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ANTICYCLOTOMIC p-ADIC L-FUNCTIONS AND
THE EXCEPTIONAL ZERO PHENOMENON

SANTIAGO MOLINA

ABSTRACT. Let A be a modular elliptic curve over a totally real field F', and let
K/F be a totally imaginary quadratic extension. In the event of exceptional
zero phenomenon, we prove a formula for the derivative of the multivariable
anticyclotomic p-adic L-function attached to (A4, K), in terms of the Hasse-Weil
L-function and certain p-adic periods attached to the respective automorphic
forms. Our methods are based on a new construction of the anticyclotomic
p-adic L-function by means of the corresponding automorphic representation.
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2 SANTIAGO MOLINA

1. INTRODUCTION

Let F be a totally real field of degree d and let A be a modular elliptic curve
defined over F (although our results apply for general modular abelian varieties).
One of the central research topics in Modern Number Theory is the relation between
the arithmetic of A and the analysis of the (Hasse-Weil) L-function L(A4, s) attached
to A. The L-function L(A,s) and all its twists L(A4, 1, s), where 1 is a finite order
character of the Galois group Gal(F%®/F) of the maximal abelian extension F?
of F', are C-valued functions that satisfy a certain symmetric functional equations
relating their values at s and 2 — s. The well-known Birch and Swinnerton-Dyer
conjecture predicts that the rank of the Mordel-Weil group A(F) coincides with
the order of vanishing of L(A,1). Later generalizations by Mazur and Tate predict
that the rank of the v-isotypical component A(F)[y)] = A(F) ®z[Gai(Fat/F) C(Y)
agrees with the order of vanishing of L(A,,1).

If A has either ordinary good or bad multiplicative reduction at all places above
p, we obtain a better understanding of the arithmetic of A/F if we replace the
complex analysis of L(A, s) by the a p-adic analysis of its p-adic avatar L,(A, s), the
(cyclotomic) p-adic L-function of A. This is a Cp-valued function that interpolates
the critical values L(A,1), 1), for any finite order character 1 of the Galois group
Gp =~ Zy, of the cyclotomic Zp-extension F;;¥¢ of F' unramified outside p and co. The
function L, (A4, s) is defined as

Lp(Au 8) = / eXPp(Sfcyc(V))dﬂp(V)a s € (Cpu
9p
where lcy. : G, — Zj is a the p-adic logarithm of the cyclotomic character and p,
is a certain (cyclotomic) p-adic measure attached to A. By L,(A,s) interpolates
L(A,4,1), we mean that the measure y, satisfies

; V(y)dpp(y) = ep(A, ) L(A, ¥, 1),

P

for all finite order characters ¢ : G, — C*, where ey(A, 1) is the Euler factor
at p which is non-zero for almost all ). Observe that the p-adic L-function is
univocally characterized by the Cp,-valued measure p,,. A p-adic analog of the Birch
and Swinnerton-Dyer conjecture was stated in [21] and [14].

Let K/F be a totally imaginary quadratic extension. Some remarkable achieve-
ments towards the Birch and Swinnerton-Dyer conjecture have been obtained by
means of the rich theory of Heegner points associated with K/F. This encourages
us to consider A as an elliptic curve defined over K. Note that in this setting
we can consider anticyclotomic abelian extensions of K which are linearly disjoint
from F7¥°K. Indeed, for any prime ideal P of F' dividing p, let K% be the maximal
abelian extension of K which is unramified outside P and oo and so that the com-
plex conjugation 7 € Gal(K/F) acts on Gi p := Gal(K%/E) by —1. Up to torsion,
G p is isomorphic to Z;, where r = [Fp : Q,]. Motivated by the cyclotomic theory,
one may ask if there is an analogous construction of p-adic L-functions attached to
such anticyclotomic Zj-extensions.

The behavior of the local functional equation outside P provides a dichotomy in
our scenario: on the one hand the definite case, where the number of finite places v
outside P with the sign of the local functional equation (i.e. the local root number)
wy(A/K) = —1 is even; on the other hand the indefinite case, where that number
of finite places is odd.

Assume that A has either ordinary good or multiplicative reduction modulo P.
Our starting point is the construction of Cp,-valued measures of G p attached to
A, with good interpolation properties. In the literature, we can find constructions
of such measures in some particular cases: for F = Q and K/Q not ramified at p,
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we have the work of Bertolini-Darmon (see [7] and [8]); for arbitrary F', we have the
work of Van Order also under certain restrictions for the ramification of K/F (see
[27] and [26]). In this paper, we provide alternative constructions valid for arbitrary
totally imaginary quadratic extensions K/F. We denote by u‘}ﬁfp and ui]‘\}?p the
corresponding measures in the definite and indefinite situations, respectively. In
analogy with the cyclotomic setting, our definite p-adic measure u‘}gfp interpolates
the critical values L(A/K, x, 1) for any finite order character x of Gk » (Theorem
B9). In the indefinite case, the corresponding p-adic measure ,uil‘}% interpolates
p-adic logarithms of certain Heegner points whose height is given by the derivative
L'(A/K, x, 1) (Theorem [E.T5)). In both scenarios (and also including the cyclotomic
setting), the interpolation property involves an Euler factor ep(A/K, x) that is not
identically zero. We remark that our construction of u‘}ﬁfp admits generalizations
to p-adic measures (seen as Stickelberger elements) attached to arbitrary quadratic
extensions K/F (see Bergunde and Gehrmann [2] and [3]), indeed, we explain in §5
that the degenerate case of K = F x F corresponds to Spiess construction of the
cyclotomic p-adic L-function [24].

The set of Cp-valued measures Meas(Gk p, Cp) of Gk p has a natural structure of
C,p-algebra called the Twasawa algebra. The morphism deg : Meas(Gx p, Cp) — C,,
that maps any measure to the image of the constant map 1, is indeed a Cp-algebra
morphism. The ideal Z = ker(deg) is called augmentation ideal and the maximum
power Z" in which a measure p lies is called order of vanishing of . Observe that,
in the cyclotomic setting, L,(A,0) = deg(u,) and the order of vanishing of L, (A, s)
at s = 0 coincides with the order of vanishing of .

In this paper, we mean by anticyclotomic p-adic L-functions the elements L (A/K)
and L8Y(A/K) of the Iwasawa algebra of Gx p defined by /L(}afp and ,ui;\lfip, re-
spectively. In the cyclotomic and definite anticyclotomic setting, the interpolation
property relates the image deg(L%(A/K)) with the critical value of the classical
L-functions at s = 1 (analogously, in the indefinite anticyclotomic case the classical
L-function is replaced by its derivative). This suggests that the order of vanish-
ing of such p-adic L-functions coincides with the order of vanishing of the classical
L-functions at s = 1 (resp. their derivatives in the indefinite anticyclotomic case).
Nevertheless, a surprising phenomenon appears if A has split multiplicative reduc-
tion: the Euler factor ep(A/K,1) vanishes and we observe a zero of the p-adic
L-function, even when the classical L-function (or its derivative) is not zero. These
extra zeros coming from the vanishing of the Euler factors are called exceptional
zeros.

A first approach to understand this exceptional zero phenomenon is to compute
the derivatives of the corresponding p-adic L-functions or, analogously in terms of
Iwasawa algebras, their classes in the respective Cp-vector spaces Z"/Z" 1. Many
authors have contributed to this research line:

o In the cyclotomic setting, the order of vanishing of L,(A,s) at s = 0 is
at least m, the number of places above p where A has split multiplicative
reduction [24]. Moreover, a formula that expresses (Z—TRLP(A,S) |s=0 as a
product of L(A, 1) with what are known as (geometric) L-invariants Lp(A)
(P | p is a prime of split multiplicative reduction) was conjectured by Hida.
This formula was established by Greenberg and Stevens in [16] for F' = Q,
by Mok in [22] for arbitrary totally real fields and m = 1, and finally by
SpieB in [24] for arbitrary m and F' under some mild assumptions. In fact,
Spie proves an analogous formula with the L-invariants £p(A) replaced
by certain automorphic L-invariants Lp(w), where 7 is the automorphic
cuspform attached to A.

e In the definite anticyclotomic setting, there have only been results for F' =
Q, prior to the writing of this paper. Assuming that the quadratic extension
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K/Q splits at p, Bertolini and Darmon proved in [7] a similar formula for
the image of Li**(A/K) in Z/I? ~ C, in terms of L(A/K,1) and the same
L-invariant £,(A) that appeared in the cyclotomic setting. If p is inert in
K, Bertolini and Darmon proved in [6] an analogous formula involving the
p-adic logarithm of a Heegner point (see also [8]). The case K/Q ramified
at p is still an open problem even for F' = Q. During the development
of this paper, L. Gehrmann and F. Bergunde in [2] and [3] have obtained
similar results in the definite setting for general F' and arbitrary quadratic
extension K/F using Stickelberger elements. See also [19] for a similar work
in this setting.

e In the indefinite anticyclotomic setting, there are only results for the case
F = Q. Bertolini and Darmon proved in [5] that the image of Li*(A/K)
in Z/I? ~ C, can be expressed in terms of the critical value L(A/K,1)
(see also [§]). If K/Q splits, Castella recently proved in [11] a formula for
the derivative of L;“d(A/ K) in terms of the logarithm of a Heegner point
and the L-invariant £,(A). The case K/Q ramified at p has never been
considered.

In order to explain our main result, let us introduce m, the automorphic rep-
resentation of GLa(Ap) associated with A. The (twisted) Hasse-Weil L-function
L(A/K, x, s) coincides with the Rankin-Selberg L-function L(s—1/2, 7k, x), where
7k is the extension of the representation m to GLa(Ag). Actually, we will define
our anticyclotomic measures by means of a certain Jacquet-Langlands lift 77/% of
m. For this reason we denote them by LY (rx) and Lind(mx) when considered
as elements of the Iwasawa algebra. The main result of this paper establishes a
formula for the classes of the p-adic L-functions in Z/Z?, when P splits in K:

Theorem 1.1. Suppose that P is a Steinberg prime of w, then both LI (1), Lt (7 ) €
T. Let us denote by VLY (nx) and VLS (m) their classes in T/I?. If we also
assume that P splits in K, then we have that

- 1/2
VLE! (rx) = LF'(7) (CKC(WP)%> |

VLB (ri) = L8(r) log, (Pr),
where C'k is a non-zero constant, C(np) is a non-zero Euler factor, Pr is a Heegner
point with explicit height depending on L'(1/2,mk, 1), and L& (7), L8 () € T/1?
are automorphic L-invariants defined in terms of the cohomology of (S,-)arithmetic
groups associated with Jacquet-Langlands lifts of m.

In Theorem one can found a more precise statement of this result where we
compute the Euler factor C(mp) and the height of Pr. The definition of L& ()

and £4(7) € Z/Z? can be found in §6land §71 Notice that the condition of P being
a Steinberg prime of 7 is equivalent to A having split multiplicative reduction at P.

Hence, our formulas generalize the results for F' = Q by Bertolini and Darmon [7]
and by Castella [11] in the definite and indefinite settings, respectively. We remark
that our proof in the definite case is an adaption of Spief3’ proof of the exceptional
zero conjecture for Hilbert modular forms [24]. Nevertheless, the results in the
indefinite setting are much more exciting. The indefinite formula was conjectured
by Bertolini and Darmon in [4, Conjecture 4.6] for F = Q and A(K) of rank 1,
with the spirit of the p-adic BSD conjecture introduced in [21], but replacing the
automorphic L-invariant vector £89(r) by the corresponding geometric £-invariant.
Moreover, the techniques used to prove the indefinite formula differ completely from
Castella’s work, who exploited the theory of big Heegner points and an adaptation
of Greenberg-Stevens proof of the cyclotomic exceptional zero conjecture for F' = Q
(see [16]). We have decided to expose both the definite and indefinite settings
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together in this paper in order to remark the analogies between both constructions
of the p-adic measures and both proofs of the exceptional zero conjecture.

Bearing in mind the case F' = Q, we expect the L-invariant vectors L& () and
LBd(7) to be equal and related to the geometry of A/Fp. In §6.3] we show that
E%ef(w) is given by the geometric L-invariants. It is a work in progress to prove that
Li8d(7) = L& (). Such equality, predicted by Conjecture [6.7] holds for FF = Q
thanks to the work by Greenberg-Stevens [16] and Longo-Rotger-Vigni [20], and
holds for general F', under certain technical conditions, thanks to the work of L.
Gehrmann [15].

Finally we would like to remark that, similarly as in the definite setting one can
generalize the costruction of the p-adic measure and prove a similar exceptional zero
result when the quadratic extension K/F is arbitrary (see [2] and [3]), we strongly
believe that one can also define an analogous p-adic distribution in the indefinite
setting with values in Stark-Heegner points. Moreover, the techniques developed in
[I7] would provide a analogous exceptional zero result.

Outline of the proof. The fact that A has good ordinary or multiplicative re-
duction modulo P implies that mp is the irreducible quotient of the representation
induced by the character of the Borel subgroup given by some « € Qﬂ@ép. In PBlwe

define a Q-representation, with representation space V? , whose scalar extension by
C is isomorphic to mp, and a K 3-equivariant morphism o7 : Ce(K2%/Fx,Q) — V2.
Such a morphism dr realizes Hom(V(P ,Q) as a space of distributions of K /F}.
In the definite setting, we consider Gp the multiplicative group modulo the
center of the totally definite quaternion algebra D that splits at P and such that
Hom (7P, C) # 0, for any place v # P, where 72 is the Jacquet-Langlands lift of
7 to Gp. It is easy to prove that a well chosen generator of 7 provides an element

¢ € H'(Gp(F), AR(VEQ""),  AB(VE.Q) = C(Gp(F7), Hom(VE, Q)
where U? C G D(F ?) is certain open compact subgroup. By Class Field Theory,

any locally constant function in g € C(Gk p,Q) can be seen as an element dg €
Ho(K*,C.(K*/F*,Q)). In §5, we define the distribution ngets by

/g 9(V)dusEs (7) = res(¢) N g,

where the cap-product corresponds to the natural pairing between CC(K x/ Fx, Q)
and AL (VC, @)UP, once considered Hom(V,2, Q) as a space of distributions.

In the indefinite setting, we choose our quaternion algebra B in such a way that B
splits at a single archimedean place and Hom (7B, C) # 0, for any place v # Poo.

In §5.3] we explain how to obtain an element &7 € H(K*, AL(V.Q, A(K®)oQ)V")
from the image through the Abel-Jacobi map of divisors supported on Heegner
points of the Shimura curve attached to Gp and some U C Gp(F). Applying the
same procedure as before, we can define a distribution with values in A(K%) ® Q.
Since we want a distribution with values in C,, we compose 1 with the formal
group logarithm of A obtaining log¢ € HO(K*, AL (VO (C,,)UP). Similarly as be-
fore,

/ 9V dpR%p(7) == log ¢ N dy.
Ok, P

The interpolation properties of u‘}gfp and u}‘}% are provided by Waldspurger and
Gross-Zagier-Zhang formulas, respectively. The explicit computations of the Euler
factors are given in §3l Analyzing the behavior of such Euler factors when A has
split multiplicative reduction, we observe the exceptional zero phenomenon in both

definite and indefinite situations.
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In §5.6] we prove that /L(}afp and ui;(’fip are in fact p-adic measures. Thus, by

Corollary 2.2 their images VLI (1) and VLB () in Z/Z? are characterized by
the integrals ng o () dpg p () (o = def,ind), for any ¢ € Homg, (Gk,p,Zp). Note
that if F = Q the Zp-rank of Gk p is 1, and it is enough to consider £ = log,, given
by Iwasawa p-adic logarithm. In general such Z,-rank is [Fp : Qp], hence there may
be different ¢ to consider.

In §7] we show that d(£) = 9Nz, , for some fixed ¥ € Hy(K*, C.((KP)*/(FP)*,Z))
and certain zp, € HY(K*,C.(K}5/Fp,Z,)) that only depends on ¢p, the restric-
tion of £ on K /F} via the Artin map. By the cohomological interpretation of the
measures fij p,

/ L(y)dpse p(7) = ke NO(L) = (Ko N 2ep) N, o = def, ind,
Ok, P

where Kqof = res(4) and Kinq = log ¢. We prove in §6that there exists £L(7/L, ¢p) €

C,p such that keNze, = L(m7F, 0p)(KeN2ordy ), for some fixed zora, € H (K*,C.(Kj/F5,Z)).
Hence, if we define the automorphic L-invariant £3 () to be the element in Z/Z?

that maps any £ to £(77%, ¢p), then it is clear that

VLp(7K) = Lp(7)(Ke N Zordp) NV

It is a tedious but straightforward computation to show that

1/2
L(1/2,7m5,1) B
(Ko N Zordp) NV = (CKC(”P) Tl mad) ) , e =def,
log,(Pr), e —ind,

L'(1/2,7k,1)

for some Heegner point Pr with Neron-Tate height |Pr|? = CxC(mp) T(irad

1.1. Notation. For any field L, write Oy, for its integer ring.

We fix embeddings Q < C and Q — C,p, and write 0= Oc, N Q.

Throughout this paper F' will be a totally real number field. Let Ar and F be
its rings of adeles and finite adeles, respectively. For any set of non-archimedean
primes S, write FS = Fn Hues F,, where F, is the localization of F at a finite

place v. We write FP instead of F{P}. We denote by d*x, the Haar measure
normalized as in [30]. The product of d*z, defines a Haar measure on Ay /F*.

Throughout this paper K/F will be an imaginary quadratic extension. We will
denote by T the algebraic group given by the quotient of K* and F*, namely,
T(R) = (K ®p R)*/R*. If v is a finite place of F', we denote by d*¢, the Haar
measure on T(F,) given by the quotient measure. The product of d*t, defines a
Haar measure d*¢ on T(F).

For any quaternion algebra B/F', write Gp for the multiplicative group modulo
its center, namely, Gg(R) = (B ®Fr R)*/R*, for any F-algebra R.

Given two topological spaces X and ), we denote by C.(X,)) the space of
continuous and compactly supported functions between X and ). We denote it by
C.(X,Y)o when ) is considered with the discrete topology. If ) is a normed space
write Co(X,Y) for the completion of C.(X,)) with the supremum norm || - ||oo-
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2. MEASURES AND IWASAWA ALGEBRAS

2.1. Distributions and measures. Let G be a totally disconnected locally com-
pact topological group, and let R be a topological Hausdorff ring. For any R-module
M, an M-valued distribution on G is a homomorphism u : C.(G,Z)o — M. Hence,
it extends to a R-linear map

wmeMfHmem

We shall denote the R-module of M-valued distributions by Dist(G, M).

Let (V,| ||) be a Banach space over a p-adic field R = L. We say that u €
Dist(G,V) is a measure if it is continuous with respect to the supremum norm,
hence it extends to a continuous functional

%W%%Wf%éﬂw

We will denote by Meas(G, V') the space of V-valued measures on G.

An Op-submodule M of a L-vector space V is a lattice if U,cpxaM =V and
NaerxaM = {0}. For a given lattice M C V the function pps(v) := inf,eqnr |al is a
norm on V. Any other norm || || on V is equivalent to pys if and only if M is open
and bounded in (V,|| ||). For any M open and bounded lattice on a Banach space
(VLI ), the space Meas(G, V) is the image of the canonical inclusion

(2.1) Dist(G, M) ®o, L — Dist(G, V).

2.2. Iwasawa algebras. Let G now be a commutative pro-p group. Since Oy, is
a lattice in the Banach space (L,| |), the L-vector space Meas(G, L) coincides with
the tensor product Dist(G, Or) ®o,, L.

The usual convolution product endows Dist(G, Or ) with structure of Or-algebra.
It is isomorphic to O[[G]] = lim, Or[G/H], where H runs over open compact
subgroups of G. Hence, we deduce that Meas(G, L) is equipped with the L-algebra
structure Ar := OL[[G]] ®0,, L, called the Iwasawa algebra of G with coefficients in
L.

Observe that the natural map

d:G— AL; /gfdg = f(9),

is a group homomorphism and the L-module homomorphism
deg : A — L; ,u»—>/d,u,
g

is indeed an L-algebra homomorphism.

Let Z := ker(deg) be the augmentation ideal. Since deg is surjective, Z/Z? has a
natural structure of Ay, /Z ~ L-vector space. Moreover, since G is a pro-p group, it
is a Zp-module and the map

0:G—T/T?% g+— dg — dl,
is a Z,-module homomorphism. The following result describes Z/Z? as the tensor
product G ®z, L.

Proposition 2.1. Assume that G is a Zy-module of finite rank, then the map ¢
defines an isomorphism of L-modules

0:G®z, L —>I/IQ.
Proof. Let us consider the dual group (G®z, L)" := Homg, (G, L) and the canonical
L-module morphism ¢ : G ®z, L — ((G ®z, L)")". We define

BT (Gon, D)5 s (00 [t}
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where ¢ € Homgz, (G, L) is seen as a continuous function in C'(G, L). We check that
¥(Z?) = 0; Indeed, if 1, po € Z,

/gfd(ﬂl*m) = /g/gf(a‘f—ﬁ)dﬂl(a)dﬂz(ﬁ) =deg(m)/gfduwdeg(ul)/gfduz =0.

Thus we have a L-module morphism ¢ : Z/Z? — ((G ®z, L)¥)" satisfying 1o = «.
Since G is a Zp-module of finite rank, ¢ is an isomorphism. Thus, in order to
prove our result, it is enough to show that ¢ is surjective.
Given the description of O [[F]] as an inverse limit of group algebras, we observe
that at each finite level

Ty :=ker (deg : OL[G/H] = Or) = Z agu(gH —H), agu € OL
gHEG/H

This implies that the corresponding morphism ¢, : G/H ®z, Op — In /T3 i
surjective. We conclude that ¢ is surjective an the result follows.

U&

Corollary 2.2. Assume that G is a (free) Z,-module of finite rank and let GV :=
Homgz, (G,Zy). Then the map

¢ : T/I* — Homg, (G, L), ©w— (eH / ﬂdu) ,
G
is a L-module isomorphism.

Proof. Follows directly from the proof of Proposition [Z11 O

3. LOCAL THEORY

3.1. Universal unramified principal series. Let P C Op be a prime ideal with
uniformizer w, residual characteristic ¢, and valuation v (v(w@) = 1).

Let R be a topological Hausdorff ring and assume o« € R*. Let us consider the
unramified character p, @ Fpy — R, pa(z) = o). This provides the induced
R-representation
(3.2)

VE = {¢ : GLy(Fp) — R continuous : ¢ (( 2 t“; >g> = ua(tg/t1)¢(g)} .

If o = +1, the representation V.Z is reducible, since there is an invariant subspace of
rank 1 over R generated by ¢o(g) = a”(4°*9) We denote by (72, V.[*) the quotient
representation of V.2 by this rank 1 subrepresentation. In the case a # +1, we
write (7, V') for the induced representation Vf* = V. We denote by V.5, V.,
and Wolio the corresponding representations when R considered with the discrete
topology. We call qu,:o the Steinberg representation (the subindex 0 will be dropped
soon because C will be always considered with the trivial topology).

For any ideal ¢ C Op, write Ko(¢) C GL2(Op,) for the subgroup of triangular
matrices modulo ¢, and let Z be the centre of GLo(Fp). By Iwasawa decomposition,
the constant map ¢o(k) = 1, for all k € Ko(1), defines an element of V.7 fixed by
Ko(1) and Z. Moreover, if a # +1, the module (V7)o is the free R-module Rey.
Similarly, if o = £1 the class of the function ¢1(k) = 1x,(p)(k), for all k € Ko(1),
generates (V.)K0(P) freely. In both cases, rankp(V,F)V = 1, where U = Ky(1) or
Ko(P).

Let us consider

IndS?(lR) ={¢ € C(GLy(Fp),R) : ¢(UZg) = ¢(g), compactly supported mod UZ},
and the Hecke algebra HE = IndSIf(l r)Y. Note that, by Frobenius reciprocity,

HE = Homy 7 (1, Ind55? (1g)) = Endgr, (Ind$ 52 (1R)).
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Let g = ( “ 1 ) We consider the element of the Hecke algebra Tp € HE =
(Ind§521x)Y attached to 1yzg v, for U = Ko(1) or Ko(w).

Again by Frobenius reciprocity, elements ¢; € (V.F)V provide GLa(Fp)-module
homomorphisms

@i : IndG? 1R/ (Tp — ap)ndG2 1y — VE
where ap = a+qa~ ' if i =0, and ap = a = +1if i = 1.

Lemma 3.1. [I, Theorem 20] Assume R is a ring endowed with the discrete topol-
og9y. Then @q is injective and w1 is an isomorphism. Moreover, if R is a field then
o s also bijective.

Remark 3.2. We emphasize that g is not an isomorphism in general. If R is a
domain and L its fraction field, we notice that

VEQRL = VE ~ nd52 1L/ (Tp—ap)ndSp? 1, = mdSp2 1R/ (Tp—ap)nd5? 1 R®RL,

where U = K(1). Hence, we have two distinguished but generally distinct GLQ (Fp)—
stable R-modules in VX, namely A = V. and A’ = Ind5;? 15/ (Tp — ap)Ind? g,
satisfying A’ C A.

3.2. Local distributions attached to a torus in GLs. Fix K/F an imaginary
quadratic extension, and assume that we have a fixed embedding K'p — GL2(Fp)
such that its image does not lie in the subgroup Pp C GLa(Fp) of upper triangular
matrices.

Let R be a topological Hausdorff ring, and let us consider the action of T'(Fp)
on C(T(Fp),R), given by t x f(z) := f(t"'z). Since Pp N K5 = Z, the natural
map T(Fp) — GLa(Fp)/Z — Pp\GLa(Fp) ~ PY(Fp) is injective. By abuse of
notation, we denote by p, : Pp — R* the continuous central character associated
with p, as in [B2)). We can construct the following well defined T'(Fp)-equivariant
morphism

50 . 7R, 3a _ [ pa®)f(t7), g=1bt € PpKy
55 CuT(Fp), ) — VI S50 ={ b AT

The composition of 5% with the natural projection gives rise to a morphism
(33) 5T ( (FP) R) — (TraRvVaR)'
Remark 3.3. Note that if K5 is non-split Co(T(Fp), R) = C(T(Fp), R), and 67
is bijective.
Lemma 3.4. Assume that R is a domain endowed with the discrete topology and
a # 1. Then there exists A € R such that

A (Im(7)) € IndG? 1R/ (Tp — ap)ndGy 1g,
where U = Ko(1) = GL2(OF,).
Proof. [ 1f we prove that there exists H C T(Fp) an small enough open compact
neighborhood of 1 such that Im(dr) = R[GLa(Fp)]dr (1), where 1p is the char-
acteristic function of H, then the result will automatically follow. Indeed, we can

choose A € R to be such that Adr(1x) € nd3%1r/(Tp — ap)Indj? 1k
Notice that the continuous equivariant map

b d
¢ : GLy(Fp) — P'(Fp), < Z y > — .

provides an injection of T'(Fp) in P!(Fp) that sends 1 to co. The open subsets
U, = {z € P(Fp), ord(z) < —n} (n > 0) form a neighborhood basis for co and

IDue to L. Gehrmann
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their preimages give rise to neighborhood basis {H,}, of 1 € T'(Fp). We check

that g» = ( “ satisfies that g_'U,, = U,11. Thus,

1
O(Hpy1) = g;lUn = p(Hngw), hence Hy,y1 C PpH,¢w-

Let ng € N be big enough that, for any n > ng, H,, C Ko(1) N g='Ko(1)ge. This
implies that,

Hn-i-l c PPHngw N g;lKO(l)gw = g;l(P"P N KO(l))Hngw-

It is clear that dr(1m,,,)(9) = Ta(95")0r(1m,)(9) = 0 if p(g9) & Unt1. Assume
that ¢(g) € Upt1, then g = bhy,4q for some b € Pp and hp41 € Hyp1. The above
claim implies that hy,41 = g_'0'hngw, where b’ € Pp N Ky(1) and h,, € H,. We
compute

Ta(92)0r(1, ) (9) = 60(1m,)(bhni192") = 60(1m,) (b0 hn) = pa(ge) " e (b)
or(Lr,,)(9) = O6r(Lm, ) (bhnt1) = pa(b)

This implies that 07 (1g, ,,) = pa(9=)Ta (95" )07 (La,) € RGLa(Fp)|or(1y,). By
induction, we deduce that or(1m,) € R[GL2(Fp)]or(1m,,), for any n > 0. Since
1m, generate the T'(Fp)-module C.(T(Fp), R) and dr is T(Fp)-equivariant, the
results follows. 0

3.3. Torus and inner products. For any (finite or indefinite) place v of F, let
D, be the quaternion division algebra over F,. We fix an embedding K — D}
whenever it exists (K, is non-split). Let x, : T(F,) — C* be any continuous
character.

Proposition 3.5 (Saito-Tunnel [23], [25]). Let m, be a representation of GLa(F,)
with central character.
o If either m, is principal or K.\ is split, then dim(Homyp,)(m, ® Xy, C)) = 1.
o If m, is discrete and K, is non-split, then

dim(HomT(Fv)(ﬂ'v ® Xv, C)) + dirn(HornT(Fv)(ﬁ;)]L ® X0, C)) = 1.

JL

where m, " is the Jacquet-Langlands correspondence of m, on D)S.

Assume that 7, (and thus 7/L) is unitarizable, namely, there is an invariant
hermitian inner product (, ) on m, (and 7)%). If dim(Homp(p,)(IL, ® xv, C)) # 0,
where II, = m, or 7%, we can consider the following distinguished element of

v

Homp g, )(H ® Xo, C) ® Homp(p, ) (IL, ® X, L, C):
/an;Xu (uv w) = / <Hv(t)uu w>XU(tv)dXtva u,w € 1I,.
T(Fy)

Proposition 3.6 (Waldspurger [28]). Given Bx, y, or Brir ., , we have

(1) ]f dim(HomT(Fv)(ﬂ—'u & Xv» (C)) 7é 07 then Bﬂ'va 7& 01'
(ii) If dim(Homyp(p,)(my ® xv, C)) = 0, then Brir \, # 0;

(ili) If m, is spherical, x unramified, and w € m, Ko@), (w,w) = 1, then

o 61}( ) (1/2 7T'U7X’U)
ﬁfrmxv (w’w) - L(l 771,) (1 Wv;ad)7
(

v)
Due to this proposition, we can normalize the above pairing as follows:
_ L(1,m,)L(1,7,,ad)
e T @)L(/2,mr X)

where 1, is the quadratic character attached to T

ﬁﬂ'u;XU .
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3.4. Steinberg representations and intertwining operators. In this section,
we fix a prime P, and we consider the field C endowed with discrete topology.
Assume that o = 41, and write as := ¢°a. We observe that the representation

Vfl =Vt .0 admits an infinite dimensional subrepresentation (Vfl 7))

1 7o
‘A/fl—{ngVfl: / gb(g)dg—O}CVfl,
Ko(1)

by Corollary B3 with M = Ko(1), go = 1 and h(g) = a*(4°*9)¢(g) (in this case
PpM = PpKy(1) = GLy(Fp) and dg is any Haar measure of GLa(Fp)).

As above, we fix an embedding K < GL2(Fp) whose image does not lie in Pp,
hence K5 N Pp = Z. By Corollary B4l (comparison) we have that

VE ={9eVE: / ot Mgt)d*t =05 C VE.
T(Fp)

Here the expression a(dt(®) is well-defined for t € T'(Fp), since v(det(z)) € 2Z,
for z € Z.

Let ¢ = 0%(f) € V.E, for some f € Co(T(Fp),C). Then, we can consider its flat
section ([10, §4.5]) ¢ := 07 (f) € V<. The integral

I(¢,s,9) := ¢s(nwg)dn, where Np := {< glc 1 ) Cx € Fp} ~ Fp,
Np

o.;::(l —1>.

converges absolutely for Re(s) > 1/2 and admits analytic continuation to all s € C
[10, Proposition 4.5.6, Proposition 4.5.7]. By abuse of notation, we also denote its
analytic continuation by I(¢, s, g).

Recall that the map

(34) ¢ :GLy(Fp) — Pp\GLy(Fp) — P'(Fp), ( ‘CL Z ) — —g.

provides an injection of T'(Fp) in P! (Fp). We have that ¢o(Npw) = P} (Fp)\ {oo} =
Fp. Hence, for any t € T(Fp) but (possibly) one, there is a unique n € Np, such
that nw € Ppt~*, for any preimage ¢ € K5 of t. We denote this fact by nw € Ppt™*.

Definition 3.7. We consider the function 67(s)(t), defined for almost all t € T'(Fp)
by 07(5)(t) := pa._, (nwt), where nw € Ppt~! and n € Np.

Remark 3.8. The expression fi,, , (nwt) is well-defined, since nwt € Pp, for any
preimage t € K5 of t, and jiq,_, (nwt) does not depend on the given preimage.

If t € T(Fp) and n € Np, let y € T(Fp) such that nw € Ppy~! (this can be
done for all n but maybe finitely many). Thus,

ps(nwt) = ¢u(nwyy't) = K(nwy)pia, _, (nwy) f(t'y)
= k(nwy)0r(s)(y)(t = f)(v),

where k : Pp — R is the modular quasi character defined in Appendix §8 Hence, if
we define hy € C(GLa2(Fp),C) by hi(by) := x(b)0r(s)(y~ 1) (t* f)(y~ 1), for b € Pp
and y € K, we have that ¢,(nwt) = hy(nw). We compute,

(3.5) I(¢,s,t) = (bs(nwt)dn:/ ht(nw)dn:C'T/ hi(y)d*y

Np Np T(Fp)

(3.6) Cr /T o, OB D,

by Comparison (Corollary B.4).
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We define A(¢)(g) := I(¢,0,g). The following result proves that the expression
A(¢@) provides a well-defined intertwining operator.

Proposition 3.9. We have that:

(1) I((bv S, bg) = Maq_s (b)1(¢a S, g)) thus: A(¢) € V($1 .
(ii) The image of the morphism

A:VE—VE ¢ A(9)

lies in fact in Vfl
(iil) Let ¢o € V.S, defined by ¢o(g) = (@49 then A(po) = 0.

(iv) The intertwining operator A induces an isomorphism
A VE 2 VE,

Proof. Part (i) follows from a direct computation. Part (i) follows from the fact
that A~ ( N 1) must be an infinite dimensional subrepresentation of V.C, hence it
must be VT itself. Notice that, if A(¢g) # 0, it generates a 1-dimensional subrep-
resentation in Vfl. Since Vfl has no 1-dimensional subrepresentations, part (i)
follows. Finally, part (iv) follows from the fact that V.C is irreducible and A is
non-zero. O

3.5. Local pairings. Throughout this section we will choose the Haar measure
of T(Fp) so that the image of OIX(P has volume 1. In the previous sections, we

have defined a T'(Fp)-equivariant morphism or : Co(T(Fp),C) — (mp, Vp), for

any representation 7p := 75, associated with o € C*. Moreover, we have de-

fined the pairing Br, yv» : Vp X Vp — C. The aim of this section is to compute

Brp xr (07 (f1),61(f2)), for f1, f2 € Co(T(Fp), C).

We assume that either o = +1 or |a|?> = ¢, the cardinal of the residue field of
F. We know that the representation is unitarizable, namely, there is an invariant
hermitian inner product (-,-) : Vp x Vp — C. First, let us fix the inner product:

Definition 3.10. If either a = 41 or |a|?> = ¢, we denote by (,-) the hermitian
inner product on (Vp,mp) := (Viog, 75 ) given by
SRR R
7 fKo(l) 1 ( )A(192>( )dg, o ==+1,

for any 1,95 € V(;C,o- It is G-invariant, by Corollary R3] of the Appendix with
M/Zy = K.

Remark 3.11. Note that, in the case o = %1, the integral fK ) 191( YA(V2)(g)dg

does not depend on the representative of ¥; and ¥, in VL 0, since A(¢g) = 0 by
Proposition B9 (iii) and

| ooRT@ds = [ RT@ds=o.
Ko(1)

Ko(1)
by Proposition B9 (ii).
The following result computes the pairing (-, -) in terms of the torus T(Fp).

Proposition 3.12. There exists a constant cp such that

) Sy 020, o =g,
CT1<191,192> - { f; (192)( )d>< a = :|:1,

for all ¥1,94 € Vp.
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Proof. Note that, T'(Fp) N Pp = Z because K5 ¢ Pp. Since |a|?> = g or 1, we have
that

hg) = { D1(9)02(9), o> =q,

U1(g)A(W2)(9), a= =1,
satisfies h(bg) = k(b)h(g), where k is the modular quasicharacter. The result follows
now from Corollary B4l of the Appendix with My /Zy;, = Ko(1), Ma/Zn, = T(Fp).
O

Proposition 3.13. Assume that K5 ¢ Pp, and let fi, fo € Co(T(Fp),C). Then,
there is a non-zero constant cr, depending on T(F'p), such that Brp rp (07 (f1), 07 (f2))
equals to:

er (Jrirmy HOXE O ) (frp,) L5 HA1), ol =4,
cr (fT(Fp) fl(t)val(t)dXt) (fT(FP) A(5T(f2))(t)><7>(t)dxt), a=+1.

Proof. Let f5 := f2 if |a|?> = q and f5(x) = A(57r(f2))(z7 ) if @ = £1. Using
Proposition B.12, we obtain,

/ (mp (057 (F2). 67(f2)p ()<t = e / / £ (@B e (t)d* zd*t
T(Fp) T(Fp)

=cr </T(Fp)f1(y)xp (y)dxy> (/T(Fp)fz*(y)xP (y)dxy>,

and the result follows (we are allowed to exchange the order of the integrals, since
fi € Co(T(Fp),C)). .

Let us assume for the rest of the section that o = 1. Proposition B.13] implies
that, in order to compute By, v (07(f1),07(f2)), one has to describe the integral

fT(FP) A7 (f)(E)xp(t)d*t in terms of f € Co(T(Fp),C). By Equation (3.6)

/ 152(f), 5, O)xp(D)d"t = Cr / / 00(5) () £ (4~ ) xp (D)0 yd
T(Fp) T(Fp) JT(Fp)

— s X -1 X )
=COr (/T(FP)QT( )(E)xp(t)d t) (/T(Fp)f(t)xp (t)d t)

Again, the integral IT(xp,s) = fT(FP) O (s)(t)xp (t)d*t converges absolutely for
Re(s) > 1/2 and admits analytic continuation to all s € C. By abuse of notation,
denote also by Ir(xp,s) its analytic continuation. We conclude

[ At = Crirte0) [ St e
T(Fp)

T(Fp)

Remark 3.14. If we assume that yp(t) = o*(4*®) for all ¢ = 67(f) € Vp

0= / o’ A (p)(£)d*t = CpIr(xp,0) / o/ det®) £(1)d*t
T(Fp) T(Fp)

by Proposition (ii). This implies that I7(xp,0) = 0 in this case. We call this
the Fxcepcional Zero Phenomenon.

Let n be the quadratic character associated with T'(Fp). Hence L(s,n) = (1 —
q )"t if Kp/Fp is split, L(s,n) = (1 +¢*)~! if Kp/Fp is inert, or L(s,n) =
1 if Kp/Fp is ramified. Recall the local Riemann zeta function (p(s) = (1 —
q~*)~!. Note that the maximal compact subgroup Hy of T'(Fp) admits a natural
composition series Hy 2 Hy 2 --- 2 H, 2 --- such that [H, : Hy41] = g, for
all n > 0. Given xp, its conductor n, is the integer such that xp |an: 1 and

XP |k, 1 # 1.
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Theorem 3.15. There is an integer ny, depending on the embedding Kj —
GLa(Fp), such that the analytic continuation IT(xp,s) is given by

; ( ) q(2725)nT L(l, n) gzgi&i; q(1*25)nxj XP |(9K7>; # 1,
T\XP,S8) = (2—2s)n (p(2s—1) L(—=s+1/2,mp,xP) _
q "L ) GG o1 /2 0 XP |OK;_ 1.

where ny, is the conductor of xp and, for an unramified character xp,

(1 —axp(@)g 27 (1 — axp(w)tq*"/2)7!, Kp/Fp splits

L(S, p, Xp) = (1 - q_QS_l)_l Kp/Fp mert

(1—ax(wx)g*~1/2)7, Kp/Fp ramifies,
with wg a uniformizer of Ok, in the ramified case.

Proof. Let us assume that the embedding is given by

KX < GLy(Fp);  tr—s ( igg Zg )

Hence we compute

$)(4) = 1 W (@) o) _ (det()
) “(( 8 1) (50 0 ))

Assume that Kp is split. Thus T(Fp) ~ Fj. Since any split torus is
conjugated to the group of diagonal matrices, we compute that det(z) = = and
¢(z) = C(x — 1), for some C' € Fp. Since K5 ¢ Pp, we have C' # 0. Hence we
write np = ord(C') > —co. We write Op = Op,, and compute

det(t)|'™*

c(t)?

x 1-s
d*z

C2(x — 1)

Ir(xp,s) = /T(F )HT(S)(t)Xp(t)dXt:/ xp(z)a @

X
Fp

= g2nr (/ a”(””)XP(:v)|5U|S_1dX:c+/ xp(@)e — 1> 72d* o+
Fp\Op 0

P
+/ a”(m)xp(:c)|:c|1_sdxx> :
0p\O%

Two of these integrals can be calculated easily:

s—1 -1
[ @ = fEEE ],
Fp\Op 1—gtaxp(@)~! Jox

¢* taxp(w)
/ oD yp(z) |z 5d¥e = — / xp(z)d*x.
0p\O% 1— ¢~ taxp(w) Jox

For any n > 0, we have that H,, := 1 +w@"Op. By orthogonality an xp(x)d*x =0
if n <ny, and [; xp(r)d*z = vol(H,) otherwise. Since [0* : O] =¢""'(¢ — 1)
for n > 0, and the Haar measure satisfies vol(O3) = 1, we obtain that vol(H,) =
(g —1)7'¢"™™ (n > 0), vol(H, \ Hog1) = ¢™ (n > 0) and vol(OF5 \ Hy) =
(¢ —1)""(g —2). Thus,

[ ow@le-1pats = S [ @
OX

P n>0 Hu\Hnt1
(1=2s)ny+1_ (1—2s)(ny—1)
q q
_ T 0 x>
q_2+q172s n . 0
G D7) x =0
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We conclude

(2—2s)np

_ (1—q'2%)(¢—1) (q(l_%)nxﬂ - q(l_%)(n"_l))u ny >0,
IT(X'P, S) — q(2725)nT(1iq2372) ( (lfaX'p(w)qis)(lfa)(p(w)ilqis ) ne — O
(I-¢~H(A-q"7%) \(I-axp(@)¢"~ " (A-axp(w) '¢°~1) )’ X

Assume that Kp is inert. Thus K ~ @w”Oy . We have T(Fp) = O _/Of
and Ok, = Op + BOp, for some § € O . Let nr := v(c(8)). In this case
H, = (0Op + @"B0p)* /Oy, for every n € N, we compute

Ir(xms) = /T o, O OX (0= /O o PO

/ Xp(t)q(nT+n)(2_28)dXt.
nZO H71\Hn+1

This implies that

IT(XP7 S) — Z q(nT+n)(2725) / Xp(t)dx t+ Z q(nT+n)(272s)Vol(Hn\Hn+1)
H.

Ny >n>0 n\Hnt1 n>ny

When the character x |g, is not trivial (n < n,), we have that [, xp(t)d*t =0,
by orthogonality. This implies that, if n < n, —1,

[ weai= [ ewate- [ oo
H71\Hn+1 n Hn+1

On the other side, if n =n, —1,

/ p(B)d*t = / (Bt - / Xp(O)d*t = —vol(H,,. ).
H"X*1\H"x Hpy -1 Hp

Note that T'(Fp) is compact and vol(T(Fp)) = 1. Moreover, we compute that
vol(H,) = (¢g+1) "¢ =™ whenever n > 0. Thus vol(H,\H,+1) = (¢+1) "¢ "(¢—1)
if n > 0, and vol(Hy \ H1) = g(g + 1)~!. With all these computations we obtain
the value of It (xp,s):

(2—2s)n —926) (1. — —2s)n

quT (_q(l 25)(nx—1) + (q - 1) Enan q(l . ) r X # 1
IT(XP, S) = 229 (1-2s)n

o (gt (a1 ,50d" "), =t

We conclude that
q(2s—2nT ( (1—28)ny+1 (1-2s)(ny—1)
A== ¢ 4 ) x#1
tras) = | LT

wr e (L= a7

; x=1
Assume that Kp ramifies. Thus K} ~ w%((’)IX(P, where @w? € wOp. This

implies T'(Fp) = wi/zz x O /Op and |det(wk)| = ¢. Note that Ok, = Op +

wrOp, and let ny := ord(c(wk)). In this case H, = (Op + @w"wrOp)* /OF.

1—s

det(t) o

c(t)?

Ir(xp.s) = /T o OO = / a4t o (1)

T(Fp)

- @O [ el
wKOF [OF 0%, /0%

= q(z"T_”(l_s)axP(wK)/ xp(t)d*t + Z/ xp(£)gnrtmE=29) gy
0;27;/(9; n>0 Hy\Hp41

Again, by orthogonality, fH xp(t)d*t =01if n < ny, — 1. Moreover, vol(H,) =q¢ "
and vol(H,, \ Hp4+1) = ¢ " 1(q — 1), for n > 0. Some computations analogous to
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the previous cases yield the formula

q(2—25)nT _q(1—2s)(nx—1) 4 Znanfl q(l—ZS)n—l(q _ 1)) My > 1

IT(XPv S)
g2 (g raxp (wr) + 250 ¢ 2 g — 1)) ; ny =1
(2—2s)n
S = TN
- 2—2s)n
(117(1%(1 axp(wk)g*)(1+ aX"P(wK)qS_l)v ny =1,
since (axp(wk))? = 1. O

Corollary 3.16. The analytic continuation It (xp,s) satisfies Ir(xp,0) = 0 if,
and only if, xp(t) = a¥(det®)

Proof. This follows directly from the above result, observing that (p(—1) # 0,
p(2)71 # 0, L(1/2,7mp,xp) # 0 and L(—1/2,7p,xp)" ' = 0, if, and only if,
xp(t) = v (det(t)) 0

Corollary 3.17. Assume that K3 ¢ Pp, and let fi, fa € Co(T(Fp),C). Then,
there exists a non-zero constant Kr, depending on T(Fp) and wp, such that

Urpxp (07(f1), 07 (f2)) = Krep(mp, xP) </f1 t)d*t > </f2 Xp' )dXt)
L(1, L(1,mp,ad _
T T x;>) laf? = q,
_ , 12T
(Krventmp o) = { (erOrHBlel o™ oy a2t xp o =1,
A L(1,n)*¢p(-1)g>"T "X _
(CTCT BCIOR L(l/zq,m,xp)) ,a==+l xp |0,§7,7£ 1,

where n,, is the conductor of xp.

4. COHOMOLOGY OF AUTOMORPHIC FORMS AND SHIMURA CURVES

For any quaternion algebra B/F, we write Gg(F)" C Gp(F) for the subgroup
of elements of positive norm.
Let S be a finite set of nonarchimedean places. We shall usually consider Gg(F)

in Gp(FS) by means of the natural monomorphism. Given any ring R, let N, M
be a R[G(F)]-module and a R-module respectively. We define A% (N, M) to be the

module of functions f : Gp(FS) — Hompg(N, M) such that there exists an open
compact subgroup U C Gp(F*®) such that f(- U) = f(-). Note that A%(N, M) is
equipped with commuting Gg(F)- and G B(F )-actions:

(v-Nlg) =~ (fly v € Gp(F),
(h-f)lg) = f(gh)) h € Gp(F%);

where g € G(F®), f € A% (N, M) and we are considering the usual action of G g (F)
on Hompg(N, M). We write AS(N, M) instead of A{BQ}(N, M) and Ag(N, M) in-
stead of A% (N, M). Similarly, we define A% (M) := A% (R, M), where R is endowed
with trivial Gp(F)-action. Note that, if M and N are C-vector spaces for some
field C, then HY(H, A% (N, M)) is a smooth G (F')-representation over C, for any
subgroup H C Gp(F).
Remark 4.1. For any Gp(F)-module M’ and any G p(Fg)-representation M over
R, we have an isomorphism of (G (F), Gp(F))-representations:
¢ : Homg , (po) (M, Ag(M',N)) — AZ(M @r M',N)

® — o(p)(g)(m @m') = p(m)(g)(m'),

with inverse ¢~ 1(f)(m)(gs, g)(m’) :== f(g)(gsm@m’), for all g € Gp(FS), m € M,
m' € M’ and gs € Gg( 5)

(4.7)
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Lemma 4.2. Assume that M is an R-module and R — R’ a flat ring homomor-
phism. Then the canonical map

HY(Gp(F), A3(M) @g R') — HY(Gp(F), A3(M @r R'))
is an isomorphism for all ¢ > 0.

Proof. This result can be found essentially in [24] Corollary 4.7]. O

4.1. Abel-Jacobi map on Shimura curves. In this section, we assume that
B/F is a quaternion algebra that splits at a single place o | co. Let us consider the

C-vector space A(C) of functions f : Gg(F,) X Gp(F) — C such that:

e There is an open compact subgroup U C Gp(F) such that f(- U) = f(-).

¢ flasr,) € C°(PGL2(R),C), under a fixed identification Gp(F,) ~ PGL2(R).

e Fixing O,, a maximal compact subgroup of G5 (F, ) isomorphic to the im-
age of O(2), we assume that any f € A(C) is O,-finite, namely, its right
translates by elements of O, span a finite-dimensional vector space.

e We assume that any f € A(C) must be Z-finite, where Z is the centre of
the universal enveloping algebra of the Lie algebra of Gg(Fy).

Write p for the action of Gp(F,) x Gg(F) given by right translation, (A(C),p)

defines a smooth G p(F)-representation and a (go, Oy )-module, where g, is the Lie
algebra of Gp(F,). Moreover, A(C) is also equipped with the Gp(F)-action:

(h'f)(gdag) = f(hilgdvhilg)a h € GB(F)v g€ GB(F)v go € GB(FtT)a f € A(C)

Let us fix an isomorphism G (F,) ~ PGL2(R) that maps O, to the image of O(2).
Let V be a (go, O, )-module. In analogy with Remark F1] we define

A?(V,C) := Homgy, o,)(V, A(C)),

endowed with the natural Gg(F)- and G (F)-actions. Let us consider 1-dimensional
PGLy(R)-representations C(£1) of Appendix 2 §9 Note that we have the isomor-
phism of (Gp(F), Gp(F))-modules

57 A7(C(£1),C) — Ap(C(£1),C);  s7(d)(95)(2) = 8(2)(1, 95)-
4.1.1. Cohomology of a Shimura curve. For any open compact subgroup U C G (F‘),

let us consider the Shimura curve Xy, whose set of non-cuspidal points Yy (C) is in
correspondence with the double coset space:

Yu(€) = Gu(F)"\ (% x Ga(F)/U) € Xu(©),

where §) is the Poincaré upper half-plane. It is well known that the space of holo-
morphic forms Q. of Yy can be identified with H(Gp(F), A% (D,C)Y) by means
of the morphism

H(Gp(F),A%(D,C)7) — Qy,; &= ws(geoi, g5) = %éb(fﬂf;l(gooagf)dﬂ
where D is the discrete series representation of weight 2, fo € D is a generator
(see Appendix 2 §9), g; € Gp(F), goo € Gp(F,)T, and 7 = goi € . Note that
d(f2)f5 ! is a function on Gp(F,)T/SO(2) x Gp(F) = § x G(F). It defines a
differential form on Yy because ¢ is G(F)-invariant. Moreover, wg is holomorphic
since Lfa =0 (see (@39)) and ¢ is a morphism of (g,, O, )-modules.

We claim that (@41) and [@.42) provide exact sequences

(4.8) 0 — Ap(C) -5 A4°(T+,C) 25 A% (D,C) — 0;

(4.9) 0 — Ap(C(~1),C) “> A°(I~,C) 25 A7(D,C) — 0.

Indeed, since Homg, o,)(+, A(C)) is left exact, we only have to check that pr* is
surjective. We note that I+ is generated as a (go, O, )-module by fo, and Rfy = fa,
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Lfy = f_2 by (@39). Hence, any p* € A?(I*,C) is characterized by ¢*(fy) €
A(C). Given ¢ € A?(D,C), to find a pre-image p* € (pr¥)~!(¢) is equivalent to
find a SO(2)-invariant h = p*(fo) € A(C), such that Rh = ¢(fa) and Lh = ¢(f_2).
Since,
o 0 0 0 0
2 e — 9 f — _9g —_
Rh = iye (8:1: Z@y) h=2if; aTh, Lh 2if_o 87__11,

we deduce that any pre-image p* € (pr¥)~'¢ is characterized by

de* (o) = 50025 M7 — S0 ) ~Adr

Hence, since any closed differential 1-form in §) is exact, the claim follows.
The difference between exact sequences ([@L8)) and (£9) is the action of complex
conjugation. We know that complex conjugation acts on Yy (C) by sending (7, gy)

to (v7,7gs), for any 7 € $, g € Gp(F) and v € Gp(F) \ Gg(F)*. Given
Jool =T € 9,

1 ~1
Wo(T,95) = we (V7. vg5) = %fb(fz)f{l(vgoowmgf)dv? = %sb(wfz)fizl (9o 97)dT,

since fa(wgoow) = f-2(goo), for all goo € PGLo(R)™". As it is shown in Appendix 2
9 d(wf2) = £é(f—2) depending whether we have chosen exact sequence (L)) or
([@3). We deduce that

(4.10) g™ (fo) = m(wg £ @g).

Since Ap(C(—1),C) and Ap(C) are isomorphic as (Gp(F)*, Gp(F))-modules,
the composition of the connection morphisms of exact sequences (L&) and (Z9)
with the natural restriction map provide morphisms in cohomology

oF : HY(Gp(F),A°(D,C)Y) — HY(Gp(F)*, Ag(C)Y).

We can identify H'(Gg(F)*, A(C)Y) with the singular cohomology of Xy with
coefficients in C. Moreover, once we interpret H°(Gp(F), A% (D,C)Y) as the holo-
morphic differentials of Y77, the morphisms 07 and 0~ correspond to

c* Qy, = H' (Xy, C); Wy — (c>—> /(w¢, :I:w¢)) ,

(&

by @.I0).

Remark 4.3. Note that H'(Xy,Q) = H(Xy, Q) @ HY (Xy, Q) ™, where H (Xy, Q)*
is the subspace where complex conjugation acts by +1, respectively. Then it is clear
that H'(Xy,C)* ~ HY(Gp(F), Ap(C(£1),C)V) and C*(Qk ) = H*(Xy,C)*.

Let H C $) be a G (F)T-subset. Write Ay = Z[H|, equipped with the natural
degree morphism deg : Ay — Z. If AY is the kernel of deg, then both Ay and AY
are Gp(F)T-modules. Moreover, we have the exact sequence

(4.11) 0 — AS(M) 255 A3 (Ag, M) —s AS(AY, M) — 0.

Lemma 4.4. The well defined Gp(F)™ -equivariant morphism

L o) (. 9),

™

vt A7(IF,C) — Ap(Ap,C);  ev™(9)(9)(7)
makes the following diagram commutative

Pri

(412)  0—— Ap(C(£1),C) > A°(I*,C) A°(D,C) —=0

Idl evil evoil

0
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where the map Id : Ag(C(£1),C) — Ap(C) is the natural identification as Gg(F)"-
modules.

Proof. We compute that

HE DN = D9 = 210) ([ a8) = deg’ (@) o).

Hence, deg® = ev™ o1*. The existence of evoi follows from a diagram chasing. [

The corresponding morphism in cohomology
evy : H(Gp(F), A°(D,C)") — H(Gp(F)", Ap(A%, C)Y),
has also a geometric interpretation. Indeed, for any m = >, n;7; € AY and g €

Gp(F), we have the divisor (m,gU) = .. ni(m,gU) € Div’(Yy). By @I0), we
have that

(4.13) wawwm=1 | (ot

Hence, ev, and evéIr define the real and imaginary part, respectively, of the image
of (m, gU) € Div"(Yyy) under the Abel-Jacobi map.

4.2. Multiplicity one. Let II be an automorphic parallel weight 2 representation
of Gg(AF), let TI® be its restriction to G(F%), and let Ly be its field of definition.
Thus, there is a smooth irreducible Lp-representation V' of G B(F ), such that
II° ~ V @ C. For an extension L/Ly and a smooth semi-simple L-representation
W of Gg(F?%), we write Wy for Homg, sy (1%, W) := Homg, sy (V @1y L, W).

Definition 4.5. A GB(FS)—representation W over L is of automorphic type it W
is smooth and semi-simple and the only irreducible subrepresentations of W are
either the one-dimensional representations or the G (F‘S )-representations over L,
attached to automorphic representations of Gp(Ap) with parallel weight 2 .

Let W be a G B(ﬁ' 9)-representation over L of automorphic type. By strong
multiplicity one, W is independent of the set S in the following sense: if S” D S
and Us: = [[,egn s Uv is the open subgroup of Gp(Fs) such that dim(Hg,s') =1,
then we have

veSs’

Homg (s (S Wls') = HomGB(FS)(H57 W).

Proposition 4.6. Assume that the quaternion algebra B/F is either totally definite
or splits at a single archimedean place. Then, for any extension L/Ly, the Gg(F)-
representation HY(Gp(F), Ag(L)) is of automorphic type for all q € Z. Moreover,

HY(Gp(F),Ap(L))n ~ L and H*(Gp(F),Ap(L))n =0 (k #0); if B totally definite
HYGp(F),Ap(L))n ~ L and H*(Gp(F),Ap(L))n =0 (k#1); otherwise.

Proof. Let U C Gp (13') be an open compact subgroup.

In the totally definite case, the double coset space Xy = Gp(F)\Gp(F)/U
is a finite set of points. The group H*(Gp(F), Ap(L))Y can be identified with
the singular cohomology of Xy with coefficients in L. Thus, we deduce that
H*(Gp(F),Ag(L)) = 0 for k > 0. Moreover, H(Gg(F), Ag(L)) is in corre-
spondence with the set of modular forms ¢ : Gp(F)\Gp(Ar)/UGp(Fsx) — C, for
some open compact subgroup U C Gg(F). This proves that H*(Gp(F), Ag(L)) is
of automorphic type and, by multiplicity one, H(Gp(F), Ag(L))n = L.

In case B splits at a single archimedean place o, the groups H* (G (F)*, Ag(L)Y)
can be identified with the singular cohomology of the Shimura curve Xy with coef-
ficients in L. Thus, H*(Gg(F)*, Ap(L)) =0, for k > 2, H(Gp(F)*, Ag(L)) and
H?(Gp(F)*,Ap(L)) contain only one-dimensional irreducible subrepresentations
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and, by Eichler-Shimura, H'(Gg(F)", Ag(L))n = L & L. Moreover, the groups
H¥(Gp(F)*, Ap(L)) come equipped with an action of Gp(F)/Gp(F)t ~ Z/2Z
given by conjugation. We can identify H*(Gp(F), Ag(L)) as the elements of
HY(Gp(F)*, Ap(L)) fixed by Gg(F)/Gg(F)*. This implies that H*(Gg(F), Ag(L))
is of automorphic type and H(Gg(F), Ag(L)) ~ L. O

5. p-ADIC GLOBAL DISTRIBUTIONS AND MEASURES

5.1. Definite anticyclotomic distributions. Let P be a prime ideal of F' above
p write Op := Op,, and denote by Y the set of infinite places of F'. Fixing an
open subgroup I' € T(FF), we shall consider the p-adic abelian extension of K
associated with ', namely, the maximal abelian p-adic anticyclotomic Galois group
Gk such that the Artin map pa : T(Ap)/T(F) — Gj p factors through I'.

Remark 5.1. If, instead of anticyclotomic extensions of K, we want to consider
cyclotomic extensions of F'; we only have to consider the trivial extension K = F' x F'
(Notice that in this case T(F) = F*). The formalism on the construction of the
cyclotomic p-adic L-function is completely analogous (see [24]).

Let B/F be a quaternion algebra that splits at P. Let (II, Vi1) be an automor-
phic representation of Gg(Ar), and let us identify Vi1 with a subrepresentation of
HY(Gp(F), A(C)). Let also assume that (Ilp, Vir,) =~ (75, V.C), where a = +1 or
la| = q. By the Tensor Product Theorem [I0, Theorem 3.3.3], Vi1 ~ @', Vi1,. Let
U c Gp(F) be an open compact subgroup satisfying dimc(®;,{oo Vi, )V = 1 and
Up = GLy(Op) or Ko(w). Write U = Up x UF. Again by the Tensor Product
Theorem, we have a G(Fp)-equivariant morphism

(5.14) Ve~ Vi, — W

Remark 5.2. Note that the above morphism is not unique in general. Nevertheless,
since dim(c(®;)(oo Vi1, )Y = 1, this morphism is unique up to constant if Vi, is trivial
for all v | co. This will be the case when the quaternion algebra B is totally definite

and the automorphic representation II is of parallel weight 2.

Assume that for every prime dividing the discriminant of B the extension K/F is
non-split. This implies that there exists a (fixed) embedding ¢+ : K — B. Hence, we
can consider 7" inside G by means of ¢. Let us also assume that T(FP) NUP =T.
We choose Pp C Gp(Fp), some conjugate of the group of upper triangular matrices,
in such a way that T(Fp) ¢ Pp. Let R C C be any ring (endowed with the discrete
topology) such that a € R*. The map dr of B3] provides a T'(Fp)-equivariant
R-module morphism

(5.15) §: Co(T(Fp), R) 25 VR C Vg, B3 yu”,

Finally, we define the distribution pj » on Gi p as follows: for g € C(Gj p,C) =
Cc(gg(JDa (C)Oa

J

where H C T(Fp) is an open subgroup small enough that g o p4 is H-invariant,
1y € C.(T(Fp),Z) is the characteristic function of H, and Hp is the maximal open
subgroup of T'(Fp). A simple computation shows that the above definition does not
depend on the choice of H.

In the cyclotomic setting, Leopoldt’s conjecture predicts that the maximal abelian
extension of F' unramified outside oo and p is isomorphic to Z, up to a finite group.
The following lemma describes the free part of the Galois group g};p, and estab-
lishes a big difference between the cyclotomic and the anticyclotomic setting:

9N () i= i H) [ glpa()d(in) @)
T(Ar)/T(F)

r
K,P
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Lemma 5.3. Let GII})P be the torsion subgroup ofgg(ﬂ;. Then gfm = GFKJ) xGKk P,
where G p = zF ]
Remark 5.4. Observe that Gx p does not depend on I'.

Proof. First note that the Artin map factors through T'(F)/TT(F). Since T' C
T(EFP) is open, T(F)/T = T(Fp) x T(FP)/T where T(EFP)/T is discrete. Moreover,

1
(5.16) rankz (0% ) = §[K :Q]—1=[F:Q]—1=rankz(O}).
Hence T'(F) is a discrete subgroup of T'(F). We deduce that the Z,-rank of Gk.p
coincides with the Z,-rank of Oy 5 /OF , which is clearly [Fp : Q). O

From now on, we shall consider the distributions M?(,P restricted to functions
supported on Gk p.

5.1.1. Waldspurger formula and interpolation properties. Let us consider (m, V),
an irreducible cuspidal automorphic representation in L?(GLo(F)\GLa(AFr)) with
trivial central character and parallel weight 2, and let y be a finite character of
T(Ap)/T(F). Write L(s, 7k, x) for the Rankin-Selberg L-series associated with m,
x and K. We also consider the finite sets of places of F’

(5.17) X = {v: dim(Hompg,) (7 ® X0, C)) = 0},
(5.18) $X: = {vfoo: dim(Homp g,y (7, ® X0, C)) = 0}.

Let B/F be a quaternion algebra with ramification set 5. For any place v of
F, denote by (72, Vﬂf) the Jacquet-Langlands lift of the local representation m,
on Gg(F,) (if v € ¥p, then 72 = m,). We also consider the global Jacquet-
Langlands lift (72, V,5) of 7 on Gp(Af). Invoking again the Tensor Product The-

(
orem, (12, V) ~ (Q, 72, Q) V). We define the following pairing on 7

I i¢)
Orox = L)L (L, ad) 1:[“’“’?

where 7 : A /F*Ng p(Aj) — {£1} is the quadratic character associated with the
extension K/F and a,p are the local pairings defined in §3.31 The pairing 5, is
well-defined by Proposition The following result is due to Waldspurger [28§]:

Theorem 5.5 (Waldspurger). Assume that ¢ € Vs corresponds to Q, f, € ®; Ve
under the isomorphism w8 ~ ®; 7B, then
2

/ XS] = ZL(1/2 w1 )L 1) Bt (0o B0 o).
T(Ar)/T(F)

Moreover, the above expression is 0 unless ¥g = XX.

By Saito-Tunnel (Proposition[3.5), if K does not split at some place o | co, then
Yoo C XX for every finite character x. Since the C-vector space in C(Gk p,C)
is generated by the set of finite characters with trivial component outside P, we
deduce the following direct consequence of the Waldspurger formula:

Corollary 5.6. The condition L1\{P} = X is necessary for the Jacquet-Langlands
lift ©8 and the distribution ,u}r(};; to be non-zero. In particular, B is totally definite

and #(EL\ {P}) + [F : Q] is even.

Remark 5.7. The above result implies that whenever #(31 \ {P}) + [F : Q] is
odd we will not be able to construct non-zero anticyclotomic p-adic distributions of
Gk p using the previous procedure. In §5.4] we will explain a different procedure
to deal with this situation.
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Definition 5.8. Let (7, V) be an irreducible cuspidal automorphic representation
in L?(GL2(F)\GL2(Ar)) with trivial central character and parallel weight 2, and
assume that (mp, Vy,) = (75, V), where a = £1 or |a|?> = ¢. Under the assump-
tion that # (3L \ {P}) + [F : Q] is even, we define p9¢ts to be the distribution ,u}fp
of Gi p, where 70 is the corresponding Jacquet-Langlands automorphic represen-
tation attached to the totally definite quaternion algebra D/F with ramification set

(X \{P}) UZw.

Theorem 5.9 (Interpolation Property). There is a non-zero constant Ci depend-
ing on K/F such that, for any continuous character x : Ggp — C*,

2

L(1/2, 7k, X)
d def =CrC PR AT
/gK’P X(’Y) /LK77)(’Y) K (WPvXP) L(l,w,ad) ’
where
L(1,7mp,ad _
L(l(/2,7|7';7;,x7);)7 |Oé|2 =q,
Clnp,xp) =3 TE 2w @=L xplog =1

q"x

ey @=L xelog #1,

and n,, s the conductor of xp.

Proof. In order to define ,u}}?p, we have to choose a Gp(Fp)-equivariant morphism
Ve — VWUDP, which is unique up to constant by Remark Assume that 6(1g)
corresponds to @, fu € ®; Vzp under the isomorphism of the Tensor Product
Theorem. Thus, f, € Vﬂ[{; is a generator of Vip as C[Gp(F,)]-module for all
vtooP, and fp = dr(ly). We compute that

2 2

/ X(pa(0)3 (L) (1)d* t
T(Ar)/T(F)

2L(1/27 TK, X)
L(1,7,ad)

= [Hp:H]?

/g X ()

C¢[H7) : H] Urp xp (6T(1H)75T(1H))7
where Cy = $£(2) [Lop @xp x, (fo, fo). Since x is a character of G p, the com-

ponents Y, at v # P are trivial. By Proposition 3.5 the choice of the quaternion
algebra ensures that .o\ (fv, fu) # 0 for v # P, thus Cy # 0. By Corollary 3.17,

Urp,xp (5T(1H), 5T(1H)) = kTO(TFp, )(7>)V01(I{)27

for some non-zero constant k7 depending on T'(Fp). Finally, the result follows from
the fact that vol(H)[Hp : H| = vol(Hp) is a fixed constant. O

Sometimes it is more convenient to compute the square of the integral rather
than the square of its absolute value. Although it is not complicated to compute
such square, we have preferred to compute the absolute value in order to have more
analogy with the indefinite setting. Recent results by P-C. Hung compute explicitly
such square when U = TI'y(n) and we have a fixed morphism (&.14) provided by a
given newform (see [19] for more details).

5.2. Cohomological interpretation of u‘}gfp. We showed in the proof of Lemma

B3 that T(F) is a discrete subgroup in T(F'). The Artin map provides an isomor-
phism gfm) ~ T(F)/T(F)T, for some open compact subgroup I' C T(F'7). Hence,
for any Hausdorff topological ring R, we have an injection

(5.19) d:C(Gk.p,R) = Ho(T(F),C.(T(F)/T,R)).



ANTICYCLOTOMIC p-ADIC L-FUNCTIONS AND THE EXCEPTIONAL ZERO PHENOMENO23

Moreover, the natural map
(5.20)

Ce(T(Fp), R) @r Co(T(EFP)/T, R)g — Ce(T(F)/T,R); (fp @ fF) — fp- f7,

is an isomorphism and, since T'(FP)/T is discrete, any f7 € C.(T(FF)/T, R)y can
be written as a finite combination of characteristic functions of T'(F7)/T.

Since the representation (7P,V,p) satisfies (75, Vﬂg) ~ (75, VE), equation
(E19) provides an element ¢ € Homg, (rp) (VS, Ap(C)V7) = AR (VE, C)V”, which
is unique up to constant by Remark[5.2l Since 7
¢ € HO(Gp(F), AR (VE,C)V7).

is an automorphic representation,

Lemma 5.10. We have a natural isomorphism
H* (GD(F),A}; (mdﬁf””h /T, R)) ~ H*(Gp(F), AR (Ind§f<F7’>1 w/T, R’)® wR),

for any ideal T C Indgf(FP)lR/, any k € N and any flat ring homomorphism
R — R.

Proof. Let ¢ € H (GD(F), AP (Indg:(FP)l »/Z, R)). By Remark ECT]

AP (Indg":(F”) 1r/T, R) ~ Home,, () (Indg"f(F”MR /T, AD(R))

Moreover, ¢(1y,) € H¥(Gp(F), Ap(R')) ®r R by Lemma 2, hence the result
follows. O

Since VI = Indgf(FP)lL/(T —a) (L =C or Q) by Lemma[31], the above result

implies that we can assume that ¢ € HO(GD(F),AB(Vg,Q)UP). The T(Fp)-
equivariant Q-module morphism

7 : Co(T(Fp),Q) — VT,

provides a T'(F')-equivariant morphism
(5.21)

K ARVE,C)YT — CuT(E)/T,C)s (5(9), frafT) = Y [P (@)o@)(0p(fp)).

z€T(FP)/T
We deduce that
| oty (2) = strese) 0 0,
Ok, P

where res : HO(Gp(F), AR (VQ,Q)) — HYT(F), AB(VR,Q)) is the restriction
map.

5.3. Heegner points and Gross-Zagier-Zhang formula. Let B/F now be a
quaternion algebra that splits at a single archimedean place o, and admitting an
embedding K — B.

Assume that the automorphic representation 7w admits a Jacquet-Langlands lift
7B to Gp. Since 7 has parallel weight 2, dim¢ H(Gp(F), A°(D,C)),s = 1. Hence,
for some open compact subgroup U ¢ Gg(F), there exists ¢ € HO(Gp(F), A7 (D, C))V
that generates 77 | Gu(E) Moreover, ¢ is unique up to constant.

We have explained how ¢ defines an holomorphic differential form wy € Q%/U /c
and since 7 is cuspidal, in fact wy € Qﬁ(U e Let Q&U be the cotangent space of
Xy /F, and let Q% be the Q-vector space

O =lim Q% ClimQy, o ~ H(Gp(F), A7(D,C)).
U U
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This is a Q-representation of GB(F) that decomposes as Q% = @®p, where p are
irreducible Q-representations. There exists an irreducible L -representation p, C
QL such that

pr ®L, C=mP | gy pr®C = Breqai(L/o) ™ lay )

where "7 = pr ®,(,) C C H'(Gp(F), A°(D,C)). After scaling conveniently, we
can assume that wg € pr. The above equation allows to embed p, in different
C-representations "7 |GB(F)' For all 7 € Gal(L,/Q), we write "wy for the image
of wg. The Z-module

A, ;_{</7w¢> ,ceHl(XU,Z)}cL%(C:C[L@L
c r€Gal(L/Q)

defines a lattice. Moreover, the complex torus (L ®g C)/A; defines an abelian
variety of GLy-type A defined over F such that End’(A) = L. The Abel-Jacobi
map

(5.22) AJ :Div'(Xy) — A(C); m— (/ Tw¢) mod A,
m T€Gal(L~/Q)

provides, in fact, a morphism Jac(Xy) — A defined over F'. Since we are interested
in points up to torsion, write A°(M) = A(M) ®End(A) L, for any field M. Hence
AY(C) ~ (Lr ®g C)/AY, where A2 = A, @7 Q.

We write A = Z[$)] and A = ker(deg : A — Z). Let us consider the morphism
Ar t Ap(AY,C) — Ap(A°, A%(C)) given by

Artb(m, g) = 1@ 4(m,g) mod A% € (L g C)/A% = A°(C).

Recall the morphisms evy : A%(D,C) — Ag(A°, C) of Lemma@dl Thus, the com-
position of evy := evy +ev, and A, provides a morphism of G g (F)-representations
over L :

¢:pr — HY(Gp(F)T, Ap(A°,A%(C))), hence ¢ € H)(Gp(F)", Ap(A% A°(C))),5.
Let us consider the L,-module A°(C), and the exact sequence (Z.I1)
0 — Ap(A°(C)) — Ap(A, A°(C)) — Ap(A°, A°(C)) — 0.
This provides an exact sequence in cohomology
HY(Gp(F)", Ap(A°(C)ss — HYGp(F)T,Ap(A, A%(C)))ps —
— HY(Gp(F)", Ap(A° A°(C))),» 2, HY Gp(F)", Ag(A°(C))),5.
Lemma 5.11. We have that H(Gp(F)*, Ag(A°(C))),s = 0. Moreover, dp = 0.

Proof. Note that A°(C) is a free Lr-module of infinite rank, hence the first claim
follows from the fact that H*(Gg(F)", Ag(Lx))rs = 0 (proof of Proposition 6.
On the other side, we know that p, is generated by wy € pY. Thus, if we prove
that 9(¢(wy)) = 0 the assertion will follow.
By Remark 3] we have that

Ap(ws)) = Ax(07 ¢ +070) = Ar (CF (wp) + C~ (ws)) ,
under the identifications given in §LT11 For all ¢ € Hy(Xy,Z),
CH o))+ Cwa)e) =2 [7ws) €A

T

Hence, the result follows. O
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The above Lemma implies that there exists a unique ¢ € H*(Gg(F)*", Ag(A, A°(C))) =5
extending ¢. Let us describe @(wy) geometrically in two different ways: On the one
hand,

can be described as the extension of the composition of the F-morphism ¢ : Xy —
Jac(Xy), given by a suitable multiple of the Hodge class (resp., of the cusp at

infinity if B = M2(Q)), with the modular parametrization Jac(Xy) — A. Indeed,
on the degree zero divisors,

(22,9U)

P(wo)(21 = 22,9) = Ar o (evy +evg )(ws)(21 — 22,9) = (/(

Twe mod A,
z1,9U)

by (@I3). On the other hand, let Hy = (IndGB(F)lz)U be the Hecke algebra of
compactly supported and U-bi-invariant functions. By Frobenius reciprocity, Hy
acts on the 1-dimensional space pU, providing a morphism of algebras

AN Hy — Ly, )\(T)w¢=T*W¢, forall T € Hy.
let £ be a prime of F such that Ug ~ GL2(OF,)/Of,, and the class of £ is trivial
in F*/N(U)F*, where N : (B®p F)* — F* is the norm map. Write
VI:TQ_(£+1)1U€HU7 T£:1U9£U7 gf:<w£ 1)7

#(Op, Jwe). Notice that A(V) =

where wy € Op, is an uniformizer and /¢

ag — 0 — 1, where |ag| < £1/2, hence \(V) # 0.
Lemma 5.12. For any (z,9U) € Div(Xy),

Vx (z,9U) = vol(U) ™! /G " V(h)(z, ghU)dh € Div° (Xy).

Proof. Since B is a quaternion algebra that splits at a single archimedean place,
the norm map induces an isomorphism Gg(F)"\Gp(F)/U ~ FT\F*/N(U). We
compute,

Vi (z,9U) = vol(U)™! > / h)(z, ghU)dh

lal€ F+\F X /N (U S

(vot [ v<h><vghz>dh,ggw),

where g5, € Gp(F)™ satisfies ’y;hlgggU = ghU. By definition, the divisor

vol(U7)~! /U V(1) (g 2)dh € Z[$H]

has degree zero, hence V * (z, gU) € Div"(Xy). O
Then,
(5.23) P(wo)(2,9) = AV) AT (V (2, gU)),

where AJ is the Abel-Jacobi map of ([5.22]). Moreover, the above description does
not depend on V.

Let 7x € $ be the unique point such that t7x = 7§, for all t € K*. Such 7k

+
defines a G g(F)T-equivariant monomorphism Indiﬁ(m 17 — A. Restricting ¢ we

obtain,

1 : pr — HO(Gp(F)*, Comd (5" Ap(A°(C))) = HOKX, Ap(A°(C))).



26 SANTIAGO MOLINA

Shimura’s reciprocity law asserts that the image of ®r(wy) lies in A°(K ), where
K9 is the maximal abelian extension of K, and the Galois action of Gal(K/K)
is given by

PA0B1(wg)(g) = Br(wy)(ty),  teK*/K*, geGp(F),
where p4 : K*/K* — Gal(K/K) is the Artin map. Thus,
& € HY(K*, Ap(A°(K™))) 5.
In analogy with §5.1.1] we consider the pairing on 77 |GB(F): ®;+Oo -
S £2)
Brv x = L(1,n)L(1, 7, ad) H ol

el

and let us also consider the Neron-Tate pairing on A:

(,):AQ) xA@Q) —R.

By Galois and Hecke equivariance, the Neron-Tate pairing provides a K X /K-
invariant Hermitian pairing ( , ) on A%(K%) ®;_C. Write |Q|?> := (Q,Q) and
YB :{’UGEB, UJ[OO}

Theorem 5.13 (Gross-Zagier-Zhang). For any finite character x and any ®,f, €
®;*Oo Vs we have

2

/ ) X1 (@0 fo)(t)d*t| = L'(1/2, 75, X) L(1,0)Brs (0 fo, @u fo)-

T(F)/T(F)

Moreover, the above expression is 0 whether Sp #* 2;‘

Proof. The expression is 0 whether Sp #+ 2% by Proposition 3.6l The expression is
a reformulation of the Gross-Zagier-Zhang formula that can be found in [29]. We

leave the details to the reader.
O

5.4. Indefinite anticyclotomic distributions. As above, let (7, V) be an irre-
ducible cuspidal automorphic representation in L*(GL2(F)\GL2(Ar)) with trivial
central character and parallel weight 2, and assume that (mp,Vy,) ~ (75, V.5),
where a = +1 or |o| = q.

In contrast with Definition .8, we assume that #(31 \ {P}) + [F : Q] is odd.
Let B be the quaternion algebra with ramification set (31 \ {P})U (2o \ 0), for a
fixed archimedean place o. Let 72 be the corresponding Jacquet-Langlands lift to
Gp.

The previous conditions imply that B admits an embedding 2 : K — B, that
we fix once for all. As above, let U = Up x UP € Gg(F) be an open compact

U
subgroup such that dimc <®;1’oo wf) =1 and Up = GL2(Op) or Ko(w). We

have constructed a morphism of G g (F')-representations

I
op Q=7 |, oy — H(T(F), Ap(A°(K*") @1, C)).
vtoo
Let R C C be any ring (endowed with the discrete topology) such that o € R*. In
analogy with the definite situation, we consider the T(Fp)-equivariant morphism
U7’
!
(5.24) §:CT(Fp).R) S VR C Vg — [ Rl

vfoo
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Write I' = T(FP) NUP. Similarly as above, we decompose gfm = Gl;m; X G p,

where Gl;m) is its torsion subgroup. By Lemma 53] Gx p ~ Z][DFP:QP] does not de-
pend on I'. We will consider the anticyclotomic distributions of functions supported
on Gg p. For g € C(Gk,p,C), we define

/ 9N duRp () = [Hp : H] [ 9(pa()@r(3(1m))()d*t € A%(K*)®1, C,
Gk T(F)/T(F)

where H C T(Fp) is an open compact subgroup small enough that g o ps is H-
invariant. Since ®p 0§ is T'(Fp)-equivariant, one proves that this definition does
not depend on H, exactly the same way as in the definite setting.

Remark 5.14. By Theorem[5.13] a necessary condition for the Jacquet-Langlands
lift 72 and the above expression to be non-zero is precisely that the ramification
set of B is (XL \{PH U (Zw \ 0).

Theorem 5.15 (Interpolation Property). There is a non-zero constant C depend-
ing on K/F such that, for any continuous character x : Ggp — C*,

2

. L'(1/2, 7k, X)
d ind = COnC P TBRIAT
/gm xMdiEpO) = CreClre xr) =g ey
where
L(l,mp,ad _

L(l(/217|7';7’7X7)’)’ |04|2 =4dq,

C(mp,xp) = L(—1/2mpxp) &7 +1 X |Ofx<7a: =
’VlX

ey *=Ehxelox #1,

and n,, s the conductor of xp.

Proof. The proof is completely analogous to the proof of Theorem [5.9] if the Wald-
spurger formula (Theorem[5.5]) is replaced by the Gross-Zagier-Zhang formula (The-

orem [5.13)). O

5.5. Cohomological interpretation of ui}é%. Recall that p, ®;,C ~ 7B |GB(F):

®;*Oo 7B Notice that the composition

U’P
_ / UP
Gp(F; GB(F; ~
IndU;f( 73)1@/(739 — ap)Inde( ”)1@ =Vl - ®7Tf ~ (7TB |GB(F))
vfoo
sends f t0 30 cqp (mpyvp £(9)g%ws. Since @r(wy) € HY(T(F), Ap(A°(K™))), we

deduce that the image of

P
&

(625 Ve (7 ) T HOTE). Ap(A(K) 01, ©F)

lies in HO(T(F), Ap(A°(K®) @, Q)U"). Given the fixed embeddings Ly < Q —
Cp, let

log, = log,,, AYK®) @1, Q — C,.
be the formal group logarithm attached to the differential wg € QkU. Notice that
the formal group logarithm extends to the whole A(K) because, for any P €

A(K%), there is n € N such that nP lies in the subgroup of points reducing to the
identity section. Composing with such a formal logarithm, we obtain a morphism

(5.26) V2 — HOT(F), Ap(A°(K®) @, Q)V") — HY(T(F), As(C,)"").
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From now on, we also denote by ui;;fip € Dist(Gk,p,C,) (by abuse of notation)

the p-adic distribution
[ otnaue) = (e 1) [ glpatt) o, (00 3(1a)(®) ¥t
Ok, P T(F)/T(F)
Thus ui;;fip € Dist(Gk p,Cp) can be interpreted as the logarithm of the correspond-
ing (A°(K) ®r_ C)-valued distribution. i
Analogously to §5.2 equation (5.26) provides an element log ¢ € H°(T(F), AR (V.Q, (Cp)UP ).
If we recall the T'(Fp )-equivariant morphism « : AL (V.Q, (Cp)UP — C(T(F)/T,C,)Y
of (&2ZI)), we deduce that

/g 9(7)dp% () = k(log ¢) N dg.

5.6. p-adic measures and p-adic L-functions. Let 7 be a cuspidal automorphic
representation of GLs with parallel weight 2 and a trivial central character.

In the definite case (#(XL \ {P}) + [F : Q] even), we have constructed the

distribution u‘}gfp defined by

g€ C(Gr,p,Cp)o — k(resd) N A(g),

where ¢ € HY(Gp(F), AR(V2, Q)V”) is some generator of the Jacquet-Langlands
lift to the totally definite quaternion algebra D.
In the indefinite case (#(XL \ {P}) + [F : Q] odd), we have constructed the

ind

distribution pp defined by
g S O(gK,Pa (CP)O — I{(lOg (b) N 8(9)5

where log ¢ € HO(T(F), AR(V2, (CP)UP) has been obtained from the p-adic formal
logarithm of Heegner points associated with K on the Shimura curve attached to a
quaternion algebra B that splits at a single place.

Definition 5.16. We say that 7 is P-ordinary if mp is of the form V.C where
it

o€ OCP NQ.

Proposition 5.17. If 7 is P-ordinary then both u‘}éfp and u}‘é?p are p-adic mea-

sures.

Proof. Write G = Gp or G depending if we are in the definite or indefinite setting.
Let 0:=QN0Oc,, VO := Indgf,FP)l@/(Tp - ap)Indgf,F”)l@ C VE and write
W= {p € AP(V2,C,)"" : (T (EP))(v) C Oc,, for all v e VO}, =B, D.
We claim that, if ¢ is in the image of the natural monomorphism

HO(T(F), W) ®o., Cp — HO(T(F), AT(VE,C,)""),
then the distribution g — x(¥)) N d(g) is a p-adic measure. Indeed, by (&19), the
restriction of 0 provides an isomorphism

9:C(Gk p,Oc,)o — Ho(T(F),C.(T(F)/T, O, )o).

Moreover, by (5.20), C.(T(F)/T, Oc,)o = Ce(T(Fp), Oc, Jo®o., Ce(T(F7)/T, Oc, )o.
Since o € O* (ordinary), by Lemma B.4] there exists a fixed A € O such that the
restriction of the morphism « of (L.2I]) factors through

KW — AXICL(T(F)/T, Oc,)y

where A‘lcc(T(F)/F,OCP)g = Homocp(Cc(T(F)/l",Ocp)o,)\_locp). We con-
clude that, for any ¢ € H°(T,W), the map g — x(¢)) N d(g) is a distribution in
Dist(Gk,p, A" Oc, ). The claim follows from 2.I)).
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In the definite case, ¢ = res¢, where ¢ € HO(Gp(F), AR (VE,Q)UP). Let vy =
[1y,] € VO. Note that ¢(vg) is an automorphic form on a totally definite quaternion
algebra, hence its image is a finite set of values. This implies that, after scaling,
we can assume that ¢(vg) has values in @. Since VO = O[G(Fp)]vo, we deduce
that ¢(f) has values in O, for any f € V©. This implies that res¢ € HO(T(F), W),
hence u‘}éfp € Meas(Gk,p, Cp).

In the indefinite case, 1) = log ¢. By ([&.23)),

(log ¢)(9)(gpvo) = log,, o(®1(ws)(gp, 9)) = AV) ™ (log, (AT (V * (7E, (97, 9)U)))),

where g € Gp(FF), gp € Gu(Fp) ((9p,9) € Gp(F)), V is some auxiliary Hecke
operator, and AJ is the Abel-Jacobi map (5.22]). By Shimura’s reciprocity law,

AN D1 (ws) (Gp(Fp) x T(ET)) = & (ws)(Gp(Fp) x T(ET)).

Thus, the Galois action on A(V)®1(wy)(Gp(Fp)xT(FP)) C A(K%) factors through
Q%P. This implies that

AV) @7 (wy)(Gp(Fp) x T(ET)) C A(KY), where Gal(K'/K) = Gk p.

Let K7I; C C, be the local field extension generated by KT, let P above P be its
maximal ideal and let k be its residue field. Since gfm, = Gg,p X Gl;mp, where
Gl;m; is finite and G p is the Galois group of an extension totally ramified at P, k
is finite. Note that the formal logarithm (after normalization) is given by a formal
series in O[[t]]. We have the exact sequence

0 — Ga(P") — A(KE) 24 A(k) — 0,

where G4 is the formal group of A and A(k) is finite. This implies that the set
log,(A(Kp)) has bounded denominators. We conclude that there exists X' € C,

such that log,(A(T)®r(ws)(Gr(Fp) x T(FF))) € (N)7LO¢,. Again, since VO =

O[GB(Fp)]v,

(log ¢)(T(ET)) (V) = (log¢)(T(F7))(O[G(Fp)lvo)
= AV)'O(log,(A(V)®r(wy)(Gr(Fp) x T(F7))))
C AWV TOg,.
Thus, log¢ € HO(T(F), W) ®oc, Cp and ui;;fip € Meas(Gk,p, Cp). O

Hence, in the P-ordinary case, u‘}ﬁ%,ui]‘}% € Meas(Gk,p,Cp) define elements
LE (mr) and L3 (7)) in the Iwasawa algebra Ac, = Oc, [[Gg,p]] ®op, Cp, called
(anticyclotomic) p-adic L-functions. Interpolation properties (Theorem and
Theorem [5.T5) and the vanishing of the local factor L(0,7p,1)~! when mp is the
Steinberg representation (o = 1), show the appearance of what are known as Ez-
ceptional Zeros. In terms of Iwasawa algebras, this means that both LI (r) and
Lind(7k) lie in the augmentation ideal Z := ker(deg), where

deg : Ac, ~ Meas(Gk p,C,) — Cp, o — ; dy.
K,P

Corollary 5.18 (Exceptional Zero). Assume that wp is Steinberg. Then the p-adic
L-functions satisfy

L% (ni) € T = ker(deg), e = def, ind,

in both definite and indefinite cases.
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5.7. Explicit interpolation properties. The aim of this section is to compute

the constants appearing in the interpolation formulas of u?(efp and u‘}é%, under

certain conditions, and for a fixed morphism (5I4)) provided by a given newform.
Let 7 be a Hilbert automophic representation of parallel weight 2, level Ky(n),

and trivial central character. Let dg,r be the discriminant of K over F.
Assumption 5.19. We assume that ged(n,dg/r) is square free.

Then we have that n = P™n’ for n € {0, 1}, where n’ is prime-to-P. Write np = 1/,
K is inert at P, or ng = n, otherwise. Depending we are in the definite or indefinite
setting, we consider the Jacquet-Langlands lift 7 or 7. I claim that there exists
an order O,, in the corresponding quaternion algebra D or B containing Ok and
with reduced discriminant ng. Indeed, we can fix a maximal order O; containing
Of and, by local conditions, an ideal Ny C Ok such that Ny, (Np)-disc(O1) = no.
We define Oy, = Ok + NoO;. Thus, there exists a unique up to constant newform
¢ € (7P (respectively (7B)V), where U = OF C @fn and we have an equality if
n =0 or K is not inert at P. Such newform ¢ fixes the morphism

§:Co(T(Fp),R) — VY |,
of (&I3) in the definite case.
Observe that §(g), € (7P)V» and d(g), € (7B)Y>, for any g € C.(T(Fp), R).
Hence we proceed to compute
. ﬂﬂf,)@(f’uva>

C, = ,
<f’Ua f’U>
for v # P and x, unramified, which is independent of the choice of f,.

Jv € (T%B)va

Assume that K is inert at v. In this case T'(F,) = O /Op . Since Ox  C U,, we
have that T'(F),) acts trivially on f,. This implies

_ Jreey) Xo (T (t) fo, fo)dt B L
@ (fo, fo) = /T(Fv)d t = vol(T(F,)),

since x, is also trivial.

Assume K is ramified at v. By the assumption 519 the representation 7, is either
spherical or special. Hence if B, = Ma(F,), we can apply the results obtained in
g3l Notice that T'(F,) = (wxO /O ) x (O /Op ) and f, is Ok -invariant. By
Proposition and Proposition B.13] we have that

(fT(Fv) f”(t)xv(t)dxt) (fT(FU) f;(t)Xv(t)dXt)
fT(Fv) To(t) f3(t)d*t

where f¥ = f,, if m, is spherical, and f} = A(f,), if m, is special.
We can choose wg such that w? = w, hence

[ a b _( —Z a -1 2 B
=0 5) (T ) 2) e

Note that there exists a constant C' such that

t1 x Cazv(tz/tl)
v = by ’ € Ko(1).
f (< t2 )g> { COCUU(t2/t1)1Ko(w)(g)7 g O( )

Since a/c € OF, because a® + bc = w, we deduce that f,(wx) = Cay?, if 7, is

spherical, and f,(wg) = 0, if 7, is special. Using the same techniques as in §3], we
deduce

o - { (1+a;1X”(wK))(l+a“q;1X“(WK))Vol(T(Fv)) = LO/2m0x0)80(@) yo)(T(F,)), 7, spherical

Cy =

)

14q; " L(1,my,ad)
1—aux2v(w;<)vol(T(Fv)), m, special
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In the special case, we are under the assumption that Homp g, )(m, ® xv, C) # 0,
hence a,xy(wg) = —1 and C, = vol(T'(F})).

If B, is now a quaternion algebra, we have the other situation a,x,(wk) = 1.
Notice that the corresponding Jacquet-Langlands representation satisfies 7/% (@) f,, =
Qy fy. Thus,

B fT(FU) Xo (&) {4 (£) fo, fo)d™t
- (For fo)

Assume that K splits at v. Note that in this case B, = Ma(F,) and T(F,) ~ F* a
conjugation of the diagonal torus, hence it is of the form

T(F,) = {( Hattoy %((11_—5) ) e F}

Cy = (14 xo(@y)aw)vol(Ok /Of ) = vol(T(F,)).

for some a,c¢ € F,, with ¢ # 0 because T(F,) intersects trivially with the Borel
subgroup of upper triangular matrices Typ. Notice that

(et %él—_t?)““_l(t )ass (o )e

_ (<3 _ atl
a=(LE) ()
c —a-—1 —c a

Since Ok, C GL2(OpF,), we deduce that a, @ € OF, and c € ng. Hence, we
can assume £ € Op, and thus A € Ky(ng) (otherwise we use the other expression
and the matrix B).

Let us consider the Ky(ng)-invariant Whittaker function W, : GLy(F,) — C of
7, normalized so that W, (dr,) = 1, where dp, is a generator of the discriminant
Dr, (see [10, §4.4]). Thus,

Cui, i) = |

T(Fy)

Xv(t)(wv(t)Wv,Wv>dXt:/T Xo (&) {(my (FA) Wy, T, (A) W, )d ¥ 2.

Since 7, (A)W, = W,, we compute

2

cv<wv,wv>:/ Xolt) [ Wolrt) Wy (r)d*rd*t =
To To

/ Xo(E) W, (8)d™ ¢
To

Moreover, by [10, Proposition 4.7.5] and [I8] §2.4]

2
1
=L <§77TK,'U7X’U) 'N(DFv)'

/ Xo(E) Wy (8)d™ t
To

At the prime P. In this part we will compute the inner product (fp, fp), where
frp € (Vo)Y7 is such that fp(1) = 1. In order to simplify things, we choose the
Haar measure of T'(Fp) so that the image of Of  has volume 1, as in §3.5 Recall
that

Ups fp) = er / fr(t) TR,

T(Fp)
where f3 = fp, if |a]* = q, or f} = A(fp), if @ = £1.

Proposition 5.20. If |a|? = ¢, we have that

cr, B T(Fp) is inert
(fpofp)=cr-q" - (L+q7") - L(Lyp) = cr-q™ - i,  T(Fp) is split;
er-(L+q 1), T(Fp) is ramified,

where ng = max{n € N: Og C Oy pn}.
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If a = £1, we have that

—erCrp - qQ”Tflﬁ, T(Fp) is inert;
(fp,fr) = —cxCr-¢®"" "L(1,np)* = —CT(?T : q%T_lﬁa T(Fp) is split;
—crCrp - 21, T(Fp) is ramified.

where ny is the constant introduced in Theorem [3.1.

Proof. Note that, if |a[* = ¢ and T(Fp) inert, then fp = 8(1p(p,)). Hence
(fp, fp) =cr.

If |a|? = ¢ and T(Fp) splits, we have seen above that we can assume that

T(Fp):{A<t 1)A‘1}, for some A:(CCL Z)eKo(l).

f7><A(t 1)A1) f7><‘clf Z)

Writing D = ad — be € Op, , we have

()= @) Gg)-07 )

Hence, if ng := v(d/c) and writing n = v(t),

Hence,

2 2

d*t.

rodp)=cr [

T(Fp)

dxt = CT/
T(Fp)

vic n 1% —n vic- 1+ !
(fp.fp)=cr ZQQ(H +Zq2(d) ZCT'q(d)(iql)-

n<ng n>ngo
If |a|? = ¢ and T(Fp) ramifies, we have seen above that
T(Fr) = (05, J03,)%(0F, /OF,). Fr(0%,/0F,) = 1. and fp(=xOf, [0,) = ™.

Thus, (fp, fp) = cr - (1+q71).

If @ = +1 and T(Fp) is inert, we have that Ko(1) N K5 = O, = (O, +
BOFR,)*, but Ko(1) N K = (Op, + wBOF,)*. Hence fp |r(pp)= lm,, where
H, = (Op, +@"BOF,)*)/Op,. We compute

p.fp) = er | AFp)Bd*t= crCr / / 0r(5) () - Fr (D)% yd*t
H; Hy JT(Fp)

= CTC'T/ / le(t)|?5~2d* yd*t
H, JH;,

_ =~ ony  Qlg—1)
= O e g

since vol(Hy) = (14 ¢)~* and vol(H,, \ Hy41) = (¢ + 1) "t¢ (g — 1).
If = £1 and T(Fp) splits, we have seen above that we can assume that

T(Fp):{A(t 1>A‘1}, for some A:(i Z)eKO(P).

Hence, since fp |k,(1)= lx,(p) and v(d) = 0, we have

RO A o i A

s=0
- CTOT
s=0 - a+ 1

Z q(nT+n)(272s)Vol(Hn \ HnJrl)

= s=0

, otherwise.
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Thus,
(frifp) = or Z o / A(fp)(t)d™t
n>nr w"(’)x
= ¢orCr Z / / ) fr(wnry=1t)d* yd*t
n>nr OX F’P) =0
1—s
= X
= ¢rCp Z Z /mo 2 1) d*y
n>nr m<n—nr -0
o = 1
= cTCanT(2—2s) qN(s—l) :CTCTC]2"T7—,
n;T N>%;—n s=0 (l_q 1)(1_Q)

If a = £1 and T(Fp) ramifies, we have seen above that fp(Ok /O ) =1 and
fr(wk) = 0. Hence, with the notations of §3]

(fp o) = er /O KGO = exlr [ / [ T T

s=0
= erCr- / det(2) d*y
OIX(P C(t) 0
— CTOT . Z q(2—2s)(nT+n)Vol(Hn \ Hn-i—l) — _CTCT 'q2nT_l.

n>0

Interpolation formulas. Applying the above result and Corollary[B.17, Theorem [5.5]
we obtain that
2

C L(1/2,7k, X)
d et = —-£(2 'Cincr 'Oram' Bl vy Ju
[, xR = G 4C) Chnae-Can el xp) T T [t o
where
v 1 v, ad
= {frfp) - vol(OF, /0F,) - [T SRt Nor) [ wlT (),
v split WU7W >§U( ) v nonsplit
1 1
Cinert = H =/ 1> Cram = H T/17/0 — |
v|disc(By), inert gv(l) v ram, v|n’ L(1/2’ v XU)
L(1,7mp,ad) . _
nssme(f/z; e el =g,
&r (g TS -
e(mp,xP) = HOLTsmrnp) 1a= ileP|o;(P =1,
Ep(g™x"! o=
EP(Q;)L((l);szﬂ'PvXP)’ ifa= :l:l,X’PlOIX(P 7 1.

Similarly, applying the above result, Corollary B.17 and Theorem [5.13] we obtain

2

ind LI(1/277TK7X)
‘/ng ( )dﬂ (’7) —0'5(2)'Cmert'cram'e(7r737XP)' L(l,ﬂ',&d) '1:[<f'uuf'u>-
Moreover, these expressions do not depend on the choice of the newform or the the
Haar measure. But we can apply the explicit Waldspurger and Gross-Zagier-Zhang
formulas given in [3T, Theorem 6.1, Theorem 7.1] for a suitable special case in order
to compute the terms (fy, fu), (Wy, W) and vol(T'(F,)). We obtain the following
result:
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Theorem 5.21. Let N be the level of the Eichler order Oy, and write

_ &(1) -
Krom = H &}(2) - H NL(1/2,7T1“XU)'

vram, V[N vram, v|

In the indefinite case we have that

N(dk/r) L'(1/2, 7k, X)
= T “Kram - 6(7‘—737)(73) : W’

2
/ XA ()
Ok, P

where f is the corresponding Hilbert newform, and ||f||* is computed using the
invariant measure on the Hilbert variety induced by dxdy/y? on $. In the definite
case, if we choose the newform ¢ to be of norm 1, then

2
N(dg/r)

= T . Kram . 6(7‘—737)(73) .

L(1/27 TK, X)

def
/gm X (V) dp » () HAE

6. AUTOMORPHIC L-INVARIANTS

Let (m, V%) be an automorphic representation of GLa(Ap) of parallel weight 2
with a trivial central character, and assume that (7p, V) is the Steinberg repre-
sentation (77, V). Let us assume that P splits in K.

6.1. Extensions of the Steinberg representation. The main references in this
section are [24] §2.7] and [2]. Recall that the Steinberg representation V,© is defined
by means of the exact sequence

0 — Copg — VF — VE —0,
where ¢g(g) = 1 for all g € GLo(Fp). For any topological ring R, we defined in
3.1l its R-valued analogue (7%, V) .= (xft, V}B).

Fix en embedding K5 < GLy(Fp). Since K splits, there are two eigenvectors
v1,v2 € F3 and two eigenvalue morphisms

A1, Ao s K; — F7>3<,
such that tv; = A;(t)v; and det(t) = A(¢)A2(t), for all ¢ € K5. We fix the iso-
morphism 1 : T(Fp) = FJ provided by ¢ + A (t)/2(t). Notice that we have the
map

(6.27) ¢ : GLy(Fp) — PY(Fp); g= ( CCL Z ) — %Cl,

that identifies Pp\GLa(Fp) with P!(Fp). If K5 ¢ Pp, the restriction of ¢ provides
an injection

¢ :T(Fp) — P'(Fp), such that PY(Fp)\ o(T(Fp)) = {x1, 22},

where z; and 22 € P(Fp) correspond to the spaces generated by v; and vg, re-
spectively. Since ¢(1) = 0o € (T (Fp)), the points x; # oo can be seen as values
in Fp. If P, :== ¢~ '(2;) € GLa(Fp), we have the maps

AZGLQ(FP)\P%HF;, (CCL Z))—}d—f'l'lc
It is easy to check that A;(gt) = A;(g)\i(t), for all t € K. Let H C T(Fp) be the
maximal open subgroup. Thus T'(Fp)/H ~ w” for some w € T(Fp). Assume that
x1 = lim,, conpy T, in PL(Fp) and let U = 21 U Upnen @™ H.
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Let £ : FZ — R be any continuous group homomorphism. Then, we can define
the cocycle ¢, € HY(GLa(Fp), VF) associated with the extension of R[GLa(Fp)]-
modules

(6.28) 0 Vi : &(0) u R 0,
¢—(9,0) (9,9)—y

where

6= {0 ecerarmn ) x e o (1) g) = ol0) + tlaly} /it

with G-action g x (¢,y) = (g * ¢,y) and g * ¢(h) = ¢(hg). Note that the above
sequence is exact, since 7 is surjective, indeed, we can define (¢1,1) € &(¢), where

_ [ t(A2(9), wlg) €T,
¢1(9) = { t(A1(9)), #lg) ¢U.

Remark 6.1. The above definition of & (¢) differs from the one given in [24], for
example, where the extensions introduced there are of the form

sty = {om ecerarmnmy < o (M1 ) o) = ot +e(2) v} /e

It is easier to show that these extensions have trivial action of the center. But notice
that there is an isomorphism

20 — &) (dy) — (0 —yfo,y),  folg) = L(det(g)),

that is GLa(Fp)-equivariant since we are taking quotients by Rigg. Thus, both
approaches are almost equivalent.

Remark 6.2. The identification Pp\GLy(Fp) ~ P'(Fp) provides an R-module
isomorphism V¥ ~ C(P!(Fp), R). Thus, we can consider V¥ = V' as a quotient
of C(P*(Fp), R).

Proposition 6.3. Write { := (o4 : T(Fp) — R. The restriction res(c;) €
HY(T(Fp),VE) coincides with the cocycle

res(c) = zj; 25(t) := (1 — t)l1y € C(P'(Fp), R).
Proof. We compute res(c)(z), for z € P1(Fp),
res(ce)(t)(z) =t * ¢1(92) — ¢1(92) = P1(g2t) — $1(92),
for any choice g, € p~1(z). Since ¢1(g9) = ¢ (A1(g)) + ¢ ( ) 1u(¢(g)), we have
res(ce)(t) (@) = €(A1(gat) = £(A1(ga)) + (1 = )1y () N
= L)+ (1= )y(z) =L (1) 1pr(2) + (1 = 1)1y (2),

since ¢ (ﬁlgg’”;) coincides with £(t) whenever = ¢(t) with ¢ € T(Fp). The result
follows because the constant function ¢ (A1(¢)) 1pi(z) corresponds to £ (A1 (t)) éo
O

under the identification of Remark [6

6.2. L-invariants. As in §4.2] let L/L, be any field field extension endowed with
the discrete topology. Let B/F be a quaternion algebra that splits at P and ad-
mitting a Jacquet-Langlands lift 72. Remark @] implies that

(6.29) HY(Gp(F),A5(VE L) s ~ H*(Gp(F), Ap(C)).5

Let cora € HY(Gp(F),VE) be the restriction of the class associated with the
continuous morphism ord : F5 — Z (here the ring Z is considered with the discrete

topology).
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Proposition 6.4. The cup product by corq provides an isomorphism of 1-dimensional
L-vector spaces

HH(Gp(F), AR(VF, L)ee =% H*(Gp(F), AG(L))x,
where k =0, if B is definite, and k =1, if B splits at a single archimedean place.
Proof. The proof is completely analogous to |24, Lemma 5.2 (b)]. O

Remark 6.5. Since Pp\GLy(Fp) ~ P!(Fp), we can identify V§? := V% with
Ce(Fp,R)o and VE with C,(Fp, R), both inside C(P*(Fp), R).

The above remark implies that there is a canonical pairing
Oc
(6'30) < ) > : AE(VO p7(9(cp) ®Ocp (Cp X VZP — Ag(cp)v

since Homo, (VOOCP , Oc,) is identified with a space of bounded distributions. More-
over, if we equip VZ» with the action of G5 (F) provided by the inclusion Gp(F) <
GLy(Fp)/Fg, the above pairing is G g(F')-equivariant.

Recall that, by Lemma [3.I] and Lemma [5.10] we can identify

H(Gp(F), AR(VE,C,)) ~ HNGp(F), AR (Vy . Oc,) ®o., Cy).

Given a continuous homomorphism ¢ : F5 — Z,, the cup product by ¢, € H*(Gg(F), VZ%r)
on the 7P-isotypic component induces a morphism

(-Ue)nn : HH(Gp(F), AG(VE,Cy))ps — H T (Gp(F), AG(Cp))rs,

where k£ = 0 if B is definite, and k = 1 if B splits at a single archimedean place. By
Proposition 64, both H*(Gp(F),AR(VQ,C,))s and H 1 (Gp(F), AL(Cp)) s
are one-dimensional C,-vector spaces with a fixed isomorphism (- U ¢ord ) 5.

Definition 6.6. Given a continuous group homomorphism ¢ : Fj — Z,, the
automorphic L-invariant associated with ¢ and 7 is the unique Lp (7B, ¢) € C,
such that

(-Ucp)re = EP(WB,@(' U Cord ) nB -

We expect this automorphic L-invariant to depend only on the representation m
and not on the Jacquet-Langlands lift 7 5.

Conjecture 6.7. Let B/F and D/F be two quaternion algebras over F that are
either definite or split at a single archimedean place, but both split at P. Then we
have that

ACP(WBv l) = ‘C"P(WDv 0),

for any continuous morphism £ : F3 — Zj,.

Remark 6.8. We can define Lp (75, ¢) for any quaternion algebra B/F that splits
at P. In this case, the automorphic representation 72 lies in H*(Gp(F), AR (V?, C,)),
where k is the number of archimedean places where B splits. Hence, we can refor-
mulate the previous conjecture for any pair of quaternion algebra that split at P
(see [I5, Definition 2.5]).

Conjecture has been recently proven in [15] under certain technical assump-
tions.

For the rest of the section let us assume that B is a quaternion algebra that
splits at a single place. The restriction map identifies H'(Gp(F), AR (V2 C,))
with the subspace of H'(Gp(F)T, AR(V?,C,)) fixed by Gg(F)/Gp(F)*. Write
HY(Gp(F)*, AL(V2,C,))~ for the subspace such that the non-trivial element of
G(F)/G(F)~ acts as —1. The proof of Proposition 4.6 shows that

HY(Gp(F)*t, AR(VE,Cy)) s = HY(Gr(F), Ag(C,)) s =~ C,.
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Moreover, the analogous result to Proposition [6.4] shows that
Ucora : HY(Gp(F)T, AR(VE,C)) -y — HX(Gp(F), AR(C))) s,

is an isomorphism of 1-dimensional C,-vector spaces. The following result shows
that in fact the same L-invariant is obtained when using these new cohomology
groups.

Proposition 6.9. Gwen a group homomorphism { : Fy — Z,, we have that
(' U Cé)ﬂ'B = ‘CP(WBu Z)( U Cord)wB
in Hom (H'(G(F)*, ARV, C,)) a HA(G(F) . AB(Cr)) )

Proof. The result is clear for £ = A-ord, for some A € C,. Thus, it remains to prove
it for £ = log, = log oo, where log : C;; — C, is the p-adic logarithm sending p to 0,
and o : Fp — C,. For F' = Q, it is proved in [9, Corollaire 5.1.3] using completed
cohomology.

Recent results on the uniqueness of Breuil’s L-invariant allow us to mimic the
arguments given in [9] in order to prove the result for arbitrary totally real field
F. Let £ := —Lp(n?,log,), and write log, » for the p-adic logarithm such that
log, »(p) = £ and log, » |os,= log,. In [I3], the set of Q,-analytic vectors
in &(2log, o) are denoted by ¥(L£) = %(2,0;1,L£) (see Remark [6.T). Note that
log,, » = log, —Lord, hence c3 log, » = 2Clog, — 2Lcorq- Thus, by definition,

(~ U co logU’L)wB =0.
This implies that the exact sequence ([6.28]) provides a surjective morphism
HomGB(FP)(E(£)7 ' (Gp (F)+= AB(L)))TI'B — H' (GB (F)+= AE(VL, L))TrB )

where L is the localization of the field of definition L, and H*(Gp(F)", Ap(L)) =
Hm HYGp(F)T, Ap(OL/w"))®0, L is the completed cohomology. By [13, Corol-
lary 4.7] the element £ coincides with Breuil’s £-invariant, and its definition does
not depend on the on the sign of the action of Gg(F)/Ggr(F)", thus the result
follows. O

6.3. Geometric L-invariants. In this section we show that, in the definite setting,
automorphic L-invariants coincide with the geometric L-invariants defined below.
During the paper review process F. Bergunde and L. Gehrmann informed us that
in [2] they prove this result using similar techniques.

Recall that A is the abelian variety of GLa-type associated with 7, and let AY be
its dual abelian variety. Since 7 is Steinberg at P, the abelian varieties A and AY
have purely multiplicative reduction at P, hence they admit the following analytic
description: There is a pairing (determined up to canonical isomorphism)

X xY L Ff,
where X and Y are free abelian groups of rank d = [L : Q], and j is a bi-

multiplicative mapping such that the composition ordp o j tensored with Q gives a
perfect duality of Q-vector spaces

ordpoj

(6.31) XQxY®Q —Q,

moreover, such that there is a pair of exact sequences of Gal(Q,/Fp)-modules (X
and Y endowed with trivial Galois action)

(6.32) 0— X — Hom(Y,Q)) - A(Q,) —0
(6.33) 0—Y — Hom(X,QX) “%AY(Q,) —0

where the morphisms on the left are induced by j.
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Let Op. C L, be the endomorphism ring of A (and AY). Thus, X and Y are
Op,.-modules and j(ax,y) = j(z,ay) for all x € X, y € Y and o € Op_. The
non-degenerate pairing (6.31]) provides an isomorphism of 1-dimensional L -vector
spaces

a: X ®Q— Hom(Y ® Q,Q)
Given a continuous morphism ¢ : F5 — Z,, we consider the corresponding bilinear
pairing
Loj
X®Q,xY®Q, —> Q,,

and the corresponding homomorphism of L, ® Q, modules (free of rank 1)

Be: X ®Q, — Homg, (Y ® Qp, Qp).
Hence there exist Lp(A4,0)" € L ® Q, such that

Be = Lp(A,0) ap,

where oy =a®1:Y ®Q, — Homg, (X ® Qp,Q,). We define Lp(A,¢) € C, to be
the image of Lp(A,¢)" under the homomorphism L, ® Q, — C, given by the fixed
embedding Q — C,,.

Assume we are in the definite case (D/F is a definite quaternion algebra that
splits at P and admitting a Jacquet-Langlands lift 77), hence 7% is generated by
an automorphic form ¢ € H*(Gp(F), Ap(Or_)V). Since O ~ Z4, ¢ can be seen
as ¢ = (¢i)i=1.... .4, where ¢; € H*(Gp(F), Ap(Z)Y). Since 7p is Steinberg, each
¢; define an element f; € HY(Gp(F), AB(VZ, Z)V").

Fix g € Gp(F7). Since V is the quotient of the space C(P'(Fp), R) mod-
ulo the subspace generated by 1pi(g,), we can interpret f;(g) € Hom(V%,7Z) as
a distribution of P!(Fp) with integral values and such that fPI(FP) dfi(g) = 0.
Hence, it makes sense to consider the corresponding multiplicative integral. Let
9,(Q,) :=P(Q,) \ P}(Fp) be the p-adic Poincaré hyperplane, write Ap = Z[Hp],
equipped with the natural degree morphism deg : Ap — Z, and let A% be the
kernel of deg. We can identify Y with the Z-module generated by the {f;}i=1,... .a-

Similarly as in §LT.I] we define ev,(¢) € H'(Gp(F), AL (A%, Hom(Y, Qg))UP) by

evp(9)(9)(z1 — 22)(fi) :_]épl(Fp) <

Note that, in this situation, we also have the exact sequence given by the degree
map deg:
(6.34)

0 — AR (Hom(Y, Q) L& AB (Ap, Hom(Y, Q) — AR (A%, Hom(Y, Q) — 0.

ZQ—t

) PO, g€ Cp(EP), 21,2 € Hp.
zZ1 -t

We consider the image of ev,(¢) under the connection morphism
H(Gp(F), AR (A, Hom(Y,Q;)"") = H'(Gp(F), AR (Hom(Y, @;))"").

Using the p-adic uniformization of the Shimura curve Xy and Manin-Drinfeld The-
orem on the Jacobian of Mumford curves (see [12]), one can show that, in fact,

Aevy(e)) € HY(Gp(F), AR(X)V").

Proposition 6.10. Let { : 5 — 7Z, be a continuous homomorphism. We have
that

fiUee = Be(0(evy(6))(fi) € H (G (F), AR (C,)""),
foranyi=1,--- ,d.
Proof. Let £ : Q; — Qp be any extension of ¢, namely a continuous additive
morphism such that ¢ | FX= ¢ (one can always find such an extension composing ¢
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with the norm map on each finite extension of Fp and dividing by the corresponding
degree). For any z € §,, we have the class of (¢z(z),1) € &(£), where

b _
Ce(2)< (é d ) ={(cz+d),
It is easy to check that

cg(2)(hg) = ci(g2)(h) + ¢i(2)(9),  g,h € Gp(Fp).
Since the function h — cz(z)(g) is obviously constant, we deduce that g(cz(z),1) =
(ci(gz),1), for all g € Gp(Fp).
Let f; € AL (&(¢),Q,) be any pre-image of f; € H(Gp(F), AR(V%,7Z)). Hence,
for all v € Gp(F) and all g € Gp(EFP),

(finc) ) = filg)(ca(2),1) — filg)(cg(2),1)
fi(g)(cg(v"2) = cg(2)) + bi()(9)

-1, _ _
/ / (u) dfi(9)(t) = € (evp(@)(9) (v "2 — 2)(£:)
P1(Fp)

z—1
= Be(0(evp(9)))(fi)(7)(9);

where b; corresponds to the 1-coboundary b;(y) = (1 — ) fi(cz(2),1). Hence the
result follows. O

This proposition implies that the automorphic L-invariant £p (7, ¢) coincides
with the geometric L-invariant Lp (A, ¢) in the definite setting. Such a claim in the
indefinite setting is equivalent to Conjecture [6.17

6.4. L-invariants and Heegner points. Throughout this section, assume that
B is a quaternion algebra that splits at a single archimedean place 0. Let ¢ &
HY(Gp(F),A°(D,C))Y be a generator of 78 lG(#)> corresponding to a differential
form wy € QkU of the cotangent space of X7 /F. Recall that the abelian variety of
GLy-type A associated with 7 is provided by the complex torus

A(C):(C@)QL)/Aﬂ'u Ar = {(/quﬁ) s CEHl(XU,Z)}.
c reGal(L, /Q)

Fix an embedding K < B, and let 7 € ) as in §5.3 Let Ay = Z[Gp(F) 5] ~
Indgf;fﬁ 17 be the set of divisors supported on Gg(F)" 7, and AJ. = ker(deg :

Ap — Z) the set of degree zero divisors.
Let

H(Xy,Z)* = {ce H\(Xy,Z); ¢==+c},

where ¢ is the complex conjugated path. Then, we have that

T* = {Ciw(c) -(/ T‘”¢)T€Gal<L/@> ce H%(XU,@}

is a Or_-module locally free of rank 1. It is clear that Z} +Z_ C A, has finite
index. Moreover, we have the following surjective morphisms with finite cokernel,

Wt/ — AR) := A(C)T, W~ — AC)™,

where W+ =7 @ R C C ® L, is the subspace where complex conjugation acts by
+1, and analogously for A(C)*.
Since ZF ® Q = L,QF, for some QF € C ®q Ly, the exact sequences

Gp(F)T

0— Ly — W+ — A°%R) — 0, 0—>A0T—>IndT(F)

lz — Z — 0,
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provide the commutative diagram:
(6.35)

HY(T(F), Ap(W")) ———— H*(T(F),Ap(A°(R))) ————= H'(T'(F), A5(L))

| I

H(Gp(F)*, Ap(AT, W) —— H(G(F)", Ap(AT, A°(R))) ——= H'(G5(F)", Ap(Af, L))

|

HY(G(F)", Ap (W) ———= H' (G5 (F)", As(A°(R))

Moreover, we have an analogous commutative diagram for A(C)~. The evalua-
tion evg [@I2) of "wy, T € Gal(L./Q), gives rise to an element p € H(G(F)*, Ag(AY, W)
such that dy (¢) # 0 (see Lemma 4] and p; o dy(¢) = 0 (see Lemma [5.TT]). Hence,
we obtain ¢ € HY(T'(F), Ag(A°(R))) &, which is unique because H*(Gp(F) T, Af(A°(R))),s =
0. We claim that da(@) # 0. Indeed, if d2(®) = 0 then there should exists some
pre-image of ¢ in HO(T'(F), Ag(W™)), and this contradicts the fact that d; () # 0.

A similar diagram chasing argument shows that r o dy(@) = 0. Thus, there exists
o7 € HY(Gp(F)*, Ap(Ly))5 such that res(¢) = da().

The analogous commutative diagram for A(C)~ produces an element @~ €
HO(T(F),Ap(A°(C)™)),5, such that res(¢] ) = dy (¢~ ), for some ¢; € HY (Gp(F)*, Ap(Lx))x5,
where

dy + HOT(F), Ap(A°(C)")) — HY(T(F), Ap(Ly)),
is analogous to da. By Remark @3] it is clear that ¢7 € H'(Gp (F)*,AB(L,,))?EB.

By equation (5:23)) and Shimura’s reciprocity law, ¢ + @~ defines, in fact, an
element of &7 € H(T(F), Ap(A(Q)) ®o,_ Lx).5. Rescaling the generator ¢ €
7B |6 (i) if necessary, we can always assume that ®7(¢) € HO(T(F), Ap(A(Q))).

Since 5 is Steinberg, we have that ¢ € Gp(Fp)p ~ VOir. Hence ®r(¢) defines
an element @7 |0, € HY(T(F), AG (VP A(Cp))). By means of such identifica-
tions, we consider

dr € HY(T(F), AL(VOEr  A(C,)) @ Ly) .

Notice that, multiplication by p™ provides the following exact sequence of T'(F)-
modules
(6.36)

0 — AR(VOrr, A[p")(Q)) — AR(VOir, A(C,)) 25 AR (VOrr, A(C,)) — 0.
Since A, /p"A, ~ A[p™](Q), we obtain the connection morphism
d": HOT(F), AG (VO A(C,))) — HY(T(F), AR(VOir, Ay /")),
for all n € N. It is easy to check that
637)  d"(Pr yor,) = Qe lyor. )+ U d; (7 |yor.) mod .

Recall that the abelian variety A(Cp) ~ Hom(Y,C))/X, for some locally free
Op-modules of rank one X and Y. Since a : X ® Q — Hom(Y ® Q,Q) is an
isomorphism, we can identify the image of A(C,) in A°(C,) = A(C,) ® L, (killing
all the torsion) with the image of the composition

(exp,)-
Hom(Y,Op,) <% Hom(Y,CX)/X ~ A(C,) — A°(C,),

where exp,, : Oc, — C is the p-adic exponential morphism. Hence, we can assume
that @7 [0, € H(T, A} (VOr=, Hom(Y, Oc,)))-
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Given a continuous homomorphism ¢ : F5 — Z,, we consider ¢, € H'(Gg(Fp), V)
as above. Since Hom(V %=, Hom(Y, O, )) can be interpreted as a space of bounded
distributions, the cup product by ¢, provides following commutative diagram

HO(T(F), AR(VOr=  Hom(Y, Oc,))) “——= HY(T(F), AR(VOrs Ar/p"Ar)

l Ucyp l Uce
n

HY(T(F), AB(Hom(Y, O, ))) ———> H(T(F), AG(Ar/p"Ax))

Let Lp(7P,4) € Lr ® Q, be the element whose components are Lp((75)7,¢), 7 €
Gal(L/Q). The above commutative diagram together with (6.37) and Proposition
imply that

d?(q)T |VOL1T UC[) = EP(ﬂ'B,é)/d?((I)T |VOL7T Ucord).

Since ker(d}) = p"H'(T(F), AL(A(C,))) by ([@.36), the image of &1 |y,0,, Ucy —
Lp(r8,0) (®r |01, Ucora) in HY(T(F), AL (Hom(Y, Oc, /p"Og,))) is 0 for all n.
We conclude that

drUc = ﬁfp(ﬂ'B,f)/ ((I)T U Cord) .
When we apply log,, . the formal group logarithm attached to the differential wyg,
we recover the component corresponding to the fixed embedding @Q < Q,,. Hence

(6.38) log,,, (7 Ucy) = Lp(x,0) (log%(@T U cord)) .

7. EXCEPTIONAL ZERO PHENOMENON IN THE SPLIT CASE

The aim of the rest of the paper is to compute the class of LI (1) and L8 ()
in Z/Z? in the presence of the Exceptional Zero phenomenon and in case K splits
at P. We will invoke Corollary and so such class will be characterized by the
integrals

/ ldpge p = K(he) N O(L), e =def,ind, gt 1= resd, Ying := log ¢,
Ok, P

for all ¢ € HOIDZP (gKyp, Zp) = g}/m).
Let H be the maximal open compact subgroup of T'(Fp) ~ F5. We have the

exact sequence
ord

0—H—T(Fp) —7Z—0.

Then we can consider the real manifold M = R x T(EP)/T’ with the following
natural action of T'(F):

T(F)x M — M; (t,(2,t7)) — (x4 ord(ep(t)), " ()t7).

Since we can identify Hy(M,Z) with C.(T(FP)/T,Z), we can consider the fun-
damental class ¢ of the oriented compact manifold M/T(F) as an element of
H1(T(F),C.(T(F?)/T,Z)) by means of the identifications

¥ € Hi(M/T(F),Z) = Hi(T(F), Hy(M, Z)) = H\(T(F),C.(T(F")/T,Z)).

Let ¢ : Gxp — Z, be a continuous group homomorphism (¢ € C(Gk p,Zy)
not necessarily locally constant). It corresponds to a continuous homomorphism
{ : T(F) — Z, that factors through I'T'(F). Let ¢p : T(Fp) — Z, and (7 :
T(FP) — Z, be its corresponding restriction to T'(Fp) and T(FP). By topological
reasons, ¥ = 0. Let F be a fundamental compact domain for T'(F)/T" under the
action of T'(F). Hence d¢ = [{1], where [{1x] € Ho(T(F),C.(T(F)/T,Z,)) is the
image of {15 and 17 € C(T(F)/T,Z) is the characteristic function of F. As above,
we consider the natural injections tp : T(F) < T(Fp) and P : T(F) — T(FF).
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Let us consider again the open compact subset U = 21 U, e @™ H of P'(F).
Since ¢ = 0, the morphism ¢ depends only on ¢p. Hence it makes sense to consider

the cocycle z¢,, € HY(T(F),C.(T(Fp),Z,)) defined by
zep (1) = (1 — ¢p(t)) (Eply).
Remark 7.1. Note that z¢, (t) € C.(T(Fp),Zp) C Co(T(Fp),Zyp). Indeed,
2 ()(x) = Lp(@)lu(z) = Lp(ep(t) " @)1y (tp (1) )

= Ip(@)ly(x) — (bp(z) — bp(p (1)) 1y (ep(t) " 1a)

= Hlply,(z) + lp(p(t)))r ()1u(2),
where U; = U\ 1p(t)U C T(Fp) is clearly open and compact. Since {(T) =
lp(vp(t)) = 0, we deduce that 2z, (t) = £lply, (z) € Co(T(Fp), Zy).
Proposition 7.2. We have that

0(¢) =9 N ze, € Ho(T(F), Co(T(F)/T, Zp)).

Proof. Let F C T(F)/T be an open compact fundamental domain for the action
of T(F) such that HF = F. By definition, d(¢) is the image of the compactly
supported function /17 in Ho(T(F), Co(T(F)/T,Zy)).

Let us consider a finite index subgroup of the form 7 = t* x TF C T(F), such
that tp(T7) C H and (P (t) € . Let F¥ a fundamental domain for T'(F)/T
under the action of 77. Hence, U; x F¥ = (U \ tp(t)U) x F¥ is a funda-
mental domain for T(F)/T under the action of 7. Note that, in this situation,
Co(T(FP)/T,Z) ~ C(FP,Z) @7 Z[TT] ~ C(F?,Z) @z Z[T]. Thus, by Shapiro’s
Lemma, H,(T,C.(T(FP)/T,Z)) = H,(t* C(FP,Z)). We describe ¥ as the co-
restriction of the class in Hq(t%2, C(F”,Q)) defined by the cocycle

1

== 1lrr, n=1
v/ P . ny _ [TF):T]~F">» )
f't C(‘F 7@)7 f(t ) { O7 71751.

Therefore, we compute

1 1 1 R
REGH T(F) 7] DG
where the second equality has been obtained from Remark [Tl Since 1y, xz» =
deT(F)/Tglf and 7 is trivial on T'(F), we deduce that the class of glUtx]-‘P =
Y er (e, 7 9(01F) coincides with the class of [T'(F) : T){1x in Ho(T(F), Ce(T(F)/T, Z,)),
hence the result follows. g

LAREZ (t)@1pr = lply, ®1zp

Let us consider the subset
Ty={zeT(F): vp(x) e H} CT(F)
and let F; be a fundamental domain for T(F7)/T under the action of T;. We can
consider the subgroup R
X:=UxF CcT(F)/T.
As in previous results, let us identify V% as a quotient of C(P!,Z). Hence ord :
T(Fp) — Z defines a cocycle zora € H (T (Fp), VZ), where zorq(t) = (1—p(t))(ord1y).
Proposition 7.3. The class of the characteristic function 1y satisfies

[1x] =9 N zora € Ho(T(F), Co(T(F)/T,Cp)o).

Proof. Since tp(T(F)) is dense in T(Fp), we have the exact sequence

ord

0—TW —TF) —Z—0,

where, by abuse of notation, we also denote by ord the composition ord o tp. Note
that zo.q is the image through the inflation map of an element Z,q € Hy(T(F) /T, (VZ)™).
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On the one hand, let us consider 17, the characteristic function of F;. By
strong approximation, given t € T'(F) there exists t; € T1 such that 7 (¢t~'t;) € T
This implies that the image [1£,] € Ho(Th, Co(T(FP)/T,Z)) lies in fact in [1£,] €
HO(T(F)/Ty, Ho(T1, Co(T(F7) /T, Z))).

On the other hand, let us consider ¥, € Hy(T'(F)/T1,Z) ~ H1(R/T(F),Z) given
by the fundamental class of R/T(F) (t € T(F) acts on R by tx = x + ord(vp(t)) as
above). Then it is clear that [1 7] ®¥; is mapped to ¥ by means of the composition

H(T(F) /Ty, Hy(T1, Ce(T(FP)/T, Z))) ® Hy(T(F)/ Ty, Z)

H\(T(F)/Ty, Ho(Ty, Co(T(F7) /T, Z))) ——————— Hi(T(F),C(T(F7)/T, Z)).

Thus, the result follows if we show that zZea N VY1 = [1y] € Ho(T(F)/T1, (VE)T).
Indeed, if t € T(F)/T; is a generator then

Zord N1 = Zowd(t) = (1 — tp(t))(ordly) = ordly — (vp (¢)ord)(vp (¢)1y)
= ord(ly —ep(t)ly) + ord(ep(t)tply = ord- 1y + tp(t)1ly = vp(t)ly.
0

For any continous Z,-module homomorphism £ : Gip — Z,, let £ : T(F) — Z,
be the composition £ o p4, where pa : T(F)/l" — Gk, p is the Artin map, and let
lp : T(Fp) — Z, be its restriction to T'(Fp) (recall that ¢F = 0). We will identify
T(Fp) with F5 by means of the isomorphism 1 of §6.Il Recall the automorphic
L-invariants Lp (78, ¢p) and Lp (7P, €p) introduced in Definition [G.6]

Definition 7.4. By Corollary 2.2, the morphism in Homg, (g}/m,,(Cp) that maps
teGyptolp (7B, ¢p) or Lp (7P, p) (depending we are in the indefinite or definite
case) defines a class L% () € Z/Z?, where = def or ind, and Z is the augmentation

map of Ac,. Such class L} () is called automorphic L-invariant vector attached
to . o

We have shown that L} (7x) € Z whenever 7p Steinberg. The main result of
this section computes the class of L} (mk) in Z/Z? in terms of the automorphic
L-invariant vector.

Theorem 7.5. Let Cx be the non-zero constant of Theorem[54 or Theorem [5.13,
depending on whether we are in the definite or indefinite case. If T(Fp) splits and
a =1 then L% (rx) € Z, with e = def,ind, and its class VL (nx) € Z/I? is given
by the formula

. . L(1/2, 7k, 1)\ /?
def _ def ) )
VLP (WK) = ,C,P (7‘1’) (CKC(TFP)iL(l,ﬂ',CLd) ) ,
VLR (rk) = LBY(w)log,(Pr),

where C(mp) = % # 0 and Pr € A(Q) ®o,_ Q is a Heegner point

with Neron-Tate canonical height

L/(1/25 TK, 1)
L(1,m,ad)

Proof. By Corollary 22 in order to obtain the class VL% (mx) € Z/Z? we have to
compute 8L7’(7TK : fg o ldug p, for all £ € Gy ». By Proposition [.2)

Ly (1K)
ol

(Pr, Pr) = |Pr|* = CxC(np)

— k() N DL = R(h2) N (9 N 205) = (£(ba) U 2¢5) N .
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In the definite case (following the notation of §fl), tger = res(¢) is the image of
¢ € Homg () (V, HY(G(F), Ap(Q))xo ~ HY(G(F), AR (V2,Q)) o
through the restriction morphism. This implies that, by Proposition [(.3]
K(aet) Uz, = KT (res(pUcey)) = Lp(nP,€p)KT (res(¢ U cora))
= Lp(r",p)(K(aer) U Zora),

where k7 : AB(C,) — C.(T(EP)/T,C,)Y is given by (k7 (), f) = D teT(FP)T f(lf)QS(t)

In the indefinite case, ¢ina = log(¢) = log,,, (®7), where &1 € HY(T(F), A5 (V? A%(Q)))
and log,,, is the formal logarithm attached to ws. By (6.38), we have that

K(WYind) Uzep = HP(Ing¢((I)T Ucep)) = Lp(rB, Kp)ﬁp(log%(@;p U Cord))

= Lp(r”,p)(K(tina) U Zora)-

In any of our settings (definite or indefinite) r(1e) U zep = L2 (€)(K(¢e) U 2ord),

where £L3°(¢) := Lp (7P, lp) or L4(¢) := Lp (7B, ¢p). Thus

‘%%T(;K) = L°(0)(K(1he) U zora) N0 = L*(£) /gm [Lx](dpk,p(7),

by Proposition
We compute that, since 1y = 1yxr, is H-invariant,

[ et = [ @)
Ok, P T(F)/T(F)

[ 1ot = [ (L) log, (1)@
Ok, P T(F)/T(F)

Recall that T(Fp)/H = w?, U = Upenw"H and H x F; contains a finite number
of fundamental domains of T'(F') under the action of T'(F'). This implies that

def o winI T XI
/gK’Pux]w>duK,m> - /T oy Sl )@ )0 @)

neN

/H @) @) = / ) @)de.

neN

Similarly,
[ sdodibe = [ g, (@)
Ok, P T(F)/T(F)
Using the Waldspurger and Gross-Zagier formulas, we compute

2
y L2151
</T<ﬁ>/T<F>5(1U)(x)d x) - C¢Wa”7”l(5T(lU)’5T(1U))’

2
/ ) S(1p)(z)d* x
T(F)/T(F)

Thus, we need to compute the pairing By, 1(07(1y), dr(1y)). By Proposition B2

Brpa(0r(lv),6r(1v)) = cr /T(F )/T(F )lU(flx)A(éT(lu))(x)dXxdxt.

Hence by @.0), Brp.1(67(11),07(11)) = crCr fT(FP) F(0)(t)d*t, where F(s)(t) is
the analytic continuation of the expression

_ _1$ s x—l X ><$
F(s)(t) = /T FRCGE /T o O )y

L/(1/25 TK, 1)

* I 7 ad) rp,1(07(10), 07 (10)).
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As we showed in the proof of Theorem B.15, fixing an isomorphism Tp ~ Fj
(Note that U is mapped to Op, \ 0), there is a non-zero constant C, such that

75. We deduce that

1
Or(s)(y) = ‘W

)t = /F oy, (t712) /
a /OFP /opp

1
(2—2s)n X
q ’ Z Z /m « |1_y|272sd Y,
w UOFP

mg=ord(t) My=mxg

1—s

L log, (z7 y)d yd™ x

02( )2

1—s
Tz d*yd*z

where np = ord(C) and g = #(Op, /w). Moreover,

1, my > 0;

1 X (2—2s)m .
/ o 7|1 — y|2725d Yy = q q72+q1y:23 My < 07
Ghi—g=y: My = 0-

By means of a tedious but straightforward computation that will be left to the
reader, we obtain that

2np ,—ord(t) (1 _ ,—1)—2 :
[ ¢?rq (I1—=¢ Y2, ord(t) > 0;
FO)@) = { 22T gerd0 (1 — ¢)2, ord(t) < 0.
This implies that
L(,np)L(1,7p,ad) -

Urp 1 (07 (1), 0r(1y)) = Cp(2)L(1/27 p— erCr /T(F )F(O)(t)dxt

crCrg® T L(1,mp)L(1 7T7),CLd Z o oo
= q +Zq

(P(2)L(1/2, 7P, 1)1 n>0 n<o0
_ CTCTq2nTL(17 7773)L(17 TP, ad) q (1 + qil)
P(2)L(1/2,7p, 1) (I—q71)3 "
and the result follows. O

Remark 7.6. Recall that the constants Cx have been computed in Theorem [5.21]
under certain mild hypothesis.

8. APPENDIX 1: LOCAL INTEGRALS

Lemma 8.1. [10, Proposition 2.1.5] Let H be a locally compact group and N a
compact subgroup of H. Then there is a positive reqular Borel measure on the
quotient space H/N that is invariant under the action of H by left transaction.
This measure is unique up to a constant multiple.

Let F' be a nonarchimedean local field with absolute value |- | : F — R and
integer ring O. Let us denote by Z the center of GLy(F), and let P be its Borel
subgroup, namely, the subgroup of upper triangular matrices. Let us consider the
modular quasicharacter

k:P—R n(tl tx)=|t1/t2|.
2

It is a group homomorphism that satisfies dr(b) := k(b)dL(b), where dr and d, are
right and left Haar measures on P.
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Lemma 8.2. Let M be a closed subgroup of GLo(F'), such that the product PM is
open in GLa(F) and its complement has zero measure. Let Zpy € Z N M be any
subgroup, such that the quotient (PN M)/Zy is compact. Let h € C.(GLy(F),C),
such that h(bg) = k(b)h(g), for all b € P and g € GLo(F). Then, there exists
¢ € Ce(GLy(F),C), such that h(g) = [, ¢(bg)dLb, for all g € GLy(F). Moreover,
for any such ¢,

[ wmdem=c [ ofg)ds

M/Zm GL2(F)

where C' = Cir)z,, € R is a certain constant and dg is the right Haar measure on
M/Z .

Proof. We choose a right (PNGL2(O))-invariant compactly supported function ¢g €
C.(P,C), such that [}, ¢o(b)drb = 1. Since h is also left (P N GLy(O))-invariant,
both ¢¢ and h provide a function ¢ € C.(GL2(F), C) defined by ¢(bk) = ¢o(b)h(k),
for all b € P and k € GL2(O). We compute (g = bk, b’ € P, k' € GL3(0))

/ o(bg)dLb = h(k') / oo (08~ (B)dR(b) = h(K')s(b) = h(g).
P P

Let H := (P x M)/Zy, and N := (PN M)/Zp. We consider N embedded
diagonally in H. Observe that there is a homeomorphism H/N — PM given by
(b,m)N +— bm~!. This induces a linear isomorphism C.(PM,C) ~ C.(H/N,C).
The linear functional on C.(PM, C) corresponding to the Haar measure of GLy(F)
gives rise to a linear functional on C.(H/N,C), which is invariant under the left
action of H. Another left H-invariant linear functional on C.(H/N,C) is given
bY a1z Jp £, m~Y)N)dpbdrpm. By Lemma Bl both linear functionals must

coincide (up to constant). Hence

[ stgg=c[ swas=[ [ omisanm= [ nmazm,
GLy(F) PM M/Zy J B M/ Zn
and the result follows. O

Corollary 8.3 (Invariance). Let h € C.(GLy(F),C) and M be as above. Then, for
any g € GLy(F),

/ h(mg)drm = h(m)dgm.
M/ Znr M/Zn
Proof. Write ' € C.(GL2(F),C) for the translation h'(¢g’) = h(g'g), for all ¢
GL2(F). By the above lemma, there exists ¢ € C.(GL2(F),C), such that h(g")
Jp &(bg")drb. Thus,
W) = hig's) = [ s0gadus = [ g,
P P

where ¢'(¢’) := ¢(¢'g). Applying the second part of the lemma,

/ h(mg)dgm = / W (m)drm = ¢'(g")dg" = / o(g'g)dg’
M/Zm M/Zm GL2(F) GL»(F)

= / h(m)dgm,
M/Z]\/[

and the result follows. O

S

Corollary 8.4 (Comparison). Let M /Zyr = M1/ Zp, or Mo/ Zyy, and h € Co(GLo(F),C)
be as above. Then there is a constant C = C(M1/Znr,, Ma/Z ), such that

/ h(ml)dle =C h(mg)dng.
M /Zn, M2 /Z
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Proof. By LemmalB.2, thereis ¢ € C.(GLa(F),C), which satisfies h(g) = [, ¢(bg)dLb,
for all b € P and g € GLo(F'). This implies that

/ h(ml)dle = Cl ¢(g)dg =C h(mg)dng,
M1/ Z GLy(F) Mz /Z,
and the result follows. O

9. APPENDIX 2: THE (g, 0)-MODULE OF DISCRETE SERIES

Let g be the Lie algebra of GL2(R), let us consider the maximal compact subgroup
O = 0(2), and let H := SO(2) C O. Denote by P the Borel subgroup

1/2 —1/2
P= {u ( 4 zy,m ) € GLQ(R)+}
For our purposes, we will be interested in the (g, O)-module D = D(2) of discrete
series of weight 2. It can be described as a subrepresentation of an induced repre-

sentation from a character of the Borel subgroup P. Indeed, since any g € GLo(R)™
can be written uniquely as g = u - 7(x,y) - k(0), where

Y oyt o cosf sind
ueRY, T(2,y) = ( Y12 ) € P, k() = < Csind  cosf > € S0(2),
we write
I= {f € C°(GLy(R)",C), such that f(u-7(z,y) - k(0)) = yf(x(0))}.

Then I is the (g, H)-module of admissible vectors in I, namely, the set of f € I
such that the Fourier series of f(x(#)) is finite. Thus,

I= @Cf%; forn(u-7(z,y) - £(0)) = ye¥?.
keZ

The (g, H)-module structure of I can be described as follows: Let L, R € g be the
Maass differential operators defined in [10] §2.2]

; 0 0 10 ; 0 o 10
L=e?" (—iy%—i—ya—y—E%), R =¢%" (iyg—i—ya—y—i—g%).
Then, the (g, H)-module I is characterized by the relations:
(9.39) Rfor = (1 + k) farto2; Lfor = (1 = k) fap—2;
(9.40) K(t) far = €M for; wfor = for,

for any x(t) € SO(2) and u € R* C GLa(R)*. Since for, € CR*fy, if k > 0, and
for, € CL™F fy, if k < 0, we have that I is generated by fo .
To provide structure of (g, O)-module, we have to define the action of w =

( -1 1 ) € 0O(2) \ SO(2). Therefore, we have to define w € End(I), such that

(i) wfor € Cfog; (i1) w?=1; (iii) wR = Lw.
If we write w far, = A(k) f—2k, condition (i¢) implies that A(k)A(—k) = 1. Moreover,
condition (i) implies that A(k) = A(k + 1). We obtain two possible (g, O)-module
structures for I: Letting A(k) = 1 for all k € Z, or letting A(k) = —1 for all k € Z.
We denote by I'™ and I~ the corresponding (g, O)-module structures.
Note that we have a well defined morphism of (g, H)-modules

I —C, f— /07r f(k(0))do.

Write C ~ C(+1) for the vector space C with trivial GLz(R)-action, and C(—1)
for the vector space C equipped with the action of GLy(R) given by the character
g — sign(det(g)). The above expresion defines a morphism of (g, O)-modules pr¥ :
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I* — C(&£1). The kernels of both morphisms are isomorphic as (g, O)-modules by
means of the isomorphism

ker(prt) — ker(pr™);  far — sign(k) far,

its isomorphism class is called discrete series representation D. It is an irreducible
(g, O)-module generated by fs. Moreover, we have constructed two different exten-

sions of D:
(9.41) 0—D— IT —C—0;
(9.42) 0—D— I- —C(-1)—0.
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