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Two-shape-tensor model for tumbling in nematic polymers and liquid crystals
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Most, but not all, liquid crystals tend to align when subject to shear flow, while most nematic polymeric liquid
crystals undergo a tumbling instability, where the director rotates with the flow. The reasons of this instability
remain elusive, as it is possible to find similar molecules exhibiting opposite behaviors. We propose a continuum
theory suitable for describing a wide range of material behaviors, ranging form nematic elastomers to nematic
polymers and nematic liquid crystals, where the material parameters have meaningful physical interpretations
and the conditions for tumbling emerge clearly. There are two possible ways to relax the internal stress in a
nematic material. The first is the reorganization of the polymer network, the second is the alignment of the
network natural axis with respect to the principal direction of the effective strain. We show that tumbling occurs
whenever the second mechanism is less efficient than the first. Furthermore, we provide a justification of the
experimental fact that at high temperatures, in an isotropic phase, only flow alignment is observed and no
tumbling is possible, even in polymers.
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I. INTRODUCTION

Nematic liquid crystals and nematic polymers either un-
dergo shear aligning or tumbling when subjected to a sim-
ple shear flow. Shear aligning is characterized by a director
dynamics that evolves monotonically to a fix orientation at
steady state. By contrast, tumbling occurs when the director
undergoes periodic oscillations in its orientation with a period
that is inversely proportional to the shear rate. The classical
Ericksen-Leslie model of nematic liquid crystals (NLCs) pre-
dicts that the tendency of a liquid crystal to either tumble or
flow align is controlled by the sign of the ratio of two viscosity
coefficients: α3/α2. Positive values lead to flow aligning and
negative values cause tumbling.

However, the different sign of α2 and α3 has no clear
chemical or physical interpretation. Thus, a number of pos-
sible explanations for such a dramatic difference in the flow
dynamics has been proposed in the literature over the years. It
had long been thought that prolate nematogens always align
with the flow, then it was discovered that some nematic liquid
crystals undergo a tumbling instability in part of their nematic
range. By contrast, most side-chain polymer liquid crystals
show tumbling most of the times [1].

Furthermore, for some compounds, these different behav-
iors are unexpected since their molecular structure and their
phase diagrams are very similar [2–4]. For example, while
MBBA and 5CB always flow align in their nematic phase,
other closely related molecules, respectively HBAB and 8CB,
undergo a transition from flow alignment to tumbling when
the temperature is decreased below a given threshold [2,3].

This instability has been associated with smectic fluctua-
tions in the nematic phase [5], with strong side-to-side molec-
ular aggregation [6,7] and, in other theories [8], the rotational
friction, the order parameter strength, and molecular form fac-
tors play a key role. Many theories of nematic liquid crystals
fail to predict the transition from flow aligning to tumbling

behavior. Some retain the transition, but the interpretation they
provide for the tumbling parameter is not widely accepted.

One successful strategy to relate the viscous response of
NLCs to the effective mesoscopic features of the microscopic
constituents, is to derive a kinetic theory of NLCs. This was
originally developed by Kuzuu and Doi [9–11] and then ex-
tended by Osipov and Terentjev [8,12,13] and Larson [2,7,14].
In general, kinetic theories require specific assumptions on the
intermolecular potential, and this choice particularly affects
the antisymmetric part of the Cauchy stress tensor, which is
responsible for the director rotations. Furthermore, these theo-
ries usually include higher order moments of the orientational
distribution function and some closure approximations are
usually necessary to make the theory more tractable. However,
the most obvious closure approximations imply that NLCs
always exhibit flow aligning [14], thus more sophisticated
closure approximations are often used to be able to include the
tumbling effect. Finally, kinetic theories neglect the analysis
of the translational molecular degrees of freedom, which give
a fundamental contribution to the Newtonian viscosity (the
Leslie coefficient α4).

In this paper, we propose an alternative route to include far
from equilibrium effects, such as tumbling, into a continuum
theory. Namely, we develop a “mixed” theory where the
macroscopic degrees of freedom are treated classically, but
the microscopic degrees of freedom are taken into account in
a coarse grained way by introducing material reorganization
and relaxation. The advantage of this approach is its sim-
plicity, the guiding principles being material symmetry and
irreversible thermodynamics. While in this case not all the
microscopic details can be accounted for (like in kinetic the-
ories, however), nonetheless, we get a better insight into the
microscopic mechanisms underlying tumbling phenomena.

It is worth remarking that possibly many microscopic
phenomena, such as molecular interactions or molecule flex-
ibility, may affect the value of our material parameters. As
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such, these parameters are not directly related to specific mi-
croscopic mechanisms, but have to be considered as effective
model parameters, whose value is the result of a number of
complicated microscopic interactions that we do not wish to
model in detail. Hence, the validity of our model is essen-
tially limited to those situations where the effective material
parameters can be considered independent of the imposed
macroscopic flow.

The paper is organized as follows: The theory is described
in Secs. II and III. In Secs. IV and V we obtain some conse-
quences of the theory, in the approximation of fast relaxation
times. Specifically, we derive how the Leslie coefficients
depend on the model parameters and discuss the tumbling
phenomenon. The conclusions are drawn in Sec. VI. Finally,
some mathematical details on the derivation are reported in
the Appendices.

II. NATURAL POLYMER NETWORK

In our previous papers [15–17] we have shown how ne-
matic elastomers (NEs), nematic liquid crystals (NLCs), and
nematic polymers (NPs) can be described, at the continuum
level, by the same theory. A posteriori, this is not surprising
since they share the basic features of a continuum theory,
namely, material symmetry and compatibility with thermome-
chanics principles.

If we model nematic elastomers as rubbery networks with
an aligned uniaxial anisotropy of their polymer strands and
with a coupling to the nematic mesogenic units, the transition
from a elastic response of NEs to a fluidlike behavior of NLCs
is obtained by allowing the polymer network to reorganize.
Hence, we consider a transient polymer network, where cross
links can break under stress at some rate and reform in
an unstressed state, so that the network undergoes a plastic
deformation to reach a natural state with zero stress, a state
that we call natural (or relaxed) polymer network. However,
at short timescales, when the cross links are not broken, the
material is elastic. In general, when the cross-linking rate
is much higher than the breakage rate, the network can be
regarded as “cross linked,” or elastic. When the two rates
are comparable, the system undergoes a plastic flow under
stress and when the cross-linking rate is much lower than the
breakage rate, the system quickly relaxes to a natural state
and it behaves like a viscous fluid. Of course, in real nematic
liquid crystals the network is not physical, but it is only an
idealization. Its transient nature mimics the rearrangement of
the position of the nematic molecules that typically takes place
in fluids.

Usually, the positional order of the cross links or of the
nematic molecules, at each instant of time, is only known
via some averaged quantities. A standard simplification in
this respect is that the second moment tensor is sufficient to
describe the positional distribution of the molecules. Hence,
in analogy with nematic elastomer theory [18], we define a
shape tensor �∗ as the chain step-length tensor of the relaxed
network (or, depending on interpretation as the normalized
covariance tensor of the one-particle probability density of the
position of the molecules)

�∗(ρ, n∗) = a(ρ)2(n∗ ⊗ n∗) + a(ρ)−1(I − n∗ ⊗ n∗), (1)

where ρ is the density, a(ρ) is a shape parameter that gives
the amount of spontaneous elongation along the main axis n∗.
When a(ρ) = 1, the centers of mass distribution is isotropic,
while for a(ρ) > 1 (<1) it is prolate (respectively, oblate) in
the direction of n∗. The normalization condition corresponds
to the requirement det(�∗) = 1 since we are only concerned
with the anisotropy of the molecular distribution. Our defini-
tion of �∗ mimics the definition of step-length tensor that is
used in nematic elastomer theory to describe the anisotropic
polymer ordering and represents the spontaneous stretch of
the material.

The interpretation of the shape tensor for LCs is more
indirect. Since LCs can be seen as a particular case of relaxing
nematic elastomers, when the relaxation time is much shorter
than all the other times involved [15,16,19], the physical
interpretation of �∗ for LCs is deduced as a limiting case
from that of the nematic elastomers. A more direct interpreta-
tion requires the introduction of the one-particle probability
density of the position of the molecules in nematic liquid
crystals. As shown in molecular simulations, this is slightly
anisotropic, i.e., on average, the molecules are more distant
along the direction of the director and are more densely
packed in a direction orthogonal to the director. This defines a
new direction of anisotropy that is usually strongly correlated
with the nematic director, but conceptually distinct.

In standard nematic elastomer theory, and in our previous
works [15,16], it is assumed that the relaxed network main
axis n∗ is directed along the nematic director n, at each instant
of time. In so doing, the director is taken to describe, at the
same time, the preferred orientation of the molecules and the
relative distance of their centers of mass at equilibrium (or the
direction of the natural strain in the network). This assumption
is valid for most NLCs and for NEs and leads to interesting
consequences such as the connection of the Leslie coefficients
with the elastic features and the relaxation times of the ma-
terial, the dependence of viscosity coefficients on frequency,
and the viscoelastic response of the material. Furthermore, a
new Parodi-type relation is identified for NLCs which seems
to be in good agreement with molecular simulations and in
fairly good agreement with experiments.

However, the assumption of an instantaneous relaxation
of n∗ to the director n leads to a flow-aligning director field
and prevents tumbling instability, which is observed in most
nematic polymers and in some liquid crystals. Therefore, a
key ingredient for the presence of tumbling seems to be the
distinction between �∗ and the elastonematic-coupling tensor
defined as

�(ρ, n) = a(ρ)2(n ⊗ n) + a(ρ)−1(I − n ⊗ n), (2)

the only difference with respect to (1) being the substitution
of n∗ with n (see Fig. 1). Our description differs at this
point from the standard elasticity of nematic elastomers where
there is a direct coupling between the director field and
the polymer network. Instead of a single shape tensor, here
we introduce two closely related tensors �∗ and �, and the
coupling between their axes n∗ and n is described by an
energetic term that favors the alignment of n∗ with n. As we
shall see, this introduces an additional governing equation and
a corresponding characteristic time.
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FIG. 1. Schematic representation of the natural network, with
main axis n∗, whose anisotropy is described via the shape tensor
�∗ (left). For comparison, on the right-hand side we show the
schematic representation of the deformed actual transient network,
with effective strain tensor Be. The material is stress free when Be

coincides with �∗. The director n describes the average direction
of the molecules and is an additional degree of freedom, but it is
energetically coupled with the axis n∗.

To account for the transient nature of the network (or
material reorganization, in the case of NLCs), we split the
deformation gradient F into elastic part (Fe) and relaxing part
(G), and define

Fe = FG−1 , H = (GT G)−1 , (3)

Be = FeFT
e = FG−1G−T FT = FHFT , (4)

where Be is the effective left Cauchy-Green deformation
tensor, and H is the inverse relaxing strain tensor.

Furthermore, we posit the following free-energy density
per unit mass

σ (ρ, Be, n∗, n,∇n)

= σ0(ρ) + 1
2μ1(ρ)[tr(�−1

∗ Be − I) − log det(�−1
∗ Be )]

+ 1
2μ2(ρ) tr(�−1

∗ � − I)+σFr(n,∇n). (5)

The first term σ0(ρ) penalizes volume changes; it is assumed
to be large and not depending on material relaxation. The
second term represents a neo-Hookean energy where the
natural (zero stress) deformation is described by �∗ and
is, therefore, transversely isotropic in the direction of n∗.
This free-energy term only depends on the effective tensor
Be which is allowed to relax to its natural state �∗. The
bulk modulus associated with the elastic response is ρμ1(ρ).
However n∗ (and hence �∗) is not fixed, but can rotate in order
to align with the director n. This contribution is encoded in
the third term which penalizes any deviation of n∗ from the
director n. The relative importance of this term with respect
to the second one is determined by the ratio of their elastic
moduli: μ2/μ1. Finally, we consider a Frank elastic-potential
σFr(n,∇n) that favors the alignment of nematic molecules and
whose prototype is σFr(n,∇n) = k |∇n|2. For more complex
scenarios in this respect, the reader is advised to consult
Ref. [20].

Intuitively, the dynamics of n∗ is governed by two in-
dependent contributions: on the one hand, n∗ is coupled to
the effective macroscopic deformation Be, so that n∗ tends
to align with a principal direction of the effective strain;
on the other hand, n∗ tends to coincide with the director
n. The director n is an additional degree of freedom, so if
there was no Frank potential, it would always be favorable to
make the director align with the major axis of Be, and take
n∗ = n. However, in the presence of director elastic energy or
boundary and topological constraints, this configuration could
have a high energy cost due to possible director distortions, so
that an intermediate configuration could be preferable. In such
a case, it is possible that n∗ and n do not coincide.

The minimum of the free energy, which is reached at
equilibrium in an infinite domain, is yielded by

Be = �∗, �∗ = �, n = constant. (6)

In dynamics, far from equilibrium, identities (6) do not gen-
erally hold. However, when μ1 � μ2 the third term in (5)
dominates the second, so that it would be too energetically
expensive to have two different shape tensors for long times.
If the relaxation dynamics is sufficiently fast (in a sense to
be specified later), we can assume to leading order �∗ = �

and thus recover our previous theory by considering only
the second term. When μ1 and μ2 are comparable, or the
relaxation dynamics is slow, we need to keep two separate
shape tensors and study the dynamics that brings �∗ to evolve
toward � or, equivalently, n∗ in the direction of n. This
dynamics is governed by an additional characteristic time τ∗,
introduced below.

III. GOVERNING EQUATIONS

Here, we simply state the main equations of the model. The
full derivation is given in Appendix A. More details on the
physical meaning of some terms may also be gathered from
[15–17,19,21].

There are two types of governing equations. The first
set of equations comprises balance laws that do not imply
dissipation of energy. In our case, these are the equations for
the velocity field v and the director n:

ρv̇ = b + div T, n × (g − h) = 0, (7)

where an overdot indicates the material time derivative. The
boundary conditions are

t(ν) = Tν, n × m(ν) = n ×
(

ρ
∂σ

∂∇n

)
ν. (8)

In the above equations, ν is the outer unit normal to the
surface, t(ν) and m(ν) are the surface tractions and the surface
couples, T is Cauchy stress tensor, b is the external body
force, h is the nematic molecular field, and g is the external
field acting on the director (e.g., a magnetic field) which will
be be set to zero in the following for simplicity. As shown in
the Appendix, T and h are defined as

T := ρ
∂σ

∂F
FT − ρ(∇n)T ∂σ

∂∇n

+ 1

2
(h∗ ⊗ n∗ − n∗ ⊗ h∗), (9)
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h := ρ
∂σ

∂n
− div

(
ρ

∂σ

∂∇n

)
, (10)

where the molecular field h∗ associated to n∗ is

h∗ := ρ
∂σ

∂n∗
. (11)

The second types of equations are associated with irre-
versible processes and follow from linear irreversible ther-
modynamics principles. These equations describe how the
effective strain tensor Be and the main axis of the natural
polymer network n∗ evolve:

D
(
B

�

e

) = − ∂σ

∂Be
, (12)

λ(n∗ × n̊∗) = −n∗ × h∗. (13)

The kinematics of the material reorganization and the natural
axis evolution are described by the upper-convected time
derivative B

�

e and the corotational derivative of n∗, defined
as

B
�

e := (Be )
. − (∇v) Be − Be (∇v)T , (14)

n̊∗ := ṅ∗ − Wn∗, (15)

where W = 1
2 [∇v − (∇v)T ] is the spin tensor. The tensor D

is a fourth-rank tensor which is compatible with the uniaxial
symmetry about n∗, has the major symmetries, and is positive
definite [17], and λ is a positive material parameter. These
phenomenological quantities contain the characteristic times
of material reorganization and specify what are the possible
different modes of relaxation and how fast these relaxation
modes drag the system to equilibrium.

For our purposes, it suffices to say that D comprises four
relaxation times: τ1, τ2, τ3, and τ4 (see [17] for details), while
λ leads to the introduction of a fifth relaxation time τ∗, defined
in the next section. Specifically, τ1 measures the relaxation
time of the pure shearing modes in a plane through n∗ (i.e., a
stretching that makes a 45◦ angle with n∗, and does not involve
rotations). By contrast, τ2 is associated with pure sharing
modes that happen in the plane orthogonal to n∗.

IV. LESLIE COEFFICIENTS

In this section we derive the explicit expressions for the
Cauchy stress tensor (9), the molecular fields (10) and (11),
and the relaxation Eqs. (12) and (13) when the free energy
σ is given as in Eq. (5). This will allow us to simplify our
model for fast relaxation times and thus to give a physical
interpretation of the Leslie coefficients in terms of our model
parameters. For ease of reading, part of the calculations are
reported in Appendix B.

A little algebra allows us to rearrange the Cauchy stress
tensor, as given in (9) [or (A12)], in the form

T = −p I + ρμ1(�−1
∗ Be − I)

− λ

2
(n̊∗ ⊗ n∗ − n∗ ⊗ n̊∗) − ρ(∇n)T ∂σFr

∂∇n
, (16)

with p := ρ2 ∂σ
∂ρ

a pressurelike function. The material reorga-
nization is governed by (12), which takes the form

D̂
(
B

�

e

) − B−1
e + �−1

∗ = 0, (17)

where D̂ = 2D/μ1 is simply proportional to D but it has been
rescaled in order to have dimensions of time. The director
Eq. (7b) and the relaxation Eq. (13) are found to be (see
Appendix B for details)

div

(
ρ

∂σFr

∂∇n

)
+ ρμ2

(a3 − 1)2

a3
(n∗ · n)(n × n∗) = 0, (18)

τ∗(n∗ × n̊∗) = μ1

μ2

a3

a3 − 1
(n∗ × Ben∗)

+ (n∗ · n)(n∗ × n), (19)

where

τ∗ = a3

(a3 − 1)2

λ

ρμ2
(20)

is proportional to the parameter λ and can be taken as the char-
acteristic time associated with the reorientation of n∗. At the
end of Sec. III we have seen that when the material undergoes
a pure shear strain in a plane through n∗, the effective strain
tensor relaxes to the natural state with a characteristic time
τ1. An alternative mechanism to relax the internal stress is to
rotate the unit cell of the natural network (and its main axis n∗)
in order to conform to a general superimposed deformation or
in response to a mismatch with the director field n, and this
happens with a characteristic time τ∗.

It is easy to see that τ1 and τ∗ are independent times
and indeed can be very different. Let us consider a nematic
elastomer. Its rubbery network is elastic and does not reorga-
nize, so that τ1 can be considered infinite. By contrast, τ∗ is
finite and is interpreted as the time that the director n takes
to coincide with the principal direction of the superimposed
strain (for NEs n = n∗ by assumption).

It is interesting to observe that, according to Eq. (18),
when the director field is homogeneous, i.e., |∇n| = 0, n∗ is
either parallel or orthogonal to n. This can also be seen from
the energy density. Whenever the Frank potential vanishes in
(5), every possible configuration of minimum energy satisfies
�∗ = � or, in other terms, n∗ = n. Any deviation from n∗ =
n costs some energy and this excess energy is ultimately due
to distortions in the director field.

When μ1 � μ2 and we assume that τi (i = 1, 2, 3, 4) and
τ∗ are much smaller that the characteristic times associated
with the deformation, measured by τdef = max{1/|∇v|}, Be

and n∗ are just small corrections of their equilibrium values
�∗ and n. Equation (17) then yields the approximation of Be

to first order

Be ≈ �∗ − �∗ D̂(�
�

∗ )�∗. (21)

This approximation is suitable for the description of a fluidlike
behavior and, therefore, it is appropriate for NLCs and possi-
bly for some nematic polymers (when viscoelastic effects are
not important), but it is not applicable to the other possible
extreme of the model, namely, nematic elastomers.

To obtain the approximation of the stress tensor (16) to first
order, it is sufficient to consider only the leading term of (19).
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To leading order, n∗ ≈ n, so that (16) becomes

T = −pI − ρμ1D̂(�
�

)�

− (a3 − 1)2

2a3
ρμ2τ∗(n̊ ⊗ n − n ⊗ n̊)

− ρ(∇n)T ∂σFr

∂∇n
. (22)

If we now compare (22) with the classical expression of the
Cauchy stress tensor, as given by the compressible Ericksen-
Leslie theory

T = −pI + α1(n · Dn)(n ⊗ n) + α2(n̊ ⊗ n) + α3(n ⊗ n̊)

+α4D + α5(Dn ⊗ n) + α6(n ⊗ Dn)

+α7[(tr D)(n ⊗ n) + (n · Dn)I
] + α8(tr D)I,

and use the explicit expression for D̂ as given in Ref. [17],
we obtain that the Leslie coefficients in terms of our model
parameters are

α1 = ρμ1(ρ)

(
τ2 − [a(ρ)3 + 1]2

a(ρ)3
τ1 + 3τ3(cos �)2

+ 3τ4(sin �)2

)
, (23a)

α2 = −ρμ1(ρ)τ1[a(ρ)3 − 1] − ρμ2(ρ)τ∗
[a(ρ)3 − 1]2

2a(ρ)3
,

(23b)

α3 = −ρμ1(ρ)τ1[1 − a(ρ)−3] + ρμ2(ρ)τ∗
[a(ρ)3 − 1]2

2a(ρ)3
,

(23c)

α4 = 2ρμ1(ρ)τ2, (23d)

α5 = ρμ1(ρ)([1 + a(ρ)3]τ1 − 2τ2), (23e)

α6 = ρμ1(ρ)([1 + a(ρ)−3]τ1 − 2τ2), (23f)

where � is an additional parameter that appears in the defini-
tion of D and affects α1 but plays no role in what follows. It is
also possible to find the bulk viscosity coefficients α7 and α8,
but these are not particularly relevant for the purposes of this
paper, and we omit them for brevity.

It is interesting to observe that, in agreement with exper-
iments, α2 is always negative for rodlike LCs [a(ρ) > 1] as
it is obtained as the sum of two negative terms. By contrast,
α3 can be either negative or positive, the latter case leading to
a tumbling behavior. Vice versa, for disklike molecules α3 is
always positive while α2 can be positive (flow alignment) or
negative (tumbling).

The Parodi relation is automatically satisfied along with a
second identity [16]

α6 − α5 = α2 + α3,
α4 + α5

α4 + α6
= α2 + λ/2

α3 − λ/2
= a(ρ)3, (24)

where, we recall, λ = ρμ2τ∗ (a3 − 1)2/a3.

V. TUMBLING PARAMETER

In terms of Leslie coefficients, it is known that a tumbling
instability arises whenever α3/α2 < 0 [8,20], a condition that,

FIG. 2. Flow-aligning (blue) and tumbling (white) regions, as
deduced from (28), as a function of the model parameters a(ρ ) and
ξ . The region with a(ρ ) > 1 corresponds to prolate shape tensors,
associated with rodlike molecules. Disklike molecules correspond to
a(ρ ) < 1. Tumbling ceases to exist in the isotropic phase, where the
shape tensors are spherical [a(ρ ) = 1].

after the substitution of (23), reads as

α3

α2
= 1

a(ρ)3

(
2 − ξ [a(ρ)3 − 1]

2 − ξ [a(ρ)−3 − 1]

)
< 0, (25)

where we have defined the key ratio

ξ = μ2 τ∗
μ1 τ1

. (26)

In fact, the flow alignment angle is known to be

tan θ =
√

α3

α2
, (27)

so that alignment is only possible when α2 and α3 have the
same sign (both positive or negative). If ξ ≈ 0, so that the
natural network axis is free to reorient with the flow, only
flow alignment is possible. By simplifying (25), we get the
following condition for tumbling behavior:

ξ >
2

a(ρ)−3 − 1
if 0 < a(ρ) < 1,

ξ >
2

a(ρ)3 − 1
if a(ρ) > 1. (28)

In either case, tumbling occurs when the ratio μ2 τ∗
μ1 τ1

is larger
than a given threshold, which depends on the anisotropy of
the shape tensor [i.e., on the aspect ratio a(ρ)]. This threshold
goes to infinity in the isotropic case a(ρ) = 1 and decreases
for increasing anisotropy of the shape tensor (see Fig. 2). Even
if our theory does not depend on temperature, it is reasonable
to expect that in the isotropic phase the shape tensor becomes
spherical, i.e., a(ρ) = 1. Hence, we get a clear explanation
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of why tumbling is enhanced by the presence of orientational
order, and it is suppressed in the isotropic phase, even for
nematic polymers.

We have seen that ξ represents the ratio between two possi-
ble effects: relaxation by alignment of the natural network axis
with the flow, and strain relaxation by material reorganization.
As is clear from Fig. 2, if the first mechanism prevails, the
material flow aligns, while if the second is more efficient,
the director tumbles (when sufficiently far from the isotropic
phase). This fact is more pronounced for long chains or flat
disks, i.e., it increases with molecular anisotropy.

This interpretation is in agreement with previous experi-
ments and with some earlier theoretical claims, where tum-
bling was explained in terms of strong side-to-side molecular
association [6,7,22]. In particular, the authors of Ref. [22] ob-
served experimentally that “addition of a side-chain LCP (liq-
uid crystal polymer) to flow-aligning 5CB induces a director-
tumbling response, whereas dissolution of a main-chain LCP
in director-tumbling 8CB induces a flow-aligning response.”
This agrees with our interpretation in that strong side-chain
association may hinder natural network rotations while it does
not have much influence on the material reorganization by
network subcell sliding.

A more direct way to reach the same conclusions, that
does not make use of the Leslie coefficients, is to study the
evolution of the natural network main axis using Eq. (19). In
the absence of nematic distortions, from the balance equation
(18), we get that n = n∗. Hence, in the limit μ2τ∗ � μ1τ1,
Eq. (19) to leading order reads as n∗ × Ben∗ = 0, i.e., n∗
aligns with a principal direction of the effective strain (which
is fixed in the fast relaxation approximation discussed above).
In this case, n∗ is constant and aligns with the flow. On
the other hand, if μ2τ∗ � μ1τ1, to leading order we have
n∗ × n̊∗ = 0. Since n̊∗ is orthogonal to n∗, this implies that n̊∗
must vanish. In such a case, we do not obtain a steady solution,
but a rotating field: ṅ∗ = Wn∗.

More precisely, let us consider a simple shear flow in
a semi-infinite medium, under the usual assumption of fast
relaxation approximation (μ2 � μ1 and τ∗, τi � τdef). The
velocity field is written as v = .

γ y ex, where
.
γ is the shear

rate and ex is a unit vector along the x axis. Within our ap-
proximation, n∗ is just a small perturbation of its equilibrium
value n and we posit

ε = μ1/μ2, n∗ = n + n1, n1 = O(ε), (29)

where n is taken to be homogeneous over the whole sample
(i.e., |∇n| = 0), n1 · n = 0, and n1 measures the difference
between n∗ and n in a dynamic situation. The relaxation times
are much smaller than τdef, so that the product of either τ∗
or τ1 with a time derivative (i.e., n̊ or Dn) is taken to be O(ε).
For a homogeneous director field, the balance Eq. (18) implies
that n1 vanishes to first order, so that we can assume n∗ ≈ n.
Hence, Eq. (19) reads as

τ∗(n × n̊) = −μ1

μ2

a3

a3 − 1
[n × � D̂(�

�

)�n ]. (30)

The codeformational derivative of � can be explicitly cal-
culated in terms of the imposed macroscopic flow so that

Eq. (30) simplifies to

ξ (n × n̊) = −n ×
(

n̊ − a3 + 1

a3 − 1
Dn

)
. (31)

We now introduce the tilt angle θ such that n = sin θ (t ) ex +
cos θ (t ) ey. After a little algebra, (31) can be written as

(1 + ξ )
.

θ =
.
γ

2

(
1 + ξ + a3 + 1

a3 − 1
cos(2θ )

)
. (32)

When the liquid crystal aligns with the macroscopic flow, the

angle θ is constant, so that
.

θ = 0. Thus, stationary solutions
are only possible if

|a3 − 1|
a3 + 1

� 1

1 + ξ
, (33)

a condition that, after some simplification, is shown to coin-
cide with the flow-aligning condition α3/α2 � 0, as derived
from Leslie coefficients (23), and is complementary to the
tumbling condition (28). When the condition (33) is not met
[or, equivalently, the complementary condition (28) holds],
we can still solve (32) in this regime to obtain the periodic
oscillations of the director, i.e., the functional dependence of
θ over time.

VI. CONCLUSIONS

The mechanisms underlying tumbling instability are subtle
and there is no widely accepted explanation for the physical
origins of this phenomenon. We find that the distinction be-
tween the nematic director and the principal axis of the natural
polymer network is the key feature that allows us to observe
the crossover between flow-aligning and tumbling behaviors.

This distinction allows the material, when it undergoes
a shearing deformation, to relax the internal stress in two
distinct ways. The first is the internal reorganization of the
polymer network cross links, the second is the rotation of the
natural polymer network main axis to align with the princi-
pal direction of the effective strain. Both these mechanisms
reduce the internal stress, but tumbling occurs whenever the
first mechanism prevails over the second.

In agreement with previous claims, this explanation sug-
gests that tumbling is due to a strong side-to-side molecular
association, either by electrostatic interactions or by steric
interaction (for example, in long flexible polymer chains).
In our model, a single material parameter ξ , defined as the
ratio μ2τ∗/μ1τ1, describes the relative importance of one
mechanism over the other. Furthermore, we show that in
the isotropic phase only flow aligning is possible and that
tumbling is enhanced by strong molecular anisotropy.

For simplicity, we have developed a minimal model. Our
analysis does not include all possible scenarios that are be-
lieved to play an important role in the current understanding
of tumbling in nematic fluids. For instance, we do not explore
lyotropic materials and concentration dependence, tempera-
ture effects, compounds of different molecules. In particular,
in order to fully study the tumbling dependence on the degree
of order and the temperature effects, it is necessary to con-
struct a theory that includes the nematic ordering tensor Q.

012706-6



TWO-SHAPE-TENSOR MODEL FOR TUMBLING IN … PHYSICAL REVIEW E 100, 012706 (2019)

It is expected that the resulting theory in this case be highly
nontrivial and its analysis is postponed to a following paper.

Another important reason for introducing the tensor Q in
our model is that tumbling typically generates defects [23],
indicating that the system could no longer be regarded as
a monodomain [3]. It is observed in [23] that the defect
structures, or textures, in a 8CB sample depend on the shear
history of the sample. In particular, the texture depends not
only on the rotation speed, but also on the rate at which the
rotation speed is increased from zero. This is in agreement
with the viscoelastic nature of our model and the consequent
interpretation of tumbling in terms of relaxation processes.
By contrast, the Ericksen-Leslie model, having frequency-
independent viscosity coefficients, cannot reproduce different
material behaviors or aligning features for different shear rates
or shear histories.
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APPENDIX A: DERIVATION OF THE MODEL

In this Appendix, we derive the governing equations. The
second principle of thermodynamics requires that, for any
isothermal process, for any portion Pt of the body at all times,
the dissipation (rate of entropy production) be greater or equal
than zero [24]:

D := W (ext) − K̇ − Ḟ � 0, (A1)

where W (ext) is the power expended by the external forces, K̇
is the rate of change of the kinetic energy, Ḟ is the rate of
change of the free energy, and the dissipation D is a positive
quantity that represents the energy loss due to irreversible pro-
cess. Here, an overdot indicates the material time derivative.
More precisely, we define

W (ext) =
∫
Pt

b · v dv +
∫

∂Pt

t(ν) · v da

+
∫
Pt

g · ṅ dv +
∫

∂Pt

m(ν) · ṅ da, (A2)

K + F =
∫
Pt

(
1

2
ρv2 + ρσ (ρ, Be, n∗, n,∇n)

)
dv, (A3)

D =
∫
Pt

ξ dv, ξ � 0. (A4)

The unit vector ν is the external unit normal to the boundary
∂Pt ; b is the external body force, t(ν) is the external traction on
the bounding surface ∂Pt . The vector fields g and m(ν) are the
external generalized forces conjugate to the microstructure:
n × g is usually interpreted as “external body moment” and
n × m(ν) is interpreted as “surface moment per unit area” (the
couple stress vector).

The material time derivative of F is

Ḟ =
∫
Pt

(
ρ

∂σ

∂F
·

.

F + ρ
∂σ

∂H
·

.

H

+ ρ
∂σ

∂n
· .

n + ρ
∂σ

∂n∗
· ṅ∗ + ρ

∂σ

∂∇n
· (∇n)˙

)
dv.

(A5)

If we introduce the (frame-indifferent) upper-convected time
derivative B

�

e , as given in Eq. (14), and use the identities

Ḟ = (∇v)F, (A6)

(∇n)˙ = ∇ .
n − (∇n)(∇v), (A7)

∂σ

∂Be
= F−T ∂σ

∂H
F−1, (A8)

B
�

e = F
.

HFT , (A9)

Eq. (A5) simplifies to

Ḟ =
∫
Pt

(
ρ

∂σ

∂F
FT · ∇v + ρ

∂σ

∂Be
· B

�

e + ρ
∂σ

∂n
· .

n

+ ρ
∂σ

∂n∗
· ṅ∗ + ρ

∂σ

∂∇n
· (∇n)˙

)
dv,

=
∫
Pt

(
ρ

∂σ

∂F
FT − ρ(∇n)T ∂σ

∂∇n

)
· ∇v dv

+
∫
Pt

(
ρ

∂σ

∂n
· .

n + ρ
∂σ

∂∇n
· ∇ .

n
)

dv

+
∫
Pt

(
ρ

∂σ

∂n∗
· ṅ∗

)
dv +

∫
Pt

ρ
∂σ

∂Be
· B

�

e dv.

(A10)

We now define the molecular fields h and h∗, as in Eqs. (10)
and (11), so that we rewrite the second integral as

∫
Pt

(
ρ

∂σ

∂n
· .

n + ρ
∂σ

∂∇n
· ∇ .

n
)

dv

=
∫

∂Pt

(
ρ

∂σ

∂∇n

)
ν · .

n da +
∫
Pt

h · .
n dv.

Furthermore, since we assume that a realignment of the re-
laxed network axis with the flow gives a positive contribution
to the dissipation, we have to recast the second-last integral
in (A10) in terms of frame-indifferent fields (a vanishing
dissipation is associated with a rigid rotation of the whole
body). Hence, we write∫

Pt

h∗ · ṅ∗ dv =
∫
Pt

h∗ · n̊∗ dv +
∫
Pt

h∗ · Wn∗ dv

=
∫
Pt

h∗ · n̊∗ dv +
∫
Pt

1

2
(h∗ ⊗ n∗

− n∗ ⊗ h∗) · ∇v dv. (A11)

The last term is paired with ∇v so that it represents a contri-
bution to the Cauchy stress tensor, defined as in Eq. (9) and
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repeated here for convenience:

T := ρ
∂σ

∂F
FT − ρ(∇n)T ∂σ

∂∇n
+ 1

2
(h∗ ⊗ n∗ − n∗ ⊗ h∗).

(A12)

Therefore, the final expression for the rate of change of the
free energy is

Ḟ =
∫
Pt

T · ∇v dv +
∫

∂Pt

(
ρ

∂σ

∂∇n

)
ν · .

n da

+
∫
Pt

h · .
n dv +

∫
Pt

h∗ · n̊∗ dv +
∫
Pt

ρ
∂σ

∂Be
· B

�

e dv

=
∫

∂Pt

Tν · v da −
∫
Pt

div T · v dv

+
∫

∂Pt

(
ρ

∂σ

∂∇n

)
ν · .

n da +
∫
Pt

h · .
n dv

+
∫
Pt

h∗ · n̊∗ dv +
∫
Pt

ρ
∂σ

∂Be
· B

�

e dv, (A13)

and the dissipation is then written as

D = W (ext) − K̇ − Ḟ

=
∫
Pt

(b − ρv̇ + div T) · v dv +
∫

∂Pt

(
t(ν) − Tν

) · v da

+
∫
Pt

(g − h) · .
n dv+

∫
∂Pt

[
m(ν)−

(
ρ

∂σ

∂∇n

)
ν

]
· ṅ da

−
∫
Pt

h∗ · n̊∗ dv −
∫
Pt

ρ
∂σ

∂Be
· B

�

e dv. (A14)

By assumption, a positive dissipation is associated to ma-
terial reorganization and only the last two integrals can con-
tribute to the irreversible processes (i.e., can have a positive
dissipation). Thus, the contribution from the first integrals
must vanish and we have the equations (we recall that n · .

n =
0) for the deformation field v and the director field n, as given
in Eqs. (7). The dissipation then simplifies to

D = −
∫
Pt

(
h∗ · n̊∗ + ρ

∂σ

∂Be
· B

�

e

)
dv. (A15)

A simple choice that satisfies D � 0 at all times and is
consistent with standard linear irreversible thermodynamics
[20,25] is to take the fluxes proportional to forces. In so doing,
we arrive at Eqs. (12) and (13). Furthermore, we assume
Onsager reciprocal relations, so that the proportionality coef-
ficient D is a fourth-rank tensor which is compatible with the

uniaxial symmetry about n∗, has the major symmetries and is
positive definite [i.e., such that D(A) · A > 0, ∀ A 	= 0 and
symmetric], while λ is a positive material parameter. Indeed,
it can be shown that only one coefficient λ is necessary in
(13) for symmetry reasons (see [20]). Equation (13) governs
the dynamics that brings n∗ toward n (or vice versa) and the
parameter λ contains the characteristic time of this relaxation
process.

Finally, we note that, if we denote by Wa the skew-
symmetric tensor with axial vector a, we have from (13)

1

2
(h∗ ⊗ n∗ − n∗ ⊗ h∗) = 1

2
Wn∗×h∗

= −λ

2
Wn∗×n̊∗ = −λ

2
(n̊∗ ⊗ n∗ − n∗ ⊗ n̊∗), (A16)

so that the Cauchy stress tensor can also be written in a more
familiar form as

T = ρ
∂σ

∂F
FT − ρ(∇n)T ∂σ

∂∇n
− λ

2
(n̊∗ ⊗ n∗ − n∗ ⊗ n̊∗).

(A17)

APPENDIX B: DERIVATION OF THE LESLIE
COEFFICIENTS

In order to find the director equation and the the relaxation
equations, we need to explicitly elaborate on the terms

∂σ

∂Be
= 1

2
μ1

(
�−1

∗ − B−1
e

)
, (B1)

∂σ

∂n
= 2(a2 − a−1)

∂σ

∂�
n

= μ2(a2 − a−1)�−1
∗ n, (B2)

∂σ

∂n∗
= 2(a−2 − a)

∂σ

∂ (�−1
∗ )

n∗

= (a−2 − a)(μ1Be + μ2�)n∗, (B3)

n × h = −ρμ2
(a3 − 1)2

a3
(n∗ · n)(n × n∗)

− div

(
ρ

∂σFr

∂∇n

)
, (B4)

n∗ × h∗ = ρμ1(a−2 − a)n∗ × Ben∗

− ρμ2
(a3 − 1)2

a3
(n∗ · n)(n∗ × n). (B5)
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