
ODIN: A Dataspace Management System

Sergi Nadal, Kashif Rabbani, Oscar Romero, and Shumet Tadesse

Universitat Politècnica de Catalunya (BarcelonaTech), Barcelona, Spain

Abstract. Odin is a system that supports the incremental pay-as-you-
go integration of data sources into dataspaces and provides user-friendly
querying mechanisms on top of them. We describe its main character-
istics and underlying assumptions, including the user interactions re-
quired. Odin’s novelty lies in a largely automated bottom-up approach
(i.e., driven by the sources at hand) that includes the user in the loop
for disambiguation purposes. The on-site demonstration will feature an
ongoing project with the World Health Organization (WHO).
Online demo and videos: www.essi.upc.edu/dtim/odin/

1 Introduction

A prominent approach to virtual data integration is that of exposing an on-
tology, which conceptualizes the domain of interest, to offer a uniform query
interface over the sources. Queries over the ontology are rewritten over the
sources via schema mappings. The maintenance of such constructs (i.e., evolv-
ing the ontology, or adding new sources and mappings) is well-known to be an
arduous and manually-intensive task that hinders the ability of such systems
to flexibly adapt and provide right-time integration. This limitation has been
coined as the data variety challenge, which refers to the complexity of providing
on-demand integration over a vast and evolving set of data sources.

Dataspaces represent a major step towards tackling the variety challenge.
With the vision of reducing the usual upfront and maintenance costs, datas-
paces claim for the adoption of a flexible and dynamic pay-as-you-go approach
where different integration tasks are automated [1]. Supporting the end-to-end
lifecycle of dataspaces is a technically challenging task. The state of the art on
automatic construction of an ontology from the data sources (and their respec-
tive mappings), commonly known as bootstrapping, is BootOX [2]. Targeted
to ontology-based data integration, BootOX generates OWL 2 QL ontologies
from relational databases, together with R2RML mappings to the sources. Yet,
this approach falls short in settings where managing data variety is a key re-
quirement. On the one hand, the extraction is restricted to relational databases
and misses widely used semi-structured data formats such as CSV, JSON or
XML. On the other hand, such mappings conform to the global-as-view (GaV)

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
This work was partly supported by the GENESIS project, funded by the Spanish
Ministerio de Ciencia e Innovación under grant TIN2016-79269-R.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231705521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Sergi Nadal, Kashif Rabbani, Oscar Romero, and Shumet Tadesse

family, which characterize the ontological classes and properties in terms of SQL
queries, which are not well suited for highly dynamic and evolving settings.

Odin (short for On-demand Data INtegration), a dataspace management
system grounded in knowledge graphs, was conceived to overcome the aforemen-
tioned challenges. Fig. 1 depicts how Odin supports the dataspaces complete
lifecycle. Odin automatically extracts the schemata from structured (e.g., rela-
tional) and semi-structured (e.g., JSON) data sources and translates them into
a canonical data model, namely RDFS. To this end, a set of production rules
parse their metadata and automatically generate RDFS-compliant source graphs.
Next, the source graphs are aligned while considering the user feedback through-
out this process. As result, Odin generates provenance graphs (PG) tracing the
results of the previous stages. A PG is a target-agnostic metadata construct (i.e.,
not tailored for a specific tool) about the integration of a particular set of data
sources. PG captures the results of bootstraping the sources and aligning their
schemata, and guarantees we can generate target-specific metadata from them1.
Thus, PGs are used to generate the specific constructs of a given integration
tool. In this demo, ODIN generates the constructs required by [3]. Precisely,
conjunctive query (CQ)-oriented graphs, which expose the sources schemata in
first-normal form, which are then linked via local-as-view (LaV) schema map-
pings (represented as graphs) to the global graph. LaV mappings characterize the
sources in terms of a query over the ontology, which make them inherently more
suitable in data variety settings. This entails a more complex query answering
process, which boils down to the problem of answering queries using views. In
our demo, however, we will show the feasibility of our approach in real cases.

Dataspaces Metadata

LAV
mappings

CQ-oriented
Graph

CQ-oriented
Graph

CQ-oriented
Graph

Global
Graph

Provenance Metadata

... Source
Graph

Schema
Extraction

Source
Graph

Schema
Extraction

Alignment

Provenance
Graph

Target-oriented
merging &

consolidation
...

Data Analyst

Feedback

Metadata Flow
Query

Iterative Processing

Data Analyst

Wrapper (1NF)

Fig. 1: High-level overview of the functionalities offered by Odin

2 Main Features

In this section, we detail how Odin deals with the process of generating the PGs
and from there the specific constructs of a given tool.

1 Although the focus of this paper will be on answering queries, during the demo we
will highlight the ability to generate the required metadata for other ontological
reasoning services (e.g., DL-Lite for satisfiability checking) from a PG.



ODIN: A Dataspace Management System 3

Generation of RDFS schemata from sources.Odin adopts a meta-modeling
approach to bootstrap disparate sources in order to create an RDFS representa-
tion of their schemata. For each source data model, Odin defines an equivalent
first order logic representation of its meta-model. Given a source model (e.g.,
relational or JSON), a set of pre-defined production rules (i.e., tuple-generating
dependencies defined at the meta-model level) generate an equivalent RDFS
model2. Source graphs are the result of this bootstrapping phase.

User-driven source graph alignment. From source graphs, Odin incre-
mentally generates the PG, where it annotates source graph alignments in the
form of taxonomies. To discover alignments, Odin uses an enhanced version of
LogMap3, which considers Wordnet synonyms. Candidate alignments are ranked,
and Odin prompts the user to accept or reject them. Further, since aligning two
ontologies is a hard task, Odin also provides an intuitive interface to manually
assert alignments.

Querying the sources via the ontology. This final step consists in generating
the required metadata constructs to pose and resolve queries over the dataspace.
To this end, from PGs, Odin automatically generates the global graph (i.e.,
a merged view of the aligned source graphs) and CQ-oriented graphs, which
expose a first-normal form structure of the sources. To guarantee the incremental
evolution of the system, Odin also generates LaV mappings from CQ-oriented
graphs to the global graph. Since PGs were created in a bottom-up approach,
we are able to automate the definition of all required constructs. Consequently,
given that Odin explicitly models the schema that sources expose, LaV mappings
are exact and they are not required to deal with incompleteness on the sources.
Finally, Odin provides a user-friendly interface to pose conjunctive queries (CQs)
on the global graph, that are automatically translated to SPARQL. A rewriting
algorithm interprets such query and generates the certain answers under the
closed-world assumption in terms of unions of CQs [3]. The demo will show that
such constructs are automatically generated in linear time (w.r.t. the size of PG).

3 Demo

We will present the functionalities of Odin via the WHO Information System
to Control and Eliminate Neglected Tropical Diseases (WISCENTD)4. The goal
of WISCENTD is to provide support in the collection, integration and analysis
of data coming from different monitoring systems surveilling different aspects
of neglected tropical diseases (NTDs). Data related to NTDs are largely frag-
mented and their integration is mandatory to shed light on NTDs around the
world. The demo will simulate the day-by-day of a WHO data analyst and how
Odin is used to first collect and integrate different sources of relevance for a
certain NTD, and later cross-query them. We will use relevant datasets, such
as UN Data (open-data JSON datasets) about health economics indicators and

2 http://essi.upc.edu/dtim/ardi
3 https://github.com/ernestojimenezruiz/logmap-matcher
4 https://www.who.int/neglected_diseases/disease_management/wiscentds/en



4 Sergi Nadal, Kashif Rabbani, Oscar Romero, and Shumet Tadesse

migrant information per country5, data about diagnosis and treatment per coun-
try periodically extracted from WIDP6 (that hosts a relational database), data
about drug distribution periodically extracted from WIMEDS7 as CSVs, etc. We
will first showcase how the data analyst, just interacting with Odin’s interface,
is able to integrate and query such sources in a friendly manner. Odin allows the
interested users to browse the metadata generated throughout the whole pro-
cess: (i) source bootstrapping, (ii) their alignment to construct the PG (Fig. 2),
and (iii) the automatic creation of the constructs for query answering. The audi-
ence will be encouraged to participate including new sources in an incremental
manner, query the global graph, or even apply Odin to other domains.

Fig. 2: Interactive alignment process

Implementation details. Odin follows a service-oriented architecture, which
enables extensibility and separation of concerns. The frontend is implemented
in Javascript and resides in a Node.JS webserver. Odin uses WebVOWL to
visualize and interact with graphs. The backend, is implemented as a set of REST
APIs defined using Jersey for Java. To deal with RDF graphs, this component
makes heavy use of Jena and its persistance engine Jena TDB.

References

1. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new ab-
straction for information management. SIGMOD Record 34(4), 27–33 (2005)

2. Jiménez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I., Pinkel, C., Skjæve-
land, M.G., Thorstensen, E., Mora, J.: BootOX: Practical Mapping of RDBs to
OWL 2. In: ISWC 2015. pp. 113–132 (2015)

3. Nadal, S., Romero, O., Abelló, A., Vassiliadis, P., Vansummeren, S.: An integration-
oriented ontology to govern evolution in big data ecosystems. Inf. Syst. 79, 3–19
(2019)

5 http://data.un.org
6 http://bit.ly/whowidp
7 http://bit.ly/whowimeds


