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Abstract

Load imbalance in parallel systems can be generated by external factors to
the currently running applications like operating system noise or the under-
lying hardware like a heterogeneous cluster. HPC applications working on
irregular data structures can also have difficulties to balance their computa-
tions across the parallel tasks. In this article we extend, improve and evaluate
more deeply the Task Packing mechanism proposed in a previous work. The
main idea of the mechanism is to concentrate the idle cycles of unbalanced
applications in such a way that one or more CPUs are freed from execution.
To achieve this, CPUs are stressed with just useful work of the parallel appli-
cation tasks, provided performance is not degraded. The packing is solved
by an algorithm based on the Knapsack problem, in a minimum number of
CPUs and using oversubscription. We design and implement a more efficient
version of such mechanism. To that end, we perform the Task Packing “in
place”, taking advantage of idle cycles generated at synchronization points
of unbalanced applications. Evaluations are carried out on a heterogeneous
platform using FT and miniFE benchmarks. Results showed that our pro-
posal generates low overhead. In addition the amount of freed CPUs are
related to a load imbalance metric which can be used as a prediction for it.
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1. Introduction

In parallel computing, load imbalance is a well known source of efficiency
loss. Not only load imbalance results in the application losing performance
but also prevents an efficient use of the High Performance Computing (HPC)
system as a whole, wasting CPU cycles and ultimately wasting energy. The5

problem of load imbalance is getting ever more relevant nowadays because of
the growth in size and in energy consumption of the current HPC systems.

Despite load imbalance has received a decent amount of attention since
the beginning of parallel programming there is still not a standard solution,
which is not surprising due to the complexity of the problem.10

Many HPC applications, ranging from models of the physical world to
web search or graph clustering, are composed of irregular data structures or
sparse data, which leads to load imbalance in both computation and commu-
nication. Programmers tune their parallel codes by hand to balance them,
redistributing the data or even including some load-balancing code alongside15

their application code. This tunning is tedious and cumbersome and slows
down productivity.

Moreover, even a well-balanced parallel application will show imbalance
if running on an heterogeneous platform.

A heterogeneous platform is a platform that is not homogeneous and20

homogeneous platforms do not exist (or they have a short life anyway). As-
suming that. . .

A homogeneous platform used for parallel and distributed com-
puting consists of a system where all its processors are identical
and are connected in a network with identical latency and band-25

width among them. Besides, identical operating system, runtimes
and compilers are used in creating and running the programs.

This definition makes almost impossible to create and keep homogeneous
an HPC cluster. For example, a cluster that fits with the definition at the
very beginning will at some point need some nodes to be repaired. Should30

the system manager change the same piece in every single node just to keep
within homogeneity? In practice, the homogeneity is broken sooner or later.

According to a study by Dongarra et al. [1], we can neatly divide hete-
rogeneous platforms into five groups: (a) Vendor-designed platforms, such
as those based on coprocessors. We can further sub-divide this group based35

on the vendor architecture in Nvidia graphical processing units (GPUs) [2],
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Intel Xeon Phi [3], ClearSpeed CSX700 [4] or Toshiba, IBM, Sony Cell Broad-
band Engine [5]; (b) Heterogeneous cluster, that is, a homogeneous cluster,
design for parallel computing, where some characteristics have been relaxed
(not identical processors or heterogeneous network topology or non batch40

scheduler, allowing several users running their applications in the same set
of processors); (c) Local network of computers (LNC) are very similar to
a heterogeneous cluster, but here the nodes are general-purpose computers;
(d) Global network of computers (GNC) are like LNC, but nodes can be
geographically distributed, and (e) grid-based systems are GNC where users45

can login from everywhere and find the same user-friendly environment. To
this classification, we should add the cloud-based systems, technologically
successors of the grid computing, however cloud systems rely on virtualiza-
tion technologies rather than on batch systems and are much more market
oriented. They are the next-generation data centers [6].50

Programming a parallel application to run efficiently on an heterogeneous
system requires specific knowledge and expertise making it a very difficult
task for scientists (and programmers too) as system software evolves very
slowly [7]. Nevertheless, heterogeneous systems are widespread and gaining
importance as they are seen by some as a way to mitigate the slowdown55

of Moore’s Law [8]. A lot of research targets heterogeneous systems so we
expect the evolution of clusters will gravitate towards heterogeneous scenarios
and we foresee load imbalance becoming even a bigger problem. Even well-
balanced applications will show imbalance, hand tunning them to balance
the work will be not only cumbersome but also not portable, being both60

application and platform dependent.
Our proposal is to compute an intelligent “packing” of tasks that keeps

fewer CPUs more busy by making oversubscription of the CPUs, provided
the performance of the program is not degraded or degraded up to a pre-
fixed limit (e.g. no more than 20% of the total time execution). In this65

way we are balancing the number of CPU cycles across CPUs, or in other
words we are balancing useful work across CPUs. This is a novel view of the
load balancing definition: instead of reducing the total execution time using
the same number of CPUs, we claim to reduce the number of CPUs keeping
the same total execution time. As a consequence, we will have free CPUs70

that can be used for other purposes or for preserving energy consumption.
Potential benefits of having CPU(s) of a node freed from execution during a
parallel session has already been pointed out by other authors:
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(i) Conservation of energy: most modern CPUs are capable of lowering
their frequency (and even their voltage) during idle states for reducing75

its power dissipation and energy consumption [9], [10]. Our proposed
scheduling mechanism helps to foster this by providing completely freed
CPUs. At a first glance, throttling all the CPUs that are idly waiting
due to load imbalance should yield the same power savings as throttling
the freed CPU. However, in practice tasks may wait, for example, on80

a spin lock (depending on the communication system) and this busy
waiting naturally consumes energy. Moreover, as lowering the voltage
or even shutting down a whole CPU temporally requires much more
preparation time (but yields better energy saving than just frequency
throttling), completely freed CPUs would suit much better in these85

cases than sporadically idle ones.

(ii) The executing of alien tasks from other applications. Freeing CPUs
would enable the co-scheduling of tasks stemming from other applica-
tions onto the same compute node, which would help to improve system
utilization. Job scheduling techniques such as Backfilling, could be ap-90

plied [11], [12]. This task co-scheduling should happen at job level
granularity and it would require our task scheduling mechanism to in-
teract with the job manager to notify of freed CPUs. The job manager
could then co-schedule task from other applications, taking into ac-
count their resource demands. Most job managers can be configured95

to manage resources on a fine-grain basis to enable this co-scheduling
(i.e. SLURM [13] Consumable Resource Allocation Plugin). The im-
plementation of this co-scheduling is out of the scope of this paper.

(iii) Reduction of operating system (OS) noise. The freed CPUs could
be used to execute OS work, which in turn may reduce the OS noise100

and eventually, as a side effect could, contribute to reduce the load
imbalance of the application [14], [15], [16].

This work extends largely the proof of concept of an idea already pub-
lished [17]. The main contributions of this paper are:

• We design, implement and evaluate a scheduler mechanism for para-105

llel programs, the Task Packing algorithm, to reallocate tasks from
a parallel program, within each node based on oversubscription, i.e.,
running an application with a number of OS level tasks larger than
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the number of assigned CPUs. The reallocation is computed using a
particular case of the well-known Knapsack algorithm.110

The strategy is evaluated using FT from the NAS Parallel Benchmarks
[18] and the miniFE Benchmark, a miniapplication from the Mantevo
project [19]. The miniFE miniapplication, is similar to HPCG [20].
Like HPCG, miniFE is intended to be the best approximation to an
unstructured implicit finite element or finite volume application, but115

in 8,000 lines or less. The HPCG (High Performance Conjugate Gradi-
ents) Benchmark project is an effort to create a more relevant metric
for ranking HPC systems than the High Performance LINPACK (HPL)
benchmark [21], which is currently used by the Top500 benchmark. The
evaluation our our proposal is done on a heterogeneous platform, as we120

believe the growth in number and complexity of heterogeneous plat-
forms increase the relevance of our work, however the study is equally
valid for unbalanced applications running on homogeneous platforms.

• We avoid the overhead that our scheduler could produce, allocating
the scheduler in the task that arrives first at the synchronization point125

at each node. In this way, that task which otherwise would have idle
cycles while waiting for the other tasks to arrive (imbalanced beha-
vior), computes the CPU allocation of the tasks at its node using the
information gathered in previous iterations.

• We propose to use a load imbalance metric that serves to predict the130

benefit obtained, in terms of freed CPUs, after applying the Task Pac-
king mechanism.

• We demonstrate that the Task Packing algorithm can free CPUs without
performance degradation for our target applications.

We address to the imbalance intrinsic to the application or the architec-135

ture. These two causes of imbalance have predictable repetitive unbalanced
behavior on the application, which is an important property that our work
relies on.

The whole mechanism is transparent to the programmer and the user. To
benefit from the Task Packing mechanism, the application does not have to140

be modified nor recompiled.
The rest of the paper is organized in the following way: Section II presents

the related work; Section III describes the motivation, design and implement-
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ation of our proposal; Section IV is dedicated to discuss the applicability of
the proposal; Section V presents the experimental results. Finally in Section145

VI the conclusions and future work are presented.
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2. Related work

Oversubscription has been demonstrated to be useful in a wide variety
of situations. As reported by Iancu et al. [22], in their work, they evalu-
ate the impact of executing MPI, UPC and OpenMP applications with task150

oversubscription and show that they could improve system throughput by
up to 27% when applications share all the cores and are executed with mul-
tiple tasks per core. In the HPX-5 implementation of the of the ParalleX
execution model [23] was common to assign more than one domain to one
core. Oversubscription was used there to enable computation to overlap with155

communication effectively hiding network latency [24]. In a previous work,
Utrera et al. [25], proposed a mechanism, the Load Balancing Detector
(LDB), to classify applications dynamically, without any previous knowledge
of it, depending on their balance degree and apply the appropriate process
queue type to each job. LDB demonstrated to work especially well for the160

imbalanced jobs.
The knapsack problem has a long tradition of applications in crypto-

graphy [26, 27], production planning [28] and scheduling [29, 30] between
others. In addition, there are implementation proposals to solve it parallel
and efficiently even for large problems [31].165

Some authors have given up to the MPI paradigm. They considered that
when dealing with system noise, heterogeneity of processing units or variable
completion times, you need something different than MPI. Recently, some
authors are purposing programming paradigms based on task-based graph
concept. One of the most promising is PaRSEC [32], the Parallel Runtime170

Scheduling and Execution Controller is a generic framework for architecture-
aware scheduling and management of micro-tasks on distributed many-core
heterogeneous architectures. Although its goals are similar to ours, it has the
vocation of replacing MPI, thus it has to cover a broad panorama. PaRSEC
maps the tasks, detects data dependencies and schedules the tasks to achieve175

the maximum parallelism. Besides PaRSEC, other authors are exploring
similar ideas based on data flow graphs [33, 34].

Years ago, a stochastic model that described the dynamics of an ant
colony appeared [35]. It was the trigger for a whole family of algorithms
dealing with well-known hard problems to appear in the scene. They were180

inspired in nature and implemented a metaphor about ants and their way of
finding the correct path and broadcast that information via pheromones.

Since the first ACO (Ant Optimization Colony) algorithm [36], many
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significant research results have been obtained. Soon this population-oriented
search, that was successfully applied to NP -hard combinatorial optimization185

problems, attracted the attention of parallel programmers. Sequential ACO
algorithms became ideal targets to speed up. First using MPI (Message
Passing Interface), and more recently with Nvidia CUDA, a lot of effort has
been made on them. As a consequence, nowadays is a perfect guinea pig
to test runtime optimization ideas on both homogeneous and heterogeneous190

platforms. For a overview of recent research on the development of high
performing algorithmic variants of ACO see [37].

There is a branch of ACO research that is related with our work. When
the goal is balancing the workload in a heterogeneous environment running
ACO implementations. Specially interesting is the work of [38]. In this195

article, authors presented a parallelization strategy for massive and hetero-
geneous parallel systems, using ACO as a case study and taking into account
not only time, but also power consumption and accuracy.

Several load balancing strategies were evaluated also in [39]. In this case,
authors explored the collaboration between OpenMP and Nvidia GPUs in a200

heterogeneous cluster using rCUDA[40] as a framework.
There are many works in the literature about load balancing in MPI jobs.

In general they propose techniques that imply modifications in the code to
balance at runtime the data between the different tasks of the application
[41], or work just on shared memory architectures [42]. Others have proved205

to have acceptable performance and rely on checkpoint/restart-based scheme
to work on distributed architectures [43]. Dinan et al. [41] compare work
stealing and work sharing when implemented on top of the MPI interface
for message passing by using the unbalanced tree-search benchmark. They
find that both algorithms perform quite well but depend on parameters like210

system load, job scheduling and pre-emption policies. They extended their
implementation to a cluster with distributed memory. Load imbalance de-
serves special attention, in particular the impact on real applications. Bo-
hme et al. [44] analyses this kind of applications reporting that 12.5% of
the time is spent in wait states, and that 70% of it comes from propaga-215

tion of the wait state. Other alternatives like the one proposed by Bonetti
et al. [45] propose changes in the OS to balance MPI applications through
smart hardware resource allocation based on a prioritization mechanism on
multithreaded processors. They also address to HPC iterative applications
and apply oversubscription as part of the balancing mechanism. The load220

balancing strategy just works within a single node.
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About how to take advantage of this unbalanced behavior there is a recent
work [46], where the authors try to get benefit from the already unbalan-
ced generated by the global synchronization. The work analyses the arrival
pattern to develop an imbalance-tolerant hierarchical algorithm. They study225

collective operations such as the reduction and broadcast algorithm, and
propose a kind of dynamic leader selection to select a leader node at very
invocation of a collective. They support their supremacy in efficiency as they
are the unique that take into account the hierarchical nature of the current
systems. Intranode communication has to be taken into account in terms of230

latency as it has a different behavior as the internode communication latency.
Our work brings the opportunity to idle CPUs in a HPC cluster. The

power benefits of lowering voltage levels to idle CPUs in a cluster have been
already studied [47]. However, having a free CPU or core for different
purposes is a traditional wish of many ideas to enable highly efficient mes-235

sage passing on many-core architectures. It was at design’s foundations of
the BlueGene/L supercomputers, where one of the two cores of every single
compute-node could be used just for communication [48]. More recently, a
technique for optimizing the MPI one-sided communication, called Casper,
was based in the assumption that they could keep aside a small number of240

CPUs to handle asynchronous communication progress [49].
In the area of distributed exascale computing systems (DECS), a recent

work, split in two papers, shows very promising results[50], [51]. Authors
center their research in the load balancing problem for a exascale computing
scenario. They are interested in a dynamic model for the system load man-245

agement.They proposed a distributed model to estimate each node available
capacity and needs. Authors introduce the concept of compensating factor
(that include the communications delay and load transfer costs) in order to
to calculate the optimum amount of load that should be transferred among
nodes. Besides, the authors explore the possibility of an intelligent system,250

able to apply different algorithms for load balancing in execution time, based
in the previous gain knowledge.

Our work use the base idea of packing tasks using oversubscription and
doing the scheduling by applying the knapsack algorithm from a previous
work [17]. That work was a proof of concept of the idea, and the evaluation255

was very simple. We extend that work and differ from it in the following
ways:

• We make a very different and more efficient implementation of the
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whole mechanism. We do not rely on shared memory in the local
node, all the information needed to make the scheduling decisions is260

gathered through the message passing system making the mechanism
more portable.

• In addition, and this makes the difference in performance, we execute
the scheduling algorithm “in place”, that is, one of the tasks from the
parallel application performs the Task Packing algorithm, instead of265

having an extra CPU dedicated to execute just the Task Packing al-
gorithm. In this work, the first task that arrives to the synchronization
point at each node becomes the “local master” and performs the Task
Packing algorithm. In this way the scheduling does not interfere with
normal execution as it uses cycles eventually dedicated for synchroniza-270

tion. By executing inplace the Task Packing algorithm the application
is able to take advantage of all the assigned CPUs.

• We make a deeper evaluation of the mechanism. To that end we use two
well-known application benchmarks (FT and miniFE). In the previous
work, the evaluation was done using an artificial benchmark: repeated275

executions of an implementation of the Mandelbrot algorithm.

• We consider as the root cause of load imbalance, the heterogeneity of
the underlying platform rather than the application itself.

• Finally we propose to use a load imbalance metric that serves to predict
the benefit obtained, in terms of freed CPUs, after applying the Task280

Packing mechanism.
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3. Our approach: Task Packing

.
In this section we discuss objectives, requirements, design and implement-

ation of our proposal.285

The general idea is to improve load balancing by means of concentrating
idle cycles of CPUs in such a way that one or more CPUs are freed. To achieve
that we stress the CPUs with just useful work of the parallel application
tasks, provided application performance is not degraded. We are not trying to
improve the application performance, but we aim to keep the same execution290

time.
Our final objective is to improve the throughput of the system.

3.1. Targeted scenario

There are several reasons behind an application showing load imbalance.
For the purpose of this work we classify them in three categories: (i) Unbalan-295

ced application; (ii) Heterogeneous platform; and (iii) Random imbalances.
Categories (i) and (ii) motivate our work and have already been intro-

duced in section 1. In the (iii) category we include load imbalance due to
factors external to the application which may happen occasionally (like op-
erating system noise or network traffic congestion). In (iii) the imbalance300

happens randomly and its behavior is difficult to predict. On the contrary,
both in (i) and (ii) the imbalance is intrinsic to either the application (the
former) or the architecture (the later). These two causes of imbalance (aka
permanent imbalance) we expect they will lead to a predictable repetitive un-
balanced behavior on the application, which is an important property that305

our work relies on.
Concerning the application, tasks of parallel applications usually interact

among them to exchange data and synchronize to progress execution. Those
synchronization points usually happen at the end of each iteration and are
the place where the imbalance becomes noticeable, as all the tasks have to310

wait for the slowest one (see Listing 1 and figure 1).

Listing 1: Typical SPMD parallel pseudocode.

1 Initialize;

2 while (end_condition){

3 compute;

4 synchronize;315

5 }

6 Finalize;
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Figure 1: Unbalanced parallel task execution between two synchronization points.

Figure 1 shows an example of execution of tasks from a parallel unbalan-
ced application. There are four tasks: Task 0, Task 1, Task 2 and Task 3
running on CPU 0, CPU 1, CPU 2 and CPU 3 respectively. The drawing320

shows the execution between two synchronization points, where Task 0 is the
slowest task. The light grey color represents the period of time where the
task is blocked at the synchronization point (idle CPU cycles) waiting for
the slowest task to arrive, others colors like light blue, red, blue and yellow
represent useful work of Task 0, Task 1, Task 2 and Task 4 respectively.325

In our example in figure 1, if we could use CPU 1 to run Task 3 as
well, CPU 3 would be free. Our Task Packing can do this provided that the
unbalanced parallel application:

• shows a predictable repetitive unbalanced behavior. So we target per-
manent imbalance (Categories (i) and (ii) above); and330

• follows an iterative pattern of computation phase followed by a global
synchronization (Listing 1).

3.2. Task Packing mechanism design issues

We propose to use a scheduling strategy to reallocate tasks in CPUs in
such a way that k tasks, each one with duration ti and being tmax the largest335

task duration, can be bounded to a CPU if they satisfy the condition:
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k∑
i=0

ti ≤ tmax (1)

This task “packing” ensures on one hand that a given CPU only has useful
cycles, and on the other hand, that idle cycles are concentrated so that some
CPUs can be freed from executing the application, therefore minimizing the
number of CPUs used by the application.340

The task reallocation solution for the packing is carried out by the Subset
Sum algorithm, a particular case of the Knapsack problem [52]. The problem
is defined as follows: given a set of integers, the algorithm tries to find a non-
empty subset whose sum is a given number. The given number is in our case
the elapsed time between iterations tmax (excluding synchronization time).345

Taking this number as an upper bound, we pack the tasks taking into account
only their useful time ti (time to arrive to the synchronization point).

The scheduling algorithm runs “in place”, that is, one of the tasks from
the parallel application performs the Task Packing algorithm, instead of hav-
ing an extra CPU dedicated to execute just the Task Packing algorithm. In350

this work, the first task that arrives to the synchronization point at each
node becomes the “local master” and performs the Task Packing algorithm.
In this way the scheduling does not interfere with normal execution as it uses
cycles eventually dedicated for synchronization. By executing in place the
Task Packing algorithm the application is able to take advantage of all the355

assigned CPUs.
We call our implementation variation: the Task Packing algorithm.
The Subset Sum problem is NP-complete, so the solution that can be

obtained in polynomial time may not be the optimal one. But we do not
need the optimal solution to be able to apply Task Packing and get the360

benefits. In section 3.3 the algorithm is explained in more detail.
The Task Packing algorithm is computed at runtime and in a transparent

way to the programmer. All the functionality of our Task Packing mechanism
is interposed between the application and the parallel programming model
runtime.365

In this work we have chosen pure message passing library MPI (Message
Passing Interface [53]) and its interposition mechanism to transparently add
our Task Packing functionality. The same ideas could be use in other pro-
gramming models that follow the Single Program Multiple Data (SPMD)
paradigm (i.e. Unified Parallel C (UPC) [54]).370
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We work on parallel applications which are not malleable. The proposed
mechanism applies task migrations between CPUs just inside a node. This
restriction avoids new overheads due to application checkpointing, moving
data across the network between nodes and disk storage management among
others.375

We set as a requirement that the scheduling algorithm and the migration
of tasks between CPUs do not affect the performance of the application. We
are not trying to improve the performance, but we aim to keep the same
execution time for the application. This is the reason why the packing is
done using as an upper bound the iteration time of the slowest task.380

The steps to do the reallocation are:

• Discard the first measurement, as it will be contaminated with over-
heads related to first accessing data like cache misses and coherency
memory protocols.

• Gather iteration times at each node. This information is broadcasted385

and collected by all the tasks at each node. Using this information
the local master is selected at each node, as the task with the shortest
iteration time. Each local master has all the necessary information
to apply the Task Packing algorithm. This step is repeated the first
iterations until the difference between iteration times at each task is390

within a confident interval (e.g. less than 5%). As soon as a task arrives
to this conclusion, iteration times are broadcasted (the task publishes
a special value to notify this). Previous iteration times from all task at
each node are kept by all the tasks within the node.

• Find out the task with the longest iteration time, which corresponds to395

the slowest task. This iteration time is used later as an upper bound
to perform the Subset Sum algorithm for task reallocation.

This is the only operation that is performed globally, at the application
level. The rest of the algorithm is applied within each node. In ad-
dition, as each iteration finishes with a global synchronization, we are400

not introducing any extra synchronizations. The extra overhead added
comes from exchanging iteration times at application and node level.
In this sense, we perform the synchronizations in an incremental way,
first the local exchange and then the global one. Experiments showed
us that this overhead is negligible and that the incremental synchroniz-405
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ation served to minimize the total overhead. For this reason scalability
is not affected because of the Task Packing algorithm.

• Once the local master has been established and has collected the iter-
ation times within its node. At the next iteration, the Task Packing
algorithm is applied. The local master is in charge of doing such work as410

it will be the first to complete the iteration and arrive to the synchron-
ization point. The parameters passed to the algorithm are: iteration
times of tasks within its local node and the global upper bound previ-
ously computed. After that, the solution is broadcasted to all the tasks
in the node. In this way, as soon as each task finishes its calculation,415

it is able to receive the task reallocation instructions and perform the
migration if necessary.

Notice that as the task reallocation is done at node level, different nodes
can have different Task Packing results. Furthermore, there may be nodes
with no task reallocation because their CPUs have no idle cycles (e.g. all of420

their tasks have execution times close to the slowest one). Figure 2 shows
an example of an unbalanced application running on two nodes with four
tasks on each node. We can observe that while tasks on node 0 are well-
balanced, tasks on node 1 are unbalanced, so tasks on node 0 will have to
wait at the synchronization point for tasks on node 1. Consequently the425

whole application is unbalanced. After applying the Task Packing algorithm
at each node and taking into account the slowest task (Task 4 on node 1) we
arrive at a task reallocation showed in Figure 3. In that figure we can see
that Task 2 and Task 3 in node 0 have been migrated from CPU 2 and CPU
3 to CPU 0 and CPU 1 respectively, freeing two CPUs on that node. In node430

1, there was also a migration of Task 7 from CPU 3 to CPU 1, freeing one
CPU in this case.

Finally, oversubscription has an impact depending on the application
communication degree. If the application has a low communication degree,
i.e., tasks have low or null interaction between them apart from the global435

synchronization point, their tasks can be executed almost sequentially. Only
time slice context switching is performed, but with useful utilization of the
CPU during all the execution. But if the application has a high communic-
ation degree, the tasks have to interact between them frequently (e.g. many
point-to-point message exchange). In this case, to progress execution and to440

avoid wasting CPU cycles waiting for a message, immediate context switch-
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ing is allowed. In this way, the time slice is aborted, and the CPU is yielded
to another task with useful work to do.

Figure 2: Unbalanced parallel application execution between two synchronization points
running on two nodes.

3.3. Implementation details

We generate a shared library which is preloaded before running the ap-445

plications. Global synchronization points (i.e. MPI Barrier) expected at
the end of each iteration, are intercepted and that is where our scheduling
takes place.

Even though global collective operations like MPI Allreduce do not syn-
chronize (do not ensure that the tasks finish at the same time), this issue does450

not affect the iteration times measurement in our current implementation.
We consider the imbalance between synchronizations points in a way that:
we start the measurement after returning from the collective call (within the
MPI interposition library), and we finish the measurement before calling it
again.455

The wrapper function of the synchronization operation encapsulates the
coding of the packing algorithm (the code can be seen in listing 2).

Listing 2: Wrapper of the global synchronization MPI operation.

1 int global_synchronization_wrapper () {

2 int ret;

3 int solution[node_size ][ node_size ]; // cpus x local ids460

4
5 end_iter = MPI_Wtime ();

6 iteration_time = end_iter - start_iter;

7
8 if (iteration_number == 2) {465

9 // gather iteration times within each node

10 PMPI_Allgather (& iteration_time , 1, MPI_DOUBLE ,

local_iteration_times , 1, MPI_DOUBLE , comm_node);
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Figure 3: Unbalanced parallel application execution between two synchronization points
running on two nodes after Task Packing algorithm is applied.

11
12 // find out longest iteration470

13 PMPI_Allreduce (& iteration_time , &global_upper_bound , 1,

MPI_DOUBLE , MPI_MAX , MPI_COMM_WORLD);

14
15 // find local master: task with shortest time iteration

16 local_master = find_min (local_iteration_times , node_size);475

17
18 }

19 else if (iteration_number == 3) {

20 // perform task packing

21 if (local_id == local_master)480

22 task_packing (local_iteration_times , node_size ,

global_upper_bound , solution);

23
24 // broadcast packing solution to tasks within a node

25 PMPI_Bcast(solution , node_size*node_size , MPI_INT , local_master ,485

comm_node);

26
27 // reallocate me

28 my_task_reallocation (solution , local_id , getpid ());

29 }490

30
31 ret = PMPI_global_synchronization ();

32
33 start_iter = MPI_Wtime ();

34 return ret;495

35 }

We force immediate context switching rather than polling in the MPI
communication system, to enable execution progress to tasks running on
oversubscribed CPUs when performing MPI blocking operations [22]. In this
way, if a task is blocked in an operation like waiting for a not yet arrived500

message, it is context switched immediately instead of polling for the mes-
sage wasting CPU cycles. The immediate context switching allows another
task to perform useful execution like sending the messages to blocked tasks.
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In order to allow immediate context switching while a MPI communication
blocking operation is performed the MPI Aggressive Mode is set. As this is505

an implementation specific feature below the MPI API, there is no standard
way. However, most MPI implementations provide an environment variable
for that purpose. If required, it could also be implemented as part or our
interposition library, by intercepting the MPI blocking operations, and for-
cing the context switch (sched yield) instead of polling. We have made some510

experiments obtaining negligible overhead.
Tasks running alone on CPUs do not need immediate context switching

and this may be more energy consuming than polling. The amount of wasted
CPU cycles in this context would depend on the application itself (i.e. com-
munication pattern and degree) and the number of tasks running without515

oversubscription. We have made some preliminary experiments with the FT
and miniFE benchmarks, measuring Energy consumption at job level (this is
what our platform allows us) and the difference between both communication
modes is negligible (less than 1%).

The mechanism is scalable since the packing is performed at node level.520

No knowledge about the global state of the application is needed. The pac-
king algorithm is executed at each node and the migration decisions affect
only to the local node.

We assume iterative and regular unbalanced behavior. The Task Packing
algorithm is applied once and then tasks are bound to their assigned CPUs till525

the end of the execution. The Task Packing algorithm is not applied again.
Notice that in case a Task Packing mechanism would be applied again, to
measure iteration times fairly, the application should be first expanded to
the freed CPUs.

The C code shown in listing 3 shows the implementation of the schedu-530

ler which invokes the Subset sum algorithm until there are no more tasks
unassigned to CPUs.

Listing 3: Subset Sum algorithm invocation by the Scheduler.

1 int task_packing (int set[], int node_size , int sum , int solution[

node_size ][ node_size ]) {

2 int cpu =0; int unassigned_tasks=ntasks;535

3 while (unassigned_tasks >0)

4 // sum is last elapsed time between two sync points

5 if (isSubSetSum (set , sum , &solution[cpu], &num)) {

6 cpu ++;

7 update_unassigned_tasks(set , &solution[cpu]);540

8 unassigned_tasks=unassigned_tasks -num;

9 }
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10 else {

11 sum --; // diminish upper bound

12 }545

13 }

At the beginning of execution, we wrap the MPI Init operation to define
MPI communication groups. In particular one subgroup for each node. Com-
munication within a node is done exclusively through the communication
library, making our mechanism more portable across platforms and MPI im-550

plementations.
Finally in listing 4 we show the implementation of the Subset Sum al-

gorithm (isSubsetSum) in charge of packing tasks in one CPU.

Listing 4: Subset Sum algorithm code.

1
2 int isSubsetSum(int set[], int n, int sum , int subset[], int count , int555

sol []){

3
4 int i;

5
6 if(sum == 0) {560

7 for(i =0; i < count; i++) {

8 sol[i]= subset[i];

9 }

10 num=count;

11 return true;565

12 }

13 if(n < 0 && sum != 0) return false;

14
15 if (set[n]<0) return isSubsetSum(set , n-1, sum , subset , count , sol);

16570

17 subset[count] = n;

18 return isSubsetSum(set , n-1, sum -set[n], subset , count + 1, sol)

19 + isSubsetSum(set , n-1, sum , subset , count , sol);

20 }

This algorithm proved to have negligible execution times for set sizes around575

30 elements. After that, the execution time increments and the performance
consequently of the Task Packing degrades. For this reason, in case we
have set sizes larger than this limit we split the set into sizes that suits our
performance limit and apply the packing in each of the subsets separately.
This would not result in the optimal solution because it is not considered580

the whole set, but we can still find packing cases to apply. We believe that
by splitting the original set in an intelligent way we can find a solution
close to the optimal one. On the other hand, we observed that splitting the
original set in subsets to apply Task Packing separately to each subset have
an important advantage on NUMA nodes. When aligning the subsets to a585
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NUMA node, we avoid process migration between different NUMA nodes
and the consequently remote data access costs for each process on the new
location.

The mechanism identifies appropriate synchronization points transpar-
ently. We apply the mechanism just after several iterations have passed (in590

our experiments 10 iterations approximately). We assume that after ob-
serving similar behavior during a reasonable amount of iterations, this is the
regular state (main loop) and apply the mechanism. In this way we avoid
taking into consideration global synchronizations performed during initializ-
ation phases. To intercept the correct collective that performs the global syn-595

chronization call we use an environment variable (MPIT TASKPACKING)
which must be set with the name of the MPI operation that perform the
synchronization at each iteration.

We are aware that there are applications that have more than one call to
the same collective communications within one iteration, so by measuring it-600

eration times, the mechanism will never consider there is a regular behavior.
In this case, the only possible way to apply the mechanism is by inserting in
the code two explicit API calls to our library: MPIT Begin taskpacking()
to indicate the beginning of the iteration and the other one at the end
(MPIT End taskpacking()). This one is in charge of performing the Task605

Packing.
We currently work just on the MPI COMM WORLD communicator. Ex-

tending it to all communicators is straightforward and just a few modifica-
tions are required. The knapsack algorithm return as a parameter the new
task allocation as a result and this is the part that should be modified, as610

each previously defined local node communicator has its own set of CPUs, so
the new allocation should use just this subset. This can be solved by keeping
the information about the CPUs allocated to each local node communicator.
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Figure 4: Representation of a parallel task execution between two synchronization points.

4. Applicability of the proposal

In section 3.1 we have discussed the targeted scenario and the requisites615

so that our mechanism can successfully run. In this section we would like to
discuss the applicability of our solution.

We have stated that we target unbalanced applications with predictable
unbalanced behavior and global synchronization points. And our goal is to
free CPUs.620

In order to free CPUs we will try to oversubscribe one or more CPUs
with two or more tasks, so that the original CPU(s) where this(these) tasks
were running can be free.

Figure 4 represents a parallel task execution between two global syn-
chronization points. If we define ti as the running time of task i between625

two synchronization points and wi the time that task i is idle waiting for the
other tasks to finish running, then the time between synchronization points
(tmax) can be defined as follows:

tmax = max
0≤i<n

ti (2)

This time tmax defines the limit or threshold used by the Task Packing
algorithm to compute the task reallocation. The following equation is true:630
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∀i(ti + wi = tmax) (3)

For the Task Packing algorithm to be successful, that is to be able to
allocate two tasks in the same CPU, at least we need the following to be
true:

∃i,j ( ti ≤ wj)

( ti ≤ tmax − tj)

( ti + tj ≤ tmax)

If we generalize equation 4 for more than two tasks we have the following
equation, which determines the condition:635

tmax ≥
n−1∑
i≥2

ti (4)

The problem that the task packing algorithm resolves can be seen as
follows: Given a set of n bins, the CPUs (all of the same size, which in turn
corresponds to the runtime of the slowest task in a parallel session tmax) as
well as a set of n items, the Tasks ( of size ti, where all ti is smaller or equal to
the size of the bins tmax), the algorithm determines a distribution of the items640

into the bins so that the number of still empty bins is as large as possible. A
necessity for the algorithm to be successful in finding a distribution with one
or more still empty bins is that two or more items fit in one bin. As stated
in equation4, the size of at least two items must be smaller than the size of
the bin.645

This may seem a difficult condition to satisfy at the first glance. However,
we argue that: (i) Heterogeneous platforms can exhibit a degree of work
unbalance that satisfy our condition, as we show in our evaluation section. (ii)
Applications in the way programmers think of them are naturally unbalanced.
The unbalance becomes bigger as the application scales up and applications650

tend to be bigger and bigger as computers evolve and more computational
power is available and scientists want to take advantage of it.
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An example of this situation is happening in the SKA project [55]. The
Square Kilometer Array (SKA) project is an international effort to build the
worlds largest radio telescope, with eventually over a square kilometer of655

collecting area. This huge telescope will generate vasts amounts of data that
need to be processed and analyzed to create images and other products to
be distributed to astronomers. The project is now at the design phase. The
parallel codes being developed at this stage of the project are very preliminary
and mainly intended as a proof-of-concept. In order to further support the660

design decisions the team has developed a parametric model [56] to ascertain
the computational demands of the software. Based on the these data, load
balancing is already foreseen to be a problem and decisions are being taken
to alleviate it: the scientific algorithms are being re-designed, and the team
is moving away from rigid SPMD paradigms towards a less rigid model where665

global synchronization points are kept at a minimum.
Other big applications with load balancing problems (i.e. GROMACS and

Gadget) follow the computation-synchronization model. They are written in
MPI and cannot avoid the use of global synchronization points. GROMACS [57]
hand tunes the process distribution to appaliate the load balancing issues,670

while Gadget [58] provides some extra code alongside their application code
to tackle the balancing issues [59]. Both approaches slow down productiv-
ity of parallel programmers and scientists that have to diverge from their
scientific problems to handle the load balancing of their application.

We claim that providing a mechanism where this can be done automatic-675

ally would improve productivity of scientists writing/designing their scientific
parallel applications.

Finally, another important point to consider is that scientific parallel ap-
plications do not follow a structure as simple as the one pictured in List-
ing 1. Applications have usually more than one phase of computation-680

synchronization which may exhibit different behavior, therefore the packing
computed for one phase may not work for the next phase. We are planning an
adaptive Task Packing algorithm that would extend our implementation by
dynamically monitoring the unbalance during execution and if at one point
a core passes the threshold tmax the task scheduling should be recomputed.685

This may not be simple, as to recompute iterations times, the application
should expand to the previously freed CPUs, which possibly have been re-
used.
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5. Results and evaluation

We evaluated our Task Packing mechanism on two benchmarks, miniFE690

and FT , and compared their execution times with and without the mecha-
nism. In the following sections, we first describe our experimental platform,
then provide details about the applications and their load imbalance and
finally present our evaluation results.

5.1. Execution framework695

The experiments were run in the MarenostrumIII supercomputer which is
based on Intel SandyBridge processors with iDataPlex Compute Racks and
running Linux Operating System. The interconnection networks are 10Gi-
gabit Ethernet for disk accesses and Infiniband FDR10 for communication
purposes. The machine had 48,896 Intel SandyBridge-EP E52670 cores at700

2.6 GHz (3,056 compute nodes) with 103.5 TB of main memory, where 42
of these nodes were heterogeneous compute nodes with 8 x 8G DDR3-1600
DIMMs (4GB/core) and 2 x Xeon Phi 5110P accelerators [60].

In this work we call “Xeon node”, the host of the heterogeneous node; and
we call “Xeon Phi nodes” to the accelerators of the heterogeneous node. In705

this work, we do not make distinction between core and CPU. For simplicity
we use the term CPU when referring to CPUs and cores.

The MPI library used is Intel MPI 4.1.3.049. The C compiler is gcc/4.7.2.
The performance analysis was made using the Extrae library and Paraver tool
[61].710

5.2. Applications

For the experiments we use the following benchmarks:

• miniFE, a miniapplication from the Mantevo suite project. This
benchmark performs a sparse matrix vector multiplication which is
widely used in linear algebra and graph algorithms and a good repre-715

sentative of HPC applications that work on irregular structures. The
miniFE miniapp benchmark, is similar to HPCG [20] but provides a
much more complete vertical coverage of the steps in this class of appli-
cations. Like HPCG, miniFE is intended to be the best approximation
to an unstructured implicit finite element for finite volume application,720

but in 8,000 lines or less. The benchmark is an iterative application.
At each iteration there is first a point-to-point communication phase,
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then the calculation phase composed by a matrix vector product and
finally a global reduction (MPI Allreduce operation). We run miniFE
with a 200x200x200 matrix size and the following configuration: 16725

tasks on each Xeon node and 24 tasks on each Xeon Phi node.

• FT , from the NAS Parallel Benchmarks which performs a 3-D partial
differential equation solved using FFTs. It is a rigorous test of heavy
long-distance communication performance. It is iterative, and the syn-
chronization is achieved through an exchange of data from all tasks to730

all tasks (MPI Alltoall operation)[18]. We run FT class C, with the
following configuration: 16 tasks on the Xeon node and 8 tasks on each
Xeon Phi Node.

We selected those benchmarks because they represent commonly found
HPC applications that follow iterative pattern of computation phase followed735

by a global synchronization. The first benchmark, miniFE, is an example
of applications with high communication degree and point-to-point commu-
nication type while the second one, FT , only does calculation during each
iteration and the communication is heavily concentrated in the synchroniza-
tion points.740

For all the results presented, we defined a confidence coefficient of 95%
and ran each experiment multiple times to reduce the standard error. We
assumed experiments to be independent, therefore the formulas associated
with a normal distribution apply [62].

5.3. Analysis of load imbalance on the heterogeneous platform745

We show first the execution times of a typical iteration. The execution
times are taken between two consecutive synchronization points (MPI Alltoall
in FT and MPI Allreduce in miniFE). The experiments evidence the load
imbalance generated when running on a heterogeneous platform.

We can see the results for the execution of FT in figure 5 running on750

4 heterogeneous nodes. The iteration times range from 0.2 to 0.9 seconds.
Notice that values that correspond to the Xeon nodes (ranks 0-15, 32-48,
64-80 and 96-111) are definitely less than the values from the Xeon Phi
nodes (rest of the ranks). The iteration times of the FT benchmark are
composed of just calculation, there is no communication at all during this755

phase. This explain the almost constant values of iteration times in CPUs
with the same characteristics. Applying the Task Packing algorithm in this
context is straightforward.

26



In figure 6 we can see the results for the iteration times for miniFE ex-
ecuted on 4 heterogeneous nodes. The iteration times range from 5 to 80760

milliseconds approximately. The iterations times are far from being constant
as happened with the FT results. However, values that correspond to the
Xeon nodes (ranks 0-15, 64-79, 128-142 and 192-207) tend to be less than
values from the Xeon Phi nodes (rest of the ranks). The point-to-point com-
munication phase included in these iteration times add this variability mostly765

due to the limited bandwidth between Xeon and Xeon Phi nodes. Despite
this variability the difference is big enough to take advantage of the Task
Packing algorithm.

Although the Task Packing mechanism is applied on every node, in these
experiments the task migration occurs just within Xeon nodes (the ones with770

smaller execution times). At these nodes, the condition showed in equation
1 is satisfied, which means that there exist k iterations (i) where their sum
of execution times (ti) is less than the upper bound given by the slowest task
(tmax). The slowest task as seen in the “iteration times” figures belongs to a
Xeon Phi node.775

In tables 1 and 2 we show the load imbalance calculated on the Xeon
nodes. This load imbalance gives us an idea about the percentage of CPUs
that could be freed after applying the Task Packing mechanism. We define
the load imbalance at a particular node, as the ratio between two areas: the
one determined by the sum of CPU times (ti) in a node; over the upper780

bound (tmax) multiplied by the number of tasks as shown in equation 5.

Load imbalance =
(
∑node size

i=0 ti)

tmax ∗ node size
(5)

Table 1: FT imbalance on Xeon nodes

number of MPI tasks 32 64 128 256

imbalance fraction 0.70 0.80 0.80 0.80
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for each task in the miniFE benchmark on four Xeon nodes (ranks 0-15, 32-48, 64-80, 96-
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Figure 6: Execution times of one iteration between two consecutive synchronization points
for each task in the miniFE benchmark on four Xeon nodes (ranks 0-15, 64-79, 128-142,
192-207) and eight Xeon Phi nodes (ranks 16-40, 31-64, 80-103, 104-127, 144-167, 168-191,
208-231, 232-255).
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Table 2: miniFE imbalance on Xeon nodes

number of MPI tasks 64 128 256 512

imbalance fraction 0.71 0.47 0.39 0.31

5.4. Evaluation results

Figures 7 and 8 show the execution times when running FT and miniFE
on heterogeneous nodes (from 1 to 8). The labels “NORMAL” and “TASK
PACKING” correspond to the execution without applying and applying the785

Task Packing mechanism, respectively.
The execution times obtained with both task allocations are very close.

However there is a tendency to increment the execution time with the number
of tasks when applying Task Packing. The worst case is observed in miniFE
with 512 tasks with a slowdown of Task Packing allocation with respect to790

Normal allocation of about 13%.
Taking a close look at the miniFE internal behavior, surprisingly enough,

we found that point-to-point MPI operations are not the main source of
performance degradation when running communicating tasks on oversub-
scribed CPUs. For example, in a normal execution, miniFE with 64 tasks,795

dedicates close to 0% of its execution time to point-to-point operations. If
oversubscribing 4 tasks per CPU (16 CPUs assigned), the increment in time
spent by point-to-point operations is about 15%. We found instead that
MPI Allreduce collective deals badly with CPUs oversubscription. This is
not the case with other collectives like MPI Alltoall (used in the FT bench-800

mark). This collective in a normal execution of miniFE, i.e. without CPUs
oversubscription, spends 35% of the total execution time when running with
16 tasks and goes up to approximately 65% when running with 128 tasks.

In addition, this collective has a hierarchical design adapted to the tar-
get platform. The reduction is solved following a specific rank ordering in805

this hierarchical design [63] generating dependencies between intermediate
calculations. This fact combined with several tasks sharing one CPU (over-
subscription) may degrade performance proportional to the size of the appli-
cation.

The Task packing algorithm adds a global collective operation to get the810

maximum iteration time across nodes. Despite its cost increments with the
number of tasks, this is done only once, and it does not affect the overall
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Figure 7: Execution times of FT, class C, run on 1, 2, 4 and 8 heterogeneous nodes with
CPUs default allocation and after applying Task Packing.

Figure 8: Execution times of miniFE, with matrix size 200x200x200 run on 1, 2, 4 and 8
heterogeneous nodes CPUs default allocation and after applying Task Packing.

performance.
In order to quantify the benefit obtained from our proposal, figures 9 and

10 show the relation between freed and assigned CPUs to the application815

after applying the Task Packing mechanism.
Recall that in our experiments, in FT, 16 tasks were configured to run on
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Figure 9: Freed CPUs on Xeon nodes after applying the Task Packing mechanism to the
execution of FT on different number of nodes.

Xeon CPUs and 16 tasks were configured to run on Xeon Phi CPUs, at each
heterogeneous node. For this reason, only 50% of the total assigned CPUs
are eligible to be reassigned (i.e. the ones from the Xeon Phi nodes). The820

discussion about freed CPUs that follows takes into account just this 50% of
the total number of assigned CPUs.

We can observe that in FT, the number of freed CPUs goes from 60% for
one node to an impressive 80% of the total number of CPUs on Xeon nodes,
when running on 4 nodes. This huge margin for oversubscription is explained825

because of the time spent in synchronization, especially when incrementing
the number of tasks. The FT benchmark performs MPI alltoall operation
as global synchronization. This operation stresses the memory bandwidth, a
critical point in the communication between Xeon and Xeon Phi nodes.

Taking a look at miniFE numbers, the percentage of CPUs eligible to be830

assigned constitutes 25% of the total number of assigned CPUs. From this
25%, the amount of freed CPUs goes from 60% on one heterogeneous node
execution to 20% when running on 4 heterogeneous nodes.

The amount of freed CPUs correlates with the load imbalance calculated
previously in equation 5 and showed in tables 1 and 2. So, the load imbalance835

can serve as a prediction about the benefit the Task Packing mechanism can
achieve.

We succeeded in freeing up to 20% of the total number of assigned CPUs
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Figure 10: Freed CPUs on Xeon nodes after applying Task Packing mechanism to the
execution of miniFE on different number of nodes.

in miniFE and up to 40% in FT on executions on heterogeneous platforms.
When applying Task packing on application with communication phases840

between synchronization, extra overheads arises, leading to a performance
degradation of up to 13% in the worst case.
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6. Conclusions and future work

Imbalance behavior of applications is an undesirable property. There are
cases where this imbalance comes from the application itself, as for example845

when working on irregular data structures. But sometimes the reasons are
external to the applications, so even though the application is well-balanced,
it can show an unbalanced behavior. The causes are for example when run-
ning on heterogeneous architectures, or due to operating system maintenance
tasks (operating system noise), or due to network traffic congestion.850

We present an extension of a previous work. The previous work presen-
ted a proof of concept of an idea about concentrating the CPU cycles in a
smaller number of CPUs by using oversubscription, freeing CPUs for other
purposes providing the execution time of the application was not degraded.
At runtime, the Subset Sum algorithm, which is a particular case of the Knap-855

sack algorithm tries to find a solution to reallocate tasks. Some of them are
eventually bound to the same CPU. The task migration are only within a
node. The algorithm just takes into account the execution time of each task
till it arrives to the next synchronization point (and consequently where the
unbalance becomes apparent). The execution time between two consecutive860

synchronization points is the upper bound parameter for applying the Task
Packing algorithm.

In this work we provide a more efficient implementation, where the schedul-
ing algorithm is executed at each node by a task from the unbalanced appli-
cation. The manager task is selected by being the shortest (the one with the865

smallest execution time between two consecutive synchronization points). In
this way, we take advantage of waiting cycles to make useful work instead,
without degrading the application performance and without wasting an ex-
tra CPU for that purpose. In addition we gather all the information needed
for the scheduling decisions through the message passing system, making the870

mechanism more portable.
The implementation of the mechanism is transparent to the programmer

and the user. Our implementation is scalable as the Task Packing is applied
at node level, and task migration decisions are made locally.

We have evaluated the mechanism using two well-known benchmarks:875

FT and miniFE. The first one with no communication at all apart from the
regular synchronization points and the second one a point-to-point high com-
munication degree application. Despite the applications are well-balanced,
we have shown that they exhibit a high level of imbalance when executed
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on an heterogeneous platform. We argue that heterogeneous platforms are880

increasing, both in number and complexity, and that load balancing will
become even more problematic. This adds relevance to our work. All exper-
iments presented in this paper have been done in an heterogeneous platform
to emphasize this point.

Our experiments demonstrate that our Task Packing mechanism has neg-885

ligible overhead on iterative applications with predictable unbalanced beha-
vior. We detected an overhead up to 13% in applications that use a reduction
collective because of its rank ordering algorithm. Without detriment of the
application our Task Packing mechanism is able to free up to 40% of the
total assigned CPUs in presence of 70% of imbalance. We have analyzed890

our results and observed that the benefit in terms of freed CPUs, depends
on factors like: the communication degree of the application (high commu-
nication degree make the application more unpredictable, and scheduling
decisions may not be always the accurate ones) and the number of eligible
CPUs to be reassigned. This number is closely related to the node with the895

fastest CPUs. The greater the number of CPUs of that node, the greater
the number of eligible CPUs. In addition, we have proposed a metric of load
imbalance as an estimate of the amount of free CPUs that could be obtained
after applying the Task Packing mechanism.

We considered in this work just iterative and regular applications. The900

load imbalance of an application has to be predictable in order to apply the
Task Packing mechanism. Once the packing is applied there will be some
nodes with CPUs oversubscribed. After that, if new load imbalance arises
(e.g. current load imbalance disappear) it can be detected, but to apply the
Task Packing algorithm we need the real iteration times of each of the tasks,905

that is to say, without oversubscription. One solution would be to expand the
oversubscribed CPUs (one task per CPU) and start all over again. However,
to expand the application CPUs should be available and this may not be
possible: consider the case the freed CPUs were recycled by the job scheduler
for backfilling purposes. We need to reformulate the strategy to be able to910

measure load imbalance after Task Packing was already applied and analyse
the cases where our approach would be beneficial.

Finally, we believe that the conservation of energy and the improvement
of system utilization are important topics that would benefit from our Task
Packing mechanism. The freed CPU(s) could be either shutdown to save915

energy or used by tasks from other applications. Although most modern
CPUs are capable of lowering their frequency for saving power consumption
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during idle states. We argue that shutting down a whole CPUs temporally,
despite requiring more preparation time it yields better energy saving than
just throttling all the CPUs during sporadically idle states. We would have920

liked to provide an energy consumption evaluation but unfortunately we
could not check energy consumption in our experimental platform. We will
definitely make this measurements as soon as we are able to.
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[43] C. Huang, O. Lawlor, L. V. Kalé, Languages and Compilers for Par-
allel Computing: 16th International Workshop, LCPC 2003, College1080

Station, TX, USA, October 2-4, 2003. Revised Papers, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004, Ch. Adaptive MPI, pp. 306–322.
doi:10.1007/978-3-540-24644-2_20.

[44] D. Bohme, F. Wolf, B. R. De Supinski, M. Schulz, M. Geimer, Scal-
able critical-path based performance analysis, in: Parallel & Distributed1085

Processing Symposium (IPDPS), 2012 IEEE 26th International, IEEE,
2012, pp. 1330–1340.

[45] C. Boneti, R. Gioiosa, F. J. Cazorla, M. Valero, A dynamic scheduler
for balancing hpc applications, in: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC ’08, IEEE Press, Piscataway, NJ,1090

41

http://dx.doi.org/10.1007/978-3-540-77704-5_10
http://dx.doi.org/10.1007/978-3-540-24644-2_20
http://dl.acm.org/citation.cfm?id=1413370.1413412
http://dl.acm.org/citation.cfm?id=1413370.1413412
http://dl.acm.org/citation.cfm?id=1413370.1413412


USA, 2008, pp. 41:1–41:12.
URL http://dl.acm.org/citation.cfm?id=1413370.1413412

[46] B. S. Parsons, V. S. Pai, Exploiting process imbalance to improve mpi
collective operations in hierarchical systems, in: Proceedings of the 29th
ACM on International Conference on Supercomputing, ACM, 2015, pp.1095

57–66.

[47] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,
T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Hen-1100

riss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D. Wijngaart,
T. Mattson, A 48-core ia-32 message-passing processor with dvfs in
45nm cmos, in: 2010 IEEE International Solid-State Circuits Conference
- (ISSCC), 2010, pp. 108–109. doi:10.1109/ISSCC.2010.5434077.

[48] N. R. Adiga, G. Almási, G. S. Almasi, Y. Aridor, R. Barik, D. Beece,1105

R. Bellofatto, G. Bhanot, R. Bickford, M. Blumrich, et al., An overview
of the bluegene/l supercomputer, in: Supercomputing, ACM/IEEE 2002
Conference, IEEE, 2002, pp. 60–60.

[49] M. Si, A. J. Pena, J. Hammond, P. Balaji, M. Takagi, Y. Ishikawa,
Casper: An asynchronous progress model for mpi rma on many-core1110

architectures, in: Parallel and Distributed Processing Symposium (IP-
DPS), 2015 IEEE International, IEEE, 2015, pp. 665–676.

[50] S. L. Mirtaheri, L. Grandinetti, Dynamic load balancing in distributed
exascale computing systems, Cluster Computing 20 (4) (2017) 3677–
3689.1115

[51] S. L. Mirtaheri, S. A. Fatemi, L. Grandinetti, Adaptive load balancing
dashboard in dynamic distributed systems, Supercomputing Frontiers
and Innovations 4 (4) (2017) 34–49.

[52] E. Horowitz, S. Sahni, Computing partitions with applications to the
knapsack problem, Journal of the ACM (JACM) 21 (2) (1974) 277–292.1120

[53] R. L. Graham, The MPI 2.2 Standard and the Emerging MPI 3 Stand-
ard, in: Proceedings of the 16th European PVM/MPI Users’ Group

42

http://dl.acm.org/citation.cfm?id=1413370.1413412
http://dx.doi.org/10.1109/ISSCC.2010.5434077


Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 2–2.
doi:http://dx.doi.org/10.1007/978-3-642-03770-2_2.1125

[54] T. A. El-Ghazawi, W. W. Carlson, J. M. Draper, UPC Language Spe-
cifications, v1.1.1 Edition (October 2003).

[55] Square Kilometre Array, The SKA Project, http://www.

skatelescope.org.

[56] B. Nikolic, P. Wortmann, P. Alexander, Parametric models of SDP1130

compute requirements, http://ska-sdp.org/sites/default/files/

attachments/ska-tel-sdp-0000013_05_rep_sdp_performance_

model_view_part_1_-_signed.pdf.

[57] E. Lindahl, B. Hess, D. van der Spoel, GROMACS 3.0: A package for
molecular simulation and trajectory analysis, J. Mol. Mod. 7 (2001)1135

306–317.

[58] V. Springel, N. Yoshida, S. D. White, Gadget: a code for collisionless and
gasdynamical cosmological simulations, New Astronomy 6 (2) (2001)
79 – 117. doi:https://doi.org/10.1016/S1384-1076(01)00042-2.
URL http://www.sciencedirect.com/science/article/pii/1140

S1384107601000422

[59] M. G. Garcia, Dynamic load balancing for hybrid applications, Ph.D.
thesis, Universitat Politecnica de Catalunya (2017).
URL http://hdl.handle.net/2117/108227

[60] Barcelona Supercomputing Center, Marenostrum 3,1145

https://www.bsc.es/support/MareNostrum3-ug.pdf.

[61] Barcelona Supercomputing Center, Paraver: a flexible perform-
ance analysis tool, http://www.bsc.es/computer-sciences/performance-
tools/paraver/general-overview.

[62] H. W.G., H. J.S., Statistics for Experimenters: Design, Innovation and1150

Discovery, Box, G.E. Wiley, New York, 2005.
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