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Abstract: An auto-tuning and self-adaptation procedure for High Frequency Injection (HFI) based
position and speed estimation algorithms in Interior Permanent Magnet Synchronous Motor (IPMSM)
drives is proposed in this paper. Analytical developments show that, using conventional approaches,
the dynamics of the high-frequency tracking loop varies with differential inductances, which in turn
depend on the machine operating point. On-line estimation and adaptation of the small signal gain of
the loop is proposed here, allowing accurate auto-tuning of the sensorless control scheme which does
not rely on a priori knowledge of the machine parameters. On-line adaptation of Phase-Locked Loop
(PLL) gains and of the injected voltage magnitude is also possible, leading to important advantages
from the performance, loss and acoustic point of view. The theoretical basis of the method has been
introduced first and the main concept demonstrated by means of simulations. Implementation has
been carried out using the hardware of a commercial industrial drive and two Interior Permanent
Magnet Synchronous Motors, namely a prototype and an off-the-shelf machine. Experimental tests
demonstrate the feasibility and effectiveness of the proposal.

Keywords: IPMSM drives; adaptive control; high frequency injection; sensorless

1. Introduction

Due to the increasing demand for efficiency, drives based on Permanent Magnet Synchronous
Machines (PMSM) and Synchronous Reluctance Machines (SynRM) are foreseen to become more and
more popular. Since their control requires position and speed information, sensorless control is often
adopted due to cost and reliability reasons. With sensorless control, complexity increases due to a
larger number of control parameters and manual tuning (which is generally performed by trained
technicians) becomes tedious and difficult. Moreover, the possibility to run several tests might be
restricted, e.g., for safety or mechanical constraints, especially in industrial applications. Wide adoption
of these drives poses even greater obstacles due to dependence on prior information about machine
parameters, which in turn may depend on the operating point. Self-commissioning procedures for
identification, [1–4], and tuning of all the control parameters, including those related to the sensorless
estimation, are highly desirable. The self-commissioning procedure itself might require the use of
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position estimation, e.g., in [5] a High Frequency Injection (HFI) method is used for rotor position
estimation during flux vs. current maps identification at stand still.

The main HFI based methods proposed in literature for rotor position estimation are the INFORM
method [6], rotating [7,8], and pulsating [9,10] injection based, square-wave injection based [11],
arbitrary injection based [12], and PWM excitation based [13,14]. In most cases, HFI based position and
speed estimation algorithms for IPMSM and SynRM drives are implemented by means of a feedback
approach, based on a Phase Locked Loop (PLL) scheme, [7–13]. The estimated position is virtually
compared to the real position in order to yield a correction term. This is usually obtained in the form
of an error signal, which is normally proportional to the sine of twice the position error. This signal is
then fed to a PI regulator, which drives the PLL or a mechanical model of the system. If the small-signal
approach is considered, the amplitude of the error correction signal corresponds to a gain within the
equivalent dynamics of the PLL and ultimately affects the performances and stability properties of
position and speed estimation. Unfortunately, this parameter depends on differential inductances [15],
which can vary with the machine operating point due to magnetic saturation, especially in IPMSM
and SynRM. In fact, while cross-saturation causes steady-state estimation error [15–18] and is closely
related to the high-frequency estimation model, self-saturation changes the equivalent estimation loop
transfer function and should be taken into account to guarantee a proper response of the tracking loop
in every magnetic operating condition of the machine. Independent of the specific PLL or mechanical
observer design procedure adopted (e.g., [19,20]), obtaining stable and repeatable estimation dynamics
is highly desirable. Speed adaptive observer has been proposed in [21], where observer gains design is
proposed by linearizing the motor model and observer. This gain results in increased damping and
higher noise suppression. Various methods and approaches have been proposed in the literature for
identification of HF frequency and fundamental effects during transients, a model-based controller
design has been proposed in [16,22] where two-degree of freedom in control has been used to separate
the fundamental and HF effects during transient stages. A modified feed-forward control has been
demonstrated for mid- to high-speed range operations, eliminating the need of any additional back
EMF estimator. A single voltage vector injection-based method has been presented in [23] which
is linked to the term containing position error without need of any additional filters, also with low
computational burden.

Considering the state-of-the-art represented in literature, although many issues related to the HF
injection algorithms have been addressed, the tuning of the parameters of HF injection-based estimation
algorithms (which are mainly represented by filter bandwidth values and gains) remains problematic.
In [19,20], the design is reported, based on the motor parameters, namely the HF inductances or
small-signal (“differential”) inductances. In many cases (e.g., in the case of general-purpose industrial
drives, which is one of the target applications of this paper), these parameters are usually not known
in detail. Moreover, as already mentioned, they could be identified with insufficient accuracy and be
variable because of magnetic saturation effects. As a result, properly setting the estimation algorithm
gains becomes a difficult operation, which practically may require manual tuning.

The work presented in this paper aims at overcoming the problems related to dynamics in the
presence of uncertain, unknown or varying small-signal gain of the estimation algorithm. With the
adoption of the proposed method, the dynamical behavior of the position and speed tracking becomes
independent of the motor parameters. The additional introduction of a method for regulating the
“strength” of the useful HF signal (i.e., the amplitude of HF anisotropy-related current) allows to
apply a proper voltage injection, which may be optimized in terms of robustness or in order to
minimize losses, acoustic noise and vibrations. In order to obtain these results, on-line estimation and
adaptation of the gains of the PLL, presented for the first time in [24], is applied, so that the design
of the estimation loop gains and filters can be performed without any prior knowledge about the
motor differential inductances. A certain set of PLL parameters, in fact, achieves approximately the
same dynamical performance in position and speed estimation on any motor (provided that it exhibits
sufficient anisotropy) and under different operating conditions. Furthermore, the proposed method
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gives the possibility to adapt the high frequency injection voltage amplitude, in order to achieve a
constant high frequency current excitation, i.e., a certain amplitude of the useful test signal. The same
kind of objective has been pursued for square wave HFI in a recent research paper [25].

The effectiveness of the technique has been tested in simulation and on a real-world implementation
platform (i.e., the hardware of a commercial inverter) using two different machines, demonstrating its
potential for immediate deployment. The analytical developments and the self-adaptation method
have been preliminarily tested by considering the step response of the estimation PLL, with very good
agreement between theoretical and experimental results, demonstrating that estimation dynamics
can be made independent of operating conditions and injection voltage magnitude. Further testing
comprises sensorless control, especially in comparison to the traditional method (without adaptation).
The method represents an important leap towards the self-commissioning and automatic tuning of
high-frequency injection based sensorless IPMSM drives.

2. Rotating-Voltage High-Frequency Injection: State-Of-The-Art

The electric model of an Interior Permanent Magnet machine can be written in the synchronous
reference frame, using the Park notation [26]:

vdq = Rsidq +
d
dt
λdq +

[
0 −1
1 0

]
ωmeλdq (1)

where vdq correspond to phase voltage, idq denotes current, ωme is the mechanical-electrical speed, Rs

is the phase resistance and λdq indicates flux-linkage.
Signal injection for sensorless control purposes is applied at much higher frequency than the

fundamental (e.g., hundreds or thousands of Hz vs. tens or hundreds of Hz), especially considering that
the HFI methods are meant for low-speed operation. If the analysis is restricted to the high-frequency
behavior, the resistive voltage drop can be neglected [7,9] since phase resistance is much smaller than
inductive reactance. This condition holds in most cases also for low-power machines, having large
resistance, such as those considered in this paper (worst-case is for motor #1, where d-axis inductive
reactance is more than 40 times larger than phase resistance). The fundamental motional voltage,
i.e., the terms proportional to mechanical-electrical speed ωme, can be disregarded, since it belongs, by
definition, to the fundamental frequency. Equation (1) can be approximated as

vi,dq ≈
d
dt
λi,dq (2)

In (2) and in the following, subscript i will be used for injection-related variables, i.e., the voltage
corresponding to the high-frequency injected signal and the consequent current and flux-linkage
components. The small-signal approximation will be applied, in order to deal with the analytical issues
related to non-linearity.

In the HF injection method adopted here, based on [7], a high-frequency voltage vector vi,αβ,
rotating at ωi angular frequency with amplitude Vi, is superimposed to the fundamental voltage
needed for torque control:

vi,αβ = Vi

[
− sinωit
cosωit

]
(3)

The consequent high-frequency flux-linkage components can be calculated both in the stationary
and in the synchronous reference frames:

λi,αβ =
Vi
ωi

[
cosωit
sinωit

]
(4)



Energies 2019, 12, 3645 4 of 26

λi,dq =
Vi
ωi

[
cos(ωit− θme)

sin(ωit− θme)

]
(5)

the (local) differential inductances

ld ,
dλd
did

, lq ,
dλq

diq
(6)

can be defined, so for small-signal operation the flux-linkage vector can also be expressed as a function
of current (cross-saturation effects are neglected in these calculations):

λi,dq =

[
ld 0
0 lq

]
ii,dq (7)

The last equation can be used for obtaining the high-frequency currents, by dividing the d- and
q-axis flux-linkage by small-signal inductances. This results in the current vector

ii,dq =
Vi
ωi

[
1/ld cos(ωit− θme)
1/lq sin(ωit− θme)

]
(8)

Equation (8) can be rewritten as

ii,dq =
Vi

ωi(l2Σ−l2∆)

(
lΣ

[
cos(ωit− θme)

sin(ωit− θme)

]
+ l∆

[
cos(−ωit + θme)

sin(−ωit + θme)

])
= ii0

[
cos(ωit− θme)

sin(ωit− θme)

]
+ ii1

[
cos(−ωit + θme)

sin(−ωit + θme)

] (9)

by using definitions of average (“Σ” subscript) and half-difference (“∆” subscript) inductances:

lΣ ,
lq + ld

2
, l∆ ,

lq − ld
2

(10)

and additional definitions of two current magnitude values

ii0 ,
VilΣ

ωi
(
l2Σ − l2∆

) , ii1 ,
Vil∆

ωi
(
l2Σ − l2∆

) (11)

It is straightforward to notice that the amplitude of the high-frequency current depends on the
injection voltage magnitude Vi, on signal frequency ωi and on the differential inductances, i.e., it is
also a function of the magnetic operating condition of the machine.

Transforming back to the stationary reference frame, one obtains:

ii,αβ = ii0

[
cos(ωit)
sin(ωit)

]
+ ii1

[
cos(2θme −ωit)
sin(2θme −ωit)

]
(12)

According to the original method [7], demodulation is performed applying rotation by−2θ̂me +ωit,
where θ̂me is the position estimate. This results in the vector signal ii,demod, containing the two orthogonal
projections ii,demodx and ii,demody on x and y axes, respectively:

ii,demod =

[
ii,demodx

ii,demody

]
=

 cos
(
−2θ̂me +ωit

)
sin

(
−2θ̂me +ωit

)
− sin

(
−2θ̂me +ωit

)
cos

(
−2θ̂me +ωit

) ii,αβ

= ii0

 cos
(
2ωit− 2θ̂me

)
sin

(
2ωit− 2θ̂me

) + ii1

 cos
(
2θme − 2θ̂me

)
sin

(
2θme − 2θ̂me

)  (13)



Energies 2019, 12, 3645 5 of 26

The low-frequency content of ii,demod is then extracted by means of a Low-Pass Filter (LPF), i.e.,

LPF
{
ii,demod

}
= LPF

{[
ii,demodx

ii,demody

]}
= ii1

 cos
(
2θme − 2θ̂me

)
sin

(
2θme − 2θ̂me

)  (14)

A signal for correction e can be obtained by selecting the second-row component of (14), i.e.,

e =
[

0 1
]
·LPF

{
ii,demod

}
= LPF

{
ii,demody

}
= LPF

{
ii1· sin

[
2
(
θme − θ̂me

)]}
(15)

A block diagram representing the position estimation algorithm based on rotating voltage HFI [7]
is shown in Figure 1, where R(θ) represents the vector transformation as per Equation (13). The first
signal out of the transformation block, ii,demodx , is discarded, while the second, ii,demody , is exploited as
the error correction signal, after proper filtering.Energies 2019, 12, x FOR PEER REVIEW 5 of 26 
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Figure 1. Typical algorithm for position estimation based on rotating-voltage High Frequency Injection
(HFI) [7].

3. Estimation PLL Dynamics and Tuning

With respect to other methods (e.g., fundamental-based), the dynamics of HFI-based speed and
position estimation has been investigated less extensively. However, effective analytical approaches
for PLL gains design have been proposed, e.g., [19,20], where the specific aspects of these methods,
such as the effect of filtering and demodulation, are taken into account. In fact, as mentioned in
the introduction, manual tuning might be restricted or even unacceptable in certain cases, due to
many reasons. On the other hand, analytical tuning strongly relies on the knowledge of differential
inductances, which are often unavailable for off-the-shelf machines and usually vary with the operating
point, due to magnetic saturation.

The proposed analysis of dynamics is similar in principle to the one in [20], where linearization
is applied and the frequency response of filters is considered in order to obtain a straightforward
representation of the loop dynamics, which represents the basis of the proposed method.

Considering small values of the error, the non-linear sine function can be approximated to its
argument, i.e., from the dynamics point of view the small-signal equivalent of the error signal will be

e ≈ LPF
{
2 ii1·

(
θme − θ̂me

)}
(16)

The error signal is approximately proportional to the difference between actual and estimated
position, with a gain 2ii1, followed by a low-pass filter, which represent the physical effect of the
inductive behavior of motor phases and the dynamics of the demodulation process. The obtained
signal is fed to a PI controller, followed by an integrator, in order to obtain the position signal from the
speed estimate. The position estimate is then used for the calculation of vector rotation in the first part
of (13). The equivalent block diagram, which can be conveniently adopted for loop dynamics analysis
and PLL regulator design, is shown in Figure 2.
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Figure 2. Equivalent block diagram of the position estimation algorithm considered for dynamics
design of the loop shown in Figure 1.

Considering the definition of ii1 (11), Equation (16) shows that the equivalent gain of the error
signal depends on differential inductances. These vary due to magnetic saturation, which means that
insufficient estimation bandwidth or, on the other hand, instability can occur if constant gains are
considered in the tracking loop. In general, these effects make it difficult to obtain optimal performance
in the entire range of operation with constant tracking gains. To showcase the effect of saturation, the
flux-linkage maps of one of the IPM machine considered in the following simulations and experiments
are reported in Figure 3.Energies 2019, 12, x FOR PEER REVIEW 6 of 26 
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If the value of ii1 is known, e.g., thanks to characterization measurements, it can be taken into
account, allowing to design the regulator aiming at a certain goal, e.g., in terms of bandwidth and
stability margins. To attain this, an effective approach is to approximate the objective estimation
bandwidth ωHFBW with the cross-over frequency of the open-loop transfer function. Based on the PLL
schematic in Figure 2, the transfer function can be easily obtained:

GPLLOL(s) = 2 ii1
(
KPPLL

1 + τPLLs
τPLLs

)1
s

LPF(s) (17)

where KPPLL is the PI gain and τPLL is the PI regulator time constant, i.e., the ratio between proportional
and integral gains, while LPF(s) is the filter transfer function. In order to ensure stability (i.e., about
–20 dB/dec slope at 0 dB gain in the Bode diagram), the closed-loop bandwidth must be comprised
between the PI zero and the LPF bandwidth ωLPF, i.e., 1

τPLL
< ωHFBW < ωLPF. Practically, ωHFBW must

be sufficiently distant from these extremes, i.e., at least double the bottom limit and half the top limit.
If this condition is satisfied, the transition frequency is approximately

ωHFBW = 2ii1 KPPLL (18)

This equation allows to set the proportional gain, once the value of ii1 is known and constant.
In the following simulation and experiments, the cross-over frequency is chosen to be 2.5 times lower
than the LPF bandwidth and 3 times larger than the PI pole frequency. A notch filter centered on
the injection frequency is added in order to reject the effect of fundamental, finally resulting in the
transfer functions shown in Figure 4. In general, optimal choices in the design of the gains also involve
considerations on the overall control dynamics (e.g., desired speed control bandwidth vs. noise and
ripple), which are out of the scope of this paper.
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4. Proposed Self-Adaptive Method and Auto-Tuning of Sensorless Control

In the proposed method for PLL gains adaptation, the equivalent gain factor ii1 is estimated
on-line and compensated for. As a result, the design of the estimation dynamics is made independent
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of the motor differential inductances, then a certain set of PLL gains results in approximately the
same response under different motors and conditions. Cross-saturation (i.e., the presence of non-zero
mutual small-signal inductances), will be neglected in the following analysis, in order to simplify
analytical calculation and highlight the main aspects of the proposed self-adaptive method. In fact,
cross-saturation affects the accuracy of the overall sensorless control (introducing a steady-state position
estimation error), as reported in [15–18], but is expected to have negligible contribution on the dynamics
(which has been confirmed by experiments). Possible effects of mutual inductance on estimation
dynamics will be the topic of future investigation.

In the considered rotating-voltage injection approach (as opposed to the pulsating one, [8]), two
signals proportional to the sine and cosine of the error can be obtained, as shown in (14), although only
the sine signal is usually exploited in literature. Obtaining the complete error vector (14) means that an
estimate of the amplitude of the error correction signal ii1 can be calculated as the norm of the vector:

îi1 = ‖LPF{idemod}‖ = ‖LPF
{[

ii,demodx

ii,demody

]}
‖ ≈ LPF

ii1 ‖
cos

(
2θme − 2θ̂me

)
sin

(
2θme − 2θ̂me

) ‖ = LPF{ii1·1} (19)

Since the norm of the sine-cosine vector is unity, this processing leads to an estimate the error
signal magnitude value îi1. Finally, this allows to normalize the error signal, dividing it by twice the
obtained value, i.e.:

e
2 îi1

=
1
2

e
‖LPF{idemod}‖

≈ LPF
{
θme − θ̂me

}
(20)

From the Equation (20) it can be seen that, by applying this processing, the loop dynamics becomes
independent of the HF current signal amplitude ii1, i.e., it does not depend on inductances ld, lq,
frequency and injected voltage magnitude Vi, contrary to the traditional method. In particular, given
the desired dynamical behavior, the PLL regulator gains can be set constant for any operating condition
and machine. The block diagram representing the proposed algorithm, including loop gain estimation
and on-line adaptation feature, is shown in Figure 5, where the estimated value of ii1 is highlighted with
a red box. The main difference with respect to the typical schematic (Figure 1) consists in the division
of the error signal by twice the estimated HF current amplitude, which leads to gain normalization.
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The equivalent dynamics of the proposed algorithm can be represented by the schematic in
Figure 2, except that the gain 2ii1 is substituted by unity gain. Making the dynamics independent of
machine characteristics, operating point and injected signal amplitude is an important advantage,
especially if auto-tuning of the control parameters needs to be provided. In fact, once the PLL gains
and filters have been chosen and tested successfully for one case, the same settings are expected to
give similar behavior in all other cases, comprising the application to different motors. The low-pass
filtering on the ii1 estimation path should be designed so that the bandwidth is greater or equal to
the speed regulation bandwidth. This may represent a limitation when very fast control dynamics is
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desired, since wider bandwidth of îi1 may lead to noisy estimate signal. In that case, normalization
could be problematic (e.g., leading to artifacts), due to the non-linear division operation. These aspects
will be the topic of future investigations.

In the experimental tests, as will be explained in Section 6, all the control algorithm has been
implemented digitally on a microcontroller platform. The algorithm represented in Figure 5 can be
split into basic algebraic operations on signals (e.g., gain, sum, division, and product) and filters such as
low-pass, notch and integrator. These were implemented in software, after discretization. Coordinates
transformation requires the use of trigonometric functions, for which a standard C math has been used.

5. Proposed Adaptation of the Injection Voltage Amplitude

Since small signal inductances vary, HF current amplitude changes with machine load,
consequently affecting torque ripple and acoustic noise. Ideally, a certain current amplitude is
ensured, so that signal-to-noise ratio is sufficiently high (i.e., robust estimation is possible) while at the
same time vibrations are minimized. This can be also translated into requirements on ii1 and ii0. While
estimation of ii1 has been introduced above (see (19) and the red box in Figure 5), it is also possible to
estimate the amplitude of the term related to average inductance lΣ, i.e., ii0.

An additional demodulation branch is implemented (not shown in Figure 5), i.e., applying a
rotation by −ωit,

i−ωit
demod =

[
cos(−ωit) sin(−ωit)
− sin(−ωit) cos(−ωit)

]
ii,αβ (21)

isolating the first component of the vector and low-pass filtering will result in

LPF
{
[ 1 0 ]·i−ωit

demod

}
≈ LPF{ii0} (22)

By means of the feedback loop shown in Figure 6 it is then possible to regulate the magnitude of the
high-frequency anisotropy-related current ii1, in order to keep it at the desired constant (and convenient)
level. Since ii1 represents the HFI signal strength, it is in fact tightly related to signal-to-noise ratio of
position and speed estimation. Depending on the measurements noise level, desired performances,
and acceptable acoustic noise, a certain value will be set for i∗i1. The choice of this value can be supposed
to scale with the drive rated current (i.e., with its full-scale measurement value).
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The dynamics of the high-frequency current magnitude regulation loop can be approximated to a
simple schematic, as shown in Figure 6. The low-pass filtering applied on the magnitude estimate
signal introduces a dominant pole, which limits the possible regulation bandwidth. If an approximated
value for differential inductances is available, it will suffice since tuning for a relatively slow control
reaction is needed (e.g., having at least the same bandwidth as the speed regulation), and anyway the
design is not required to obtain accurate dynamics (since voltage adaptation dynamics is not crucial).
Given the simplicity of the equivalent dynamics, the only unknown block, i.e., the gain related to
motor HF response (Figure 6) could be approximately estimated at the startup, imposing constant
HF voltage and measuring the ratio ii1/Vi. This could represent a viable solution to the issue of
unknown inductances.

Similar to Figure 6, the magnitude of injection voltage signal can be adapted in a closed-loop
fashion, aimed to obtaining a constant and known average high-frequency current magnitude ii0 (as
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obtained in (22)), which is related to the torque ripple and acoustic noise. The anisotropy-related
component can be regulated in order to achieve constant desired HF current magnitude by adapting
the injection voltage. Since it is obtained by means of a closed-loop regulation, proper tuning of the
regulator is also required. This can be simply achieved by using even coarse values of inductances.

It is worth mentioning that, once both ii0 and ii1 have been estimated, it would be possible (although
not required for implementing the proposal) to estimate differential inductances ld and lq (which may
be useful, e.g., for adaptation of the current control gains), by simply using the definition of current
magnitude values ii0,ii1 (11) and inductances lΣ,l∆ (10):

l̂d =
Vi

ωi(îi0 + îi1)
, l̂q =

Vi

ωi(îi0 − îi1)
(23)

6. Simulation Results

A model of the full drive system for speed control was built for validating the proposal. In particular,
the IPM motor #1 (Figure 7), whose parameters are reported in Table 1, has been considered for the
initial testing and tuning of the controller. The machine model (implemented in continuous-time)
comprises cross-saturation effects, according to the maps shown in Figure 3 (obtained from laboratory
rotational tests). The correctness of analytical development, comprising the rules for PLL tuning, has
been proved in simulation, demonstrating the speed control capabilities. Since the adoption of HFI
techniques in general considers sensorless control at low-speed as the main target, tests have only been
performed in that range. Normal compensation of the injection and processing delay (i.e., 1.5 times the
sampling period) has been applied. Possible additional issues related to higher speed operation are
out of the scope of this paper.
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Table 1. Rated Parameters of Interior Permanent Magnet (IPM) Machines.

Motor #1 Motor #2 Units

Torque 6.7 7 Nm
Speed 3000 3000 rpm

Voltage (phase-to-phase) 330 290 VRMS
Current 4.2 4.7 ARMS

Pole pairs 2 5 -
Linearized d-/q-axis inductance 22/95 12/17 mH

Resistance 3.4 1.2 Ω
Phase resistance 3.4 1.2 [Ω]
PM flux linkage 0.237 0.141 V s

An interesting simulation test, aimed at demonstrating the feasibility of the regulation of
anisotropy-related signal amplitude ii1, is reported in Figure 8. The schematic shown in Figure 6 has
been implemented, applying reasonable limits to the regulator (in fact, injection voltage should be
larger than the effect of dead-time and lower than the maximum available inverter voltage). As can be
seen in Figure 8, the controlled current magnitude is kept close to the reference value of 0.25 A (third
diagram from the top), while the drive performs different speed transients (from 0 to –200 rpm, from
–200 to +200 rpm) and a load disturbance test at 200 rpm (0 to 50% rated load) in sensorless control.
In order to make the effect of magnetic saturation more evident, null d-axis current has been applied in
this case (instead of the MTPA trajectory), resulting in large q-axis current, which makes the motor
enter a heavily saturated region (see Figure 3, q-axis). The loop automatically adapts the injection
voltage magnitude, in order to obtain the desired signal strength. At high torque, the voltage needed
for obtaining the desired high-frequency current magnitude is about 50% more than at no load. Full
characterization of the estimation performances from this point of view (e.g., control stiffness and
steady-state ripple vs. ii1 and/or ii0) is out of the scope of this paper. However, experimental test results
suggest that the best option is to operate at constant ii1, since the same very small value ii1 = 75 mA
guarantees very similar performances on both motors (i.e., withstanding rated torque disturbance).
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7. Experimental Results

The algorithm has been implemented in digital on the hardware of a commercial 5.5 kW drive
(Gefran ADL 200), supplied by the three-phase grid (400 VRMS). The control board is based on a
microcontroller, equipped with floating-point unit and 12-bit Analog to Digital Converters (ADC).
Suitable code development tools were made available by the manufacturer, within an industry–academia
collaboration. Signal acquisition is carried out using a standard serial connection between the drive
controller and a PC, after recording selected microcontroller variable samples on the embedded memory
(maximum 4 variables and 8192 total samples per acquisition). The inverter switching frequency is
10 kHz, typical Space Vector Modulation with centered pulses and synchronous current sampling have
been adopted. The use of a real-world industrial platform (i.e., no special or expensive devices are
involved) demonstrates the potential for immediate deployment of the proposed technique.

Extensive investigation on dynamics and steady-state accuracy have been carried out on a
2.2 kW prototype IPMSM (main motor #1). In order to highlight the effectiveness of the proposed
adaptation method and its independence of the motor characteristics, some tests have been repeated
on a different one (Surface Mount-PMSM, motor #2), having almost the same power rating. Nominal
motor parameters of both machines are reported in Table 1. The experimental setup comprises a
hysteresis brake Magtrol HD-715 as the passive load, directly connected to the motor shaft, as already
shown in Figure 7.

The first set of experiments has been devoted to demonstrating the effectiveness of the method,
i.e., a pre-determined dynamics of the position estimation loop is maintained, despite any change
in the actual ii1 current level. Corresponding test results are reported in Figure 9 (for motor #1) and
Figure 10 (for motor #2). In both cases, the PLL response to a wrong initial estimated position at
stand-still is shown. For a small initial position error (i.e., almost a linear behavior), this experiment
corresponds to the typical small-signal step response test, applied to the estimation loop. The PLL is
initially disabled (i.e., null PI gains), and a wrong (by approximately 0.25 rad) initial value is loaded
onto the integrator term. Once the PLL is activated, the estimated position converges to the steady-state
value (which ideally corresponds to the actual rotor position). In order to demonstrate the invariance
of the PLL behavior (thanks to the automatic adaptation) despite any change in other parameters, the
response at different values of injection voltage vector magnitude have been considered. No-load
tests have been carried out for motor #1 (35, 70, and 140 V injection) and motor #2 (17, 35, 70, 140 V
injection). Moreover, for motor #1, operation at different torque values (0, 3, and 6 Nm) has been
also considered, while control used the MTPA strategy. In this case, load was applied by locking the
rotor using the hysteresis passive brake. In order to ensure accurate and repeatable testing conditions
(under load), the synchronous current control exploited the encoder position measurement, so that the
operating point bias was not affected by position estimation error, while the HFI estimation algorithm
was run in parallel. To the best of the authors’ knowledge, this is the first time that the step response
test of the HFI-based estimation PLL is reported and compared to the theoretical response, for many
different conditions.

Although the topic of injected voltage minimization is out of the scope of this paper, it is worth
to consider that, as will be shown in the next experimental tests, the minimum voltage required for
robust speed control is not affected by the proposed method, i.e., the novel and the classical techniques
require the same HF voltage. Moreover, based on technical information from reputable manufacturers
of industrial inverters [27–29], injection voltage levels up to 25% of the available voltage are considered
acceptable in industry (i.e., up to 80 V, in this case). Extending the survey with references from scientific
literature [9,19,23,30–46], reveals that the injection level required for robust position estimation and
sensorless control is widely variable, depending on many factors such as measurement noise, inverter
and motor parameters, non-idealities and on the desired dynamics. For this reason, it is difficult to
identify the minimum HF voltage which ensures robust sensorless operation, unless experiments on
a specific system and application have been carried out. However, based on literature, a practically
reasonable range for injection voltage amplitude can be considered from 5 to 20% of the DC-bus voltage
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and 5 to 15% of the motor rated voltage. The HF voltage applied for sensorless control experiments in
the next sections (i.e., from 30 to 60 V) is 6.4% to 12.8% of peak motor rated voltage and 5.4% to 10.9%
of DC-bus voltage, i.e., in the low part of the range just mentioned. It should be noticed that 60 V are
indeed only required when i∗d = 0, while operation on the MTPA requires about 35 V for obtaining
Ii1 = 75 mA, almost independent of the load. The largest HF voltage value, i.e., 140 V, is applied in the
tests of Figures 9 and 10 just for demonstration purposes, i.e., to showcase gain adaptation performance
with respect to strongly varying conditions.
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It is also important to notice that HF injection methods are usually applied only at low-speed and
stand-still. In fact, at medium- and high-speed fundamental wave-based methods can be successfully
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adopted, which mostly exploit estimated back-EMF or flux-linkage [46–54]. Some of these techniques
are based on fusion algorithms, i.e., information from both HF injection and fundamental quantities
are exploited in the same PLL-like schematic [46–54]. Simpler proposals implement two different
estimation methods and blend the resulting position and speed estimates at the PLL input [51–53]
or output [54], where the HF injection is weighted more at low-speed and fundamental signals are
trusted more at medium- to high-speed. The estimation method proposed in this paper can be easily
integrated into a schematic of this kind. Injection can be disabled above a certain speed, avoiding
unnecessary losses and additional acoustic noise. The full speed and torque range can then be reached,
even if, at low-speed, a certain amount of voltage is reserved for HF injection. Fundamental-based and
hybrid sensorless methods are out of the scope of this paper, which addresses specific aspects of signal
injection based sensorless control.

Apart from the values of steady-state error (which are due to cross-saturation, as already pointed
out), the different traces show very consistent dynamics, also compared to the theoretical (ideal)
response (thick blue trace), despite the wide variations experienced by ii1. The cases with 35 V injection,
6 Nm load in Figure 9 (motor #1) and 17 V injection, no-load in Figure 10 (motor #2) are exceptions,
which can be explained considering that the large fundamental current, in combination with the
inverter dead-time effect, causes large voltage distortion. In fact, since the DC-bus voltage is about
550 V, the lower injection level considered, 17 V, corresponds to approximately 3% of the bus voltage,
while the dead-time accounts for 2.5% of the DC-bus voltage (interlock time is 2.5 µs with respect to
the 100 µs PWM period), making this disturbance source almost dominant.

The position estimate is obtained from the phase of the selected HF current signal, which undergoes
a relatively wide-bandwidth filtering before and through the PLL. On the other hand, the estimated ii1
represents the amplitude of the same HF current, which is more heavily low-pass filtered, resulting in
almost flat behavior (bottom diagram). This explains the difference in the noise level, between the
two traces.

The LPF and PI regulator tuning within the PLL have been chosen for approximately 25 Hz
estimation bandwidth. This value allows to achieve satisfactory speed control performance, as
requested by the tests reported in this paper, even though, in general, its value should be selected as a
function of the application requirements. However, it can be surely stated that obtaining repeatable
estimation dynamical response, independent of the adopted machine and operating point, allows to
apply a certain tuning choice without any a priori knowledge of the machine parameters, which is an
important step towards auto-tuning of the estimation algorithm.

Sensorless speed control has been first implemented and tested on motor #1, for the sake of
validating the proposed technique and its effectiveness in different conditions, also comparing the
novel method with classical (non-adapting) schemes. It is worth mentioning that, with respect to many
real-world applications, the comprehensive inertia at the motor shaft is relatively small in this case,
i.e., about three times the moment of inertia of the motor only. Given the current (and hence torque)
limits and estimation noise level, the low-inertia condition is critical for sensorless control, due to the
relatively large high acceleration possible and the low damping of speed ripple.

During all tests reported in figures from Figures 11–14, the injected voltage vector magnitude was
70 V and the speed regulation bandwidth was set to about 7 Hz. The MTPA trajectory was applied for
current references generation from the torque reference (speed controller output). In the non-adapted
case, the PLL gains were chosen considering the no-load value of ii1 obtained experimentally, while in
the self-adapted algorithm this commissioning step was obviously not necessary. For each kind of test,
the proposed method (self-adapted) is compared to the typical one (no adaptation).

No-load speed inversion tests have been reported in Figures 11 and 12. Reference speed is changed
in a ramp between the initial value (−200 rpm) to the final value (+200 rpm). The actual speed is
reversed in less than 100 ms and settles after about 200 ms.
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Figure 12. Motor #1: Sensorless speed control (MTPA), –200 to +200 rpm inversion, typical
(no-adaptation) rotating voltage injection, no load.

Load disturbance rejection tests have also been carried out and reported in Figures 13 and 14.
The brake is activated at 0.15 s, with a reference value of 6 Nm (90% nominal load), causing the speed to
decrease and remain close to zero. In this condition, the speed regulator integral part increases almost
linearly, until the brake torque is overcome. The speed oscillations in the loaded condition, around
zero speed, are due to the passive nature of the brake, which suddenly increases the torque as the
speed changes from zero, in fact a similar effect can be observed in simulation (Figure 8). The position
estimation error remains acceptable during the whole experimental test. The results obtained using
the proposed gain adaptation algorithm are very similar to those resulting from specific gain tuning
(more accurate comparison will be provided at the end of this section), confirming that, thanks to the
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proposed technique, the desired estimation dynamics can be achieved without using prior knowledge
of the machine differential inductances.Energies 2019, 12, x FOR PEER REVIEW 16 of 26 
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The regulation capabilities of the ii1 and ii0 loops have also been tested for both machines, a
selection of the obtained results will be shown hereafter. In Figure 15, while reference speed is kept
constant at 200 rpm and the reference value for ii1 is set to 75 mA, torque load is increased in 1-Nm
steps from 0 to 6 Nm. As has been done for the simulations reported in Figure 8, null d-axis current
reference is imposed (i.e., MTPA is not applied) in order to stress the voltage adaptation mechanism.
Due to the resulting heavy saturation on the q-axis, wide changes in the injected voltage magnitude
(from about 30 to 60 V) are required in order to keep ii1 close to the reference value.



Energies 2019, 12, 3645 17 of 26

Energies 2019, 12, x FOR PEER REVIEW 17 of 26 

 

The regulation capabilities of the 𝑖𝑖1 and 𝑖𝑖0 loops have also been tested for both machines, a 

selection of the obtained results will be shown hereafter. In Figure 15, while reference speed is kept 

constant at 200 rpm and the reference value for 𝑖𝑖1 is set to 75 mA, torque load is increased in 1-Nm 

steps from 0 to 6 Nm. As has been done for the simulations reported in Figure 8, null 𝑑-axis current 

reference is imposed (i.e., MTPA is not applied) in order to stress the voltage adaptation mechanism. 

Due to the resulting heavy saturation on the 𝑞-axis, wide changes in the injected voltage magnitude 

(from about 30 to 60 V) are required in order to keep 𝑖𝑖1 close to the reference value. 

 

Figure 15. Motor #1: Sensorless speed control (𝑖𝑑
∗ = 0), gain adaptation and 𝑖𝑖1 regulation: 200 rpm, 

1-Nm steps from 0 to 6 Nm. 

Figure 16 demonstrates full sensorless control using both the proposed methods, i.e., PLL gain 

adaptation and high-frequency current regulation. A speed reversal command (–200 to +200 rpm) is 

followed by a sudden load increase and decrease, while gain adaptation is enabled and 𝑖𝑖1  is 

regulated at 75 mA. Speed control performances are satisfactory and fulfil the control design 

specifications. 

 

Figure 16. Motor #1: Sensorless speed control (MTPA), gain adaptation and 𝑖𝑖1 regulation: –200 to 

+200 rpm, no-load to 6 Nm to no-load. 

Figure 15. Motor #1: Sensorless speed control (i∗d = 0), gain adaptation and ii1 regulation: 200 rpm,
1-Nm steps from 0 to 6 Nm.

Figure 16 demonstrates full sensorless control using both the proposed methods, i.e., PLL gain
adaptation and high-frequency current regulation. A speed reversal command (–200 to +200 rpm) is
followed by a sudden load increase and decrease, while gain adaptation is enabled and ii1 is regulated
at 75 mA. Speed control performances are satisfactory and fulfil the control design specifications.
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Figure 16. Motor #1: Sensorless speed control (MTPA), gain adaptation and ii1 regulation: –200 to
+200 rpm, no-load to 6 Nm to no-load.

In Figure 17 motor #2 is considered. The same PLL parameters as for motor #1 (i.e., PLL gains
and filters) have been adopted. Gain adaptation is enabled and regulation of ii0 is also active. Due to
saturation, the injection voltage amplitude needs to be set in order to achieve ii0 ≈ 500 mA. This value
has been found to ensure robust operation of the sensorless control under full load disturbance. It
is worth noticing that ii0 = 500 mA corresponds, at full-load, to ii1 being almost equal to 75 mA.
This indirectly confirms that ii1 ≥ 75 mA is approximately the minimal condition which ensures proper
operation under full load, for the setup and dynamical response considered in experiments. This result



Energies 2019, 12, 3645 18 of 26

is independent of the method adopted, i.e., the same requirement applies to both the classical and the
self-adaptation scheme. It is worth noticing that 75 mA is a very small amount of current with respect
to the full-scale value of current sensing, since it corresponds to about 3 counts of the 12-bit ADC.
If further investigations will confirm these findings, since the proposed automatic regulation is able to
keep the “useful” HF current amplitude (Ii1) at an almost constant level under varying conditions,
this could be a means for ensuring a certain signal-to-noise ratio of estimates and ultimately a certain
robustness. Under these hypotheses, once the minimum level of HF current is determined (e.g., via
experiments), the proposed HF current amplitude regulation could ensure injection of the minimum
HF voltage required to satisfy the robustness requirements.
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Figure 17. Motor#2: Sensorless speed control (MTPA), gain adaptation and ii0 regulation, 200 rpm,
1-Nm steps from 0 to 6 Nm.

The experimental tests demonstrate that, thanks to the proposed technique, motor magnetic
parameters are not needed for the tuning of the PLL. Robust speed control is obtained, achieving
dynamical performances and steady-state accuracy which perfectly match the reference method for
rotating voltage injection [7], this being a hint of the correctness of the automatic adaptation of the
tracking loop gain. Moreover, high-frequency current magnitude (ii1 or ii0) can be regulated to a
constant value, which leads to robust operation at different load levels applying small injection voltage.

Since different design choices for PLL gains and loop filter parameters will result in different
dynamics, the estimation loop can be designed according to various bandwidth requirements. Generally,
wider estimation bandwidth will allow to set the speed control for faster response, but will also result
in larger estimation noise. As an example, an experiment has been carried out using increased PLL
gains (twice the previously adopted values) and LPF bandwidth (double the value used in previous
experiments), while the speed regulation proportional and integral gains were increased by 1.5 and
3 times, respectively. Figures 18 and 19 report the speed inversion (test (test conditions similar to
Figures 11 and 12) and load torque disturbance tests (similar to Figures 13 and 14 respectively). In this
case, the current reference values were generated according to the MTPA trajectory and gain adaptation
was enabled, while ii1 was controlled to 0.15 A. As can be seen, after the sudden load increase in
Figure 19, the speed decreases by approximately 100 rpm (about half the previous undershoot),
while the response to quick speed reference change from –200 to 200 rpm (Figure 18) is slightly
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faster (i.e., approximately 10 Hz bandwidth) with respect to Figures 11 and 12. Using these tuning
rules, the steady-state speed ripple becomes much more relevant (especially on estimated speed)
with respect to previous experiments, due to the wider bandwidth of the estimation loop and the
faster speed loop reaction. The visible oscillations may be caused by a combination of different
phenomena, such as current measurement noise or error and imperfect compensation of inverter
voltage distortion. However, the main cause is probably the presence of anisotropy harmonics, also
called “multiple saliencies”, [17]. A hint pointing to this effect is the dependency on the load, i.e., the
fact that ripple increases with current magnitude, which may be due to the presence of local iron
saturation. Compensating the error caused by these harmonics is possible, but requires a complex and
time-consuming laboratory characterization, which is out of the scope of this work and in contrast
with the application scenario intended for this proposal, i.e., industrial drives where little knowledge
is available about the machine features.

The presence of a trade-off between estimation bandwidth and noise is a common feature in
sensorless control, while determining the optimal choice is strongly related to the real application. It is
also worth recalling that very low inertia as the load, as in this setup, is a worst-case condition for
speed ripple.

Startup in two different conditions (no load and 6 Nm passive load) has also been tested for the two
methods (proposed and typical). Gains have been tuned as in previous figures (“increased bandwidth”)
and injection is performed by regulating the ii1 value to 150 mA with the proposed technique, while
voltage magnitude is constant (70 V) for the non-adapted case. Also in these experiments, which
results are reported in Figures 20–23, there is very good matching between the two methods.
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In order to better compare the performance of the proposed method with respect to the traditional
one (i.e., no adaptation), a quantitative assessment has been carried out in terms of RMS error, calculated
on different quantities, namely the speed estimation error, the speed control error and the position
estimation error (when available in the acquisition). The corresponding data has been consolidated
in Table 2. The data has been gathered for showing the equivalence of the two methods in terms
of performance. Although the tests are too few to have any statistical significance, it can be seen
that the various estimation and control errors are very close. This confirms that the aim of the paper
has been reached, i.e., providing similar or better performance and robustness with respect to the
traditional method, at the same time simplifying the tuning of the estimation algorithm (which does
not require knowledge of motor characteristics) and ensuring consistent estimation dynamics with
different machines and operating conditions.

Table 2. Quantitative comparison of error in experimental tests.

Test Type Evaluation Type Proposed Traditional

Speed inversion, –200 to +200 rpm, no
load (Figures 11 and 12)

RMS speed estimation error 19.2 rpm 18.9 rpm

RMS speed control error 32.6 rpm 34.4 rpm

Disturbance rejection, 200 rpm, step
load from 0 to 6 Nm (Figures 13 and 14)

RMS speed estimation error 15.5 rpm 17.1 rpm

RMS speed control error 93.6 rpm 97.7 rpm

RMS position estimation error 0.045 rad 0.049 rad

Startup, 0 to 200 rpm, no load
(Figures 20 and 21)

RMS speed estimation error 19.6 rpm 19.2 rpm

RMS speed control error 14.5 rpm 15.2 rpm

Startup, 0 to 200 rpm, 6 Nm load
(Figures 22 and 23)

RMS speed estimation error 32.6 rpm 31.9 rpm

RMS speed control error 69.1 rpm 70.6 rpm
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8. Conclusions

An auto-tuning and self-adaptation method for a position and speed estimation algorithm based
on rotating high-frequency voltage injection has been proposed in this paper, for application in
sensorless IPMSM drives. Theoretical analysis, simulation, and experimental results demonstrate
the possibility to specify the dynamical behavior of the position and speed estimation tracking loop,
being invariant with respect to the rotor anisotropy level (i.e., different machine inductance values)
and injected voltage magnitude. The proposed self-adaptation also allows the automatic tuning of the
PLL gains with no a priori knowledge of the motor inductances, since the design procedure results in
parameter values (gains and filters bandwidth) which lead to similar dynamics not only in different
motor operating conditions, but also on different machines.

Moreover, the high-frequency current magnitude (either ii1 or ii0) can be automatically regulated
online, by varying the injected signal voltage amplitude in a closed-loop fashion. Experimental results
suggest that this allows to minimize the HF current ripple, while preserving the robustness of the
estimation process.

By applying the proposed technique, the tuning of estimation PLL is simplified and made
independent of the machine characteristics. In fact, it is possible to adopt exactly the same algorithm,
the same filters and PLL gains for different machines, obtaining the same position and speed
tracking response. This has been demonstrated through theoretical analysis and specific experiments.
The sensorless speed control has shown very similar or slightly improved performance with respect to
the traditional method used as a benchmark, in terms of dynamical response and steady-state ripple
(based on several experimental tests).No disadvantages have been observed in terms of performance,
while the adoption of this method comes at the cost of a small increase in complexity and computational
effort in the controller. On the other hand, from the point of view of developers and manufacturers,
this seems to be generously compensated by great simplification of the tuning, higher reliability and
robustness of the control, which would otherwise require fine tuning and/or complex compensation
techniques, based on the detailed knowledge of motor parameters. The improvements brought by
this proposal represent an important leap towards the automation of the tuning process in sensorless
drives based on IPMSMs, which is expected to help developers in the adoption of advanced methods
such as HF injection. Automatic tuning and self-adaption, i.e., those procedures which relief the final
user from the effort of setting control parameters for proper operation of the drive, are considered
of paramount importance for enabling a widespread use of this type of machines. Since interior
PMSMs are potentially very efficient, compact and relatively low-cost (with respect to their surface
mount counterparts), their wide utilization in industrial applications (which usually require sensorless
operation due to cost and reliability reasons) is expected to bring important advantages.
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