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Abstract. The i* (i-star) framework has been widely adopted by the 

information systems community. Since the time it was proposed, different 

variations have arisen. Some of them just propose slight changes in the 

language definition, whilst others introduce constructs for particular usages. 

This flexibility is one of the reasons that makes i* attractive, but it has as 

counterpart the impossibility of automatically porting i* models from one 

context of use to another. This lack of interoperability makes difficult to build a 

repository of models, to adopt directly techniques defined for one variation, or 

to use i* tools in a feature-oriented instead of a variant-oriented way. In this 

paper, we explore in more detail the interoperability problem from a metamodel 

perspective. We analyse the state of the art concerning variations of the i* 

language, from these variations and following a proposal from Wachsmuth, we 

define a supermetamodel hosting identified variations, general enough so as to 

embrace others yet to exist. We present a translation algorithm oriented to 

semantic preservation and we use the XML-based iStarML interchange format 

to illustrate the interconnection of two tools. 

Keywords: i*, i-star, interoperability, semantic preservation, iStarML. 

1   Introduction 

The i* (pronounced i-star) framework [1] is currently one of the most widespread 

goal- and agent-oriented modelling and reasoning frameworks. It has been applied for 

modelling organizations, business processes and system requirements, among others.  

Throughout the years, different research groups have proposed variations to the 

modelling language proposed in the i* framework (for the sake of brevity, we will 

name it “the i* language”). There are basically two reasons behind this fact: 

– The definition of the i* language is loose in some parts, and some groups have

opted by different solutions or proposed slight changes to the original definition.

The absence of a universally agreed metamodel has accentuated this effect [2].

– Some groups have used the i* framework with very different purposes thus

different concepts have become necessary, from intentional ones like trust,
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delegation and compliance, to other more related with the modelling of things, like 

service or aspect (see [3] for an updated summary).  

The adaptability of i* to these different needs is part of its own nature, therefore these 

variations are not to be considered pernicious, on the contrary, flexibility may be 

considered one of the framework’s key success features. However, there are some 

obvious implications that are not so desirable: 

– It makes difficult to build a repository of i* models shared and directly used by the 

whole community. 

– It also hampers the possibility of interconnecting different i* tools that are not 

compliant to the same i* language variation. 

– Finally, it makes techniques defined for one i* variation not directly applicable 

into another variation. 

The work presented here addresses these problems and specifically tries to answer the 

following research questions: 

– What types of i* variations are proposed and how can they be characterized? 

– Which is an appropriate semantic framework for analysing i* interoperability? 

– Given two i* variations A and B, to what extent is it possible to translate models 

built with A to B and the other way round according to this semantic framework? 

– Given two i* variations A and B, how can a model from A be translated to B, in the 

light of the limitations identified in the previous question? 

The rest of the paper is structured as follows. Section 2 provides the background 

about i* variations. Section 3 presents the metamodel framework for translation 

remarking why the concepts of supermetamodel and semantic-preservation can be 

used for dealing with interoperability among i* variants. Section 4 proposes the 

supermetamodel for i* variants, and Section 5 presents a translation algorithm to 

maximize semantic-preservation illustrated with an example of model interchange 

between two i* tools. Finally, Section 6 states the conclusions and future work. 

Basic knowledge of i* is assumed, see [1] and the i* wiki [4] for details. 

2   The i* Framework: Evolution and Existent Variations 

The i* framework was issued in the mid-nineties and the first full definition was 

included in the PhD thesis by Eric Yu [1]. Some of its concepts were previously 

proposed and used in KAOS [5] and in the NFR Framework [6]. This original work 

on i* has been the most cited in the community. Recently, an updated version has 

been included as part of the i* wiki [4], with minor differences with respect to the 

seminal one (e.g., richer types of contribution links). 

From this major trunk, we may consider two main variations. On one hand, the 

Goal-oriented Requirement Language (GRL) which is part of the User Requirements 

Notation (URN) [7]. On the other hand, Tropos [8], an agent-oriented software 

methodology that adopts i* as its modelling language. In both cases, the differences 

with respect to the seminal Yu’s i* are not that relevant to consider them as different 

notations, but due to its adoption by the community we consider them as major 

variations. Thus, we may say that i* has three main dialects: the seminal i* currently 

represented by the wiki definition, GRL, and the language adopted by Tropos. 



On top of these three main dialects, we may find many proposals for particular 

purposes. Some of them are bound to a particular domain, e.g., security as in Secure-

Tropos [9], or norm compliance as in Nòmos [10]. Others propose very particular 

concepts for a particular purpose, like the concept of module or constraint. Finally, 

some others propose more fundamental variations affecting the way of modelling, as 

the concepts of service, variation point or aspect.  

Table 1 presents a comparative analysis of the proposals issued by the community 

in the last 5 years. We have carried out a review in the following conferences and 

journals for the period 2006-2010: CAiSE, REJ, DKE, IS Journal, RE, ER, RiGiM, 

WER, i* workshop, and also including the recent book on i* [3]. Our goal has not 

been carrying out a systematic review but to get a representative sample of the 

community proposals in this period as a way to know what the major trends 

concerning language variability are. In total, we have found 146 papers about i* in 

these sources (without including papers talking about goal-modelling, since we are 

interested in language-specific issues). From them, we have discarded 83 which are 

not really relevant to our goals (i.e., papers not directly related with the constructs 

offered by the language). For the remaining 63, the table shows how many of them 

propose addition, removal or modification of concepts classified into six different 

types. It must be taken into account that a single paper may propose more than one 

construct variation and that similar changes are proposed or assumed in different 

papers. Also it is necessary to remark that most papers just focus on some specific 

part of the language, in that case we assume that the other part remains unchanged.  

Table 1. Variations proposed by the i* community in the last 5 years (selected venues only). 

Each paper increments at most in 1 each column.  

 Actors Actor links Dependencies Intentional elements (IE) IE links Diagrams 

  New 4 24 10 21 21 19 

  Removed 8 5 2 1 0 0 

  Changed 3 1 1 36 43 0 

 

An analysis of this table follows:  

– On actors. The most usual variation is getting rid of the distinction on types of 

actors, like remarkably GRL2 does. Some special type (e.g., “team”) may appear. 

– On actor links. Most of the variants include is_part_of and is_a but some get rid of 

one (e.g., GRL just keeps is_part_of) or even both. Of course, having just a 

generic type of actor means not having the links bound to specific types like plays. 

Finally, some proposals use new actor links, like in Nòmos: A embodies B means 

the domain actor A has to be considered as the legal subject B in a law.  

– On intentional elements. Although all virtually all variants keep the four standard 

types (goal, softgoal, task and resource), we may find a lot of proposals of new 

intentional elements. To name a few, GRL adds beliefs, Nòmos adds norms, and 

even aspects appear as dependums. There are not many modification proposals, 

e.g., resources may be classified as physical or informational with consequences 

for class diagram generation in an MDD process. 

                                                           
2 In the rest of the paper, we refer to the GRL implementation supported by the jUCMNav tool, 

http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/. 



– On intentional element links. Most of the variants keep the general idea of the 

three link types (means-end, task decompositions and softgoal contributions), 

some of them merge two of them, e.g., GRL defines a link decomposition that 

merges means-end and task-decomposition.  Then we have lots of variations about 

types of decompositions (e.g, Tropos allows both AND and OR means-end links), 

contribution values (labels such as +,- vs. make, help, etc.), correctness conditions 

(e.g., whether a resource may be a mean for a goal), etc. Finally, some 

modifications usually occur in the form of labels, e.g., quantitative labels for 

contributions in GRL, multiplicity in some Tropos-based variants, etc. A special 

type of modification is relaxing some conditions, e.g., allowing links among 

intentional elements that belong to different actors, or contributions to goals. 

– On dependencies. About modifications, we may find the addition of attributes 

which qualify the type of dependency, e.g., Secure-Tropos adds trust and 

ownership qualifiers. Then, we have new types of relationships that may be 

interpreted as dependencies, like Nòmos’ legal relations. Also, a quite usual 

variation is to get rid of dependencies’ strength, probably due to the difficulty of 

interpreting the concept in a reasoning framework. The type of depender and 

dependee also presents constraints sometimes, e.g., GRL forces them to be 

intentional elements, actors are not allowed in this context. 

– On diagrams. The distinction among SD and SR diagrams is not always kept, 

some proposals just have a single model in which the actors may be gradually 

refined. One type of diagram that was depicted in Yu’s thesis but not recognised 

as such was actor diagram, and some authors have promoted this third type of 

diagram as such. On addition, several proposals of types of diagrams exist, from 

the generic concept of module to specific proposals like interaction channel. 

The result of this study shows the complexity of the model transformation problem. In 

fact, one may easily anticipate that it will be impossible to get an automatic 

transformation technique for any pair of existing proposals. It becomes necessary to 

investigate the limits of model transformation in i* and provide a general 

customizable framework. 

3   A Metamodel View of i* Model Translation 

Metamodels have been the traditional tool in Software Engineering to express valid 

models of a certain modelling language [11]. The language used to specify a 

metamodel is called metalanguage. Note that metamodels represent only what can be 

expressed in valid models but not what these expressions mean, i.e., a metamodel 

specifies the syntax of a modelling language but not its semantics.  

In the case of i* transformations, the different i* variants mentioned in Section 2 

correspond to their own metamodels which are expressed using different 

metalanguages (e.g., UML, EBNF, Telos). The problem of transforming a source 

model into a target model can be viewed as a particular case of applying general rules 

to transform the differences between the corresponding metamodels.  



3.1 Wachsmuth’s Proposal on Metamodel Adaptation 

In 2007, Guido Wachsmuth presented a proposal [12] to deal with the problem of 

metamodel evolution and its implications for adapting its instance models according 

to this evolution (see Fig. 1, left). The basic hypothesis is that co-adaptation of models 

can be automatically derived from well-defined metamodel evolution steps. 

Wachsmuth defines different semantic-preserving categories and matches them with 

specific refactoring operations on metamodels. The way of handling semantic-

preserving features respond to the concept of semantics already introduced, i.e., 

semantic preservation is not characterized by meaning but by structural changes on 

corresponding metamodels.  

Here, we are proposing the adoption of this framework in the context of the 

problem of translating models among metamodels which have a common set of 

concepts (see Fig. 1, right). In other words, we change the perspective: 

– from: given a model mA created as instance of a metamodel MA, translate it into 

another model mB created as instance of a metamodel MB via a metamodel 

correspondence, 

– into: given a model mA created as instance of a metamodel MA, and given a 

metamodel evolution from MA to MB, co-adapt the model mA into another model 

mB created as instance of MB via some metamodel refactoring operations. 
 

 
Fig.1 Comparative between co-adaptation and interoperability via metamodel refactoring. 

3.2 Wachsmuth’s Proposal: Relationships and Semantic Preservation 

To characterize refactoring operations Wachsmuth proposes some basic concepts:  

− MM represents all the metamodels conforming to a specific metamodel formalism 

M, denoted by MM := {µ╞ M}. Although it is not really relevant, we may assume 

MOF 2.0 formalism in this paper. 

− CM(µ) represents the concepts defined by a particular metamodel µ. In our case, 

typical concepts would be actor, intentional element, etc. 

− I(µ) represents the set of all metamodel instances conforming to a metamodel µ, 

denoted by  I(µ):= { ι╞ µ }. In our case, we focus on those µ which are a 

metamodel of some i* variation (e.g., i*-wiki metamodel, GRL metamodel, Tropos 

metamodel) and then for each µ , I(µ) are i* models built as instances of µ. 



− IC(µ) represents the set of instances I(µ) of restricted the specific set of concepts C, 

i.e., IC(µ) ⊆ I(µ). For instance, we may refer to the set of concepts C which are part 

of SD models, and then IC(µ) would represent SD models built according to the 

metamodel µ. 

Using these concepts, 5 types of generic relationships between metamodels are 

defined (see 1st and 2nd columns of Fig. 2.) which yield to 5 degrees of semantic 

preservation. The transformation from one metamodel to another implies a 

relationship R between the source and target metamodels, thus, the type of semantic 

preservation of R (if any) will depend of which of these generic relationships is subset 

(see 3rd column of Fig. 2). Besides, the different types of semantic preservation imply 

different types of instance preservation (see 4
th

 column of Fig. 2).  

 

Fig.2   Summary of semantic preserving relationships in Wachsmuth’s framework [12]. 

3.3 Wachsmuth’s Proposal: a Framework for i* Interoperability 

As we have already said, most of the i* variants have their own metamodel which 

conforms a different modelling formalism. However, this diversity of formalisms 

seems to be just a representational problem. We have assessed this opinion in earlier 

works by proposing an i* reference metamodel and proposing a set of refactoring 

operations to allow obtaining the different variants [13].  

But this preliminary result that we obtained, although valuable as a first step, 

exhibits an important drawback that the set of common concepts was intentionally 

kept to a minimum (i.e., we wanted to represent the universally agreed concepts). 

Whilst providing a good ontological basis, this decision was damaging the model 

interoperability goal that we are targeting here. Wachsmuth allows stating the reason 

why: model translation was suffering from eliminating or decreasing semantic preser-

vation. In this work, we search for the fundamental property of instance preservation: 

given an i* model that is instance of a metamodel MA that represents a source 

variation then, when applying the mapping from MA to MB (the metamodel that 

represents the target variation) the model can also be considered an instance of MB.  



 

Fig. 3. Comparing absence and presence of an i* supermetamodel for model translations 

 

Let’s assume that a model, named the i* supermetamodel, exists, therefore any 

existing metamodel of i* variation is a submetamodel of the i* supermetamodel. 

Then, if we could model refactoring operations from the i* supermetamodel to the 

particular variants, then we would have a feasible translation from each variant to 

another. This hypothetical scenario would exhibit three advantages: (i) supporting at 

some extent interoperability between models belonging to different metamodels; (ii) 

given k i* variants, providing a framework that offers translation from one variant to 

each other with linear complexity in terms of transformation functions (k functions) 

instead of quadratic (k
2
-k pair-wise functions); (iii) the type of semantic preservation 

would be characterized with a clear specification of preservation (strict, modulo varia-

tion, increasing or decreasing). In Figure 3 we illustrate this hypothetical assumption. 

Although it may appear hard to sustain that such an i* supermetamodel exists (due 

to the continuous proposals that modify it), in the next section we will discuss the 

conditions under which its existence appears reasonable to sustain and a first i* 

supermetamodel approach will be presented 

4   A Supermetamodel for i* 

From its definition, we can colloquially understand a supermetamodel as a metamodel 

which contains the superset of language constructs existing on other metamodels. In 

the case of the i* framework, this means that if M is a supermetamodel for i* then the 

different values of softgoals contributions (some+, helps, makes, +, ++, - , --) should 

be modelled in M. Besides, the same for intentional element types, actor types, etc. 

Therefore, in the attempt of formulating a supermetamodel for the existing variants 

and, ideally, upcoming ones, we need to answer two questions: (i) how to put under 

the same metamodel a set of different language constructs coming from different i* 

variants?, (ii) how to make this supermetamodel stable enough in order to suffer 

minimal modifications (if any) when a new i* variant is proposed? To satisfactorily 

answer both questions, the key concept is abstraction to allow putting different 

concepts together. It is crucial to capture the right level of abstraction: if the 

metamodel is too abstract (e.g., only differentiating nodes and links) it may fail in 

capturing the essence of i*; if it is too detailed, the metamodel can result in a rigid 

structure which requires high effort to be refactorized. In the first case, an additional 

problem appears, because using a high abstraction level means adjusting basic syntax 



formations by means of textual (e.g., OCL) constraints, and textual constraints are not 

considered in the Wachsmuth’s framework, therefore semantic preservation could not 

be qualified.  Therefore, we are looking for a metamodel which allows representing 

different i* variant structures and possible extensions whilst, at the same time, 

keeping the core i* language constructions. 

These two situations appear in the two most related works we may found in the 

literature. Amyot et al. have proposed a metamodel for GRL [14] that contains 

concepts such as metadata, links and groupings that enable the language to be 

extended and tailored, also using OCL constraints. So it may be classified as too 

abstract. In addition, it presents some peculiarities that forces its customization either 

in quite classical i* contexts (e.g., types of actors are not defined, dependencies 

linking actors –not intentional elements– are not allowed; dependencies without 

dependums are allowed) or in non-classical contexts (e.g., types of boundaries are 

impossible to be set). On the other hand, the reference metamodel presented by Cares 

et al. [13] proposes the use of refactoring operations to map into other variants. 

However, there are specializations for representing specific i* elements, therefore, 

adding a new language element would mean adding new classes to the metamodel. 

Thus, the reference model has a great value, but the problem comes when we want to 

use it in the context of model translation since it would imply alterations to classes.   

The i* supermetamodel proposal is based on the reference model but incorporates 

the concept of metadata appearing in the GRL metamodel. From the i* reference 

model we obtain a more abstract metamodel using i* related concepts and their 

extensions are handled with metainformation. We formalize this idea into UML 

stereotypes. The result is the metamodel that appears in Fig. 4. Actor and IElement are 

the central classes. Then ActorLink and IElementLink are recursive binary 

associations on them. Boundary is a binary association among IElement and Actor 

(note that an IElement may appear outside any boundary, e.g., dependums). Finally 

the concept of dependency is implemented with two associations: dependencies are 

divided into DependencySegment which is an easy way to allow different properties at 

each end, or even with just one end defined. Each DependencySegment connects an 

Actor (considered depender or dependee depending on the value of the 

participatorType attribute) and an IElement (the dependum) and then may (or not) be 

connected to a particular IElement that would be an internal element inside the 

corresponding Actor. We remark that this high-level model is providing stability since 

abstract concepts are shared in the different variants, and according to the historical 

track of the language, we may assume that future variants will still adhere to them. 

The resulting UML stereotypes are: (a) <<XEnum>> which represents a special 

kind of enumeration class that may grow (i.e., may be assigned more values). We 

have included as class attributes only the most consolidated ones (i.e., name of Actor 

and IElement; value of IElementLink as optional for those links without values; 

strengths for DependencySegment among others). (b) <<XClass>> which allows 

having an additional list of attribute-value pairs. To take full profit of this definitions, 

plain associations are converted into association classes with stereotype <<XClass>>. 

The i* supermetamodel as presented is capable to represent as instances those i* 

models built with any of the variations mentioned or referenced so far. In order to 

illustrate this expressive power we show, in Figure 5, an object diagram 

corresponding to the i* supermetamodel. It represents a specific i* model selected 



from [15]. We may observe different usual elements (types of actors, goals, softgoals, 

etc.) then some particular elements, more precisely costs in contribution links (both a 

label and a quantitative value). We have tested the i* supermetamodel with additional 

representations including service-oriented i* [16], i* with norms [10] and the different 

secure-oriented i* variants [9]. 

 

  

Fig. 4. The i* supermetamodel. 

It is interesting to remark that, in spite of its expressive power, the i* 

supermetamodel cannot be considered an i* variant by itself. Although it is a 

metamodel, it just represents a wide set of possible i* configurations but considered 

by itself, there are hundred of instances of the i* supermetamodel that have not any 

sense into any i* community, e.g., a belief decomposed into resources. Therefore, the 

i* supermetamodel has to be considered just a reference framework for supporting 

model interoperability. Nevertheless, it must be mentioned that the i* 

supermetamodel does impose basic syntactic validity conditions for models to be 

really considered an i* variant. For instance, it is stated through multiplicities that an 

intentional element cannot belong to more than one actor. Other additional conditions 

are not shown graphically but exist in the form of OCL integrity constraints. Just to 

name one, in the case of DependencySegments that arrive to an IElement, it must hold 

that the IElement is inside the boundary of the Actor linked by the segment: 

context DependencySegment::IElementInsideActor() inv: 

    self.IElement->notEmpty() implies self.iElement.itsActor->notEmpty()  

    and self.iElement.itsActor = self.Actor 

It must be mentioned that the current i* supermetamodel proposed here does not 

cover the complete range of constructs that appear in the state of the art, that remain 

for the next version. The elements remarkably left are: links to external elements (i.e., 

from other conceptual models, e.g., UML classes), boundaries other than actors and 

some types of intentional links (e.g., GRL’s correlations). 



 

Fig. 5. An excerpt of a particular i* model considered as an instance of the i* supermetamodel. 

5   Implementing i* Variants Translation 

Now we face the ultimate goal of our work: given a model m1 built as an instance of a 

metamodel M1 that represents a particular i* variant, how to proceed in order to 

obtain a model m2 built as instance of a metamodel M2 that represents a different i* 

variant, so that the loss of information is kept to a minimum. To implement this 

translation, we need an algorithm and a computational representation of the i* 

supermetamodel. 

Let’s start by the second point, which is simpler. As computational representation 

of the metamodel we use the iStarML interchange format [17]. It was designed with 

the reference model in mind but it may easily match the i* supermetamodel as well. 

XML was chosen as interchange language, therefore we may use a broad set of 

technologies in order to parse and process iStarML files. The particular XML 

elements of iStarML correspond to supermetamodel concepts as we show in Table 2. 



Table 2. Correspondence between the i* supermetamodel and iStarML. 

i* Supermetamodel Element iStarML Construction 

XClass Actor <actor> 

XClass Intentional Element <ielement> 

Association XClass Boundary <boundary> nested under <actor> 

Association XClass Dependency Segment  <dependee> or <dependeder> nested under 

<dependency> 

XClass ActorLink <actorLink> 

XClass IElementLink <ielementLink> 

Association XClass ArrivesTo <dependency> nested under <ielement> 

 

For the translation algorithm, it is important to start reminding from Section 3 that, 

since we are using the i* supermetamodel, then the departing model m1 is considered 

an instance of the i* supermetamodel. Therefore the translation from the metamodel 

M1 to M2 should be considered in fact as a translation from the i* supermetamodel to 

M2. Since the target variant corresponds to a restricted version of the very i* 

supermetamodel, then the refactoring operations required for translation can be only 

to restrict attributes of the existing classes or to constraint the set of values of specific 

attributes. In our iStarML implementation, this means to omit some attribute of an 

existing XML element or to translate specific values of attributes to a different set. 

Both types of translations (if any) can imply different semantic-preserving situations. 

In order to minimize information loss, an algorithm is proposed (Figure 6). It is 

presented as a UML activity diagram labelled with information about the semantic-

preservation consequences considering Wachsmuth’s framework. The activities are: 

− Copy known formations. The part of m1 that is also a valid instance of M2 is 

directly considered as part of m2. In other words, the concepts which are shared by 

both metamodels M1 and M2 are kept. In case that the full model m1 is a valid 

instance of M2, we finish and classify the translation as strictly semantic 

preserving. Example: a generic actor is always kept as a generic actor. 

− Translate using bijective mappings. Let’s name m1A the part of m1 that has not 

been treated in the previous activity. The part of m1A for which we may establish a 

bijective mapping between its elements and corresponding elements, which are 

instance of M2, is translated using this bijective mapping. In other words, the 

concepts that can be expressed in both metamodels M1 and M2 but with different 

constructs, are just translated. In case that after this activity the full m1 has been 

treated, then the translation is semantic preserving modulo variation. Example: a 

task can be translated into plan and a plan into a task. 

− Translate using injective mappings. Let’s name m1B the part of m1 that has not 

been treated in the previous activity. The part of m1B for which we may establish 

an injective mapping from its elements to others which are instance of M2, is 

translated using this mapping. In case that after this activity the full m1 has been 

treated, then the translation is decreasing modulo variation (the variation 

introduced by the mapping). Example: a make contribution from GRL can be 

translated into ++ contribution in seminal i*, but not any ++ is a make contribution. 

− Forget non translating formations. Finally, those constructs in m1 which have not 

been translated in the previous activities, are just removed. Example: a belief from 

GRL when translating into Aspectual i*. 



 

Fig. 6. Translation algorithm from the i* supermetamodel to an i* variant 

In order to illustrate the process, we have designed a proof-of-concept for translating 

models built with the OME tool [18] into the jUCMNav tool [19]. The metamodels 

involved are determined in this case by the implementation of the tool. Basically 

OME is offering the i* variant available in the i* wiki, whilst jUCMNav is imple-

menting GRL’s metamodel, although a closer look reveals some minor differences 

not relevant for the purposes of this paper. For the technical implementation of the 

algorithm we have used XSLT, a declarative language for transforming XML files 

[20]. The algorithm is implemented as a Java applet and currently available at 

http://www.essi.upc.edu/~gessi/iStarML/. Besides, jUCMNav has been modified in 

order to import and export iStarML files [21]. We prove the approach doing XSLT 

transformation from OME representations (i*), as special case of supermetamodel, to 

jUCMNav representations (GRL). In Table 3 we show four submodels to illustrate the 

four different outputs of the translation algorithm. We explain below each row: 

− Row 1: dependency from an intentional element into another. Strictly semantic 

preserving: all the model is translated without changes. Output 1 in Figure 6. 

− Row 2: task decomposition with dependency to an intentional element. Semantic 

preservation modulo variation: the task decomposition in OME is translated into an 

AND-decomposition in jUCMMNav. Note that it would be possible to recreate the 

original model. Therefore, this is a bijective mapping. Output 2 in Figure 6. 

− Row 3: dependency from an intentional element into an actor. Please note that 

jUCMNav does not admit dependencies with actors as dependers or dependees 

(i.e., the 0..1 multiplicity in arrives-to in the i* supermetamodel of Figure 4 

becomes 1 in jUCMNav). Decreasing modulo variation: it is possible to translate 

the dependency by creating an intentional element in the target actor and attaching 

dependency on it, but the original model can not be recreated, since it is not known 

if the added intentional element is really new or not. In particular, note that this 

jUCMNav model is identical to the previous one, clearly showing the lack of 

bijection with respect to this particular point. Output 3 in Figure 6. 



Table 3. Classification of specific model translations from OME to jUCMNav.  

from OME to jUCMNav 

   

 
  

 

 

 
  

 

− Row 4: agent as instance of actor. Although the agent is converted into actor 

(decreasing modulo variation), the instance link is lost. Eliminating semantic 

preservation: the element can not be kept and is removed. Informational loss. 

Output 4 in Figure 6. 

We remark that we are not proposing specific semantic equivalences from one variant 

to another, we are just showing a proof-of-concept of our approach by describing a 

general procedure to maximize semantic preservation reducing the complexity of the 

translation problem. The existence of many i* variants implies the existence of 

different semantic-pragmatic communities and the equivalences or mappings among 

metamodels (in fact, from the i* supermetamodel to variants’ metamodels) should be 

a matter of a meaning-making process inside that specific community. Just to mention 



an example, row 3 and row 4 are proposing two different strategies for dealing with 

one specific construct (dependency with an actor as dependee) that is supported in the 

departing metamodel but not in the target metamodel. Choosing one or another 

depends on the target community. 

6   Conclusions and Future Work 

In this paper we have dealt with the problem of interoperability among i* variants 

under a metamodel perspective. We organized the research into 4 questions which we 

think have been satisfactorily explored: 

– We have surveyed 146 proposals presented by the community in the last 5 years, 

and we have classified them in terms of additions, removals and modifications of 

i* constructs organized into six categories. Thus, we have obtained a quite 

complete characterization of the i* variability to support interoperability goals. 

– We have proposed a framework for the interoperability problem based on an ap-

proach that can be considered consolidated and widespread in the MDE commu-

nity. We have customised this framework about model evolution into the i* model 

interoperability problem. As cornerstone of this customization, we have defined a 

supermetamodel for i* that eases interoperability by metamodel containment.  

– Given the framework above, we have classified the surveyed i* variation types in 

terms of the semantic impact of their translation, having then a general idea about 

what types of information loss may happen and to what extent the analyst may 

provide information (mappings) to minimize this loss.  

– We have defined a process for translating a model compliant to one metamodel to 

another compliant to a different metamodel, and we have demonstrated how it 

works by exploring the translations of models built with the OME tool to the 

jUCMNav tool. 

As a summary, we may say that we have provided a first consolidated step towards 

not just syntactic but also semantic interoperability in the i* framework. Our approach 

may help creating a repository of i* models (using the i* supermetamodel as universal 

reference model), may favour the application of techniques that work over different 

metamodels, and may possibilitate the interchange of models between tools. 

Our future work spreads along four different axes. First, improving the translation 

algorithm which is currently able to deal just with reductions, to tackle increasing 

modulo variations. Second, to offer a portfolio of tool interconnections in similar way 

to the one between OME to jUCMNav explained here (in fact, we have a more 

complete case of interconnection among the jUCMNav and HiME [22] tools, 

described in [21]). Third, consider not just syntax and semantics but also ontological 

issues in the translation process. Forth, digging into more details of Wachsmuth’s 

framework for proposing translation heuristics depending on the refactoring distance 

between the source and target metamodels, allowing thus having some default 

translation rules instead of a pure case-by-case analysis (although as remarked at the 

end of Section 5, translation will ultimately depend on the community ontological 

perception of i*). 
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