e−tB0 =

= −B0 +
∑

l1,l2,j0,...,jd−1≥0

xl1tl2(u0 − a0)
j0 . . . (ud−1 − ad−1)

jd−1 ·
1

l1!l2!
(adB0)

l2

(

(adA0)
l1
(

Bj0...jd−1

)

)

.
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From (109), (110), (111) it follows that the power series P , Q satisfy all conditions of Lemma 6.
Applying Lemma 6 to P , Q given by (110), (111), we obtain the homomorphism

ψ : F
0(E , a) → Wa, ψ

(

A
l1,l2
i

)

=
1

l1!l2!
(adB0)

l2

(

(adA0)
l1(Ai)

)

, l1, l2 ∈ Z≥0, i ∈ Z>0,(112)

ψ
(

B
l1,l2
j0...jd−1

)

=
1

l1!l2!
(adB0)

l2

(

(adA0)
l1(Bj0...jd−1

)
)

, l1, l2, j0, . . . , jd−1 ∈ Z≥0, j0 + · · ·+ jd−1 > 0,

ψ
(

B
l′
1
,l′
2

0...0

)

=
1

l′1!l
′
2!
(adB0)

l′
2

(

(adA0)
l′
1(B0...0)

)

, l′1 ∈ Z>0, l′2 ∈ Z≥0.

From (112) we get

(113) ψ
(

A
l1,0
i

)

=
1

l1!
(adA0)

l1(Ai) ∈ R, l1 ∈ Z≥0, i ∈ Z>0.

Since, by Theorem 4, the elements Al1,0
i , l1 ∈ Z≥0, i ∈ Z>0, generate the algebra F

0(E , a), property (113)
implies ψ

(

F
0(E , a)

)

⊂ R. Then from (104), (113) it follows that the homomorphisms ψ : F
0(E , a) → R

and ν ◦ ϕ
∣

∣

R
: R → F

0(E , a) are inverse to each other. �

5. The algebras F
p(E , a) for the KdV equation

We need the following result, which is proved in [12].

Theorem 6 ([12]). Let E be the infinite prolongation of an equation of the form (16) with q ∈ {1, 2, 3}.
Let a ∈ E . For each p ∈ Z>0, consider the surjective homomorphism ϕp : F

p(E , a) → F
p−1(E , a) from (8).

If p ≥ q + δq,3 then

[v1, v2] = 0 ∀ v1 ∈ kerϕp, ∀ v2 ∈ F
p(E , a).

In other words, if p ≥ q+ δq,3 then the kernel of ϕp is contained in the center of the Lie algebra F
p(E , a).

For each k ∈ Z>0, let ψk : F
k+q−1+δq,3(E , a) → F

q−1+δq,3(E , a) be the composition of the homomorphisms

F
k+q−1+δq,3(E , a) → F

k+q−2+δq,3(E , a) → · · · → F
q+δq,3(E , a) → F

q−1+δq,3(E , a)

from (8). Then

[h1, [h2, . . . , [hk−1, [hk, hk+1]] . . . ]] = 0 ∀h1, . . . , hk+1 ∈ kerψk.

In particular, the kernel of ψk is nilpotent.

Lemma 8. Let E be the infinite prolongation of the KdV equation ut = u3 + u0u1. Let a ∈ E .
Then F

0(E , a) is isomorphic to the direct sum of sl2(K[λ]) and a 3-dimensional abelian Lie algebra.

(The Lie algebra sl2(K[λ]) has been defined in Section 1.)

Proof. We are going to use Theorem 5, which says that F
0(E , a) is isomorphic to a certain subalgebra

of the Wahlquist-Estabrook prolongation algebra Wa.
The Wahlquist-Estabrook prolongation algebra for the KdV equation was computed in [3, 4]. Ac-

cording to [4], this algebra is isomorphic to the direct sum of sl2(K[λ]) and a 5-dimensional nilpotent
Lie algebra H . The algebra H has a basis (r−3, r−1, r0, r1, r3) satisfying

(114) [r1, r−1] = [r−3, r3] = −r0, [ri, rj] = 0 if i+ j 6= 0.

In order to be in agreement with formulas from [4], we take the KdV equation in the form

(115) ut = −u3 − 12u0u1,

which can be transformed to ut = u3 + u0u1 by scaling of the variables x, t, u. (Recall that we use the
notation (2).)
Let (h, y, z) be a basis of sl2(K) satisfying

(116) [h, y] = 2y, [h, z] = −2z, [y, z] = h.
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In Section 4 for any evolution PDE of the form (87) we have defined the notion of formal Wahlquist-
Estabrook ZCR with coefficients in Wa, which is given by formulas (89), (91). According to [4], for the
KdV equation (115), we have Wa

∼= H ⊕ sl2(K[λ]), and A from (89) can be written as

(117) A = −2X1 − 2u0X2 − 3u20X3,

where

(118) X1 = r1 −
1

2
y +

1

2
zλ, X2 = r−1 + z, X3 = r−3.

Since r1, r−1, r−3 ∈ H and y, z, zλ ∈ sl2(K[λ]), the elements X1, X2, X3 given by (118) belong to
H ⊕ sl2(K[λ]).
The paper [4] uses the symbol T in place of λ. For equation (115), the paper [4] contains also an

explicit formula for B from (89), but it is not needed for us.
Formulas (114), (116), (117), (118) imply that, in this case, the subalgebra R ⊂ Wa defined in

Theorem 5 is equal to the subalgebra

H̃ ⊕ sl2(K[λ]) ⊂ H ⊕ sl2(K[λ]) ∼= Wa,

where H̃ ⊂ H is spanned by the elements r−1, r−3, r0. Formulas (114) imply that the 3-dimensional Lie
algebra H̃ is abelian.
According to Theorem 5, one has F

0(E , a) ∼= R. Since R ∼= H̃ ⊕ sl2(K[λ]), we see that F
0(E , a) is

isomorphic to the direct sum of sl2(K[λ]) and the 3-dimensional abelian Lie algebra H̃ . �

Theorem 7. Let E be the infinite prolongation of the KdV equation ut = u3 + u0u1. Let a ∈ E . Then

• the algebra F
0(E , a) is isomorphic to the direct sum of sl2(K[λ]) and a 3-dimensional abelian Lie

algebra,

• for every p ∈ Z>0, the algebra F
p(E , a) is obtained from sl2(K[λ]) by applying several times the

operation of central extension.

Proof. The statement about F0(E , a) has been proved in Lemma 8. In particular, we see that F0(E , a)
is isomorphic to a central extension of sl2(K[λ]).
For every p ∈ Z>0, consider the surjective homomorphism ϕp : F

p(E , a) → F
p−1(E , a) from (72). Since

the KdV equation is of the form (16) for q = 1, Theorem 6 implies that the kernel of ϕp is contained
in the center of the Lie algebra F

p(E , a). Hence for each p ∈ Z>0 the algebra F
p(E , a) is obtained from

F
p−1(E , a) by central extension. Since F

0(E , a) is isomorphic to a central extension of sl2(K[λ]), we see
that Fp(E , a) is obtained from sl2(K[λ]) by applying several times the operation of central extension. �
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