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Rekai González-Alberquilla4

Chris Adeniyi-Jones4 · Mateo Valero1

Marc Casas1 · Miquel Moretó1,2
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Abstract Data-level parallelism is frequently ignored or underutilized. Achieved
through vector/SIMD capabilities, it can provide substantial performance improve-
ments on top of widely used techniques such as thread-level parallelism. However,
manual vectorization is a tedious and costly process that needs to be repeated
for each specific instruction set or register size. In addition, automatic compiler
vectorization is susceptible to code complexity, and usually limited due to data
and control dependencies. To address some of these issues, Arm recently released
a new vector ISA, the Scalable Vector Extension (SVE), which is Vector-Length
Agnostic (VLA). VLA enables the generation of binary files that run regardless of
the physical vector register length.

In this paper we leverage the main characteristics of SVE to implement and
optimize stencil computations, ubiquitous in scientific computing. We show that
SVE enables easy deployment of textbook optimizations like loop unrolling, loop
fusion, load trading or data reuse. Our detailed simulations using vector lengths
ranging from 128 to 2,048 bits show that these optimizations can lead to per-
formance improvements over straight-forward vectorized code of up to 1.57×. In
addition, we show that certain optimizations can hurt performance due to reduced
arithmetic intensity and instruction overheads, and provide insight useful for com-
piler optimizers.
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1 Introduction

While multi-threaded implementations have become the de facto solution to soft-
ware design, developers commonly neglect the usage of vector capabilities, e.g.
SIMD. The underutilization of vector/SIMD features usually lies in the limited
capabilities of automatic vectorization and the complexity of handcrafted vector-
ization. The quality of automatically generated vector code is closely related to the
complexity of the code being vectorized, and often limited by intra-vector depen-
dencies. In addition, manually-vectorized codes need to be maintained to support
new features or vector lengths.

To address these issues, Arm recently released a new vector Instruction Set
Architecture (ISA), the Scalable Vector Extension (SVE) [1], which extends the
Armv8-A ISA. SVE targets complex parallel codes that go beyond the workloads
that typically run on embedded or mobile systems. In particular, one of the areas
that is expected to be more impacted by SVE is HPC. Some of the most ambitious
research projects aiming to build exascale systems are based on Arm architectures
that will feature SVE [2]. Rather than having a fixed vector length (VL), SVE
gives flexibility to hardware designers to implement their vector length of choice
from 128 to 2048 bits. The Vector-Length Agnostic (VLA) programming model
adjusts dynamically to the available VL.

SVE improves manual, automatic and user-directed (pragma-based) code gen-
eration by easing the vectorization process to both compilers and developers. In
particular, SVE has been tested to improve vectorized code generated on appli-
cations from different fields of research, including: sorting, dense and sparse lin-
ear algebra, n-body methods, LU-decomposition, graph traversal, stencil codes,
etc. [1]. Stencil codes are of particular interest, since they are the basis for HPC
applications targeting problems from many scientific domains such as fluid dy-
namics, structural mechanics, and image processing. Stencils are iterative kernels
that operate over N-dimensional data structures with a fixed computational pat-
tern. These kernels are commonplace in finite-difference methods used to solve
large-scale and highly-dimensional partial differential equations (PDEs).

The implementation of stencil computations to efficiently exploit the resources
available in the system is a difficult task that has been previously studied [3, 4].
Stencils are typically memory bound, which is also a challenge for vector architec-
tures [5]. VLA facilitates the deployment of well-known code optimizations that
significantly benefit from the semantics offered by SVE. By using SVE the loop
control flow is driven by predicates, therefore, porting the while(cond)-end con-
trol statement is straight-forward and automatically applies VLA to our baseline
(non-optimized) codes.

This paper makes the following contributions:

– We present a novel analysis on how the Arm SVE vector ISA can be used
to increase the performance of a highly relevant group of numerical kernels
- stencil computations. We describe how different optimizations such as loop
unrolling, loop fusion, data reuse, and load trading can easily be implemented
using the SVE ISA. We have implemented, on top of the MPI-enabled version
of miniAMR, the scalar baseline and all the SVE-enabled optimizations on 7-
point and 27-point stencils using hand-coded assembly to ensure controlled and
optimized code generation.



Using Arm’s Scalable Vector Extension on Stencil Codes 3

– A comprehensive performance evaluation based on detailed multi-core archi-
tectural simulations that faithfully model the SVE architecture. We employ
roofline models to study the performance impact of different vector lengths,
ranging from 128 to 2048 bits, on the evaluated code optimizations. In addi-
tion, by using metrics of interest we also compare the effectiveness of each code
optimization. We find that loop fusion and data reuse unlock the largest per-
formance improvements, up to 1.45× and 1.57× respectively.

– We provide a memory bandwidth sensitivity study to show the performance
impact additional bandwidth can have on the base 7-point and 27-point stencils,
as well as on their best performing optimized version.

– We compare performance of out-of-order and in-order cores using different vec-
tor lengths and find that out-of-order capabilities offer significant performance
advantages. This is because in vectorized codes the time spent in arithmetic
operations decreases and higher memory contention is usually present, leading
to stalls in in-order pipelines.

– We report our experience vectorizing and optimizing stencil codes using SVE,
which serves a two-fold purpose: (i) detail how VLA and per-lane predication aid
programming certain optimizations, providing a recipe for manual vectorization;
and (ii) useful insight to train automatic vectorization tools. In addition, we
provide guidelines on the appropriate vector lengths to employ depending on
workload characteristics.

2 Related Work

Stencil Codes: Partial differential equations (PDEs) are used to solve large-scale
high-dimensional problems using finite-difference methods (FDM). PDEs are the
base to provide numerical approximations to complex computational problems
from science and engineering [6, 7, 8, 9, 10]. FDMs use an N-dimensional array of
elements in which each element is updated every time-step based on the weighted
contribution of neighboring elements (the stencil).

The most commonly used sets of neighboring elements are called Von Neu-
mann and Moore neighborhoods [11]. Both the Von Neumann and Moore neigh-
borhoods of an element x and radius d are formed by all the elements, y, such
that dist(x, y) <= d. The difference resides in how the distance is calculated. For
Von Neumann, the distance between two elements is the addition of the distances
in each dimension. For Moore, the distance between two elements is the max of
the distances in each dimension. In this paper, we consider two neighborhoods,
7-point and 27-point stencil, which are the names commonly used to designate,
respectively, Von Neumann and Moore neighborhoods of radius 1.
Vector/SIMD Architectures: Vector architectures have been present almost
since the beginning of the history of parallel computing [12]. The first vector
supercomputers, TI-ASC and STAR-100, were released in 1970 and consisted of a
powerful vector unit that was served by the scalar unit, which comparatively had
poor performance. Both were memory-to-memory machines, equipped with a very
high bandwidth memory system. As opposed to present architectures, specially
RISC-based ones, the instruction sets of these machines had so much semantic
content that it would be very difficult for a compiler to auto-vectorize programs.
Nevertheless, some of the features we see in today’s vector architectures were
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already present in TI-ASC and STAR-100. Bit masks to implement conditional
operations were one of the features implemented in these first machines. Current
architectures offer similar functionalities: AVX-512 [13] has masked operations
and gather/scatter memory operations, and PowerPC AltiVec [14] implements the
compare operation to create field masks.

There are also recent proposals from academia, such as the Hwacha Design [15],
which extends the RISC-V ISA [16]. Its philosophy is based on traditional vec-
tor architectures, similar to Cray1 [17], allowing to have a variable vector length
configured through the vector length register. The key difference is that vector in-
structions execute in their own vector fetch block, while the scalar control processor
continues doing useful work independently. Additionally, the instruction set has
predicate registers to mask vector operations. SVE shares with Hwacha a VLA
approach without the need of a specific vector length register.

The paradigm implemented in GPUs, single instruction multiple thread (SIMT)
has similar functionalities, as it also permits handling divergent threads by pred-
icating operations. In general, codes targeting GPUs are independent of micro-
architectural parameters such as warp size, which could relate to the VLA feature
of SVE.

Stencils on Vector/SIMD Architectures: Naive implementations of stencil
computations usually achieve only a fraction of the system’s peak performance [18].
Additionally, stencils usually suffer from a high cache miss-rate, and their perfor-
mance drops drastically once input sizes exceed the size of the last level cache.
Memory-boundedness of a stencil depends on the arithmetic intensity of the com-
putations done over the neighbors (computations per loaded byte). Many optimiza-
tions try to improve data locality, data reuse and other performance-critical factors
of stencil computations [19, 20, 21, 22, 23, 24]. There are also stencil-specific opti-
mization frameworks [4] and compiler support [25] to ease the optimization process
for developers.

Optimization of stencil computations via SIMD instructions is also a common
approach [26, 27], and the usage of GPUs has also been considered [28]. Wider
register sizes for CPU ISAs clearly offer some advantages in terms of data mi-
gration reduction and ease the programming effort. However, programming for
GPUs is complex and error-prone. Programming models for GPUs, like CUDA
and OpenCL, require programmers with expertise on the target micro-architecture.
The vector length agnosticism of SVE is a key feature to mimic SIMD acceleration
capabilities offered by GPUs, by exploiting long SIMD units without the need for
generating binaries for specific lengths.

Scalable Vector Extension: SVE is Arm’s response to the increasing needs
of energy efficient computing systems in the HPC domain. One of the highlights
of SVE is Vector-Length Agnosticism (VLA). VLA enables the generation of bi-
nary files that run independently of the underlying physical vector register length.
The immediate consequence of VLA is performance portability, exploiting wider
registers in high-end implementations of the architecture with the same binary.
Additionally, VLA also comes with the benefit of having an efficient utilization of
instruction opcodes throughout the wide range of vector lengths: the same opcode
is used for a given instruction independently of the vector length. In fact, SVE
encoding fits in a 28-bit region, occupying only one sixteenth of all the available
opcodes that can be represented with the 32-bit encoding Armv8-A has, leaving
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f o r ( t←1; t≤T; ++t )
f o r ( i←1; i≤ I ; ++i )

f o r ( j←1; j≤J; ++j )
f o r ( k←1; k≤K; k+=VL)
B[ i ] [ j ] [ k ] ← (A[ i ] [ j ] [ k ] +

A[ i ] [ j ] [ k+1] + A[ i ] [ j ] [ k−1] +
A[ i ] [ j +1] [ k ] + A[ i ] [ j −1] [ k ] +
A[ i +1] [ j ] [ k ] + A[ i −1] [ j ] [ k ] ) / 7

A ← B

Fig. 1 3D Jacobian method pseudo-code (T time-steps) with computational and copy loops.

room for future extensions. SVE supports vector lengths ranging from 128 to 2048
bits in multiples of 128.

VLA is achieved using a predicate register driven loop control flow. Predicate
registers are constructed and/or modified when the loop condition is checked. This
functionality accomplishes two tasks with a single instruction: a) setting condition
flags, and b) preparing predicate registers to be used as masks for instructions in
the loop body. As a consequence, there is no need for treating loop prologues and
epilogues aside of the main loop, thus allowing the vectorization of variable trip-
count loops. It also helps preventing faults due to uninitialized data or accesses
to out-of-bound addresses. Other remarkable SVE features include: (i) serialized
reductions that ensure the same rounding behavior as scalar codes and (ii) vector
partitioning, that enables speculative vector loads, among other uses.

3 Strategies to Optimize Stencil Codes with SVE

Stencil optimization via SIMD instructions has been widely researched in the
past [26, 27, 29]. From the many strategies available in the literature, we have
cherry-picked those that are most used and that could potentially be challenging
for the ISA. Selected strategies are thoroughly described in this section in the
Armv8-A ISA context. To the best of our knowledge this is the first study that
leverages specific SVE properties to optimize stencil computations. Figure 1 shows
the pseudo-code of a 3D Jacobi method, which uses a 7-point stencil scheme to
update the values of the elements composing the 3D array A. Since the Jacobi
method uses the values computed during iteration (i − 1, j, k) to obtain the val-
ues of iteration (i, j, k), it is not possible in general to override the elements of
A as they may be used in subsequent computations. This is the reason why the
algorithm displayed in Figure 1 contains two main loops within each time-step t:
the computational loop where we store the results to array B, and the copy loop
where we copy back the previous results to the original array A. We are aware of
alternative solutions that prevent having a copy loop, and cover it in detail when
introducing the loop fusion optimization.

We adhere to the following conventions:
– The memory layout of arrays is row-major order.
– Vectorization is applied on the k axis unless otherwise stated
– A[i][j][k] represents the tuple of elements, consecutive along the k axis, <

A[i][j][k], . . . , A[i][j][k + V L− 1] >, that fit in a vector.
– We overload the meaning of i, j and k to both the index variable of the for-loops,

as well as the value of the index during a given iteration. k+ denotes the value
of the index for the next iteration.
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Listing 1 NEON version (128-bit)
mov x1 , #1
sub x7 , z s i z e , z s i z e mod 2
loop :
cmp x1 , x7
b.eq s c a l a r
ld1 v4 , [A, x1 , l s l , #3]
add x2 , x1 , o f f s n o r t h
ld1 v8 , [A, x2 , l s l , #3]
fadd v4.2d , v4.2d , v8.2d
sub x2 , x1 , o f f s n o r t h
ld1 v8 , [A, x2 , l s l , #3]
fadd v4.2d , v4.2d , v8.2d
add x2 , x1 , o f f s f r o n t
ld1 v8 , [A, x2 , l s l , #3]
fadd v4.2d , v4.2d , v8.2d
sub x2 , x1 , o f f s f r o n t
ld1 v8 , [A, x2 , l s l , #3]
fadd v4.2d , v4.2d , v8.2d
add x2 , x1 , o f f s e a s t
ld1 v8 , [A, x2 , l s l , #3]
fadd v4.2d , v4.2d , v8.2d
sub x2 , x1 , o f f s e a s t
ld1 v8 , [A, x2 , l s l , #3]
fadd v4.2d , v4.2d , v8.2d
fmul v4.2d , v4.2d , constant
str v4 , [B, x1 , l s l , #3]
add x1 , x1 , #2
b loop
s c a l a r : // Last i t e r a t i o n

Listing 2 SVE version (VLA)
mov x1 , #1
loop :
whilelt p0.d , x1 , z s i z e
b.eq end
ld1d z4.d , p0/z , [A, x1 , l s l #3]
add x2 , x1 , o f f s n o r t h
ld1d z8.d , p0/z , [A, x2 , l s l #3]
fadd z4.d , z4.d , z8 .d
sub x2 , x1 , o f f s n o r t h
ld1d z8.d , p0/z , [A, x2 , l s l #3]
fadd z4.d , z4.d , z8 .d
add x2 , x1 , o f f s f r o n t
ld1d z8.d , p0/z , [A, x2 , l s l #3]
fadd z4.d , z4.d , z8 .d
sub x2 , x1 , o f f s f r o n t
ld1d z8.d , p0/z , [A, x2 , l s l #3]
fadd z4.d , z4.d , z8 .d
add x2 , x1 , o f f s e a s t
ld1d z8.d , p0/z , [A, x2 , l s l #3]
fadd z4.d , z4.d , z8 .d
sub x2 , x1 , o f f s e a s t
ld1d z8.d , p0/z , [A, x2 , l s l #3]
fadd z4.d , z4.d , z8 .d
fmul z4.d , p0/m, z4.d , constant
st1d z4.d , p0 , [B, x1 , l s l #3]
incp x1 , p0.d
b loop
end :

Fig. 2 Code fragment of the 7-point stencil computation loop - only the innermost loop (k).

– We use the notation (i, j, k) to denote a specific iteration of the three loops,
from outermost to innermost.

– We assume there is memory allocation for the halo of the stencil, that it is
initialized and never updated.

The stencils employ double precision floating point elements, therefore we can
operate on 2, 4, 8, 16 and 32 elements using vector lengths from 128 to 2048 bits.

Baseline Codes: The simplest way to vectorize a stencil code is to apply vector
instructions to the innermost loop. Vector instructions compute ’vector-length
(VL)’ data elements simultaneously, so the innermost loop index variable will now
be incremented in VL time-steps. Starting from the scalar code, each instruction is
replaced by its equivalent vector version. In addition, we typically need to operate
on the prologue or epilogue aside of the main loop to compute the remaining values,
that is, the initial/final values that do not completely fill in the vector register.
SVE’s per-lane predication enables treating prologues and epilogues within the
main loop. Figure 2 shows the NEON and SVE baseline code of the innermost
loop of a 7-point stencil. As a reminder, for data manipulation instructions (i.e.,
additions) Arm assembly syntax places the destination operand immediately after
the mnemonic (similarly to Intel and opposite to AT&T assembly syntax).

In the scalar code, the for-loop structure would check if there are more elements
in the k dimension to continue execution. If true, the memory addresses of the 6
neighboring elements are computed and data is loaded into registers. Then, the
average of the 6 neighbors is computed and stored to array B.

On the other hand, NEON code needs to check if the number of iterations is
a multiple of the number of elements it can fit into the vector register. In this
example NEON can store 128 bits, since we use double precision floating point it
can fit 2 elements. If it is not multiple of 2, we need to do one iteration less of the
vectorized loop, and then jump to the scalar label to compute the last element.
The scalar tail loop performs the same computations but on a single element.
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Unroll factor Vloads
Iteration

VLelements
Iteration

Vload
VLelements

7
-p

o
in

t

Baseline 7 1 7
j by 2 12 2 6

j by 3 17 3 5.67

i by 2 & j by 3 28 6 4.67

i by N & j by M 2M + 2N + 3NM NM 2
N + 2

M + 3

2
7
-p

o
in

t

Baseline 27 1 27
j by 2 36 2 18

j by 3 45 3 15

i by 2 & j by 3 60 6 10

i by N & j by M 3(2 + M)(2 + N) NM 6
N + 6

M + 12
NM + 3

Table 1 Vector loads-per-VL elements ratio.

Finally, SVE uses the whilelt instruction to iterate over the for-loop. This in-
struction allows operating over the loop independently of the VL and the number
of iterations. whilelt constructs the predicate register, p0, by evaluating the con-
dition lt (less than) on the content of registers x1 and z size. p0 can be seen as a
mask that tells the architecture if a specific vector lane is enabled (’1’), or disabled
(’0’). Instructions ld1d, st1d, fadd and fmul are the vector equivalent of the scalar
instructions ldr, str, fadd and fmul, respectively. These new instructions operate
on vector registers (z4.d and z8.d), which contain a set of double precision floating
point elements. The incp instruction increments the content of register x1 by the
number of active elements in p0. SVE executes the code inside the loop z size/V L
times, with an additional predicated iteration if (z size mod V L)6= 0.

We want to outline that although mask operations exist in other current SIMD
architectures (such as Intel AVX-512 [13]), SVE’s per-lane predication is already
integrated into the control flow. Predicate registers drive loop control flow, reduc-
ing loop management overhead and controlling both vector and scalar instructions.
Loop Unrolling: One way to improve performance is to unroll the outer loops,
as the innermost loop is vectorized. By doing so, we reuse loaded data for more
than one iteration, thus reducing the pressure on the memory subsystem.

For instance, each computation on the 7-point stencil requires 7 load/element,
or 7 V load/V Lelements in vectorized code. Unrolling one iteration on the j di-
mension increases the number of required neighbors to 12, but two elements would
be computed in the process, so the ratio goes down to 12/2 = 6 load/element.
Table 1 shows the ratio variation for several configurations as we unroll the outer
loops i and j, N and M times, respectively. The right-most column of this Ta-
ble (V load/V Lelements) is computed as the division of the left-most column
(V load/Iteration) and the middle column (V Lelements/Iteration).

The progress of this ratio between neighborhood shapes follows a curve with an
asymptotic behavior (Figure 3), becoming almost flat after few unrolled iterations
(< 10) on both of the outer dimensions i and j. The studied 27-point stencil is more
sensitive to unrolling, specially in the first unrolled iterations, explained by the
multiplicative factor (12/NM , Table 1). For higher degrees of unrolling on both
dimensions there is little variation on the number of loads, which matches the
number of dimensions we are operating on, in this case 3. As a general conclusion,
unrolling on both i and j dimensions at the same time provides the largest gains.

On the practical side, the benefits unrolling unlocks in terms of load reduction
are limited by the amount of architectural resources. There are different ways of



8 A. Armejach et al.

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 10  20  30  40  50  60

V
lo

a
d

/V
L 

e
le

m
e
n
ts

Unrolled iterations on i

7 point stencil, No unroll on j
7 point stencil, Unroll 2 on j
7 point stencil, Unroll 3 on j
7 point stencil, Unroll 4 on j

 3

 6

 9

 12

 15

 18

 21

 24

 27

 10  20  30  40  50  60

V
lo

a
d

/V
L 

e
le

m
e
n
ts

Unrolled iterations on i

27 point stencil, No unroll on j
27 point stencil, Unroll 2 on j
27 point stencil, Unroll 3 on j
27 point stencil, Unroll 4 on j
27 point stencil, Unroll 8 on j

27 point stencil, Unroll 16 on j

Fig. 3 Vector loads-per-VL elements ratio when unrolling i and j for a 7-point (left) and a
27-point (right) stencil.

implementing an unrolled code, nevertheless, to update the value for more than
one element on the same iteration, we need at least one register per element to
accumulate the result. Therefore, on a 3D space for both a 7 and a 27-point stencil
unrolling N and M iterations on the i and j dimensions, respectively, we need at
least N ×M registers. Also, we need at least one additional register to operate
on the data before accumulating it. In addition, we should save some registers to
build optimizations on top of the unrolling. SVE supports up to 32 vector registers.
As an example, if we chose to unroll symmetrically a 27-point stencil to a level of
N = M = 5 iterations, 25 registers are required to live through the iteration to
store the result.

As loop unrolling is based on a replication of the loop body and a non-unitary
advance of the innermost loop index, the same SVE benefits as the baseline code
apply to this version. Control flow is done identically given that unrolling is done to
dimensions other than the vectorized one (k), thus, VLA is naturally maintained.

Loop Fusion: Stencil codes have cyclic data dependencies between elements in
sequential time-steps. An element needs the former value of its neighbors to com-
pute its new value. In turn, neighbors need the element value to calculate their
new value. Implementations of Jacobi usually avoid this problem by writing the
elements of the next time-step to a temporal array B, and once the calculation is
complete, copy back to the original array A (Figure 1). Another possible imple-
mentation is using two arrays which, alternatively behave as previous and current
by switching the pointer values every time-step. Both implementations require the
use of an auxiliary array of the same size as the original.

Exploiting parallelism without using multiple copies of the data requires a
detailed study of the dependencies between elements. Figure 4-top shows a repre-
sentation of the elements used in a single iteration of a 7-point stencil in memory,
row major order. Note that Figure 4 shows the accesses for the scalar case and
that in a vectorized code we would have the same accesses with their consecu-
tive right V L− 1 neighbors. In each iteration, and for this linear memory layout,
the elements required for the current computations will be their consecutive right
neighbors. Since we are working with stencils of order 1, that is, only use their
closest neighbors for their computations, the last element that requires of element
A[i][j][k] is A[i + 1][j][k]. A solution to overcome this dependency is to store tem-
porarily the values required for the next iteration of the outermost loop, i + 1,
until we reach its last consumer. Then, we update this value in the original array
A[i][j][k]. A pseudo-code of this optimization is shown in Figure 5, where tmp is
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Fig. 4 Linear representation of the accessed (loaded) elements in iteration (i, j, k) on array
A[I][J ][K] in the computation loop on a 7-point (top) and a 27-point (bottom) stencils.

f o r ( t←1; t≤T; ++t )
f o r ( i←1; i≤ I ; ++i )

f o r ( j←1; j≤J; ++j )
f o r ( k←1; k≤K; k+=VL)

zi.d← (A[ i ] [ j ] [ k ] +
A[ i ] [ j ] [ k+1] + A[ i ] [ j ] [ k−1] +
A[ i ] [ j +1] [ k ] + A[ i ] [ j −1] [ k ] +
A[ i +1] [ j ] [ k ] + A[ i −1] [ j ] [ k ] ) / 7

A[ i −1] [ j ] [ k ] ← tmp [ j ] [ k ]
tmp [ j ] [ k ] ← zi.d

Fig. 5 Loop fusion (computation and copy) on a 3D Jacobian method, T time-steps.

the 2-D temporary array where we store the elements between dependencies. Note
that the computation is first stored to an SVE register (zi.d) before we update the
value of its last dependency A[i− 1][j][k] to the original array and then store it to
the temporal array (tmp[j][k]). This solution only requires a 2-dimensional array
in addition to the original 3D array. In general, this implementation requires a d−1-
dimension array. This represents a K times reduction in storage compared to naive
implementations, where K is the size of the last dimension. In case of a 27-point
stencil, the last consumer for element A[i][j][k] is element A[i + 1][j + 1][k + 1], as
shown in Figure 4-bottom. That requires storing JxK + K + 1 elements to honor
the dependencies.

In both neighborhood shapes, we are reducing the memory footprint of the
stencil computation. In the case of the 7-point stencil, we are only using one d
dimensional array and one d−1 dimensional array, compared to the original code:
two d-dimensional arrays. As a side effect, this optimization also improves the
locality of the memory accesses.

This optimization is mainly a re-organization of the code that results in a sin-
gle 3D loop control. As opposed to the previous optimization, now with a single
loop management (whilelt–b.eq–incp–b structure) we are able to control all vec-
tor and scalar instructions. Moreover, if the loop body grows to support further
optimizations, loop control overhead will be even less significant.

Load Trading: Performance of stencil codes is typically limited by memory band-
width and latency. Thus, trading memory instructions for register-level computa-
tions may improve performance. In the 7-point stencil, there is an inter-iteration
reuse of blocks when using the current memory layout, depicted in Figure 4-top.
For iteration (i, j, k), the elements of vector A[i][j][k] are stored in consecutive
memory locations. As a consequence, given a tuple of elements starting at address
A[i][j][k− 1], we can build tuples starting at A[i][j][k] (and A[i][j][k + 1]) by re-
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moving the first (and second) elements from the tuple, and then concatenating with
the first (and second) elements from the tuple starting at A[i][j][k− 1 + VL]. The
27-point stencil (Figure 4-bottom) brings even more opportunity for improvement.
With a layout of nine blocks of three adjacent neighbors in memory, loads can be
reduced by 2

3 .
The approach we use to minimize memory instructions in the 7-point stencil is

loading contiguous non-overlapping blocks of data, that is, the tuples that start at
memory locations: A[i][j][k− 1] and A[i][j][k− 1 + VL]. Then we combine them
properly to obtain A[i][j][k] and A[i][j][k + 1]. It is worth pointing out that in
the next iteration, k+ will equal k + V L. Therefore, A[i][j][k+ − 1] is the same
as A[i][j][k− 1 + VL]. Storing the vector in a register and carrying it over one
iteration reduces load instructions from 7 to 5.

SVE provides several instructions that enable the reconstruction of a block
given its contiguous neighbors. After considering the different options, we con-
structed our solution using the instruction splice. This instruction takes two vec-
tor registers and a predicate register. It constructs the destination register taking
from the first source vector register the first to last active elements in the predi-
cate register, and then filling the remaining with the lower elements of the second
source. Note that the predicate register is constant through the execution of the
stencil, thus, it can be constructed only once, at the beginning of the execution.
The predicates used to reconstruct A[i][j][k] and A[i][j][k + 1] have the form of
pk = (1..110) and pk+1 = (1..100), respectively, being the right-most the least
significant bit. The process to obtain the predicates consists of two instructions:
ptrue, which activates as many elements as indicated, starting from the least sig-
nificant bit (1 for pk and 2 for pk+1) and not inverts each of the predicate bits.
Note that these predicates would work for any architectural VL.

Other architectures offer similar instructions. As an example, AVX-512 [13]
offers valignq which accepts also two SIMD 512-bit registers and a scalar value
that indicates how many 64-bit elements to shift after concatenating the source
vectors. Because the valignq instruction does not enforce the building of any mask
register, it offers less flexibility in terms of functionality. For this special case SVE’s
predicate registers were only performing 64-bit element shift movements. Never-
theless, more complex movements could be made by constructing the predicates
differently using splice.
Data Reuse: Given the symmetry of the neighborhood elements, we can reuse
loaded data and partial computations across different iterations. The proposed
optimization is only tested for the 27-point stencil, as the amount of reuse is much
higher in this stencil type. This optimization is implemented on top of the baseline,
without any interaction with any other previous optimization.

Figure 6 shows the data usage in three contiguous iterations (i, j,k− 2VL),
(i, j,k−VL) and (i, j,k). In each iteration, we only need to load 9×VL new el-
ements to 9 SVE registers and add them in a SIMD manner to obtain a partial
result, stored to an SVE register. This last partial result for element A[i][j][k] is
defined as rk+V L. By adding up rk+V L to rk and rk−V L, obtained similarly in the
two previous iterations, we compute the final result for this iteration. Finally, we
move rk to the register storing rk−V L (and rk+V L to rk) to reuse the two newest
partial results and get rid of the oldest.

This optimization allows to reduce the body of the loop significantly, replacing
memory accesses and arithmetic operations by register movements. Additionally,
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Fig. 6 Elements (and partial results r<iter.>) used in three consecutive iterations of the
27-point stencil, each cube representing a VL array of elements in the k dimension.

only 4 SVE registers need to be alive simultaneously. This allows to apply opti-
mizations on top of data reuse since it barely affects the architectural registers
limitation. Data reuse could be done in any of the three dimensions, applying it
to the vectorized dimension (k) is enabled by the use of incp that predicates the
loading of the 9×VL new elements. This is clearly interesting in the case of having
sizes of dimension k not multiple of VL, resulting in a classical loop tail for other
ISAs. Additionally, in irregular grids where the borders in the k dimension are a
function of the other dimensions, i and j, could benefit from VLA. In that case,
the border condition can be dynamically computed to produce predicated registers
for each i and j coordinates.

4 Methodology

We implemented the SVE baseline and subsequent optimizations over a well-known
stencil code found in the Mantevo miniapps suite - miniAMR [30, 31]. This miniapp
offers both Von Neumann and a Moore neighborhood shapes with a radius of 1 on
a 3D space. The computation over the stencil is an average of all the neighbors.
Reported performance and statistics in our evaluation are obtained measuring the
entire region of interest, which includes the main stencil computation routine called
stencil calc and an additional routine that performs refinement. We focused our
vectorization efforts only on the stencil calc routine. The first step was to manually
write an Armv8-A assembly version of the original scalar code of stencil calc, both
for 7-point and 27-point stencils. Using a manually written scalar baseline ensures
fairness when comparing code versions and prevents the compiler from affecting the
results. The base SVE-vectorized versions and subsequent optimizations (i.e.,loop
unrolling, loop fusion, load trading and data reuse) are also manually written in
assembly.

The input parameters used in the experiments are as follows: stencil type of 7
or 27 points, a single object (sphere) with no bounce (’0’), initially with its center
at a position (x, y, z) of (−1.1,−1.1,−1.1), a radius of 1.5 and a speed (−→x ,−→y ,−→z )
of (0.03, 0.03, 0.03). This object has a null change rate of size: (0.0, 0.0, 0.0). We
simulate with 10 time-steps and 10 stages per time-step. The 3D space has dimen-
sions (X,Y, Z) = (64, 64, 64) (does not account for halo) and a single block per
each dimension x, y and z. There is 1 mesh refinement level and a maximum of
18 blocks per core. We employ 8 MPI processes in our executions, 2 processes for
each of the three directions (23).
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Processor size 8 cores - 2 clusters of 4 cores each.

Cores
out-of-order: 3-wide issue/retire, 92-entry instruction queue,

192-entry ROB, 48 LDQ + 48 STQ, 2GHz
in-order: 2-wide issue, 5-entry store buffer, 2GHz

Private
Caches

out-of-order: L1I: 48KB, 3-way, 2 cycle, 2 ports, 8MSHRs
LID: 32KB, 2-way, 2 cycle, 2 ports, 16MSHRs
L2: 256KB, 8-way, 9 cycle, 24MSHRs

in-order: L1I: 32KB, 2-way, 2 cycle, 1 port, 8MSHRs
LID: same as out-of-order but with 1 port
L2: same as out-of-order

Last-level
Cache

16MB, 16-way, 64B lines, 8 banks, 32MSHRs per bank
Data bank access latency of 14 cycles.

NoC Coherent crossbar, 128-bit wide, 2 cycles

Main
Memory

8 HBM channels, 128-bit width, 8 banks/channel
128-entry write and 64-entry read buffers per channel
128GB/s peak bandwidth. Bank conflicts and queuing delays modeled

Table 2 Parameters for full-system simulations.

We use gem5 [32] for cycle-accurate full-system simulations. gem5 is an open-
source simulator that has received significant contributions from the industry (i.e.,
both Arm and AMD) in recent years. The simulator faithfully models microar-
chitectural details of the out-of-order core (including all SVE-related architectural
details), the cache hierarchy and the memory subsystem (including the on-chip in-
terconnect), contention for shared resources, off-chip memory channels, HBM bank
conflicts, etc. The simulator models the Armv8-A ISA and boots a recent linux
kernel v4.15 that has support for SVE. The parameters modeled are representa-
tive of modern mobile cores. Out-of-order and in-order cores employ parameters
extracted from the Arm Cortex-A72 and Arm Cortex-A53 technical reference man-
uals [33, 34], respectively. All results are obtained using out-of-order cores unless
otherwise stated. Table 2 details simulated architectural parameters.

5 Evaluation

This section presents the main experimental results for the two studied stencil
types. We start with a straightforward SVE implementation and apply the strate-
gies presented in Section 3. For the 7-point stencil we apply multiple levels of loop
unrolling as well as loop fusion; whereas for the 27-point stencil we apply one level
of unrolling, data reuse and load trading.

5.1 Baseline implementations

Figure 7 shows the roofline model for the simulated system. A roofline model
ties together floating-point performance, arithmetic intensity, and memory perfor-
mance in a two-dimensional graph. The Y-axis is GFlops per second (performance).
Theoretical ceilings can be derived using the hardware specifications; in our case,
the simulated system can achieve 32GFlops/s for a 128- bit vector length: 1 vec-
tor processing unit × 2 double floating-point operations per unit × 2 GHz × 8
cores. The X-axis is arithmetic intensity, i.e., operations per byte of DRAM traffic
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Fig. 7 Roofline model of the simulated system for the 7 and 27 point baseline stencils. For
each baseline we plot performance for scalar and all the different vector lengths.

(AI =
flops

bytes read DRAM
). Therefore, we measure traffic between the caches and

memory rather than between the processor and the caches. Thus, arithmetic inten-
sity suggests the DRAM bandwidth needed by a kernel on a particular computer.
We can then plot memory performance by calculating the maximum floating-point
performance that the memory system of that computer can support for a given
arithmetic intensity. As can be seen in the figure, we plot 2 memory bandwidth
ceilings, one for the theoretical peak pin bandwidth (black line) and another one
for the measured bandwidth the system delivered (red line). In addition, we plot
multiple peak performance ceilings depending on the vector length employed.

As can be seen in the figure, for the 7-point baseline implementation, per-
formance gains are significant for 128 bit and 256 bit vector lengths; however,
performance improvements stagnate at 512 bits. Performance scaling is hindered
due to low arithmetic intensity (AI). An AI of 0.15 floating point operations per
byte of data read from DRAM quickly limits performance, especially in configu-
rations with more than 512 bits, as multiple cachelines (memory transactions) are
necessary to satisfy vectorized loads.

For the 27-point baseline stencil, performance improvements from vectoriza-
tion are significantly larger than in the 7-point stencil, showing speed-ups in terms
of GFlop/s with respect to scalar of 2.63× and 3.59× for 256 and 512 bits, re-
spectively. At wider vector lengths, vectorization loses efficiency due to increased
memory contention to service vector memory operations, as they need additional
memory accesses. For each iteration, the amount of loaded elements and computa-
tions is higher now, as we are computing with 27 elements instead of just 7. This
reduces the importance of scalar index computations and other scalar instructions.
These larger performance improvements are possible due to higher AI, which is
now around 0.63.

Note that both baseline stencil codes are far from their theoretical peak per-
formance ceilings, this is expected due to the low arithmetic intensity these bench-
marks have, which makes them become memory bound quickly.
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Fig. 8 Performance, arithmetic intensity, instruction reduction and LLC MPKI for the 7-point
stencil baseline and optimizations.

5.2 Optimizations over the 7-point baseline stencil

Loop Unrolling: We implement three configurations, namely, unrolling two and
three iterations along the j axis (unrollj2 and unrollj3, respectively), and unrolling
two along the i and three iterations along the j axis (unrolli2j3 ). Figure 8 shows
performance and instruction reduction normalized to the base SVE implementa-
tion using 128 bits, as well as arithmetic intensity (AI) and last-level cache (LLC)
misses per kilo-instruction (MPKI). As can be seen, for all the unrolling configu-
rations, performance stays on par with base. Even though instructions are reduced
due to unrolling, the LLC MPKI slightly increases, leading to a reduction in AI
that hinders potential performance improvements from reducing the instruction
footprint. For all vector lengths, unrolling also leads to a higher percentage of
memory operations within the loop body, and we find that the L1D cache per-
formance is negatively impacted due to the additional contention, especially for
vector lengths above 512 bits, as loading data into vector registers requires more
than one memory access.

Loop Fusion: This optimization, denoted unrolli2j3+LF, is built on top of
unrolli2j3. Merging the computation and the copy loop further reduces the total
amount of control instructions as can be seen in Figure 8. In addition, fusing
the loops significantly increases spatial locality of the memory accesses, which
translates into a lot less LLC MPKI and, consequently, a boost in terms of AI.
We can observe notable performance improvements with respect to the base SVE
implementation and previous optimizations across all vector lengths. For example,
for 128 bits it is 1.45× better than base, and for 2048 bits it is 1.52× better. This
optimization yields similar improvements accross all vector lenghts, which means
it is helping mitigate the main underlying issue, memory contention.

Figure 9 shows the roofline model for all the evaluated 7pt stencil variants.
As can be seen, unrolli2j3+LF is able to attain higher performance in terms of
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Fig. 9 Roofline model for all the evaluated 7pt stencil variants.

GFlop/s due to its higher AI. Which also translates into better overall execution
time as seen before in Figure 8. This optimization allows the 512 bit configuration
to extract additional performance. The rest of optimizations all fall within the
same lower AI range, and are therefore more memory bound. In these cases, going
beyond 256 bits does not provide significant benefits.

5.3 Optimizations over the 27-point baseline stencil

Loop Unrolling: As can be seen in Figure 10, the unrollj2 optimization presents
a different behaviour than the one observed for the 7-point stencil, with a sig-
nificant performance improvement (1.28× for 128 bits) that diminishes as vector
length increases (1.03× for 2048 bits). This is due to a higher AI that still offers
enough computation with respect to memory operations despite the reduction of
control and index calculation instructions that occurs with unrolling. Therefore,
loop unrolling needs to be carefully applied depending on the characteristics of the
loop body. As seen before in the 7-point stencil, it can lead to slight performance
degradation. We limit our study to unrolling twice on j due to the complexity of
manually unrolling the 27-point loop body.

Data Reuse: Data reuse, termed reuse, aims at reusing loaded data and
partial computations across different iterations. As a consequence the number of
instructions is reduced significantly as can be seen in Figure 10. However, this has
a negative effect on AI, since many arithmetic operations are replaced by register
movements. In addition, the memory access pattern presents poor spatial locality
which increases LLC MPKI significantly. Nontheless, performance improves sig-
nificantly with respect to the base SVE implementation, as the amount of reused
data and partial computations is significant, i.e., two thirds per iteration. As ex-
pected, and similarly to the unrollj2 optimization, performance improvements are
larger with narrower vector lengths (1.57× for 128 bits), and diminish as the vec-
tor length increases (1.08× for 2048 bits) due to higher memory contention (see
MPKI in Figure 10).
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Fig. 10 Performance, arithmetic intensity, instruction reduction and LLC MPKI for the 27-
point stencil.

Load Trading: Load trading is implemented on top of the previous opti-
mization, therefore it is termed reuse+LT. This optimization fails to provide the
expected improvement in performance. The main reason is the significant increase
in instruction count when compared to reuse, needed to support the merging of
operations that reconstruct the vector blocks. To do the reconstruction, several
additional moves are required, some to preserve the content of vector registers
that must be used both as a source and destination of the splice instruction, and
others to reuse data on the next iteration. Therefore, a non-destructive splice

instruction with different source and destination registers would be beneficial for
this particular optimization.

In addition, to preserve vector length agnosticism, we need to recompute
the address of A[i][j][k− 1 + VL] to be able to reconstruct elements A[i][j][k]
and A[i][j][k + 1]. This optimization could probably benefit from additional fine-
tunning to squeeze a bit more performance, by reordering operations and refining
some of the movements, but the additional effort to undertake these modifications
manually was too steep for the potential gains. It is interesting to see that per-
formance degradation with respect to reuse fades as vector length increases, since
as the benchmark becomes more memory bound, the additional move operations
become less relevant.

Figure 11 shows the roofline model for all the evaluated 27pt stencil variants.
We observe that the base implementation has the highest AI, and as a consequence
it has also the highest GFlop/s. However, as seen before, the reuse optimization,
which has the lowest AI, is the vartiant that has the best overall execution time
(see Figure 10). This is explained by the fact that reuse performs significantly less
floating-point operations to achieve the same result as base. For all the 27-point
stencil variants we observe how the 256 bit SVE unlocks significant improvements
with respect to 128 bits. In particular, for reuse, 1.31×; while SVE 512 bits further
improves over 256 bits by 1.16×.
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Fig. 11 Roofline model for all the evaluated 27pt stencil variants.

5.4 Memory bandwidth sensitivity analaysis

Figure 12 shows the speed-up obtained when doubling the amount of available
peak off-chip memory bandwidth by doubling the amount of avaialble HBM mem-
ory channels - effectively adding another HBM stack. Leading to 256 GB/s peak
bandwidth, 32 GB/s per core. The figure shows numbers for the two baselines, the
best optimization for each stencil, and the average. We can see that improvements
are larger as the vector length increases with diminishing returns above 512 bits.

Although we have doubled the available bandwidth, performance improvements
are modest, especially for narrow vector lengths. For 128, 256 and 512 bits perfor-
mance improves 1.08×, 1.17×, and 1.25× on average, respectively. A key observa-
tion here is that with 8 cores it is difficult to saturate the available 256 GB/s - 32
GB/s per core. Conventional prefetchers and cache hierarchies are not aggressive
enough to saturate 16 HBM memory channels with 8 cores, which is an expected
result, as with a single core it is only possible to achieve a peak bandwidth of
about 19 GB/s in our simulated system. Note that this is on par with a real top
tier high-performance server processor.

Therefore, a large portion of the available bandwidth is unused and perfor-
mance improvements are not as large as one would expect, because the base band-
width of 128 GB/s already delivered 16GB/s per core.
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Fig. 13 Out-of-order versus in-order cores on best performing optimization for each stencil.

5.5 Comparison using in-order cores

All the presented results so far used out-of-order cores. Figure 13 shows a per-
formance comparison of out-of-order and in-order cores normalized to in-order
using 128 bits. As can be seen in the figures, the increase in performance when
employing out-of-order cores is significant. For the 7-point unrolli2j3+LF, the out-
of-order core is 3.05× more performant on 128 bits, while in the 27-point reuse is
2.55× better. The 7-point stencil has a higher percentage of memory operations,
therefore, out-of-order capabilities are able to extract more performance.

In the 7-point stencil, performance for the out-of-order configuration does not
improve significantly after 512 bits. This is due to a smaller number of instructions
in the loop body and the additional memory accesses needed for each vectorized
load, which quickly increases memory contention and the percentage of memory
accesses within the loop. On the other hand, the 27-point stencil can achieve
significant improvements using out-of-order cores when compared to in-order at
wider vector lengths. Nonetheless, our results show that out-of-order capabilities on
vectorized codes are necessary, as the amount of time spent executing arithmetic
instructions is lowered due to vectorization, increasing memory contention and
stalls suffered by in-order cores.

5.6 Summary of the SVE Experience

SVE enables operating on different iteration counts with a single control-flow struc-
ture. In addition to having neat programming codes, loop-tail free algorithms allow
to keep operating in a SIMD manner even if the vector does not have all the ele-
ments active. To the contrary, other architectures enforce us to have scalar loops
that complete the remaining iterations. For example, a 2048-bit vector that oper-
ates on 8-bit integers can hold 256 elements; even if only half of them are active,
it can avoid doing 128 iterations using scalar instructions.
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The control flow structure (whilelt–b.cond–incp–b) integrates the functionality
of building and reading the predicates to be used as masks in the inner loop body
instructions. This is a clear reflection of the symbiosis between VLA and per-lane
predication in SVE’s model. Our use case benefited from per-lane predication by
deactivating off-border elements in a regular grid, among others. Stencil codes on
irregular grids would be also a good target for SVE, for example, recalculating
a more complex condition each iteration to re-construct the predicates could be
flexibly implemented by the predicate modifying a set of instructions.

The one optimization that is vector/SIMD aware is load trading, that is, it
relies on having a vector code that loads repetitive data. As a consequence, the
direct translation between scalar and vector instructions does not exist. This is
a second use case of per-lane predication. The two neighborhoods used (Moore
and Von Neumann, radius 1) just require to create a constant predicate for the
whole execution in order to re-construct a new vector by combining two other vec-
tors. For other neighborhood shapes that have different inter-vector reconstruction
opportunities, we could use other predicate modifying instructions.

Finally, our analysis shows that for the 7-point stencil and its low AI, going
beyond 512 bit vector lengths is not beneficial. This is due to the additional mem-
ory accesses needed to load data into the vectors, which further increases memory
contention, leading to small returns in terms of performance. Applying loop un-
rolling on the j dimension did not provide benefits, however, unrolling on the i
dimension and loop fusion increased performance significantly due to better spa-
tial locality and higher AI. In the 27-point stencil, wider vector lengths were able
to deliver additional performance due to higher AI of the loop body. Unrolling
and data reuse did provided further performance benefits, however, load trading
hurts performance due to overheads in terms of additional instructions. This re-
sults highlight the difficulties in applying optimizations. Both programmers and
compiler writers need to carefully select when and what optimizations to apply to
maximize performance, taking into account things like AI and data locality.

6 Conclusions

Through vector lane agnosticism and per-lane predication, SVE enables program-
mers to write and compile applications only once, but execute the binary on any
vector length, greatly improving code portability. In addition, per-lane predication
simplifies codes by treating loop prologues and epilogues within the main loop. As
a result, SVE’s VLA adds value to the process of vectorizing an application and,
in our experience, enables good productivity for developers.

This paper describes the ability of SVE to map stencil applications. We have
implemented the scalar baseline and all the SVE-enabled optimizations, i.e., loop
unrolling, loop fusion, data reuse and load trading, on 7-point and 27-point stencils
using Armv8-A hand-coded assembly. Our performance evaluation using vector
lengths ranging from 128 to 2048 bits shows that certain optimizations can boost
performance significantly, i.e., loop unrolling combined with loop fusion boost
performance of the 7-point stencil by 1.45× on 128 bits, while data reuse on
the 27-point stencil improves performance by 1.57×. On the other hand, when
applying load trading we were not able to improve performance. In this case,
support for a splice instruction that is non-destructive for the source registers
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would have helped to make this optimization perform better. Finally, we report
our experiences vectorizing and optimizing stencil codes using SVE, highlighting
when VLA and per-lane predication is useful and providing guidelines on what
are the vector lengths that should be used depending on workload characteristics.
We expect our findings to serve as a recipe for both programmers and compiler
writers that would like to port and optimize stencil codes to SVE.
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