
A Metamodelling Approach for i* Model Translations1

Carlos Cares
1,2

 and Xavier Franch
1

1Universitat Politècnica de Catalunya (UPC)

c/Jordi Girona, 1-3, E-08034 Barcelona, Spain
{ccares, franch}@essi.upc.edu

2Universidad de la Frontera (UFRO)

Fco. Salazar 01145 Temuco, Chile
carlos.cares@ceisufro.cl

Abstract. The i* (i-star) framework has been widely adopted by the

information systems community. Since the time it was proposed, different

variations have arisen. Some of them just propose slight changes in the

language definition, whilst others introduce constructs for particular usages.

This flexibility is one of the reasons that makes i* attractive, but it has as

counterpart the impossibility of automatically porting i* models from one

context of use to another. This lack of interoperability makes difficult to build a

repository of models, to adopt directly techniques defined for one variation, or

to use i* tools in a feature-oriented instead of a variant-oriented way. In this

paper, we explore in more detail the interoperability problem from a metamodel

perspective. We analyse the state of the art concerning variations of the i*

language, from these variations and following a proposal from Wachsmuth, we

define a supermetamodel hosting identified variations, general enough so as to

embrace others yet to exist. We present a translation algorithm oriented to

semantic preservation and we use the XML-based iStarML interchange format

to illustrate the interconnection of two tools.

Keywords: i*, i-star, interoperability, semantic preservation, iStarML.

1 Introduction

The i* (pronounced i-star) framework [1] is currently one of the most widespread

goal- and agent-oriented modelling and reasoning frameworks. It has been applied for

modelling organizations, business processes and system requirements, among others.

Throughout the years, different research groups have proposed variations to the

modelling language proposed in the i* framework (for the sake of brevity, we will

name it “the i* language”). There are basically two reasons behind this fact:

– The definition of the i* language is loose in some parts, and some groups have

opted by different solutions or proposed slight changes to the original definition.

The absence of a universally agreed metamodel has accentuated this effect [2].

– Some groups have used the i* framework with very different purposes thus

different concepts have become necessary, from intentional ones like trust,

1 This work has been partially supported by the Spanish project TIN2010-19130-c02-01.

Cares, C.; Franch, X. A metamodelling approach for i* model translations. A: International Conference on Advanced
Information Systems Engineering. "Advanced information systems engineering: 23rd International conference, CAiSE 2011:
London, UK, June 20-24, 2011: proceedings". Springer, 2011, p. 337-351.
The final authenticated version is available online at https://doi.org/10.1007/978-3-642-21640-4_26

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231705745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

delegation and compliance, to other more related with the modelling of things, like

service or aspect (see [3] for an updated summary).

The adaptability of i* to these different needs is part of its own nature, therefore these

variations are not to be considered pernicious, on the contrary, flexibility may be

considered one of the framework’s key success features. However, there are some

obvious implications that are not so desirable:

– It makes difficult to build a repository of i* models shared and directly used by the

whole community.

– It also hampers the possibility of interconnecting different i* tools that are not

compliant to the same i* language variation.

– Finally, it makes techniques defined for one i* variation not directly applicable

into another variation.

The work presented here addresses these problems and specifically tries to answer the

following research questions:

– What types of i* variations are proposed and how can they be characterized?

– Which is an appropriate semantic framework for analysing i* interoperability?

– Given two i* variations A and B, to what extent is it possible to translate models

built with A to B and the other way round according to this semantic framework?

– Given two i* variations A and B, how can a model from A be translated to B, in the

light of the limitations identified in the previous question?

The rest of the paper is structured as follows. Section 2 provides the background

about i* variations. Section 3 presents the metamodel framework for translation

remarking why the concepts of supermetamodel and semantic-preservation can be

used for dealing with interoperability among i* variants. Section 4 proposes the

supermetamodel for i* variants, and Section 5 presents a translation algorithm to

maximize semantic-preservation illustrated with an example of model interchange

between two i* tools. Finally, Section 6 states the conclusions and future work.

Basic knowledge of i* is assumed, see [1] and the i* wiki [4] for details.

2 The i* Framework: Evolution and Existent Variations

The i* framework was issued in the mid-nineties and the first full definition was

included in the PhD thesis by Eric Yu [1]. Some of its concepts were previously

proposed and used in KAOS [5] and in the NFR Framework [6]. This original work

on i* has been the most cited in the community. Recently, an updated version has

been included as part of the i* wiki [4], with minor differences with respect to the

seminal one (e.g., richer types of contribution links).

From this major trunk, we may consider two main variations. On one hand, the

Goal-oriented Requirement Language (GRL) which is part of the User Requirements

Notation (URN) [7]. On the other hand, Tropos [8], an agent-oriented software

methodology that adopts i* as its modelling language. In both cases, the differences

with respect to the seminal Yu’s i* are not that relevant to consider them as different

notations, but due to its adoption by the community we consider them as major

variations. Thus, we may say that i* has three main dialects: the seminal i* currently

represented by the wiki definition, GRL, and the language adopted by Tropos.

On top of these three main dialects, we may find many proposals for particular

purposes. Some of them are bound to a particular domain, e.g., security as in Secure-

Tropos [9], or norm compliance as in Nòmos [10]. Others propose very particular

concepts for a particular purpose, like the concept of module or constraint. Finally,

some others propose more fundamental variations affecting the way of modelling, as

the concepts of service, variation point or aspect.

Table 1 presents a comparative analysis of the proposals issued by the community

in the last 5 years. We have carried out a review in the following conferences and

journals for the period 2006-2010: CAiSE, REJ, DKE, IS Journal, RE, ER, RiGiM,

WER, i* workshop, and also including the recent book on i* [3]. Our goal has not

been carrying out a systematic review but to get a representative sample of the

community proposals in this period as a way to know what the major trends

concerning language variability are. In total, we have found 146 papers about i* in

these sources (without including papers talking about goal-modelling, since we are

interested in language-specific issues). From them, we have discarded 83 which are

not really relevant to our goals (i.e., papers not directly related with the constructs

offered by the language). For the remaining 63, the table shows how many of them

propose addition, removal or modification of concepts classified into six different

types. It must be taken into account that a single paper may propose more than one

construct variation and that similar changes are proposed or assumed in different

papers. Also it is necessary to remark that most papers just focus on some specific

part of the language, in that case we assume that the other part remains unchanged.

Table 1. Variations proposed by the i* community in the last 5 years (selected venues only).

Each paper increments at most in 1 each column.

 Actors Actor links Dependencies Intentional elements (IE) IE links Diagrams

 New 4 24 10 21 21 19

 Removed 8 5 2 1 0 0

 Changed 3 1 1 36 43 0

An analysis of this table follows:

– On actors. The most usual variation is getting rid of the distinction on types of

actors, like remarkably GRL2 does. Some special type (e.g., “team”) may appear.

– On actor links. Most of the variants include is_part_of and is_a but some get rid of

one (e.g., GRL just keeps is_part_of) or even both. Of course, having just a

generic type of actor means not having the links bound to specific types like plays.

Finally, some proposals use new actor links, like in Nòmos: A embodies B means

the domain actor A has to be considered as the legal subject B in a law.

– On intentional elements. Although all virtually all variants keep the four standard

types (goal, softgoal, task and resource), we may find a lot of proposals of new

intentional elements. To name a few, GRL adds beliefs, Nòmos adds norms, and

even aspects appear as dependums. There are not many modification proposals,

e.g., resources may be classified as physical or informational with consequences

for class diagram generation in an MDD process.

2 In the rest of the paper, we refer to the GRL implementation supported by the jUCMNav tool,

http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/.

– On intentional element links. Most of the variants keep the general idea of the

three link types (means-end, task decompositions and softgoal contributions),

some of them merge two of them, e.g., GRL defines a link decomposition that

merges means-end and task-decomposition. Then we have lots of variations about

types of decompositions (e.g, Tropos allows both AND and OR means-end links),

contribution values (labels such as +,- vs. make, help, etc.), correctness conditions

(e.g., whether a resource may be a mean for a goal), etc. Finally, some

modifications usually occur in the form of labels, e.g., quantitative labels for

contributions in GRL, multiplicity in some Tropos-based variants, etc. A special

type of modification is relaxing some conditions, e.g., allowing links among

intentional elements that belong to different actors, or contributions to goals.

– On dependencies. About modifications, we may find the addition of attributes

which qualify the type of dependency, e.g., Secure-Tropos adds trust and

ownership qualifiers. Then, we have new types of relationships that may be

interpreted as dependencies, like Nòmos’ legal relations. Also, a quite usual

variation is to get rid of dependencies’ strength, probably due to the difficulty of

interpreting the concept in a reasoning framework. The type of depender and

dependee also presents constraints sometimes, e.g., GRL forces them to be

intentional elements, actors are not allowed in this context.

– On diagrams. The distinction among SD and SR diagrams is not always kept,

some proposals just have a single model in which the actors may be gradually

refined. One type of diagram that was depicted in Yu’s thesis but not recognised

as such was actor diagram, and some authors have promoted this third type of

diagram as such. On addition, several proposals of types of diagrams exist, from

the generic concept of module to specific proposals like interaction channel.

The result of this study shows the complexity of the model transformation problem. In

fact, one may easily anticipate that it will be impossible to get an automatic

transformation technique for any pair of existing proposals. It becomes necessary to

investigate the limits of model transformation in i* and provide a general

customizable framework.

3 A Metamodel View of i* Model Translation

Metamodels have been the traditional tool in Software Engineering to express valid

models of a certain modelling language [11]. The language used to specify a

metamodel is called metalanguage. Note that metamodels represent only what can be

expressed in valid models but not what these expressions mean, i.e., a metamodel

specifies the syntax of a modelling language but not its semantics.

In the case of i* transformations, the different i* variants mentioned in Section 2

correspond to their own metamodels which are expressed using different

metalanguages (e.g., UML, EBNF, Telos). The problem of transforming a source

model into a target model can be viewed as a particular case of applying general rules

to transform the differences between the corresponding metamodels.

3.1 Wachsmuth’s Proposal on Metamodel Adaptation

In 2007, Guido Wachsmuth presented a proposal [12] to deal with the problem of

metamodel evolution and its implications for adapting its instance models according

to this evolution (see Fig. 1, left). The basic hypothesis is that co-adaptation of models

can be automatically derived from well-defined metamodel evolution steps.

Wachsmuth defines different semantic-preserving categories and matches them with

specific refactoring operations on metamodels. The way of handling semantic-

preserving features respond to the concept of semantics already introduced, i.e.,

semantic preservation is not characterized by meaning but by structural changes on

corresponding metamodels.

Here, we are proposing the adoption of this framework in the context of the

problem of translating models among metamodels which have a common set of

concepts (see Fig. 1, right). In other words, we change the perspective:

– from: given a model mA created as instance of a metamodel MA, translate it into

another model mB created as instance of a metamodel MB via a metamodel

correspondence,

– into: given a model mA created as instance of a metamodel MA, and given a

metamodel evolution from MA to MB, co-adapt the model mA into another model

mB created as instance of MB via some metamodel refactoring operations.

Fig.1 Comparative between co-adaptation and interoperability via metamodel refactoring.

3.2 Wachsmuth’s Proposal: Relationships and Semantic Preservation

To characterize refactoring operations Wachsmuth proposes some basic concepts:

− MM represents all the metamodels conforming to a specific metamodel formalism

M, denoted by MM := {µ╞ M}. Although it is not really relevant, we may assume

MOF 2.0 formalism in this paper.

− CM(µ) represents the concepts defined by a particular metamodel µ. In our case,

typical concepts would be actor, intentional element, etc.

− I(µ) represents the set of all metamodel instances conforming to a metamodel µ,

denoted by I(µ):= { ι╞ µ }. In our case, we focus on those µ which are a

metamodel of some i* variation (e.g., i*-wiki metamodel, GRL metamodel, Tropos

metamodel) and then for each µ , I(µ) are i* models built as instances of µ.

− IC(µ) represents the set of instances I(µ) of restricted the specific set of concepts C,

i.e., IC(µ) ⊆ I(µ). For instance, we may refer to the set of concepts C which are part

of SD models, and then IC(µ) would represent SD models built according to the

metamodel µ.

Using these concepts, 5 types of generic relationships between metamodels are

defined (see 1st and 2nd columns of Fig. 2.) which yield to 5 degrees of semantic

preservation. The transformation from one metamodel to another implies a

relationship R between the source and target metamodels, thus, the type of semantic

preservation of R (if any) will depend of which of these generic relationships is subset

(see 3rd column of Fig. 2). Besides, the different types of semantic preservation imply

different types of instance preservation (see 4
th

 column of Fig. 2).

Fig.2 Summary of semantic preserving relationships in Wachsmuth’s framework [12].

3.3 Wachsmuth’s Proposal: a Framework for i* Interoperability

As we have already said, most of the i* variants have their own metamodel which

conforms a different modelling formalism. However, this diversity of formalisms

seems to be just a representational problem. We have assessed this opinion in earlier

works by proposing an i* reference metamodel and proposing a set of refactoring

operations to allow obtaining the different variants [13].

But this preliminary result that we obtained, although valuable as a first step,

exhibits an important drawback that the set of common concepts was intentionally

kept to a minimum (i.e., we wanted to represent the universally agreed concepts).

Whilst providing a good ontological basis, this decision was damaging the model

interoperability goal that we are targeting here. Wachsmuth allows stating the reason

why: model translation was suffering from eliminating or decreasing semantic preser-

vation. In this work, we search for the fundamental property of instance preservation:

given an i* model that is instance of a metamodel MA that represents a source

variation then, when applying the mapping from MA to MB (the metamodel that

represents the target variation) the model can also be considered an instance of MB.

Fig. 3. Comparing absence and presence of an i* supermetamodel for model translations

Let’s assume that a model, named the i* supermetamodel, exists, therefore any

existing metamodel of i* variation is a submetamodel of the i* supermetamodel.

Then, if we could model refactoring operations from the i* supermetamodel to the

particular variants, then we would have a feasible translation from each variant to

another. This hypothetical scenario would exhibit three advantages: (i) supporting at

some extent interoperability between models belonging to different metamodels; (ii)

given k i* variants, providing a framework that offers translation from one variant to

each other with linear complexity in terms of transformation functions (k functions)

instead of quadratic (k
2
-k pair-wise functions); (iii) the type of semantic preservation

would be characterized with a clear specification of preservation (strict, modulo varia-

tion, increasing or decreasing). In Figure 3 we illustrate this hypothetical assumption.

Although it may appear hard to sustain that such an i* supermetamodel exists (due

to the continuous proposals that modify it), in the next section we will discuss the

conditions under which its existence appears reasonable to sustain and a first i*

supermetamodel approach will be presented

4 A Supermetamodel for i*

From its definition, we can colloquially understand a supermetamodel as a metamodel

which contains the superset of language constructs existing on other metamodels. In

the case of the i* framework, this means that if M is a supermetamodel for i* then the

different values of softgoals contributions (some+, helps, makes, +, ++, - , --) should

be modelled in M. Besides, the same for intentional element types, actor types, etc.

Therefore, in the attempt of formulating a supermetamodel for the existing variants

and, ideally, upcoming ones, we need to answer two questions: (i) how to put under

the same metamodel a set of different language constructs coming from different i*

variants?, (ii) how to make this supermetamodel stable enough in order to suffer

minimal modifications (if any) when a new i* variant is proposed? To satisfactorily

answer both questions, the key concept is abstraction to allow putting different

concepts together. It is crucial to capture the right level of abstraction: if the

metamodel is too abstract (e.g., only differentiating nodes and links) it may fail in

capturing the essence of i*; if it is too detailed, the metamodel can result in a rigid

structure which requires high effort to be refactorized. In the first case, an additional

problem appears, because using a high abstraction level means adjusting basic syntax

formations by means of textual (e.g., OCL) constraints, and textual constraints are not

considered in the Wachsmuth’s framework, therefore semantic preservation could not

be qualified. Therefore, we are looking for a metamodel which allows representing

different i* variant structures and possible extensions whilst, at the same time,

keeping the core i* language constructions.

These two situations appear in the two most related works we may found in the

literature. Amyot et al. have proposed a metamodel for GRL [14] that contains

concepts such as metadata, links and groupings that enable the language to be

extended and tailored, also using OCL constraints. So it may be classified as too

abstract. In addition, it presents some peculiarities that forces its customization either

in quite classical i* contexts (e.g., types of actors are not defined, dependencies

linking actors –not intentional elements– are not allowed; dependencies without

dependums are allowed) or in non-classical contexts (e.g., types of boundaries are

impossible to be set). On the other hand, the reference metamodel presented by Cares

et al. [13] proposes the use of refactoring operations to map into other variants.

However, there are specializations for representing specific i* elements, therefore,

adding a new language element would mean adding new classes to the metamodel.

Thus, the reference model has a great value, but the problem comes when we want to

use it in the context of model translation since it would imply alterations to classes.

The i* supermetamodel proposal is based on the reference model but incorporates

the concept of metadata appearing in the GRL metamodel. From the i* reference

model we obtain a more abstract metamodel using i* related concepts and their

extensions are handled with metainformation. We formalize this idea into UML

stereotypes. The result is the metamodel that appears in Fig. 4. Actor and IElement are

the central classes. Then ActorLink and IElementLink are recursive binary

associations on them. Boundary is a binary association among IElement and Actor

(note that an IElement may appear outside any boundary, e.g., dependums). Finally

the concept of dependency is implemented with two associations: dependencies are

divided into DependencySegment which is an easy way to allow different properties at

each end, or even with just one end defined. Each DependencySegment connects an

Actor (considered depender or dependee depending on the value of the

participatorType attribute) and an IElement (the dependum) and then may (or not) be

connected to a particular IElement that would be an internal element inside the

corresponding Actor. We remark that this high-level model is providing stability since

abstract concepts are shared in the different variants, and according to the historical

track of the language, we may assume that future variants will still adhere to them.

The resulting UML stereotypes are: (a) <<XEnum>> which represents a special

kind of enumeration class that may grow (i.e., may be assigned more values). We

have included as class attributes only the most consolidated ones (i.e., name of Actor

and IElement; value of IElementLink as optional for those links without values;

strengths for DependencySegment among others). (b) <<XClass>> which allows

having an additional list of attribute-value pairs. To take full profit of this definitions,

plain associations are converted into association classes with stereotype <<XClass>>.

The i* supermetamodel as presented is capable to represent as instances those i*

models built with any of the variations mentioned or referenced so far. In order to

illustrate this expressive power we show, in Figure 5, an object diagram

corresponding to the i* supermetamodel. It represents a specific i* model selected

from [15]. We may observe different usual elements (types of actors, goals, softgoals,

etc.) then some particular elements, more precisely costs in contribution links (both a

label and a quantitative value). We have tested the i* supermetamodel with additional

representations including service-oriented i* [16], i* with norms [10] and the different

secure-oriented i* variants [9].

Fig. 4. The i* supermetamodel.

It is interesting to remark that, in spite of its expressive power, the i*

supermetamodel cannot be considered an i* variant by itself. Although it is a

metamodel, it just represents a wide set of possible i* configurations but considered

by itself, there are hundred of instances of the i* supermetamodel that have not any

sense into any i* community, e.g., a belief decomposed into resources. Therefore, the

i* supermetamodel has to be considered just a reference framework for supporting

model interoperability. Nevertheless, it must be mentioned that the i*

supermetamodel does impose basic syntactic validity conditions for models to be

really considered an i* variant. For instance, it is stated through multiplicities that an

intentional element cannot belong to more than one actor. Other additional conditions

are not shown graphically but exist in the form of OCL integrity constraints. Just to

name one, in the case of DependencySegments that arrive to an IElement, it must hold

that the IElement is inside the boundary of the Actor linked by the segment:

context DependencySegment::IElementInsideActor() inv:

 self.IElement->notEmpty() implies self.iElement.itsActor->notEmpty()

 and self.iElement.itsActor = self.Actor

It must be mentioned that the current i* supermetamodel proposed here does not

cover the complete range of constructs that appear in the state of the art, that remain

for the next version. The elements remarkably left are: links to external elements (i.e.,

from other conceptual models, e.g., UML classes), boundaries other than actors and

some types of intentional links (e.g., GRL’s correlations).

Fig. 5. An excerpt of a particular i* model considered as an instance of the i* supermetamodel.

5 Implementing i* Variants Translation

Now we face the ultimate goal of our work: given a model m1 built as an instance of a

metamodel M1 that represents a particular i* variant, how to proceed in order to

obtain a model m2 built as instance of a metamodel M2 that represents a different i*

variant, so that the loss of information is kept to a minimum. To implement this

translation, we need an algorithm and a computational representation of the i*

supermetamodel.

Let’s start by the second point, which is simpler. As computational representation

of the metamodel we use the iStarML interchange format [17]. It was designed with

the reference model in mind but it may easily match the i* supermetamodel as well.

XML was chosen as interchange language, therefore we may use a broad set of

technologies in order to parse and process iStarML files. The particular XML

elements of iStarML correspond to supermetamodel concepts as we show in Table 2.

Table 2. Correspondence between the i* supermetamodel and iStarML.

i* Supermetamodel Element iStarML Construction

XClass Actor <actor>

XClass Intentional Element <ielement>

Association XClass Boundary <boundary> nested under <actor>

Association XClass Dependency Segment <dependee> or <dependeder> nested under

<dependency>

XClass ActorLink <actorLink>

XClass IElementLink <ielementLink>

Association XClass ArrivesTo <dependency> nested under <ielement>

For the translation algorithm, it is important to start reminding from Section 3 that,

since we are using the i* supermetamodel, then the departing model m1 is considered

an instance of the i* supermetamodel. Therefore the translation from the metamodel

M1 to M2 should be considered in fact as a translation from the i* supermetamodel to

M2. Since the target variant corresponds to a restricted version of the very i*

supermetamodel, then the refactoring operations required for translation can be only

to restrict attributes of the existing classes or to constraint the set of values of specific

attributes. In our iStarML implementation, this means to omit some attribute of an

existing XML element or to translate specific values of attributes to a different set.

Both types of translations (if any) can imply different semantic-preserving situations.

In order to minimize information loss, an algorithm is proposed (Figure 6). It is

presented as a UML activity diagram labelled with information about the semantic-

preservation consequences considering Wachsmuth’s framework. The activities are:

− Copy known formations. The part of m1 that is also a valid instance of M2 is

directly considered as part of m2. In other words, the concepts which are shared by

both metamodels M1 and M2 are kept. In case that the full model m1 is a valid

instance of M2, we finish and classify the translation as strictly semantic

preserving. Example: a generic actor is always kept as a generic actor.

− Translate using bijective mappings. Let’s name m1A the part of m1 that has not

been treated in the previous activity. The part of m1A for which we may establish a

bijective mapping between its elements and corresponding elements, which are

instance of M2, is translated using this bijective mapping. In other words, the

concepts that can be expressed in both metamodels M1 and M2 but with different

constructs, are just translated. In case that after this activity the full m1 has been

treated, then the translation is semantic preserving modulo variation. Example: a

task can be translated into plan and a plan into a task.

− Translate using injective mappings. Let’s name m1B the part of m1 that has not

been treated in the previous activity. The part of m1B for which we may establish

an injective mapping from its elements to others which are instance of M2, is

translated using this mapping. In case that after this activity the full m1 has been

treated, then the translation is decreasing modulo variation (the variation

introduced by the mapping). Example: a make contribution from GRL can be

translated into ++ contribution in seminal i*, but not any ++ is a make contribution.

− Forget non translating formations. Finally, those constructs in m1 which have not

been translated in the previous activities, are just removed. Example: a belief from

GRL when translating into Aspectual i*.

Fig. 6. Translation algorithm from the i* supermetamodel to an i* variant

In order to illustrate the process, we have designed a proof-of-concept for translating

models built with the OME tool [18] into the jUCMNav tool [19]. The metamodels

involved are determined in this case by the implementation of the tool. Basically

OME is offering the i* variant available in the i* wiki, whilst jUCMNav is imple-

menting GRL’s metamodel, although a closer look reveals some minor differences

not relevant for the purposes of this paper. For the technical implementation of the

algorithm we have used XSLT, a declarative language for transforming XML files

[20]. The algorithm is implemented as a Java applet and currently available at

http://www.essi.upc.edu/~gessi/iStarML/. Besides, jUCMNav has been modified in

order to import and export iStarML files [21]. We prove the approach doing XSLT

transformation from OME representations (i*), as special case of supermetamodel, to

jUCMNav representations (GRL). In Table 3 we show four submodels to illustrate the

four different outputs of the translation algorithm. We explain below each row:

− Row 1: dependency from an intentional element into another. Strictly semantic

preserving: all the model is translated without changes. Output 1 in Figure 6.

− Row 2: task decomposition with dependency to an intentional element. Semantic

preservation modulo variation: the task decomposition in OME is translated into an

AND-decomposition in jUCMMNav. Note that it would be possible to recreate the

original model. Therefore, this is a bijective mapping. Output 2 in Figure 6.

− Row 3: dependency from an intentional element into an actor. Please note that

jUCMNav does not admit dependencies with actors as dependers or dependees

(i.e., the 0..1 multiplicity in arrives-to in the i* supermetamodel of Figure 4

becomes 1 in jUCMNav). Decreasing modulo variation: it is possible to translate

the dependency by creating an intentional element in the target actor and attaching

dependency on it, but the original model can not be recreated, since it is not known

if the added intentional element is really new or not. In particular, note that this

jUCMNav model is identical to the previous one, clearly showing the lack of

bijection with respect to this particular point. Output 3 in Figure 6.

Table 3. Classification of specific model translations from OME to jUCMNav.

from OME to jUCMNav

− Row 4: agent as instance of actor. Although the agent is converted into actor

(decreasing modulo variation), the instance link is lost. Eliminating semantic

preservation: the element can not be kept and is removed. Informational loss.

Output 4 in Figure 6.

We remark that we are not proposing specific semantic equivalences from one variant

to another, we are just showing a proof-of-concept of our approach by describing a

general procedure to maximize semantic preservation reducing the complexity of the

translation problem. The existence of many i* variants implies the existence of

different semantic-pragmatic communities and the equivalences or mappings among

metamodels (in fact, from the i* supermetamodel to variants’ metamodels) should be

a matter of a meaning-making process inside that specific community. Just to mention

an example, row 3 and row 4 are proposing two different strategies for dealing with

one specific construct (dependency with an actor as dependee) that is supported in the

departing metamodel but not in the target metamodel. Choosing one or another

depends on the target community.

6 Conclusions and Future Work

In this paper we have dealt with the problem of interoperability among i* variants

under a metamodel perspective. We organized the research into 4 questions which we

think have been satisfactorily explored:

– We have surveyed 146 proposals presented by the community in the last 5 years,

and we have classified them in terms of additions, removals and modifications of

i* constructs organized into six categories. Thus, we have obtained a quite

complete characterization of the i* variability to support interoperability goals.

– We have proposed a framework for the interoperability problem based on an ap-

proach that can be considered consolidated and widespread in the MDE commu-

nity. We have customised this framework about model evolution into the i* model

interoperability problem. As cornerstone of this customization, we have defined a

supermetamodel for i* that eases interoperability by metamodel containment.

– Given the framework above, we have classified the surveyed i* variation types in

terms of the semantic impact of their translation, having then a general idea about

what types of information loss may happen and to what extent the analyst may

provide information (mappings) to minimize this loss.

– We have defined a process for translating a model compliant to one metamodel to

another compliant to a different metamodel, and we have demonstrated how it

works by exploring the translations of models built with the OME tool to the

jUCMNav tool.

As a summary, we may say that we have provided a first consolidated step towards

not just syntactic but also semantic interoperability in the i* framework. Our approach

may help creating a repository of i* models (using the i* supermetamodel as universal

reference model), may favour the application of techniques that work over different

metamodels, and may possibilitate the interchange of models between tools.

Our future work spreads along four different axes. First, improving the translation

algorithm which is currently able to deal just with reductions, to tackle increasing

modulo variations. Second, to offer a portfolio of tool interconnections in similar way

to the one between OME to jUCMNav explained here (in fact, we have a more

complete case of interconnection among the jUCMNav and HiME [22] tools,

described in [21]). Third, consider not just syntax and semantics but also ontological

issues in the translation process. Forth, digging into more details of Wachsmuth’s

framework for proposing translation heuristics depending on the refactoring distance

between the source and target metamodels, allowing thus having some default

translation rules instead of a pure case-by-case analysis (although as remarked at the

end of Section 5, translation will ultimately depend on the community ontological

perception of i*).

References

1. Yu E.: Modelling Strategic Relationships for Process Reengineering. PhD. Computer

Science, University of Toronto, Toronto (1995)

2. Franch X.: Fostering the Adoption of i* by Practitioners: Some Challenges and Research

Directions. In Intentional Perspectives on Information Systems Engineering, Springer,

Berlin (2010)

3. Yu E., Giorgini P., Maiden N. and Mylopoulos J. (eds.): Social Modeling for Requirements

Engineering. The MIT Press, Cambridge, MA (2011)

4. The i* Wiki, http://istar.rwth-aachen.de

5. Dardenne A., Lamsweerde A.v. and Fickas S.: Goal-directed Requirements Acquisition.

Science of Computer Programming, 20, 1-2, 3--50 (1993)

6. Chung L.K., Nixon B.A., Yu E. and Mylopoulos J.: Non-functional Requirements in

Software Engineering: Kluwer Academic Publishing (2000)

7. ITU-T Recommendation Z.151 (11/08), User Requirements Notation (URN) - Language

Definition, http://www.itu.int/rec/T-REC-Z.151/en (2008)

8. Bresciani P., Perini A., Giorgini P., Giunchiglia F. and Mylopoulos J.: Tropos: An Agent-

Oriented Software Development Methodology. Autonomous Agents and Multi-Agent

Systems, 8, 3, 203--236 (2004)

9. Mouratidis H., Giorgini P.Manson G.: Integrating Security and Systems Engineering:

Towards the Modelling of Secure Information Systems. CAiSE’03, LNCS, vol. 2681, pp.

63--78 (2003)

10. Siena A.: Engineering Law-compliant Requirements. The Nòmos Framework. PhD. Thesis,

University of Trento, Trento (2008)

11. Seidewitz E.: What Models Mean. IEEE Software, 20, 5, 26--32 (2002)

12. Wachsmuth G.: Metamodel Adaptation and Model Co-adaptation. LNCS, vol. 4609, pp.

600--624 (2007)

13. Cares C., Franch X., Mayol E. and Quer C.: A Reference Model for i*. In Social Modeling

for Requirements Engineering, E Yu, P Giorgini, N Maiden, J Mylopoulos (eds.), The MIT

Press, Cambridge, MA, USA, pp. 573--606 (2011)

14. Amyot D., Horkoff J., Gross D. and Mussbacher G.: A Lightweight GRL Profile for i*

Modelling. RIGiM’09, LNCS, vol. 5833, pp. 254--264 (2009)

15. Liu L. and Yu E.: Designing Information Systems in Social Context: a Goal and Scenario

Modelling Approach. Information Systems 29, 2, 187--203 (2004)

16. Estrada H., Martínez A., Pastor, O., Mylopoulos, J. Giorgini, P.: Extending Organizational

Modeling with Business Services Concepts: An Overview of the Proposed Architecture. ER

2010, LNCS, vol. 6412, pp, 483--488 (2010)

17. Cares C., Franch X., Perini A. and Susi A.: Towards i* Interoperability using iStarML.

Computer Standards and Interfaces, 33, 69--79 (2010)

18. OME Tool, http://www.cs.toronto.edu/km/ome

19. jUCMNav Tool, http://jucmnav.softwareengineering.ca

20. XSL Transformations (XSLT) V1.0 W3C Consortium, http://www.w3.org/TR/xslt (1999)

21. Colomer D., Lopez L., Cares C. and Franch X.: Model Interchange and Tool Interoperability

in the i* Framework: A Proof of Concept. WER’11 (2011)

22. López L., Franch X. and Marco J.: HiME: Hierarchical i* Modeling Editor. Revista de

Informática Teórica e Aplicada (RITA), 16, 2, (2009)

