
Using UML for Modelling the Static Part
of a Software Process1

Xavier Franch1, Josep M. Ribó2

1 Universitat Politècnica de Catalunya (UPC),
c/ Jordi Girona 1-3 (Campus Nord, C6) E-08034 Barcelona (Catalunya, Spain)

franch@lsi.upc.es
2 Universitat de Lleida

P. Víctor Siurana 1, 25003 Lleida (Catalunya, Spain)
josepma@eup.udl.es

Abstract. We study in this paper the use of UML as a tool for modelling the
process of software construction. As a case study, we deal with the process of
building a library of software components. UML is used in order to define the
static part of the process, i.e., the elements that take part on it and their struc-
tural relationships. We think that our approach supports some interesting prop-
erties in the field of software process modelling (e.g.: modularity; expressivity
in model construction; sound formal basis; and flexibility in model enactment).
Besides showing the adequacy of UML for modelling the static part, the paper
outlines also some drawbacks concerning the description of the dynamic be-
haviour of the process using only UML, and some possible solutions to them.

1 Introduction

A model for a software development process (i.e., a software process model [5], SPM
for short) is a description of this process expressed in some process modelling lan-
guage (PML). The process can be viewed as the cooperation of many tasks (e.g.:
requirements elicitation, component testing) that use and develop some documents
(e.g.: specification, test plan) with the help of some tools (e.g.: CASE-tools, debug-
gers) and using some resources (e.g.: data bases, computer networks). Tasks involve
many agents (e.g.: people, hardware media) which play specific roles (e.g.: pro-
grammer, manager) and which coordinate through some communication media (e.g.:
e-mail, fax).

Hence, the definition of a SPM must state all the elements just mentioned, and also
the way in which this model must be executed (enacted). This idea leads to the notion
of static and dynamic parts of a model. The static part is given by means of a con-
ceptual model that defines the elements that take part in the SPM. On the other hand,
the dynamic part consists of a description of the way in which the model is enacted
(e.g.: ordering of tasks). The systematic description of both parts not only helps in

1 This work has been partially supported by the spanish project TIC97-1158, from the CICYT program.

Franch, X.; Ribó, J. Using UML for modelling the static part of a software process. A: International
Conference on the Unified Modeling Language. "«UML»’99, The Unified Modeling Language: Beyond
the Standard, Second International Conference Fort Collins, CO, USA, October 28-30, 1999: proceedings".
Berlín: Springer, 1999, p. 292-307.
The final authenticated version is available online at https://doi.org/10.1007/3-540-46852-8_21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231706166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

understanding software development, but also allows the construction of systems for
supporting automation of the process up to an acceptable level.

This topic has drawn a special attention within the scientific community and, as a
result, several PMLs have been developed (see [6] and [5] for a survey). Currently a
second generation of PMLs is coming into existence ([22], [23]) trying to fix some
common drawbacks of most of former approaches: diff iculty to express complex
processes and to understand the resulting model; non-visual models or too naïve vis-
ual ones; diff iculty to formalize the many facets of the process; use of one single
language paradigm; etc. However, even taking this last generation into account, it is
the case that most of them fail i n a central issue, the use of standard, widespread no-
tations and tools. It is a fact that this is one of the main reasons for which none of
existing approaches has been widely adopted by the software engineering community.

We are developing a PML called PROMENADE (PROcess-oriented Modelli ng
and ENActment of software DEvelopments) intended to be a part of this second gen-
eration of languages. PROMENADE, among other features (e.g. modularity, expres-
sivity, formality and flexibilit y), aims at taking advantage of standard languages and
tools in software engineering. One of such emerging languages is UML [20], which
has acquired a great deal of interest in the last few years and which is becoming a
standard de facto in software engineering (both in industry and in academia). This
fact, together with its adequacy for modelli ng the structural elements of a software
process, makes UML playing an important part in PROMENADE to describe the
static part of a SPM.

In this article we propose, as a case study, the modelli ng of the construction proc-
ess of a library of components in PROMENADE. We have chosen this particular
process because it plays a central role in our research project, ComProLab (a Compo-
nent Programming Laboratory, see [8]). We will focus on the description of the static
part of such a process, made with UML.

In ComProLab, a component is defined by means of a specification, which in-
cludes two parts: a functional specification, stating how does the component behave,
and a non-functional specification, that declares additional requirements referred to
some operational non-functional attributes (as eff iciency and reliabilit y); these attrib-
utes are defined in property modules, which are imported in non-functional specifica-
tions. Once the specification is complete, an implementation may be built for this
component, which is required to fulfill t he properties stated in both parts of the speci-
fication. Implementations include a description of their non-functional behaviour,
which determines the values that the operational attributes take in this implementa-
tion, possibly stating some additional constrains over implementations of the im-
ported components. Fig. 1 shows the whole picture.

The rest of the paper is organised as follows. Section 2 presents both the
PROMENADE metamodel and reference model, which acts as the basis on which any
other PROMENADE model will be expressed. Sections 3 and 4 show the most rele-
vant aspects of the static part of the modelled process (documents and tasks). Section
5 sketches some limitations of UML in order to model the dynamic part of a software
process and outlines some possible solutions. Finally, section 6 provides the conclu-
sions and some related work.

Fig. 1. Organization of a component in the ComProLab approach

2 The Metamodel and the Reference Model

The PROMENADE metamodel is built as an extension of the UML metamodel [18],
adding a metaelement for each one of the core elements that take part in any
PROMENADE model (e.g., it adds a MetaTask metaelement for tasks, a MetaDocu-
ment metaelement for documents, a SPMetamod metaelement for the model itself,
etc.). The model elements (e.g., the class SpecifyComponent for the task of specifying
a component) are seen as instances of the metaelements (e.g., MetaTask) whose
(meta)features (metaattributes, metaoperations, etc.) have been given a value. There-
fore the process of building a model in PROMENADE will consist mainly in creating
instances for the metamodel classes and give values to its metafeatures.

The PROMENADE approach to process modelli ng defines a universal or reference
model (an instance of the PROMENADE metamodel) that constitutes the basis on
which any other process model will be built (as done for instance in [3]). Hence, this
reference model is the common and extensible kernel shared by all processes mod-
elled in PROMENADE. It is responsible for defining the core elements that will be a
part of any model described in PROMENADE (e.g., the classes Task, Document and
Model are defined by the reference model). The features associated to these elements
are the ones needed to characterize any instance of them. Notice the difference be-
tween the metaelement features (which are used to characterize model classes) and
the element features (which are used to characterize model class instances). Some-
times we may refer to the former group as class features and to the latter one as class
instance features.

2.1 The Metamodel

The PROMENADE metamodel extends the UML one with the following elements
(see figures 2 and 3):

• The classes MetaDocument, MetaTask, MetaRole, as Class subclasses (being
Class defined in the UML metamodel). These three classes are the ones whose
instances really characterize particular SPM.

Component

Behaviour
module

specification

implementation

Implementation
module

Functional
speci-fication

Non-functional
speci-fication mo- Property Module

Property Module

...

• The class SPMetamod (which stands for Software Process metaModel), as
Model subclass (again Model refers to the UML metamodel element).

• The classes Precedence and Trigger, that are used in the specification of the
dynamic behaviour of process models.

Fig 2. Elements and generalizations of the PROMENADE metamodel

Fig 3. Associations of the PROMENADE metamodel

Class (UML)

MetaTask MetaDocument MetaRole

Model (UML)

SPMetamod

ModelElement (UML)

Precedence Trigger

doc
1

1..*

supertaskCl
0..1

subtasksCl
0..*

parameters
1..*

Parameter (UML)

task
1

model
1

rolesCl
1..*

MetaRole

importedMod
0..*0..*

model

1

docsCl 1..*

MetaDocument

1

1..*

consists-of

model
1

tasksCl

1..*

maintaskMod
0..1

maintaskcl
1

MetaTask

0..1

0..*

has-as-subtasks-class

1..*

1

has-as-parameters

model

1

SPMetamod

1

1..*

has-as-roles-class

0..*0..*

imports-models

1

1..*

has-as-document-class

1

1..*

has-as-task-class

0..1

1

has-as-maintask-class otherCl
Class(UML)

1

1..*

has-as-other-class

2.2 The Reference Model

The reference model is built upon three kinds of information, which yield to several
complementary UML class diagrams. First, the individual information of the classes
themselves, including constraints. Second, a class hierarchy which integrates all the
documents by means of generalization. Last, other association relationships between
classes (including aggregations).

Classes, class members and generalization hierarchy. In our O.O. approach, a
generalization hierarchy of classes is the natural way to represent the many concepts
involved in process modelli ng. Classes are characterized by many attributes and
support many methods. Valid value attributes are stated through class invariants,
while methods are specified through pre and post conditions.

Table 1 summarizes these classes. As heirs of a Type superclass, all of them share a
few common attributes, such as identifier. We show in the table a few relevant attrib-
utes and methods. We do not refer either to structural methods or attributes that are
directly related with the associations defined in the following section.

Table 1. Predefined classes

Class Description Some instances Attributes Some methods
Docu-
ment

Any container of information
involved in the software devel-

opment process

A specification; a
test plan; an e-mail

Link to contents; rele-
vant dates; version;

status

Document updating
with or without new

version creation;
document edition

Commu-
nication

Any document used for people
communication; can be stored in a

computer or not

A fax; an e-mail;
human voice

Link (if any) to contents;
transmission date; status

Send and Read

Task Any action performed during the
software process

Specification;
component testing;

error-reporting

Precondition; status;
success condition;
deadline (if any)

Changes of task
status

Agent Any entity playing an active part in
the software process

Myself; my worksta-
tion; a compiler

Profile; location;
humans skill s

Just structural ones

Tool Any agent implemented through a
software tool

A compiler;

 a navigator

Root directory for the tool;
binary file location

Just structural
ones

Resource Any help to be used during
software process

An online tutorial on
Java; a Web site

Platform require-
ments; location

Access

Role Any part to be played during the
software process

Programmer;
manager

Tasks for which the role
is responsible

Just structural ones

These classes are put together in a natural way by defining some generalization rela-
tionships between them (see fig. 4). This default hierarchy may be extended by add-
ing new classes in a classical manner, and this allows the creation of concrete models
given different criteria as we do next for the component library case study.

Some predicates appear in the static part. One the one hand, invariants; that is,
consistency predicates bound to classes that express constraints concerning attributes
and relationships between them that should be kept at any time during the enaction of
the model. On the other hand, pre and post conditions associated to class methods

Fig. 4. Default generalization hierarchy in the PROMENADE reference model

which will be enforced respectively at the starting and ending point of such methods.
We express these elements in UML as stereotyped constraints (with the predefined
stereotypes invariant, precondition and postcondition, respectively) put in UML
notes. We express the constraints in OCL as we consider it to be a natural, convenient
and close to standard language to express constraints.

Association relationships. It is clear that the classes presented above must be related
beyond the generalization relationship, and this is done by means of the UML
association relationships (associations for short). Using associations, we can state
which documents are manipulated by which tools, which tasks use which resources,
etc. One significant kind of such associations are the aggregation relationships which
relate a class with its components (whole-part relationship), as usual.

Fig. 5 shows the associations bound to the default classes. We highlight the exis-
tence of an association (in fact, a UML aggregation) from tasks to tasks to catch the
concept of task decomposition.

Fig. 5. Association relationships between classes

Type

TaskDocument Role Tool

SPMCommunication Agent Resource

1 1..*

1

1..*
1..*

1..*

1

1..*

1

1..*

1

1..*

1

1..*
1

0..1

SPM

1

Role
1 1..*

has-as-roles

1..*

1
Agent

1

1..*

has-as-agents

1..*

1..*

plays

1..*

0..10..*1..*

1..*

1..*

1..*
Document

1

1..*

has-as-documents

1

1..*

has-as-responsible(role)

1

1..*
has-as-responsible(agent)

1..*

1..*Tool

1

0..*

Task

1

1..*

has-as-tasks

1

0..1

has-as-maintask

1

1..*

1
1..*

0..10..*

has-as-subtasks

1..*

1..*

uses 1..*

1..*

generates

1..*

1..*

invokes

0..*

Communication
1

0..*

sends

10..*

receives

1

has-as-resp(role)

has-as-resp(agent)

3 Static Part: Documents

Sections 3 and 4 are devoted to the presentations of some excerpts of a particular
process, the construction of a library of components. In particular they present the
most important aspects of the static part of this process (documents and tasks).

The main documents that take part in the library building process are shown in ta-
ble 2, along with some relevant attributes and methods, and linked together through
generalization relationships in fig. 6.

Table 2. Document classes

Class Description Attributes, methods

Component A package of software provided with functional and non-functional
specifications, code and non-functional behaviour. It may be reused and
customized. It must be stored in a library.

stored flag;
tested flag ;
structural methods

Library A collection of elements that may be reused when building software.
Two kinds of libraries are considered: component libraries and property
module libraries.

directory of contents;
statistics;
store, retrieve

SpecDoc The specification part of a component. It is subdivided in functional and
non-functional specification documents. structural methods

ImplDoc The implementation part of a component. It is compounded of a code
document and a behaviour one. structural methods

FSpec The component functional specification document. It may be of several
kinds: informal, formal, etc.

component signature;
specification itself;
tested flag

NFSpec The component non.-functional specification document. It defines a list
of non-functional (NF) requirements.

NF-requirements list;
structural methods

Behaviour The behaviour of the implementation with respect to the component NF-
requirements.

behaviour description;
structural methods

CodeDoc The code of a component implementation. code file; tested flag;
compile, link

TestPlan The list of tests that should be applied on a formal functional specifica-
tion or an implementation.

list of tests;
structural methods

EvalDoc The result of the application of a test plan. evaluation;
structural methods

PropertyModule A document containing a list of NF properties. structural methods

Fig 6. Generalization relationships for the component library model

Component

FSpec NFSpec

SpecDoc

CodeDoc

BehaviourImplDoc Property Module

Document

SpecEvalDoc ImplEvalDoc

LibraryEvalDoc TestPlan

CompLibrary PropLibrary

The whole-part relationships between documents are shown by means of the aggre-
gation relationships presented in figure 7. As an example, we depict in figure 8 the
UML definition of one of these Document classes: FSpec. Notice the inclusion of the
document invariants expressed in OCL.

Fig 7. Aggregation relationships concerning documents

Fig 8. The UML description of Fspec document

Some important association relationships between documents are shown in figure 9.
Among others, note that SpecEvalDoc and ImplEvalDoc are defined as association
classes within the association relationships between SpecDoc and SpecTestPlan, on
the one hand; and between ImplDoc and ImplTestPlan, on the other hand. Therefore,
a document of the class ImplEvalDoc will contain the results of testing a specific
component implementation by means of a given implementation test plan document.
Notice also that the class documents NFSpec, Fspec and ImplDoc need to import
components and that a specification document may be implemented by means of
different implementation documents belonging to different components. Finally, a
SpecDoc may be implemented by means of several ImplDoc documents belonging to
different components.

Clearly, one crucial aspect concerning documents is the thorough modelli ng of the
specific document classes that appear in table 2 which will l ead to the extension of
the hierarchy by defining new classes aiming at modelli ng (describing) finer aspects
of the process. Let’s focus, for instance, in the specification side of components.

There are several ways in which a component may be functionally specified. Each
one of them generates a functional specification document (FSpec) with some spe-

FSpec

signature : Set(Signature)
tested : Boolean

setOp()
getOp()
setTested()
getTested()

self.imports->forAll (c:Component |
 (self.specdoc.component.library.
 components)->include(c))

tested implies (self.status=checked)

(self.status=checked) implies tested

1

NFSpec

1

CodeDoc

1

Behaviour

1 1

ImplDoc

1 1

CompLibrary

0..*

Component

1

0..*

1..*

NFProperty

PropLibrary

0..*

PropertyModule

1..*

0..*

FSpec2

SpecDoc

1

1

11

cific features (i.e., attributes). Since we want to allow the coexistence of different
specification techniques for different components, it becomes necessary to define a
subhierarchy of functional specification documents in order to state precisely which
kind of document will be generated by each functional specification choice.

Fig 9. Association relationships concerning documents

Our model for the component library case identifies four general types of such speci-
fications, which range from informal functional specifications to model-oriented ones
(see fig. 10). But this is just a starting point; these classes should be further decom-
posed to introduce more concrete specification methods (e.g., initial or loose alge-
braic specifications) down to classes bound to concrete specification languages (e.g.,
Z or VDM model-oriented specifications; Larch and OBJ algebraic ones).

Fig 10. Functional specification document subhierarchy: an excerpt

InformalFSpec VisualFSpecModelOrFSpec AlgebraicFSpec

VDMFSpec ZFSpec

FSpec

InitialFSpec LooseFSpec

ObjFSpec LarchFSpec

SpecEvalDoc

testplan 1..*

SpecTestPlan

specdoc 1

impldoc

1..*

specdoc

1

SpecDoc

1..*

1

is-tested-according-to

testplan 1..*

ImplTestPlan

impldoc 1

ImplDoc

1..*1 is-implemented-in

1..*

1

is-tested-according-to
ImplEvalDoc

library

1

components

0..*

Component maintainer

1

Agent0..*Library

10..* is-stored-in 1

0..*

is-maintained-by

imports
0..*

0..*FSpec

imports
0..*

Component

0..*
0..*

imports

0..*
ImplDoc

0..*

0..*

imports

impmodules

1..*

PropertyModule

0..*

NFSpec

1..*0..*

imports

Two aspects are intimately related with the coexistence of several functional specifi-
cations in the library of components: the definition of a different task refinement to
specify functionally a component for each specification approach (see section 5), and
the existence of a different test plan document class for each functional specification
approach.

Non-functional specification documents are in charge of defining the non-functional
requirements that should be fulfill ed by any implementation of that component. As in
the functional case, many notations can be used here, and the resulting hierarchy is
similar to the one of f ig. 10. Our usual choice is the NoFun language [7] defined as
part of the ComProLab project, although other approaches can be followed [14,16].

4 Static Part: Tasks

From the PROMENADE point of view, two key concepts are relevant in order to
describe tasks involved in process modelli ng: task description and task decomposi-
tion. The first one focuses on the statement of the dynamic behaviour of the task
(mainly stating different kinds of precedence relationships between subtasks), and it
is outlined in section 5. Concerning the second one, tasks may be decomposed along
two dimensions that turn out to be orthogonal: task decomposition by refinement and
by aggregation. This section focuses in these two aspects, which are part of the static
model.

4.1 Task decomposition by aggregation

Tasks in PROMENADE may be of two kinds according to the complexity of their
behaviour: atomic tasks and composite ones. Atomic tasks cannot be decomposed in
other tasks. Their enactment is performed by means of a call to an external tool or in
a manual way. On the other hand, composite tasks may be further decomposed into
subtask classes, which may be in turn atomic or composite. Therefore, a composite
task enactment may involve the enactment of several subtasks in some suitable order
(determined in the dynamic part of the model).

Some of these aggregation relationships concerning task classes are shown in fig-
ure 11. This figure shows the task classes that are involved in the upper levels of the
construction of the component library, which should be completed by tasks concern-
ing lower levels. Specifically, some subtasks of BuildComponent and SpecifyCompo-
nent are shown. On the other hand, table 3 shows the parameters (documents) used
and generated by some of these tasks along with a brief description. Notice in this
table that in addition to the usual parameter modes (input, output and input/output), a
feedback mode is introduced to represent the flow of information when a task ends in
failure.

Table 3. Task classes

Task Parameters Description

BuildComponent b: i/o Library,
c: out Component

Construction of a component

SpecifyComponent c: out Component,
sd: in SpecDoc

Specification of a component (both functional
and non-functional)

ImplementComponent c: i/o Component,
id: out ImplDoc,
evd: in fbk ImplEvalDoc,
b: in Library

Implementation of a component.

GenerateTestPlans sd: in SpecDoc,
stp: out seq(ImplTestPlan)

Generation of plans for testing a component.

TestComponent id: in ImplDoc,
evd: out fbk ImplEvalDoc,
stp: in seq(ImplTestPlan)

Test of a component according to its test plans.

Store c: in Component,
 b: i/o Library

Storing a developed component into a library.

FSpecifyComp c: i/o Component
fsd: out FSpec
evd: in fbk SpecEvalDoc
b: in Library

Functional specification of a component (differ-
ent task refinements may be considered.

ModelOrFSpecify c: i/o Component
fsd: out ModelOrFSpec
evd: in fbk SpecEvalDoc
b: in Library

One of the task refinements of the functional
specification of a component.

Fig 11. Aggregation relationships between tasks

4.2 Task decomposition by refinement

The behaviour of a composite task is encapsulated in PROMENADE by means of
task refinements. Intuitively, a task refinement is a concrete way to perform a task. A
bit more formally, a task refinement of a composite task class T is a task class that
expresses one specific way in which T may be decomposed into subtasks and the
precedence relationships that should be kept among them at enactment time. Since, in
general, it is possible to think of several ways to perform a task, it makes sense to
define several task refinements for a specific composite task.

GenerateTestPlansImplementComponent TestComponent

FSpecifyComp NFSpecifyCompGenerateFSTestPlans

SpecifyComponent

ValidateFSpecif Store

BuildComponent

Task refinements are modelled in PROMENADE by means of generalization rela-
tionships between a task class and the set of task classes that refine it. In this way, the
subclasses of a task class T represent its possible refinements. Notice that task re-
finements and aggregations are two complementary mechanisms which will appear
tightly intertwined in class diagrams: a task can be refined in many ways, and for
each task refinement a particular decomposition into subtasks may exist, and those
subtasks can be in turn refined in different ways, and so on.

Some examples of how a task class may be refined are given in figure 12. There
are two ways to carry out the functional specification of a component (FSpecify-
Comp): model-oriented functional specification (by which a formal model is associ-
ated to a component and its operations are specified according to that model) and
informal functional specification (which describes in natural language the component
and its operations). Each one of these functional specification methods is considered
to be a new task refinement in PROMENADE and it is represented by means of a
generalization relationship.

Fig 12. Generalization relationships between tasks (task refinements)

Usually, the selection of a particular task refinement enforces the use of some specific
documents. This enforcement is established in the parameter definition of the refine-
ment. For example, the selection of the ModelOrFSpecify task refinement (for the
task FSpecifyComp) must result in the automatic selection of a ModelOrFSpec as
functional specification document and a ModelOrSpecTestPlan as specification test
plan and this is reflected in the ModelOrFSpecify parameters (see table 3). In general,
a task refinement for task A may use as parameters some subclasses of the parameter
classes of A.

The behaviour of a task refinement is described by means of a specific control
flow which is depicted in a PROMENADE activity diagram (see section 5). Other
task refinements may come up in the activity diagram that describes a specific task
refinement for a given task class T (including other T’ s refinements).

Task refinements help in achieving expressivity (since various different behaviours
may be given to a single activity; hierarchies of task refinements are also allowed),
modularity (task refinements are encapsulated into tasks; therefore it is easy to add
/remove task refinements to/from a model), and model flexibility (since we can decide
at enactment time, instead of modelli ng time, which specific task refinement is to be
enacted; this allows the enactment of incomplete models).

Task

SpecifyComponent FSpecifyComp

FunctionalBeforeNonFun BottomUpSpec ModelOrFSpecif
y

InformalFSpecify

BuildComponent

5 Drawbacks Concerning the Dynamic Part Description with UML

While the static part of a SPM (its structural view) may be well described using class
and object UML diagrams, this does not seem to be the case of its dynamic part. The
dynamic part of a SPM deals with the description of the control flow of the modelled
process. This control flow is usually split i nto composite and atomic activities (tasks)
whose behaviour should be described somehow. Among the diagrams provided by
UML to cope with the behavioural view of the system (sequential diagrams, collabo-
ration diagrams, statechart diagrams and activity diagrams), activity diagrams have
been reported to be the most suitable ones to describe SPM [1, 15], but it has also
been pointed out that they suffer from several limitations, remarkably:

• Lack of expressivity. UML activity diagrams are a sort of event diagrams
which are useful to express event-driven (reactive) control allowing swimlanes
(partition of activities according to their responsible), branching (conditional
flows), forking (control split i nto several independent flows) and joining (in-
dependent flow controls unified). However, the semantics of transitions in ac-
tivity diagrams cannot express proactive control; this kind of control is im-
portant because it allows the enactment of tasks according to some predeter-
mined precedence rules (e.g. task A should finish before the end of task B)
rather than reacting to the rising of certain events (basically, task finalization).
This latter fact is quite an important restriction since one of the features that
have been recognised to be important for a second generation PML is its abil -
ity to combine both proactive and reactive control paradigms [22], in order to
get less prescriptive and more expressive process models.

• Activity properties cannot be shown in activity diagrams. For instance, activity
deadlines and duration, roles related to an activity (who should be informed
about it...), used resources and tools... Needless to say that expressing all these
aspects is crucial in both software process modelli ng and workflow manage-
ment.

PROMENADE extends the expressivity of UML activity diagrams by providing (a)
proactive control (provided by means of several kinds of precedence relationships)
which may be combined in the same diagram with the usual event-driven control, and
(b) visual access to activity properties (which may be depicted in the activity dia-
gram). The description of the PROMENADE dynamic model is beyond the scope of
this article. We refer the interested readers to [9] and [10].

6 Conclusions and Related Work

This paper has presented a case study in the field of software process modelli ng using
UML for modelli ng the static part this process. Specifically, we have presented a
model for building a library of software components involving the specification of

non-functional requirements and the statement of the behaviour of a particular im-
plementation with respect to those non-functional requirements.

The way to construct a software process model in our approach is based on the
extension of a reference model which describes the hierarchy with the most important
concepts related to process modelli ng, their structure, behaviour, constraints and the
association relationships between them (task responsible, task attributes and resulting
documents...). This reference model is described using several class and object UML
diagrams. Any other specific model will be considered as an extension of the refer-
ence one (extending the generalization default hierarchy with new classes and new
associations between them). Thus, we have defined the model for constructing a li -
brary of components by defining new documents (component, library, specification
document, functional specification document...), new tasks (specify functionally a
component, implement it...) and new associations. All these elements concern the
static part of the model and have been described in UML (and the constraints in OCL)
which has proved to be a suitable and powerful notation to deal with such structural
part, and a very important improvement to our former approach using OOZE [9] (an
object-oriented dialect of the specification language Z).

This has not been the case with the dynamic (behavioural) part. Activity diagrams
seem to be the UML diagram that fit better into the control flow description that is
needed in software process and workflow modelli ng. Unfortunately they seem not to
be expressive enough to deal with all the elements required in such environments. We
have suggested the highlights of some extensions for UML activity diagrams which
have been included in PROMENADE, our process modelli ng language: the depiction
of the required task properties (responsible, generated documents...) in the diagrams
and the addition of proactive declarative control (by the definition of several kinds of
precedence relationships) which do not enforce a strict execution order triggered by
some events (like the ending of a task) but just the declarative enumeration of the
essential precedence requirements to be kept during enactment. Our experiences seem
to confirm that the event-driven transitions combined with proactive control (imple-
mented by means of several types of precedence relationships with a declarative pol-
icy) provide a much more flexible, realistic and expressive process modelli ng. As we
have pointed out, the combination of both controls is encouraged for second genera-
tion PMLs [22].

We are not aware of almost any other PML using UML to describe the static part
of the SPM. For the sake of giving some examples of well -known PMLs: APEL uses
OMT-like diagrams [4]; E3 defines its own notation [11]; MERLIN describes the
structural aspects with extended entity-relationships and statecharts [19]; APPL/A and
JIL use textual constructs strongly based on Ada (which has been extended with some
additional features like relations between objects) [21, 22]. The Rational Software
Corporation et al. have developed a UML extension for objectory process for soft-
ware engineering [17]. Essentially, it extends some metamodel classes by means of
stereotypes. Neither structure nor behaviour are given to those stereotyped classes; no
integrity constraints are defined; and no means to improve the UML features in order
to deal with the dynamic process are provided. Therefore, this proposal seems not to
be adequate to meet the requirements of SPM.

[12] presents an approach which describes with UML the dynamic part of the
model using class diagrams with stereotyped associations for showing the control and
data flow. The metamodel is defined by attaching stereotypes to model elements. In
our opinion, other UML diagrams (for instance, activity diagrams) are better suited
for the description of the dynamic part of a model. On the other hand, stereotypes and
the other UML extension mechanisms suffer from several limitations in order to de-
fine a metamodel (being expressivity and comprehensibilit y two of them).

Task refinements, defined as different implementations of a task that may coexist
in a single model, also appear in [13]. In this approach, a task definition consists of a
task interface and, potentially, various task bodies (in the form of workflow defini-
tions) attached to it. At enactment time a decision is taken for each task about which
task body is to be enacted. PROMENADE broadens this feature by allowing the defi-
nition of task refinement hierarchies along with the substitution of a task by any of its
offsprings, either at modelli ng time or at enactment time and by providing a powerful
way to describe a task behaviour as have been outlined in section 4.

Last, we are not aware of any approach intended to improve the capacity of UML
in order to model the behaviour of a software process. But there are several proposals
in the related field of business processes. [1], for example, also states that UML dia-
grams are not suff icient for business process modelli ng. The authors propose to inte-
grate a well -known process modelli ng formalism (EPC, Event-driven process chains)
with UML diagrams. [15] proposes the use of the stereotype mechanism of UML to
extend activity diagrams in the context of business process modelli ng. The new dia-
grams can express the required activity properties (computer support to the activity,
duration...). In both cases, no new control paradigm is provided.

References

1. Allweyer, T; Loos, P: Process Orientation in UML through Integration of Event-Driven
Process Chains. Proceedings of UML 98’ Workshop, Ecole Superioeure des Sciences Ap-
pliquées pour l’I ngénieur-Mulhouse Université de Haute-Alsace (1998), 183-193

2. Bandinelli , S.; Fuggeta, A.; Ghezzi, C.; Lavazza, L.: SPADE: An Environemnt for Soft-
ware Process Analysis, Design and Enactment. In [6] (1994), 223-247

3. Conradi, R.; Larsen, J.; Minh, N.N.; Munch, B.P.; Westby, P.H.: Integrated Product and
Process Management in EPOS. Journal of Integrated CAE, special issue on Integrated
Product and Process Modeling (1995)

4. Dami, S.; Estublier, J.; Amiour, M.: APEL: a Graphical Yet Executable Formalism for
Process Modeling. E. di Nitto and A. Fuggetta (eds.), Kluwer Academic Publishers (1998)

5. Derniame, J.-C.; Kaba, B.A.; Wastell , D. (eds.): Software Process: Principles, Methodol-
ogy and Technology. Lecture Notes in Computer Science (LNCS), Vol. 1500. Springer-
Verlag, Berlin Heidelberg New York (1999)

6. Finkelstein, A.; Kramer, J.; Nuseibeh, B. (eds.): Software Process Modelli ng and Technol-
ogy. Advanced Software Development Series, Vol. 3. John Wiley & Sons Inc., New York
Chichester Toronto Brisbane Singapore (1994)

7. Franch, X.: Systematic Formulation of Non-Funcional Requirements of Software. Pro-
ceedings 3rd International Conference on Requirements Engineering (ICRE), Colorado
Springs (USA), IEEE Computer Society Press, Los Alamitos (1998), 174-181.

8. Franch, X.; Botella, P.; Burgués, X.; Ribó, J.M.: ComProLab: A Component Programming
Laboratory. Proceedings 9th Software Engineering and Knowledge Engineering Confer-
ence (SEKE), Knowledge Systems Institute, Skokie (1997), 397-406

9. Franch, X.; Ribó, J.M.: A Structured Approach to Software Process Modelli ng. Proceed-
ings 24th EUROMICRO Conference, IEEE Computer Society Press, Los Alamitos Wash-
ington Brussels Tokyo (1998), 753-762

10. Franch, X.; Ribó, J.M.: PROMENADE: A Modular Approach to Software Process Model-
ling and Enaction. Research Report LSI-99-13-R, Dept. LSI, UPC (1999)

11. Jaccheri, M.L.; Picco, G.P.; Lago, P.: Eliciting Software Process Models with the E3 Lan-
guage. ACM Transactions on Software Engineering and Methodology (1999)

12. Jäger D., Schleicher A., Westfechtel B.: Object-Oriented Software Process Modeling. To
appear in the proceedings of the 7th European Software Engineering Conference (ESEC),
Toulouse, September 1999.

13. Joeris G., Herzog O.: Towards a Flexible and High-Level Modeling and Enacting of Proc-
esses. Proceedings of the 11th. Conference on Advanced Information System Engineering
(CAISE), LNCS 1626, pp. 88-102, 1999.

14. Landes, D.; Studer, R.: The Treatment of Non-Funcional Requirements in MIKE. Pro-
ceedings 5th European Software Engineering Conference (ESEC), Barcelona (Catalunya,
Spain). Lecture Notes in Computer Science, Vol. 989. Springer-Verlag (1995)

15. McLeod, G: Extending UML for Entreprise and Business Process Modeling. Proceedings
UML 98’ Workshop, Ecole Superioeure des Sciences Appliquées pour l’I ngénieur-
Mulhouse Université de Haute-Alsace (1998), 195-204

16. Mylopoulos, J.; Chung, L.; Nixon, B.A.: Representing and Using Nonfunctional Require-
ments: A Process-Oriented Approach. IEEE Transactions on Software Engineering, Vol.
18, N. 6 (1992), 483-497

17. Rational Software Corporation: UML extension for Objectory Process for Software Engi-
neering. http://www.rational.com/uml

18. Rational Software Corporation et al.: UML Semantics. http://www.rational.com/uml

19. Reimar, W.; Schaefer, W.: Towards a Dedicated Object-Oriented Software Process Model-
ling Language. Workshop on Modeling Software Process and Artifacts, held at 11th
ECOOP, Jyvaskyta (Finland) (1997).

20. Rumbaugh, J.; Jacobson, I.; Booch, G.: The UML Reference Manual. Addison Wesley
(1999)

21. Sutton S.M.; Heimbigner D.; Osterweil L.J.: APPL/A: A Language for Software Process
Programming. ACM Transactions on Software Engineering and Methodology. Vol 4. N. 3,
July 1995. 221-286.

22. Sutton, S.M.; Osterweil , L.J.: The Design of a Next-Generation Process Language. Pro-
ceedings of ESEC/FSE '97, Lecture Notes in Computer Science, Vol. 1301, M. Jazayeri
and H. Schaure (eds.). Springer-Verlag, Berlin Heidelberg New York (1997), 142-158

23. Warboys, B.C.; Balasubramaniam, D. et al: Instances and Connectors: Issues for a Second
Generation Process Language. Proceedings of the 6th European Workshop in Software
Process Technology, LNCS 1487, V. Gruhn (ed.). Springer-Verlag (1998)

