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LD-algebras Beyond I0

Vincenzo Dimonte

Abstract The algebra of embeddings at the I3 level has been deeply analyzed,
but nothing is known algebra-wise for embeddings above I3. In this paper is
introduced an operation for embeddings at the level of I0 and above, and it is
proven that they generate an LD-algebra that can be quite different from the I3
one.

1 Introduction

The connection between large cardinals and LD-algebras is one of the most intrigu-
ing success stories of the theory of large cardinals. LD-algebras are algebras with
one operator that satisfies the left-distributive law, i.e.,

∀x,y,z x∗ (y∗ z) = (x∗ z)∗ (x∗ y).

At first sight, they have nothing to do with large cardinals, as they can be small,
countable, even finite. Large cardinals above a certain point, on the other hand, are
always defined by elementary embeddings. At the top of the large cardinal hierarchy
there are the so-called rank-into-rank embeddings: the weakest ones are called I3
(i.e., the existence of j : Vλ ≺Vλ ), then I2 is stronger then I3, I1 is stronger than I2,
and so on. These hypotheses are exorbitantly strong, stronger than any large cardinal
“normally” used (for example, under I3(λ ), λ is limit of cardinals that are n-huge for
any n ∈ ω). Yet, it is possible to define an operation on the embeddings for I3 that
is left distributive. Laver [8] proved that the algebra generated by one embedding is
free, and therefore isomorphic to F1, the free LD-algebra with one generator.

The beauty in this approach is that now we can use all the strength and peculiar-
ities of elementary embeddings to prove results on the algebra of embeddings, and
then all these results will be automatically transfered to F1, that is a countable "sim-
ple" object, living in ZFC. For example, this approach was used to prove that in F1
the word problem is decidable, and that left division is a linear ordering. With time,
the same things were proved under ZFC, but I3 pointed the way, and there are still
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some results for which we do not know whether I3 is necessary. For more informa-
tion on this, [3] is an exhaustive survey, while [2] explores in depth the algebraic
part.

It is natural to ask if the same trick can be used for more generators. It is still
open:

Question 1.1 (I3) Are there j,k : Vλ ≺Vλ such that the LD-algebra generated by
them is free?

One way to approach this problem is to look for stronger hypotheses. Up to I1,
actually, the structure of the algebra generated by two I1-embeddings is isomorphic
to the one generated by I3-embeddings. On I0, the definition of the operator as in
I3 does not work, and one should find a new definition (even if it works only on
embeddings with a certain property). Yet, the structure again is not new. To find
something really different we have to climb up the hierarchy above I0.

In this paper, we introduce an operator on embeddings that witness hypotheses
above I0, that is still consistent with the operation on I3 and that generates an LD-
algebra. As the theory of the hypotheses above I0 is varied and with plenty of differ-
ent situations, this will provide an abundance of new LD-algebras to work with. As
an example, two embeddings are introduced that enjoy strong independence proper-
ties (even if it is still not clear whether they produce a free algebra).

The definition of the operator uses key properties of the E0
α -hierarchy, so much

of the preliminaries is dedicated to its introduction and definition. In the rest of
the paper the application is defined on a particular kind of elementary embeddings,
whose existence is derived from the E0

α -hierarchy, it is proven that the application
generates an LD-algebra and it is analyzed how much such an algebra is similar or
different from the I3 case.

2 Preliminaries

To avoid confusion or misunderstandings, all notations and standard basic results are
collected here.

The double arrow (e.g. f : a � b) denotes a surjection.
If X is a set, then L(X) denotes the smallest inner model of ZF that contains X ; it

is defined like L but starting with the transitive closure of {X} as L0(X).
If X is a set, then ODX denotes the class of the sets that are ordinal-definable over

X , i.e., the sets that are definable using ordinals, X and elements of X as parameters.
HODX denotes the class of the sets that are hereditarily ordinal-definable over X , i.e.,
the sets in ODX such that all the elements of their transitive closure are in ODX . For
example, L(X) �V = HODX . One advantage in considering models of HODX is the
possibility of defining partial Skolem functions. Let ϕ(v0,v1, . . . ,vn) be a formula
with n+1 free variables and let a ∈ X . Then:

hϕ,a(x1, . . . ,xn) =


y where y is the least in OD{a} such that

ϕ(y,x1, . . . ,xn)

/0 if ∀x¬ϕ(x,x1, . . . ,xn)

not defined otherwise

are partial Skolem functions. For every set or class y, HL(X)(y) denotes the closure
of y under partial Skolem functions for L(X), and HL(X)(y)≺ L(X).
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If M and N are sets or classes, j : M ≺ N denotes that j is an elementary embed-
ding from M to N, that is an injective function such that for any formula ϕ and any
x ∈M, M � ϕ(x) iff N � ϕ( j(x)). The case in which j is the identity, i.e., if M is an
elementary submodel of N, is simply written as M ≺ N.

If M � AC or N ⊆M and j : M ≺ N is not the identity, then it moves at least one
ordinal. The critical point of j, crt( j), is the least ordinal moved by j.

Let j be an elementary embedding and κ = crt( j). Define κ0 = κ and κn+1 = j(κn).
Then 〈κn : n ∈ ω〉 is the critical sequence of j.

Kunen [7] proved that if M = N =Vη for some ordinal η , and λ is the supremum
of the critical sequence, then η cannot be bigger than λ +1 (and of course cannot be
smaller than λ ).

Kunen’s result actually does not say anything about the cases η = λ or η = λ +1.
Therefore we can introduce the following hypotheses without fearing an immediate
inconsistency:

I3: There exists j : Vλ ≺ Vλ , where λ is the supremum of the critical sequence
of j.

I0: There exists j : L(Vλ+1)≺ L(Vλ+1), where crt( j)< λ .
We add crt( j)< λ so that I0 implies I3 (see [? ] for the definitions of I2 and I1).

It is immediate to see that if I0 holds for j, then λ is the supremum of the critical
sequence of j.

The most fruitful consequences of I3 are its connections with algebra. Call
Eλ = { j : j : Vλ ≺ Vλ}. Then we can define an operation on Eλ , the application: if
j,k ∈ Eλ , j · k =

⋃
n∈ω j(k∩Vκn), where κn is the critical sequence of j. Alternative

notations that will be used are j(k) and j+(k). Note that application should not be
confused with the more common composition, that is very different: for example
crt( j( j)) = j(crt( j))> crt( j), but crt( j ◦ j) = crt( j).

Proposition 2.1 (Laver [9]) j · k ∈ Eλ .

Moreover, j · (k · h) = ( j · k) · ( j · h). This is called the left distributive law, and
(Eλ , ·) is a left distributive algebra, or LD-algebra.

One can see the LD-algebra in a more abstract way. Let Tn be the set of words
constructed using the variables x1, . . . ,xn and a binary operator ·. Denote ≡LD the
congruence on Tn generated by all pairs of the form t1 · (t2 · t3), (t1 · t2) · (t1 · t3). Then
Tn/≡LD is a free LD-algebra with n generators. We call it Fn.

Given an LD-algebra, we can consider its subalgebra AX generated by the ele-
ments in a finite subset X . We say that the subalgebra is free iff it is isomorphic to
F|X |. By the universal property of F|X |, there is always a surjective homomorphism
π from F|X | to AX (it sends the generators x1, . . . ,xn to X and is a morphism for the
operator), therefore AX is free iff such homomorphism is also injective iff for any
two t1, t2 ∈ T|X |, π(t1) = π(t2) iff t1 ≡LD t2.

Let A j be the subalgebra of Eλ generated by { j}.
Theorem 2.2 (Laver [8]) A j is a free LD-algebra.

I0 has instead received attention because of its similarities with ADL(R). Woodin
in [13] tried to push these similarities even further, creating a hierarchy of new
hypotheses stronger than I0, with the objective of finding a hypothesis similar to
ADR. To do this, instead of dealing with L(Vλ+1), we deal with L(N), where
Vλ+1 ⊆ N ⊆ Vλ+2 and N = L(N)∩Vλ+2, and with embeddings from L(N) to itself.
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Actually, we are interested only in models of the type L(X ,Vλ+1) with X ⊆ Vλ+1,
but it turns out that it is advantageous to start working with more generality.

We will work in L(N)’s that do not satisfy the Axiom of Choice. Like in L(R), it
is possible to define a cardinal in L(N) that “measures” the largeness of Vλ+1:

Definition 2.3 Let M be a set or a class such that Vλ+1 ⊆ M. Then ΘM

is the supremum of the ordinals α such that there exists π : Vλ+1 � α with
{(a,b) ∈ Vλ+1 ×Vλ+1 : π(a) < π(b)} ∈ M. If M is a class, then this is equiva-
lent to the more classical definition:

Θ
M = sup{α : ∃π : Vλ+1 � α, π ∈M}.

Note that ΘL(N) is a cardinal in L(N), and λ+ < ΘL(N) ≤ (2λ )+. Moreover, if
L(N)∩Vλ+2 = N then ΘL(N) = ΘN .

Unlike the I3-embeddings, embeddings from L(N) to itself have a nice property:
we can assume without loss of generality that they are generated by an ultrafilter:

Theorem 2.4 ([13]) Let Vλ+1 ⊆ N ⊂ Vλ+2 be such that L(N)∩Vλ+2 = N and let
j : L(N) ≺ L(N). Then there exists an ultrafilter U ⊂ N such that Ult(L(N), U)
is well-founded. By condensation the collapse of Ult(L(N), U) is L(N) and
jU : L(N) ≺ L(N), the inverse of the collapse, is an elementary embedding with
crt( j) < λ . Moreover, there is an elementary embedding kU : L(N) ≺ L(N) that is
the identity on N and such that j = jU ◦ kU .

By Theorem 2.4 any elementary embedding j : L(N)≺ L(N) can be factored into
two elementary embeddings, j = jU ◦k. The first embedding, jU , is obtained from an
ultrafilter, and it is completely determined by its behaviour on N; the second one, k,
is the identity on N and moves only larger cardinals, and hence can be generated by a
shift of indiscernibles. Note that jU witnesses I0, while k seems only a combinatorial
permutation.

Definition 2.5 Let Vλ+1 ⊆ N ⊂ Vλ+2 be such that L(N) ∩Vλ+2 = N and let
j : L(N)≺ L(N). For every a ∈ L(N), we will indicate with 〈a0,a1, . . .〉 the iteration
of a under the action of j, i.e., a0 = a and ai+1 = j(ai) for all i ∈ ω . Then
• j is weakly proper if j = jU ;
• j is proper if it is weakly proper and if for every X ∈ N, 〈Xi : i < ω〉 ∈ L(N) .

Properness was introduced because it implies iterability. In [4] and [5], there are
indicated some L(N)’s on which not all elementary embeddings are proper, some-
times even none.

We call E (N) = { j : j : N ≺ N} and we write N < X if in L(X ,Vλ+1) there exists
a π : Vλ+1 � N.

Now we can define the hypotheses above I0. They are a “canonical” sequence of
N’s such that there exists j : L(N)≺ L(N).

Definition 2.6 (Woodin, [13]) Let λ be a limit ordinal with cofinality ω . The se-
quence

〈E0
α(Vλ+1) : α < ϒVλ+1〉

is the maximum sequence such that the following hold:
1. E0

0 (Vλ+1) = L(Vλ+1)∩Vλ+2;
2. for α < ϒVλ+1 limit, E0

α(Vλ+1) = L(
⋃

β<α E0
β
(Vλ+1))∩Vλ+2;
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3. for α < ϒVλ+1 limit,

• if L(E0
α(Vλ+1)) � cof(ΘE0

α (Vλ+1))< λ then

E0
α+1(Vλ+1) = L((E0

α(Vλ+1))
λ )∩Vλ+2;

• if L(E0
α(Vλ+1)) � cof(ΘE0

α (Vλ+1))> λ then

E0
α+1(Vλ+1) = L(E (E0

α(Vλ+1)))∩Vλ+2;

4. for α = β +2<ϒVλ+1 , there exists X ⊆Vλ+1 such that E0
β+1(Vλ+1)=L(X ,Vλ+1)∩Vλ+2

and E0
β
(Vλ+1)< X, and

E0
β+2 = L((X ,Vλ+1)

])∩Vλ+2

5. ∀α <ϒVλ+1 ∃X ⊆Vλ+1 such that E0
α(Vλ+1)⊂L(X ,Vλ+1), ∃ j : L(X ,Vλ+1)≺L(X ,Vλ+1)

proper;
6. ∀α limit, α +1 < ϒVλ+1 iff

if L(E0
α(Vλ+1)) � cof(ΘE0

α (Vλ+1))> λ

then ∃Z ∈ E0
α(Vλ+1) L(E0

α(Vλ+1)) �V = HODVλ+1∪{Z} .

For the rest of the paper we will use just the notation E0
α instead of E0

α(Vλ+1) and
ϒ instead of ϒVλ+1 . It is not important for the purpose of this paper what the exact
definition of X ] is, it is just some kind of description of the truth in L(X ,Vλ+1).

What is the intuition behind this complex definition? The idea is to find a hierar-
chy of L(X ,Vλ+1) equipped with elementary embeddings that is as much canonical
as possible. The first step is to notice that the existence of a j : L(Vλ+1)≺ L(Vλ+1) is
equivalent to j : (Vλ+1,(Vλ+1)

]) ≺ (Vλ+1,(Vλ+1)
]). It is therefore natural to define

the first step above I0 as the existence of

j : L(Vλ+1,(Vλ+1)
])≺ L(Vλ+1,(Vλ+1)

]),

or j : (Vλ+1,(Vλ+1)
]]) ≺ (Vλ+1,(Vλ+1)

]]). Moreover, all the I0-embeddings are in
L(Vλ+1,(Vλ+1)

]), so it is a step that really transcends I0.
The first idea is therefore to consider a hierarchy where every step is the sharp

of the precedent one. But there can be a problem at the limit stage: it is the union
of the previous stages, and it is possible that it is a model that cannot be described
as L(X ,Vλ+1), with X ⊆ Vλ+1. So, let α be limit. We want L(E0

α+1) to be some
L(X ,Vλ+1): Instead of adding (E0

α)
], we add something slightly smaller (depending

on the cofinality of the relative Θ). We have three possibilities:

• There exists Y ⊆ Vλ+1 such that L(E0
α) = L(Y,Vλ+1). Then Lemma 28 and

Theorem 31 in [13] prove that L(E0
α+1) = L(Y ],Vλ+1), so this step is what

we expect;
• There is no Y ⊆ Vλ+1 such that L(E0

α) = L(Y,Vλ+1), but if E0
α is “small

enough”, then there exists X ⊆ Vλ+1 such that L(E0
α+1) = L(X ,Vλ+1), and

for any Y ∈ E0
α , Y ] ∈ L(E0

α+1);
• There is no Y ⊆ Vλ+1 such that L(E0

α) = L(Y,Vλ+1), and E0
α is not “small

enough”, then the construction stops.

So the sequence can end for three reasons:
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• there are no more proper embeddings (i.e., there is no proper elementary
embedding from the eventual L(E0

α+1));
• there are no more sharps (i.e., E0

α+1 cannot even be constructed);
• it is not possible to do the successor of the limit stage, as above.

Why is this sequence canonical? It is a consequence of Theorem 34 in [13]:

Theorem 2.7 For X ⊆Vλ+1, if there exists a proper j : L(X ,Vλ+1)≺ L(X ,Vλ+1),
crt( j) < λ , then E0

α ∈ L(X ,Vλ+1) for all α’s such that ΘE0
α ≤ ΘL(X ,Vλ+1), and

L(X ,Vλ+1) � ∃k : L(E0
α)≺ L(E0

α).

Its definition is also very nicely uniform. We only need these two theorems about
this:

Lemma 2.8 Let β < ϒ, let M be a model of ZF such that E0
β
⊆ M and let M̄ be

M’s transitive collapse. If M is an elementary substructure of L(E0
η) for some η < ϒ,

then there exists β ≤ γ ≤ η such that either M̄ = L(E0
γ ) or else M̄ = Lζ (E0

γ ) for some
ζ . Moreover, if j : M̄ ≺ L(E0

η) is the inverse of the collapse, then j(γ) = η .

Lemma 2.9 ([13]) Suppose α < ϒ is a limit ordinal and (cof(ΘE0
α ))L(E0

α ) > λ .
Then there exists Z ∈ E0

α such that for each Y ∈ E0
α , Y is Σ1-definable in L(E0

α) with
parameters from {Z}∪{Vλ+1}∪Vλ+1 ∪ΘE0

α . Moreover, if L(E0
α) � V = HODVλ+1 ,

then Z = /0.

3 The LD-algebras beyond I0

Our purpose now is to fix an α < ϒ, and find a suitable definition for the application
for embeddings j : L(E0

α) ≺ L(E0
α). We will not do it for all α’s, but only for a

good quantity of them in an initial segment of ϒ. Moreover, we will do this only for
weakly proper embeddings, but thanks to Lemma 2.4 this does not reduce generality.

Let α < ϒ so that L(E0
α) �V = HODVλ+1 and (cof(ΘE0

α ))L(E0
α ) > λ (for example

if L(E0
α) = L(X ,Vλ+1), so if α is a successor, then ΘE0

α is regular in L(E0
α), for the

same reason that Θ is regular in L(R)). Let j,k : L(E0
α) ≺ L(E0

α) be weakly proper.
We define j(k). The idea is still to cut k in small pieces, transfer them through j
and reassemble them, but to preserve elementarity we need to choose the pieces in
a smart way. The pieces will be elementary submodels of L(E0

α), and will form a
directed system that goes up to L(E0

α).
Let I j,k = {α : j(α) = α, k(α) = α}. As j,k are ultrapower embeddings, all the

strong limit cardinals of cofinality > ΘL(E0
α ) are in I j,k, therefore I j,k is a proper class.

For an s ∈ I<ω

j,k let

Zs = HL(E0
α )(s∪Vλ+1∪{Vλ+1}∪{E0

α}∪Θ
L(E0

α )).

Claim 3.1
⋃

s∈I<ω
j,k

Zs ≺ L(E0
α) and its transitive collapse is L(E0

α).

Proof Consider

Z = HL(E0
α )(I j,k ∪Vλ+1∪{Vλ+1}∪{E0

α}∪Θ
L(E0

α )).

Then Z =
⋃

s∈I<ω
j,k

Zs, and it is an elementary submodel of L(E0
α). By Lemma 2.9 we

have that E0
α ⊆ Z. By Lemma 2.8 the transitive collapse of Z is L(E0

α).
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Now define j(k) on every Zs as j(k) � Zs = j(k � Zs). It is an elementary embedding
from Zs to Zs, as s, Vλ+1, {Vλ+1}, {E0

α} are all fixed points of both j and k. Now,
the Zs’s form a directed system with limit Z. Let ¯j(k) be the corresponding induced
limit. Then j(k) is the embedding from L(E0

α) to itself that is the composition of
¯j(k) with the collapses of Z. We can suppose that j(k) is weakly proper by Theorem

2.4.
Note that the construction does not depend crucially on I j,k: let p the collapse

of Z to L(E0
α) and x ∈ L(E0

α). Then p−1(x) ∈ Zs is definable from s ∈ (I j,k)
<ω ,

a ∈ (Vλ+1 ∪{Vλ+1}∪ {E0
α})<ω and t ∈ (ΘL(E0

α ))<ω . As Vλ+1 and ΘL(E0
α ) are not

collapsed, x is definable from p(s), a and t. By elementarity ¯j(k)(p−1(x)) is defin-
able from s, j(k)(a) and j(k)(t), and therefore j(k)(x) is definable from p(s), j(k)(a)
and j(k)(t). So if we use in the definition of j(k) a proper subclass of I j,k instead of
I j,k itself, the definition of j(k) is the same.

We call E (E0
α) the “set” of weakly proper elementary embeddings from

L(E0
α) ≺ L(E0

α). As the embeddings are classes the definition is not formally
correct, but every embedding is coded by an ultrafilter, therefore we can code E (E0

α)
as a set.

Theorem 3.2 (E (E0
α), ·) is an LD-algebra, i.e., j(k(h)) = j(k)( j(h)).

Proof Define all the applications using I = I j,k ∩ Ik,h. We identify the embeddings
with the composition of the collapses of the corresponding Z. Pick s ∈ I<ω . Then

j(k(h)) � Zs = j(k(h) � Zs) = j(k(h � Zs)).

On the other hand

j(k)( j(h)) � Zs = j(k)( j(h) � Zs) = j(k)( j(h � Zs)),

because s is also a fixed point of j(k). Now let t be such that h � Zs ∈ Zt (so also
j(h � Zs) ∈ Zt ). Then

j(k)( j(h � Zs)) = ( j(k) � Zt)( j(h � Zs)) = j(k � Zt)( j(h � Zs)) =

= j((k � Zt)(h � Zs)) = j(k(h � Zs)).

Remark 3.3 Let ρ : E (E0
α)→ Eλ the intersection with Vλ . Then ρ is a homomor-

phism.

Proof This is immediate by the definition of application, as

ρ( j(k)) = j(k) �Vλ = j(k �Vλ ) = ( j �Vλ )
+(k �Vλ ) = ρ( j) ·ρ(k).

Proposition 3.4 Let A j the subalgebra generated by { j}. Then A j is free.

Proof Consider this diagram:

T1 A j

Aρ( j)

π2

π1

ρ
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where T1 is the set of words with one generator, π1 is the surjective homo-
morphism to A j that comes from the universality of F1, and π2 is the same
for Aρ( j). We claim that the diagram commutes, i.e., ρ(π1(t)) = π2(t) for any
t ∈ T1. But this is proved by induction on the complexity of t: if t = x1, then
ρ(π1(x1)) = ρ( j) = π2(x1). If t = t1 · t2, then

ρ(π1(t)) = ρ(π1(t1) ·π1(t2)) = ρ(π1(t1)) ·ρ(π1(t2)) = π2(t1) ·π2(t2) = π2(t).

To prove that A j is free, we need to prove that if π1(t1) = π1(t2), then t1 ≡LD t2.
But if π1(t1) = π1(t2), then

π2(t1) = ρ(π1(t1)) = ρ(π1(t2)) = π2(t2).

As Aρ( j) is free by Theorem 2.2, this implies that t1 ≡LD t2.

In other words, the freeness of Aρ( j) implies that ρ is actually an isomorphism be-
tween A j and Aρ( j). This means that going up the hierarchy of the E0

α ’s actually
does not have any effect on the algebra generated by one embedding.

Now we analyze the case with more generators. The case I0 does not add much
information.

Remark 3.5 Let j,k : L(Vλ+1) ≺ L(Vλ+1) be weakly proper. Then j = k iff
j �Vλ = k �Vλ .

Therefore ρ : A j,k→Aρ( j),ρ(k) is again an isomorphism, and there is no additional
structure.

Going up the hierarchy: if j,k : L(X ,Vλ+1) ≺ L(X ,Vλ+1) are proper and
j(X) = k(X), then j = k iff j � Vλ = k � Vλ , so new structure appears only when
j(X) 6= k(X). The structure changes even more when we are considering non-proper
embeddings:

Now let α be like in [5]:

Theorem 3.6 Suppose there exists ξ < ϒ such that L(E0
ξ
) 2V = HODVλ+1 . Then

there exists α < ξ such that
• L(E0

α) �V = HODVλ+1 ;

• ΘL(E0
α ) is regular in L(E0

α);
• there exist j : L(E0

α) ≺ L(E0
α) proper and k : L(E0

α) ≺ L(E0
α) weakly proper

not proper such that j �Vλ = k �Vλ .

Note that it satisfies our initial conditions. Then there are j,k ∈ E (E0
α) such that

j 6= k and j � Vλ = k � Vλ . Therefore ρ is not an isomorphism, and the algebra
generated by j and k is genuinely new.

Remark 3.7 Suppose j,k ∈ E (E0
α) are weakly proper. Then k is proper iff j(k) is

proper.

Proof k is proper iff

L(E0
α) � ∀X ∈ E0

α ∃Y = 〈X0,X1, . . .〉 ⊆ E0
α ∀n ∈ ω Xn+1 = (k � Z /0)(Xn)

(still by Lemma 2.9). By elementarity the Remark follows.

Corollary 3.8 k /∈ E j and j /∈ Ek.

Proof By the previous remark, all the embeddings in E j are not proper and all the
embeddings in Ek are proper.
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4 Open Problems

The embeddings j and k above have therefore some nice properties of indepen-
dence. For example it is not possible that j(k) = j, as that would mean that
ρ( j)(ρ(k)) = ρ( j)(ρ( j)) = ρ( j), and this is impossible because Aρ( j) is free.
Moreover, it is not possible that j(k) = k( j), as j(k) is proper and k( j) is not. The
study on Vλ gives even more results:

Theorem 4.1 (Laver-Steel Theorem [12]) For any j∈Eλ , there are no j1, . . . , jn ∈Eλ

so that j = (. . .(( j · j1) · j2) · · · · jn).

Via ρ , this is true also in A j,k.
Unfortunately, nothing is known about whether it is possible to have j(k) 6= k(k),

and similars.

Question 4.2 Are there j proper, k non proper such that the algebra generated by
j and k is free?

The difficulty in achieving such a result is in the fact that the criterion for freeness
of the many-generators algebra is distinct from the monogenic case:

Theorem 4.3 (Laver’s Criterion [8]) Let w1,w2 ∈ T2. We define w1 ≤L w2 iff there
are u1, . . . ,un ∈ TX so that w2 = (. . .((w1 · u1) · u2) · · · · un). Then a monogenic LD-
algebra is free iff ≤L has no cycle.

In our case, thanks to Laver-Steel Theorem, we do have this, but the criterion for
the many-generators case is the following (Proposition 6.6 in Chapter 5 of [2])1:

Theorem 4.4 (Dehornoy’s Criterion) An LD-algebra S with set of generators X
is free iff ≤L has no cycle and S is quasi-free in X, i.e., no equality of the form
(. . .((((c1 . . .) · cr) · x)a1) . . .) ·ap = (. . .((((c1 . . .) · cr) · y) ·b1) . . .) ·bq holds.

There is therefore a second case to check, that involves a disparate set of words
(for example, the inequality j(k) 6= k( j) is in this case). As words of different length
can be equivalent under LD, there is no apparent order in them, so induction is diffi-
cult to implement. Results like those in [10] could be needed to put some order first
in such words, and exploit it to carry on some inductive proof.

Another direction the research could take is forcing. Forcing is suspiciously ab-
sent in the analysis of the algebra of elementary embeddings, and yet it turned out
to be profitable in the I0 case (see for example [6] or [11]), thanks to a tool called
‘generic absoluteness’. New results that stems from [1] show that generic abso-
lutenss could hold even in the E0

α hierarchy, and therefore bring new results in the
structure of proper and non-proper elementary embeddings.

Note

1. The author thanks the anonymous referee for having pointed out this criterion.
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