
UNIVERSITAT POLITÈCNICA DE CATALUNYA ·

BARCELONATECH

DOCTORAL THESIS

Scalable Processing of Aggregate

Functions for Data Streams in

Resource-Constrained Environments

Author:

Álvaro VILLALBA

Supervisor:

Dr. David CARRERA

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

in the

Departament d’Arquitectura de Computadors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231705322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.upc.edu
https://www.upc.edu
http://www.davidcarrera.org
https://www.ac.upc.edu


ii

April 29, 2019



iii

Declaration of Authorship
I, Álvaro VILLALBA, declare that this thesis titled, “Scalable Processing of Aggregate

Functions for Data Streams in Resource-Constrained Environments” and the work

presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-

gree at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed my-

self.

Signed:

Date: April 29, 2019





v

UNIVERSITAT POLITÈCNICA DE CATALUNYA · BARCELONATECH

Abstract

Facultat d’Informàtica de Barcelona

Departament d’Arquitectura de Computadors

Doctor of Philosophy

Scalable Processing of Aggregate Functions for Data Streams in

Resource-Constrained Environments

by Álvaro VILLALBA

HTTPS://WWW.UPC.EDU
http://www.fib.upc.edu
https://www.ac.upc.edu


vi

The fast evolution of data analytics platforms has resulted in an increasing demand

for real-time data stream processing. From Internet of Things applications to the

monitoring of telemetry generated in large data centers, a common demand for cur-

rently emerging scenarios is the need to process vast amounts of data with low laten-

cies, generally performing the analysis process as close to the data source as possible.

Devices and sensors generate streams of data across a diversity of locations and pro-

tocols. That data usually reaches a central platform that is used to store and process

the streams. Processing can be done in real time, with transformations and enrich-

ment happening on-the-fly, but it can also happen after data is stored and organized

in repositories. In the former case, stream processing technologies are required to

operate on the data; in the latter batch analytics and queries are of common use.

Stream processing platforms are required to be malleable and absorb spikes gen-

erated by fluctuations of data generation rates. Data is usually produced as time

series that have to be aggregated using multiple operators, being sliding windows

one of the most common abstractions used to process data in real-time. To satisfy the

above-mentioned demands, efficient stream processing techniques that aggregate

data with minimal computational cost need to be developed. However, data analyt-

ics might require to aggregate extensive windows of data. Approximate computing

has been a central paradigm for decades in data analytics in order to improve the

performance and reduce the needed resources, such as memory, computation time,

bandwidth or energy. In exchange for these improvements, the aggregated results

suffer from a level of inaccuracy that in some cases can be predicted and constrained.

This doctoral thesis aims to demonstrate that it is possible to have constant-time

and memory efficient aggregation functions with approximate computing mecha-

nisms for constrained environments. In order to achieve this goal, the work has

been structured in three research challenges.

First we introduce a runtime to dynamically construct data stream processing

topologies based on user-supplied code. These dynamic topologies are built on-the-

fly using a data subscription model defined by the applications that consume data.

The subscription-based programing model enables multiple users to deploy their

own data-processing services.



vii

On top of this runtime, we present the Amortized Monoid Tree Aggregator gen-

eral sliding window aggregation framework, which seamlessly combines the follow-

ing features: amortized O(1) time complexity and a worst-case of O(log n) between

insertions; it provides both a window aggregation mechanism and a window slide

policy that are user programmable; the enforcement of the window sliding policy

exhibits amortized O(1) computational cost for single evictions and supports bulk

evictions with cost O(log n); and it requires a local memory space of O(log n). The

framework can compute aggregations over multiple data dimensions, and has been

designed to support decoupling computation and data storage through the use of

distributed Key-Value Stores to keep window elements and partial aggregations.

Specially motivated by edge computing scenarios, we contribute Approximate

and Amortized Monoid Tree Aggregator (A2MTA). It is, to our knowledge, the first

general purpose sliding window programable framework that combines constant-

time aggregations with error bounded approximate computing techniques. A2MTA

uses statistical analysis of the stream data in order to perform inaccurate aggrega-

tions, providing a critical reduction of needed resources for massive stream data

aggregation, and an improvement of performance.





ix

Acknowledgements

Ara entenc el que vol dir trobar-se sobre les espatlles de gegants.

El treball presentat aquí i la meva consegüent carrera professional són el fruit

d’una cadena de casualitats que m’han apropat a persones extraordinàries, a les que

estic molt agraït per moltes raons. Aquesta cadena de casualitats té varies fites espe-

cialment importants.

En acabar les assignatures d’enginyeria en informàtica i motivat pels excel·lents

projectes finals d’amics que ja eren enginyers, vaig decidir el que volia fer pel meu

projecte final de carrera, seguint les meves inquietuds i amb intenció de divertir-

me: un manegador d’esdeveniments provocats per sensors, telemetria i programes

de tercers. No hagués dit mai que la temàtica que estava escollint llavors seria la

llavor d’un doctorat. El professor que em va acceptar el projecte sense posar cap

inconvenient va ser el Juanjo Costa. Aquest projecte és un èxit en el meu expedient

acadèmic, i això va ser gràcies als seus consells i indicacions setmanals.

Entrant ja al món laboral com a enginyer, el Juanjo em va recomanar que em

mirés una oferta de feina publicada al taulell d’anuncis del Barcelona Supercomput-

ing Center, i que portava un professor amb el que em va prometre que aprendria

moltíssim: David Carrera.

Amb el David (director d’aquesta tesi) vaig entrar en un projecte per fer com-

putació Big Data en streams de dades, que casualment era la evolució natural del que

vaig començar a fer en el projecte final de carrera. A les dos setmanes de contractar-

me, el David em presentava a IBM com l’expert en processat d’streams pel projecte

conjunt que començàvem. Ja no havia marxa enrere, havia de tornar-me un expert

o aquesta gent tant important s’ensumaria alguna cosa. Temps més tard, després de

passar pel Síndrome de l’Impostor i d’aprendre molt, l’escena es repetia amb Cisco i

després amb Microsoft. En molt poc temps vaig passar a treballar amb enginyers de

primer nivell en projectes importants, tant de grans empreses com del propi BSC.

Treballant en aquests projectes, vaig tenir una idea que podia no dur enlloc:

un concepte nou d’agregadors eficients per streams de dades. Ho vaig presentar

al David, i ràpidament em va donar llum verda i els recursos per a que pogués



x

desenvolupar-ho. Ara aquella idea s’ha convertit en una patent que és la contribu-

ció central d’aquesta tesi, la meva contribució inicial a una empresa de la que en sóc

cofundador, i també un mal de cap que s’ha tornat crònic. Malgrat tot això, la raó per

la que estic més agraït al David és per obrir-me els ulls i fer-me canviar d’ecosistema

de càmeres fotogràfiques. Aquí en queda constància.

Per suposat, paral·lelament a tot això, he rebut molta ajuda i suport tant dels

meus companys de la carrera com dels meus companys de feina. Amics meus, són

els millors enginyers que he conegut i m’han obligat a millorar per poder apropar-

me al seu nivell: Cesare, que ens vam conèixer el dia que vam començar els dos a

treballar al BSC, i que en poc temps es va tornar un molt bon amic; Marcelo i Nicola,

amb els que he compartit unes quantes cerveses mentre ens convencíem mútuament

de que això del doctorat paga la pena; Josep Lluís i Alberto, que m’han ajudat amb la

part d’estadística i a posar sobre paper les idees que tenia al cap; Òscar, Tom i Sergi,

ex-companys al BSC i actuals companys en la recent aventura de fer una empresa

amb el David, gràcies a ells ha sigut possible tancar aquest projecte al mateix temps

que en començava un altre encara més ambiciós; I en general tots els companys que

han passat pel C6-E201 i el K2M-S204b.

Vull també fer una menció especial a la persona amb la que he compartit tota

aquesta experiència dia a dia, el meu principal suport i qui més estimo: Eli. Ha

estat al meu costat quan em semblava que la lògica m’havia abandonat, ha sigut

comprensiva quan sortíem a prendre algo però jo encara tenia el cap treballant, i

ha cobert les meves absències quan se m’apropaven deadlines. Sense ella hagués

perdut totalment la cordura fa temps.

Finalment vull agrair als meus pares pels valors que m’han inculcat durant tota

la meva vida, i perque sempre han potenciat la meva curiositat i el meu interès per

la ciència i la tecnologia.

Gràcies a tots.



xi

Contents

Declaration of Authorship iii

Abstract vi

Acknowledgements ix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and Publications . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 9

2.1 General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Stream Processing Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Big Data Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Operations on IoT data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Dynamically Pipelined Processing for Composite Data Streams 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Architecture of ServIoTicy . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Abstractions used in ServIoTicy . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Data Processing Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Constant-Time Sliding Window Framework with Reduced Memory Foot-

print and Efficient Bulk Evictions 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



xii

4.2 Background: Real-Time Sliding Windows . . . . . . . . . . . . . . . . . 54

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Framework Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Approximate Sliding Window Framework with Error Control 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 MTA Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Approximate AMTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Conclusions & Future Work 115

Bibliography 121



xiii

List of Figures

1.1 Contribution’s milestones . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Big Data stream processing platforms basic architecture . . . . . . . . . 12

2.2 Computing a query on the Lambda Architecture . . . . . . . . . . . . . 18

2.3 Computing a query on the Kappa Architecture . . . . . . . . . . . . . . 19

3.1 Lock-free asynchronous model used in ServIoTicy . . . . . . . . . . . . 35

3.2 Old data discard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Relation between a pipeline and its execution trees . . . . . . . . . . . . 38

3.4 Representation of topology #3 . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Node latency by degree . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Stage latency by degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Types of tested pipeline, each one maximizing a property . . . . . . . . 44

3.8 Time to dispatch a SU through an entire topology. . . . . . . . . . . . . 45

4.1 Log MTA Structure and Element Location Examples . . . . . . . . . . . 62

4.2 Log MTA Bulk Eviction. Monoid: max(x, y); WPS: total − old ≥ 4. . . . 67

4.3 Log MTA KVS data structure . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Amortized MTA Structure and Element Location Examples . . . . . . . 69

4.5 AMTA single update eviction running example . . . . . . . . . . . . . . 74

4.6 Average latency for constant-sized windows . . . . . . . . . . . . . . . 79

4.7 Window bulk eviction average latency, using different y-axis scales to

show different details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 Average window size reached per allocated memory amount, for a 225

updates capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Average latency for multiple aggregators . . . . . . . . . . . . . . . . . 84



xiv

5.1 Error generated by stream update buckets. Monoid: count; WSP:

count > 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Bulk eviction buckets. Predicted eviction: 6± 1 . . . . . . . . . . . . . . 99

5.3 A2MTA data-structure constrained with 6 leaves . . . . . . . . . . . . . 100

5.4 Effective error in a sum-like histogram . . . . . . . . . . . . . . . . . . . 104

5.5 Effective error in a constrained sum-like window . . . . . . . . . . . . . 105

5.6 Effective error in a max-like histogram . . . . . . . . . . . . . . . . . . . 105

5.7 Effective error in a constrained max-like window . . . . . . . . . . . . . 106

5.8 Effective error in a constrained hopping window . . . . . . . . . . . . . 106

5.9 Sum-like histogram: 0.1% error . . . . . . . . . . . . . . . . . . . . . . . 108

5.10 Max-like histogram: 105 block size . . . . . . . . . . . . . . . . . . . . . 109

5.11 Hop histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



xv

List of Tables

3.1 Pseudo-random topologies . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Sliding window frameworks comparison . . . . . . . . . . . . . . . . . 59

4.2 Window latencies in nanoseconds with different monoids and WSPs . 82

5.1 Scenario-specific bucket aggregation method’s footprint relative to AMTA’s103

5.2 Constrained A2MTA footprint relative to AMTA’s . . . . . . . . . . . . 103





xvii

List of Abbreviations

A2MTA Approximate & Amortized Monoid Tree Aggregator

ADWIN Adaptive Window

AMTA Amortized Monoid Tree Aggregator

API Application Programming Interface

ASA Azure Stream Analytics

CAP Consistency, Availability & Partition (tolerance)

CRUD Create, Replace, Update & Delete

DABA De-Amortized Banker’s Aggregator

DAG Directed Acyclic Graph

DPP Data Processing Pipelines

FIFO First In - First Out

IoT Internet of Things

JSON JavaScript Object Notation

KDA Kinesis Data Analytics

KVS Key-Value Store

LMTA Logarithmic Monoid Tree Aggregator

MQTT Message Queuing Telemetry Transport

MTA Monoid Tree Aggregator

OSS Open Source Software

RA Reactive Aggregator

REST Representational State Transfer

SO Service Object

SPL Stream Processing Language

SQL Structured Query Language

STOMP Simple (or Streaming) Text Oriented Message Protocol

SU Sensor Update



xviii

SWAG Sliding-Window Aggregation

WO Web Object

WSP Window Slide Policy



1

Chapter 1

Introduction

1.1 Motivation

Over the last years, Internet of Things (IoT) and Big Data platforms are clearly con-

verging in terms of technologies, problems and approaches. IoT ecosystems gen-

erate a vast amount of data that needs to be stored and processed, becoming a Big

Data problem. IoT devices and sensors generate streams of data across a diversity

of locations and protocols that in the end reach a central platform that is used to

store and process it. Processing can be done in real time, with transformations and

enrichment happening on-the-fly, but it can also happen after data is stored and or-

ganized in repositories. In the former case, real-time processing technologies like

Storm [19] [96] are required to operate on the data; in the latter batch processing

like Hadoop [14] is of common use. Stream processing prioritizes low latency above

throughput and is continuously calculating the results, in contrast to batch process-

ing that gives preference to throughput and runs in larger time spans after accumu-

lating larger amounts of new data. IoT use cases usually involve immediate reaction

to event detection, or continuous telemetry monitoring. In such scenarios, low la-

tency is a the priority and stream processing is a clear solution data analytics.

When an entity wants to access a feature’s data stream, i.e. last hour average

temperature in a location, that entity has two main options to retrieve that data. The

first option is to deploy the infrastructure needed to retrieve the data from scratch:

sensors and related connectivity. The second option is to get access to an existing

data stream from another entity that contains information related to the target fea-

ture. From the previous example, a city council might have temperature sensors



2 Chapter 1. Introduction

deployed all over the city generating temperature data streams. If these streams are

shared to the interested party and accessible from a stream processing platform, the

only thing left to do would be to perform the average aggregation on the stream. It

is cheaper to share data streams in a multi-tenant data stream processing platform,

rather than deploy the same set of sensors per tenant. Moreover, an entity might

be interested in the composition of several streams. Consider an entity interested

on the wind chill factor. The wind chill factor is calculated using the wind velocity

and the air temperature. This entity could use third party’s wind velocity and air

temperature streams in order to make a continuous wind chill factor calculation.

The operations performed on the data might not depend on a single tenant, like

the owner of the sensors or the owner of the data processing infrastructure. Fur-

thermore, the results from the stream analytics on sensor updates end up being new

streams and other third parties might be interested on them. So a pipeline of data

stream operations might be performed by a combination of tenants, and would need

to grow dynamically while it is running. This is a very demanding environment in

which the execution topologies are potentially vast directed acyclic graphs (DAG),

with each vertex being an operation that in some cases might be challenging to run

in terms of time and space. With such an execution topology, the vertices need to

be loaded to memory dynamically whenever they receive an stream update. Other-

wise the resources will easily become scarce. We refer to dynamic pipelining as the

combination of operations to subscribing to an existing stream on-the-fly while the

operations are only loaded when need to compute a stream update.

Aggregate functions operate on extensive amounts of data to produce a single

result. Big Data traditionally solves the problem of data aggregation with batch pro-

cessing. Batch processing uses programming models such as MapReduce with effi-

cient algorithms. Such programming models enable efficient and linear scalable data

analytics of massive amount of data with high throughput and fault tolerance. This

linear scalability consists on distributing the computation and storage of the data,

which by replicating said data we can also obtain fault tolerance. If more computa-

tion resources are needed, it can be solved by just adding new computation nodes

to the batch processing system.

On the other hand, stream processing is generally used to constantly aggregate



1.1. Motivation 3

relatively small amounts of data because it lacks efficient aggregators for massive

data that fits the following requirements for real-time computation:

• Efficient programming model.

• Low-latency incremental computation.

• Fault-tolerance.

• Constantly distributed and replicated data.

Since a data stream is virtually infinite, the data to be aggregated needs to be

narrowed down in stream sliding windows, i.e. data from the last year. This also

the case of batch processing, where a batch might also contain data from last year.

Nevertheless, batch processing provides a single results from a closed set of data,

and a new batch is required to produce a new result. Although the throughput is

high, the latency to produce this single result is also relatively high. A stream pro-

cessing sliding window generates a stream of real-time results as the time interval

shifts forward, with very low-latency for the computation of each incremental re-

sult. As a consequence of the lack of Big Data aggregators for stream processing,

the window aggregators are not linearly scalable. Therefore, batch processing is tra-

ditionally used for massive data aggregations while stream processing is used for

continuous aggregations of constantly changing small data.

In this work, we will demonstrate that it is possible to use batch processing

paradigms for stream processing aggregations, getting as a result continuous ag-

gregations of vast amounts of data.

Aside from the scalable and distributed programming models, there are other

paradigms that are relevant for the aggregation of Big Data. One of the paradigms

widely used in Big Data batch processing is Approximate Computing. Approximate

Computing improves the performance of data analytics algorithms and decreases

the resources needed. However, the results of Approximate Computing algorithms

may have some degree of inaccuracy. The computation strategies in Big Data Ap-

proximate Computing are usually software-level approximation rather than hard-

ware, such as memoization, skipping loops in iterations or skipping data elements



4 Chapter 1. Introduction

in an aggregation. The inaccuracy can be predicted, with a margin of error, and con-

trolled or even limited. In a linearly scalable environment, Approximate Computing

not only can increase throughput and reduce latencies, but also would reduce the

number of computation nodes needed for an aggregation making it cheaper.

We want to avoid to the possible extent that an operation as relevant for data

analytics as an aggregate function becomes a bottleneck in a data processing pipeline

that will chain the latencies of multiple operations. The aggregate functions require

to have an update computation time close to the update input frequency.

The tenant-shared execution environment that we described requires stream op-

erations and their data to be only loaded when needed, and to load a minimal

amount of data. Having the data distributed and replicated in a scalable data store

frees local resources and makes the aggregation fault-tolerant. If also only a little

portion of that data is used on each aggregation, it enables the operation to be loaded

fast when needed and frees even more local resources.

The contents exposed in here motivated the following Doctoral Thesis statement:

It is possible to leverage dynamically pipelined topologies to combine scalable stream process-

ing with the approximate computing paradigm to build efficient sliding window aggregators

for resource-constrained environments.

In order to achieve this goal, we divided the work into three main contributions.

The first one provides a stream processing platform with dynamically pipelined

topologies. The second one is a constant-time and footprint efficient framework

for general purpose sliding window aggregations. The third contribution applies

approximate computing mechanisms to the sliding window framework.

1.2 Contributions and Publications

The contributions of this Doctoral Thesis aim to deliver a scalable and efficient ag-

gregate functions framework for massive data in stream processing. This goal will



1.2. Contributions and Publications 5

Cloud

Edge

Constrained
Edge

Composite Streams Scalable Aggregation Limit Resources

Contribution 1
Dynamic PipelinesStre

am proce
ss

ing

    
    

 fra
mework

Contribution 2
Constant-time
Window Aggregation

Slid
ing W

indow

    
   f

ramework

Contribution 3
Approximate
Window Computing

Erro
r b

ound

   a
ggregatio

n

S
co

pe

Value

FIGURE 1.1: Contribution’s milestones

be achieved by incrementally pushing each contribution towards resource-scarce en-

vironments execution, such as Fog or Edge computing deployments. Furthermore,

there will be a constant focus on having a fairly simple programming model to de-

fine aggregate functions.

The chart in Figure 1.1 shows in its axes the progression of the main two goals

of this Thesis. The y axis represents the different increasingly resource-constrained

scopes this work covers, while the x axis represents the development in the value

it achieves in terms of computational efficiency. Each contribution can be found by

crossing the milestones from each goal.

The work in this Doctoral Thesis is divided in the following three main contribu-

tions supported by multiple peer-reviewed publications.

1.2.1 Dynamically Pipelined Processing for Composite Data Streams

Devices and sensors generate streams of data across a diversity of locations and pro-

tocols. That data usually reaches a central platform that is used to store and process

the streams. Processing can be done in real time, with transformations and enrich-

ment happening on-the-fly, but it can also happen after data is stored and organized

in repositories. In the former case, stream processing technologies are required to

operate on the data; in the latter batch analytics and queries are of common use.

This contribution introduces a runtime to dynamically construct data stream pro-

cessing topologies based on user-supplied code. These dynamic topologies are built



6 Chapter 1. Introduction

on-the-fly using a data subscription model defined by the applications that consume

data. Each user-defined processing unit is called a Service Object. Every Service

Object consumes input data streams and may produce output streams that others

can consume. The subscription-based programming model enables multiple users

to deploy their own data-processing services. The runtime does the dynamic for-

warding of data and execution of Service Objects from different users. Data streams

can originate in real-world devices or they can be the outputs of Service Objects.

Furthermore, a Service Object can subscribe to multiple streams to produce a single

composite stream.

The runtime leverages Apache STORM for parallel data processing, that com-

bined with dynamic user-code injection enables multi-tenant stream processing topolo-

gies. In this work we describe the runtime, its features and implementation details,

as well as a performance evaluation of some of its core components.

This contribution is supported by the following publications:

• Villalba, Á., Pérez, J. L., Carrera, D., Pedrinaci, C., & Panziera, L. (2015). servI-

oTicy and iServe: a Scalable Platform for Mining the IoT. Procedia Computer

Science, 52, 1022-1027.

• Villalba, Á., & Carrera, D. (2018, August). Multi-tenant Pub/Sub Processing

for Real-Time Data Streams. In European Conference on Parallel Processing (pp.

251-262). Springer, Cham.

• Pérez, J. L., Villalba, Á., Carrera, D., Larizgoitia, I., & Trifa, V. (2014, April). The

COMPOSE API for the internet of things. In Proceedings of the 23rd International

Conference on World Wide Web (pp. 971-976). ACM.

1.2.2 Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

The fast evolution of data analytics platforms has resulted in an increasing demand

for real-time data stream processing. From Internet of Things applications to the



1.2. Contributions and Publications 7

monitoring of telemetry generated in large data centers, a common demand for cur-

rently emerging scenarios is the need to process vast amounts of data with low la-

tencies, generally performing the analysis process as close to the data source as pos-

sible. Stream processing platforms are required to be malleable and absorb spikes

generated by fluctuations of data generation rates. Data is usually produced as time

series that have to be aggregated using multiple operators, being sliding windows

one of the most common abstractions used to process data in real-time. To satisfy

the above-mentioned demands, efficient stream processing techniques that aggre-

gate data with minimal computational cost need to be developed.

In this contribution we present the Monoid Tree Aggregator general sliding win-

dow aggregation framework, which seamlessly combines the following features:

amortized O(1) time complexity and a worst-case of O(log n) between insertions; it

provides both a window aggregation mechanism and a window slide policy that are

user programmable; the enforcement of the window sliding policy exhibits amor-

tized O(1) computational cost for single evictions and supports bulk evictions with

cost O(log n); and it requires a local memory space of O(log n). The framework

can compute aggregations over multiple data dimensions, and has been designed

to support decoupling computation and data storage through the use of distributed

Key-Value Stores to keep window elements and partial aggregations.

This contribution is supported by the following publications:

• Villalba, Á., Berral, J. L., & Carrera, D. (2018). Constant-Time Sliding Win-

dow Framework with Reduced Memory Footprint and Efficient Bulk Evic-

tions. IEEE Transactions on Parallel and Distributed Systems.

• Villalba, Á., & Carrera D. (2017) Distributed data structures for sliding window

aggregation or similar applications. European Patent EP17382202.4, filed May

30, 2017.

1.2.3 Approximate Sliding Window Framework with Error Control

The principal kind of aggregator for data streams is the sliding window, which de-

fines boundaries on the aggregated stream values. However, data analytics might

require to aggregate extensive windows of data. Approximate computing has been a



8 Chapter 1. Introduction

central paradigm for decades in data analytics in order to improve the performance

and reduce the needed resources, such as memory, computation time, bandwidth or

energy. In exchange for these improvements, the aggregated results suffer from a

level of inaccuracy that in some cases can be predicted and constrained.

In this contribution we present the Approximate and Amortized Monoid Tree

Aggregator (A2MTA). It is, to our knowledge, the first general purpose sliding win-

dow programable framework that combines constant-time aggregations with error

bounded approximate computing techniques. It is very suitable for adverse stream

processing environments, such as resource scarce multi-tenant edge computing. The

framework can compute aggregations over multiple data dimensions, error bound-

ing any of them, and has been designed to support decoupling computation and

data storage through the use of distributed Key-Value Stores to keep window ele-

ments and partial aggregations.

This contribution is supported by the following publication:

• Villalba, Á., & Carrera, D. (2019). Constant-Time Approximate Sliding Win-

dow Framework with Error Control. 22nd IEEE International Symposium On

Real-time Computing.



9

Chapter 2

Background

This chapter sets a conceptual baseline on data stream processing for the rest of

the Doctoral Thesis. The goal is to familiarize the reader to existing concepts that

configure this research field.

2.1 General Concepts

In this section we introduce general concepts that are central to stream processing,

with the goal to help with the comprehension of the rest of the work.

The concepts listed next are the main objects of discussion, in which everything

else is based:

• Update: A time-dependent change on the state of a data feature. A data feature

refers to information of a specific object or scenario, i.e. current temperature

in Barcelona. Updates from the same data feature share the data structure and

differ on its values. All updates’ data structures usually have timestamp and

offset fields, which sets temporal context in the data feature and combined pro-

vide a unique ID to the update. Updates are the atomic unit in a data stream.

• Data stream: Unbound sequences of ordered atomic updates on the same data

feature. E.g., a stream associated to the temperature of a physical device D

contains a sequence of updates of such temperature information coming from

device D, each update replacing the previous one. A stream emits updates

indefinitely, they do not have finite size and lack boundaries.

• Stream processing: Transformation of one or more updates streams into one or

more derivative update streams. Output stream updates are triggered by input



10 Chapter 2. Background

stream updates. Stream processing can be simply transforming updates one to

one from input to output, i.e. transforming temperature update values from

Fahrenheit to Celsius degrees. However, the output streams can be the result

of complex data analytics updates, i.e. anomaly detection in telemetry streams

using Kalman filters. One output streams might aggregate several updates

from several input streams.

• Stream operator: From a high level perspective, stream processing is performed

using atomic stream operators. Stream operators are ideally low-latency op-

erators for stream updates. The number of streams or updates from those

streams computed as operands depends on the operator. Examples would be

transform, filter, or window aggregation.

• Partition or Shard: Stream processing can parallelize the computation at three

levels; at stream level, partition level and operation level. Different streams run

in parallel as they are independent from each other. Operations can have their

inner mechanisms to also run in multiple threads to speed up its execution.

Partitions are stream divisions by some criteria that run in parallel. However,

the same operations are applied to all the partitions from the same stream.

Strong ordering between partitions can only be guaranteed by buffering them

and performing a sort algorithm right before merging. Partition division are

usually represented by the Group By SQL operator.

• Stream processing node: In a stream processing platform, pipelined operators

can be grouped in different nodes in order to improve the job throughput.

Dividing the computation into several nodes improves throughput, but it can

add latency because of the transport of updates between nodes.

All the modern scalable and distributed stream processing platforms for Big Data

share the same elements and basic structure in their architectures, which are the

following:

• Producers: External to the platform itself, producers send data streams to be

processed to the platform, i.e. readings from a sensor. Therefore, they need



2.1. General Concepts 11

connectivity to the platform. Multiple producers can emit updates of the same

stream, and one producer can emit updates from multiple streams.

• Consumers: Like producers, consumers are external to the platform. They

collect the updates generated by the stream processing platform to use them

somehow. For example, consumers can trigger actuators from the analysis of

sensor streams. Multiple consumers can read the same stream, and multiple

streams can be read from one consumer.

• Queue messaging system: It is in charge of update communication between con-

sumers/producers and the platform. The communication channels are di-

vided by partitions or topics. Each partition is usually treated as an indepen-

dent queue, although the in/out policies do not need to be FIFO. Partitions are

strongly ordered, and so consumers with a FIFO policy will receive updates

in the same order as they were received by the partition. Other policies affect

consumers apart from in/out policies, i.e. maximum number of retained mes-

sages or retention time interval. Queues messaging systems can be distributed

and have partitions and/or partition replicas in different machines.

• Topology: The actual stream computation happens in the topology, which is

a computation pipelines’ directed acyclic graph (DAG). Each node contains a

section of the computation that will performed on an update. Nodes run in

parallel and can be replicated to improve throughput. The edges between the

nodes define how the updates flow between the nodes. A node with multiple

output edges will emit updates to a subset of these edges per input update.

Pipelines have source nodes that retrieve messages from the input queue mes-

saging system, and sink nodes that publish the updates to the output queue

messaging system. Sources can retrieve updates from multiple partitions and

sinks can emit updates to multiple partitions.

Figure 2.1 is a general diagram of a stream processing platform architecture and the

update flow from producer to consumer.

There is also a set of characteristics that differentiates the different stream pro-

cessing platforms, that makes them more convenient in specific situations. Some



12 Chapter 2. Background

FIGURE 2.1: Big Data stream processing platforms basic architecture

of these characteristics are simply performance metrics like latency and throughput,

which generally one is increased by decreasing the other. Furthermore, these metrics

are also affected by the following characteristics:

• Strong ordering guarantee: Processed updates can either be emitted in the

same order they were generated or not. Update order can be altered by parallel

computation of the updates. Most stream processing platforms can guarantee

strong ordering if necessary.

• Update processing guarantees: Failures can happen on the pipeline while com-

puting a number of updates. Update processing guarantee defines the implica-

tions for the updates being processed in case of a failure, in terms of how many

times an update can be processed and emitted to the output queue. There are

four options.

– At least once: It guarantees that each update inserted in the input queue

will be processed, but it does not specify how many times. The same

output update can be emitted multiple times.

– At most once: Updates are not processed and emitted more than once,

but some updates might be lost due to a failure.

– Exactly once: All updates are always processed once and only once, re-

gardless of failures.

– None: There is no guarantee on how many times an update will be pro-

cessed, the behavior is a best effort reducing the loss and repetition of

updates.



2.1. General Concepts 13

• Fault-tolerance method: In order to enforce the strong ordering and update

processing guarantees, some update processing control procedures need to be

enforced. The following are some examples:

– Update acknowledgement: Each update that has been processed from

a topology node sends back to the previous node an acknowledgement

that it has been processed. The source of the topology keeps a backup of

all the tuples it generates. Once a source update has received acknowl-

edgements from all generated updates until the sinks, it can safely be

discarded from the upstream backup. At failure, if not all acknowledge-

ments have been received, then the source update is replayed. This guar-

antees no data loss, but does result in out of order updates and duplicate

updates passing through the system (at least once processing). Update

acknowledgment also works as part of a backpressure handling mecha-

nism, having control on all the updates on-flight in the topology.

– Micro batches: In order to overcome the complexity and overhead of

update-level synchronization that comes with the model of continuous

operators that process and buffer updates, a continuous computation is

broken down in a series of small, atomic batch jobs (called micro-batches)

with a transactional id assigned. Each micro-batch may either succeed or

fail. At a failure, the latest micro-batch can be simply recomputed. This

method enforces exactly once processing and strong ordering, degrading

the computation latency. However, with batch related operators, it can

improve throughput.

– Transactional updates: Atomically log update deliveries together with

updates to the state. Upon failure, state and record deliveries are repeated

from the log. This guarantees exactly once processing and strong order-

ing.

– Checkpointing: This scenario can be considered a composition of micro-

batch and transactional update mechanisms. During intervals of updates,



14 Chapter 2. Background

nodes update their state in a distributed snapshot so they can be recov-

ered on failure. For the sinks, they buffer the updates up to the next check-

point, and then emits them all together.

• Pull/push communication: Update communication between topology nodes

can be either pull-based or push-based. Pull communication will require a

node to request for more updates from the previous nodes when it is free.

This method is not the most latency efficient, but provides a very straightfor-

ward backpressure handle mechanism. Furthermore, as messages are passed

between nodes as batches, it has good throughput performance. Push-based

communication consists on nodes actively sending updates to the following

nodes, which will store the updates in input buffers until they are processed.

This method is more latency efficient.

• Backpressure handling: Backpressure is the situation in which the input up-

date rate is higher than the processed update rate. Backpressure handling

mechanisms rely in buffers and a durable queue-based messaging system. Up-

date drop policies can be applied in such mechanisms.

2.2 Stream Processing Platforms

In the last decade and during the course of this work, there have been great efforts

from different fronts on the research and development of stream processing plat-

forms and programming models for scalable big data stream analytics. Two of the

most relevant fronts on these efforts are the open-source community and the com-

mercial cloud providers.

The open-source community generated multiple widely-adopted platforms for

the computation of data stream analytics. Apache Storm [19], first Backtype Storm,

has been a popular stream processing platform since its release in 2011. Its run-

time works on JVM and it is written in Clojure, a JVM language based on Erlang

with its main focus on parallel computation. Storm is a multi-language runtime,

thanks to working with an Apache Thrift [20] definition in its core that disengages

the topology code’s language from the runtime execution. Storm initially based its



2.2. Stream Processing Platforms 15

runtime on ZeroMQ [56] sockets with a pub-sub pattern between stream processing

nodes, which later became optional and were replaced by default by the more JVM-

specific Netty [80] sockets. Storm, like most modern stream processing platforms, is

usually paired with Kafka as an input queue. Storms work in a fairly low-level on

which each computation node is programmed and the connections between them

configured by the user. It guarantees an at-least-once update processing and uses

the update acknowledgment fault tolerance method. However, it has a high-level

abstraction called Trident which organizes the topology from a query-like instruc-

tion from the user. When Trident is used, Storm can guarantee exactly-once update

processing and works with micro-batches.

Apache Flink [13] has become a well-known stream processing platform, since

its first release in 2015. Running in JVM and written in Scala and Java, it is built

upon the Akka toolkit. Topologies can be developed in Scala, Java, Python and SQL

through its APIs: DataStream, DataSet and Table. While DataStream provide an API

for both bounded and unbounded data streams, DataSet works only for bounded

streams. Table API is more high-level and it is programmed in a SQL-like language.

Flink also works with the Apache Beam programming model, an open-source uni-

fied programming model to generate topologies for both batch and stream process-

ing. Flink provides exactly-once update processing and its fault tolerance is based

on checkpointing. Furthermore, Akka [5] also provides a stream processing runtime

by itself with a rich set of operators. It can be programmed in Scala and Java, and

among its characteristics it guarantees an at-most-once update processing.

A more throughput-centered platform can be found in Apache Spark Stream-

ing [18]. Spark Streaming shares API with Spark, so streaming jobs are programmed

the same way as batch jobs. Spark Streaming jobs can be written in Java, Scala and

Python. Instead of performing batch jobs, as Apache Spark is designed to, it reduces

the size of the batches to micro-batches and so it can use the same logic. It guarantees

exactly-once update processing.

Apache Kafka Streams [15] leverages a Java library for stream processing for

Kafka client applications. Instead of using ZeroMQ, Netty or Akka for update com-

munication between stream computation nodes, Kafka is the main messaging bus



16 Chapter 2. Background

and not only the input queue system. It provides means to distribute and paral-

lelize a stream topology and operators to perform efficient analytics. It guarantees

exactly-once update processing.

The main cloud providers also offer their own stream processing platforms inte-

grated with the rest of their commercial solutions. Microsoft Azure Stream Analyt-

ics (ASA) is the stream processing service in Microsoft Azure. ASA is programmed

in a SQL-like language that considers stream updates rows in a database table. The

query runs continuously with each result row being a new stream update. That

SQL-like query is compiled to generate a topology that uses Trill [38] as a query pro-

cessor. ASA can also be executed on the edge in order to improve latency by using

the Azure IoT Edge ecosystem. It guarantees at-least-once update processing.

Amazon Kinesis Data Analytics (KDA) is Amazon Web Services’ stream data

stream processing service. Like ASA, KDA is programmed in SQL which in turn

generates the stream processing topology. It offers a selection of pre-built stream

processing templates and advanced high level operators. KDA uses an at-least-once

processing and delivery model in the event of an application interruption for various

reasons.

Google Cloud Dataflow is a cloud service that computes both batches and streams,

with Apache Beam as its programming model. Dataflow provides exactly-once up-

date processing guarantee.

IBM Streaming Analytics is a platform that can either run on premise or in

IBM Cloud as a service. Its programming language is the Stream Processing Lan-

guage (SPL), a topology composition specific language with operators that can be

programmed in Java or C++. SPL has a rich set of toolkits and efficient operators

for data streams along. Like most of the other platforms, IBM Streaming Analytics

guarantees at-least once update processing.

2.3 Big Data Architectures

Stream processing can be found in multiple Big Data architectures depending on

what problem it is solving. However, there are two main architecture trends called



2.3. Big Data Architectures 17

Lambda Architecture and Kappa Architecture. The first one sets aside stream process-

ing, which is used only to provide immediate partial results while using batch pro-

cessing to perform the goal analytics. Kappa Architecture is completely centered on

stream processing and considers all data produced as immutable, continuously per-

forming reliable analytics on the input data. We propose an scalable system consis-

tent with Kappa Architecture for large computation topologies, with efficient aggre-

gators.

In this section we make a summary of the two architectures.

2.3.1 Lambda Architecture

Batch processing and real-time has been widely considered to complement each

other. In summary, real-time technologies are usually seen as fast but complex and

unreliable in terms of fault-tolerance and consistency. On the other hand, batch pro-

cessing is considered the robust option because of its simplicity, but it has a big de-

lay from update to update. The architecture combining both kinds of technologies

to process data is known as Lambda Architecture [75] [74]. This architecture aims to

avoid the CAP theorem [52] problems when sacrificing consistency.

To avoid (or minimize) the CAP problem, the Lambda Architecture considers

three main conceptual characteristics of the data and queries. The first characteristic

is that the data is inherently time based. When a new atomic piece of data on a

dataset is received, the information it gathers is always true when you consider its

temporal context. For instance, an update on the temperature in Barcelona might be

30 degrees Celsius today at 17:00. Later a new update can be 29 degrees Celsius at

18:00. This new update does not invalidate the previous one, it is still true that at

17:00 Barcelona was at 30 degrees Celsius.

That leads to the second characteristic. Being the data time based, the data is

immutable. The functions on storage must be CR instead of the typical CRUD. This

is not a new approach to deal with data by several processes in parallel. For instance,

it is very usual for functional programming languages like Erlang [23] to work with

immutable variables, for this same reason.



18 Chapter 2. Background

FIGURE 2.2: Computing a query on the Lambda Architecture

The third main characteristic is more related to the queries on the data. Consid-

ering a query any function using a data set as an input, the queries must be pre-

computed before they are addressed using incremental algorithms. Reliable batch

processing technologies like Hadoop take the main responsibility of this part. The

description of this architecture defends that the responsibility falls on batch process-

ing because of its robustness given by the simplicity of the databases it relies on.

The databases for batch processing like Voldemort [89] only have support for batch

writes, avoiding the inherent complexity of random writes.

Batch processing operates on the whole data set with sets of hours of data, and

so an atomic update might take hours to be processed. The real-time layer works in

parallel with the batch layer to cover the last few hours of data that have not been

taken care of by the batch layer. The reasoning behind this is that real-time tech-

nologies perform better on little sets of data for solving consistency issues. Usually

Storm is used for this purpose with databases like Cassandra [93], Couchbase [42].

This situation leaves the system with two discrete views of the data, batch view

and real-time view. The merge of the two views is left for the query invocation time,

as it can be seen on Figure 2.2.

The set-up of this architecture, including the replication of code for both the batch

processing layer and real-time layer, is up to the developers. However, Twitter re-

leased Summingbird [34] as an open-source project. Summingbird works as a Scala

abstraction to the Lambda Architecture. Data analytics are written once in Scala

and are deployed to Hadoop and Storm. Summingbird leverages Algebird [7] ag-

gregators. Algebird enforces a programming model in which the Reduce phase of



2.4. Operations on IoT data 19

FIGURE 2.3: Computing a query on the Kappa Architecture

MapReduce is an associative function with identical types for the inputs and the out-

put (called semigroup or monoid [73]). Associativity enables the platform for high

parallelism and very fast real-time aggregations.

2.3.2 Kappa Architecture

The Lambda Architecture has important downsides. It needs two different platforms

two run the same analytics on the data. These analytics are written for two different

programming models and so it is duplicated. Summingbird isolates this from the

development, but still the single code is translated to the batch and real-time layers.

On the one hand this makes it difficult to debug, and on the other hand the two

platforms are still there.

The claimed motivations for such an architecture are that real-time processing is

generally said to be less powerful and less reliable than batch processing, and that

with this mixture of different data systems the CAP theorem is avoided.

The Kappa Architecture [67] is defined as an improvement over the Lambda Ar-

chitecture, considering the two previous motivations as false. Although it is true

that batch processing technologies are much more mature than real-time technolo-

gies, that does not mean that real-time technologies need to be more unstable. Fur-

thermore, even if batch-write only databases are simpler, the Lambda Architecture

does not achieve to beat the CAP theorem [28].

This criticism to the Lambda Architecture leads into the conclusion that the batch

processing layer is not necessary, as it is shown in Figure 2.3. Some implementations

of the Kappa Architecture are Samza [16] or Flink [13].

2.4 Operations on IoT data

In this section we identify the kinds of operations that we identified as usual to

perform analytics on sensor generated data streams and their derivative streams,



20 Chapter 2. Background

and that also have been adopted by high-level stream processing platforms during

the course of this work. All these operations need to work efficiently in order to

provide an environment suitable for the assimilation of Kappa Architecture, and in

some cases they have to follow a set of rules in order to keep time consistency on the

results.

IoT generated data streams are characterized to be generally produced originally

by sensors producing synchronous telemetry from multiple dimensions of specific

features. Although the updates from a data stream might not be in the same order

as they were sensed, the streams have a strict time order which can be identified

by a generation timestamp in each update. There exist mechanisms in order to act

upon unsorted data stream updates, such as micro-batches and stream buffers [4].

However, the reordering of data streams is out of the scope of this work.

Most of the operations described in this section are meant to produce new deriva-

tive data streams. Each update is operated either alone or with other updates, and

therefore produce a new result update that will follow another data stream. New

derivative streams can also have operators applied to them. These sequences of op-

erations will be called Data Processing Pipelines (DPP) from now on.

2.4.1 Index and query

A very basic operation on a data set is performing queries to obtain a subset of data

from it. In order to do that, the data needs to be properly indexed as it is stored. This

kind of operation can be found on any relational database and in most Key-Value

stores (KVS). In stream processing, indexing and querying historical data is not gen-

erally a desirable scenario. Streams are unbounded, and therefore they will contain

virtually infinite data. When used in the context of data analytics, queries usually

perform aggregations. In the specific scenario of stream processing, this translates to

a pipeline of operations that efficiently produce incremental aggregations from a set

of stream updates. Any query with the final purpose to aggregate the data results

should be computed while the data is being produced. However, there are frequent

and viable kinds of queries related to IoT data stream updates. It usually requires a

small window of updates in a stream, like the newer update. For example, it is very

usual to query the last update of a stream or all the stream updates produced near



2.4. Operations on IoT data 21

an specific location. To be able of doing such queries with a big volume of streams

in little time, the updates need to be indexed when received. Elasticsearch [47] or

Solr [17] are search engines that provide such functionality.

2.4.2 Filter

In a DPP, it is very common to discard updates that do not follow some parameters.

A filter is a set of conditions applied to the input update that, when not fulfilled, the

update will not continue on that branch of the processing pipeline. It acts upon a

single stream. Sometimes we are only interested on updating values inside a thresh-

old or avoiding clearly erroneous values. For example, detecting sound peaks in

decibels or working only with extreme temperatures in order to trigger an action.

The kind of conditions found in a filter are expected to be resolved in O(1) time

or O(k), being k the number of data dimensions found in each update. Filters do not

require any kind of update memory storage or persistence.

2.4.3 Transform

Similarly to filters, transformations are operations with a single input stream. In

the MapReduce programming model, a transformation would be the map phase. It

applies the same transformation to every input update, generating a new stream.

For instance, a transformation can perform unit conversions or reconfigure the data

dimensions in the updates in order to perform an aggregation in further stages. The

code of the transformation would be provided by the user of the operator.

A transformation is expected to be resolved in O(1) time or O(k), being k the

number of data dimensions found in each update. Furthermore, no update memory

storage or persistence is required to perform a transformation.

2.4.4 Aggregate

Data aggregation is the most complex operation, because it potentially involves vast

amounts of data stream updates. Aggregations performed with the Lambda Architec-

ture rely on most of the computational cost of a final aggregation being done with



22 Chapter 2. Background

batch processing. However in the Kappa Architecture we do not rely on batch pro-

cessing, and a new total aggregation result must be provided for each new stream

update. In this work we will focus on aggregator frameworks, in which the user can

define the updates to be aggregated and the specific aggregation to be performed,

following an specific programming model. In the MapReduce programming model,

all of them would be the reduce phase, in contrast to the transformations.

There are different kinds of aggregators, depending on the origin data being ag-

gregated. Some examples of aggregator frameworks would be:

• Accumulator: Aggregates all-time updates. For example, the all-time average

temperature from a sensor stream. Its cost can be O(1) using binary associative

operations. It only requires one update stored on memory or persisted, for the

current aggregation result.

• Sliding Window: It performs an aggregation of a subsequence of updates from

the stream, always including the newest update. For instance, it would aggre-

gate last hour temperature from a sensor stream. As it will be demonstrated

in this work, its cost can be O(1) using binary associative operations. Further-

more, it has a O(n) memory cost, being n the number of updates aggregated in

the window. However, that memory cost can be reduced in exchange of losing

aggregation accuracy.

2.4.5 Union

Multiple streams might produce complementary updates on the same feature. For

example, multiple temperature sensors might produce updates at different times.

The updates will be produced in different streams, but they can be merged in a

single richer stream. This require that the streams are equivalent in form, with same

data dimensions, types and units. Transformations can be used to adapt different

streams to the same format.

This operation only requires two or more streams that will be re-emitted under

the same stream, therefore with a negligible cost by itself. Furthermore, it does not

require to update memory storage or persistence.



2.4. Operations on IoT data 23

2.4.6 Group

Partitions are divisions from a stream, each with the same inner structure in its up-

dates. Updates from the same stream will be placed on different partitions depend-

ing on some criteria. The group operation defines that criteria. One way to define it

is the same as in SQL Group By operation; placing in the same partition those updates

that share the same value in an specific channel.

This operation requires an input stream, which will be partitioned by the user

defined criteria. This criteria might imply some computation to combine different

channels in the update, but its cost is expected to be O(1). Updates are simply emit-

ted from one partition to another, no memory storage or persistence is required.

2.4.7 Compose

Sometimes called Zip operator, it is a function with a closed set of parameters, each

parameter a different stream, that combines their last updates to produce a new

stream. The input streams do not need to be equivalent, and in some cases the num-

ber of these inputs is closed to two. If more input streams need to be operated, then

more compose operations can be pipelined. It can be seen as the SQL Join opera-

tor, where rows from different tables are aggregated into a single new value/row.

An example of using the compose operation would be to use a wind speed sensor

stream and a temperature sensor stream to produce a wind chill stream.

This operation requires to keep the last update from each input stream in order

to use them when a computation is triggered. Being n the number of input streams,

it is O(n) memory-wise and it is expected to be O(n) time-wise with a small n in

order to not become a bottle neck.





25

Chapter 3

Dynamically Pipelined Processing

for Composite Data Streams

3.1 Introduction

In the last years, Big Data and Internet of Things (IoT) platforms are clearly converg-

ing in terms of technologies, problems and approaches. IoT ecosystems generate a

vast amount of data that needs to be stored and processed, becoming a Big Data

problem. Devices and sensors generate streams of data across a diversity of loca-

tions and protocols that in the end reach a central platform that is used to store and

process it. Processing can be done in real time, with transformations and enrich-

ment happening on-the-fly, but it can also happen after data is stored and organized

in repositories.

This situation implies an increasing demand for advanced data streams manage-

ment and processing platforms. Such platforms require multiple protocols support

for extended connectivity with the objects. But also need to exhibit uniform internal

data organization and advanced data processing capabilities to fulfill the demands

of the application and services that consume these streams of data.

To provide answer to this growing demand, ServIoTicy1 is a state-of-the-art plat-

form for hosting real-time data stream workloads in the Cloud. It provides multi-

tenant data stream processing capabilities, a REST API, data analytics, advanced

queries and multi-protocol support in a combination of advanced data-centric ser-

vices. The main focus of ServIoTicy is to provide a rich set of features to store and

1servioticy.com



26 Chapter 3. Dynamically Pipelined Processing for Composite Data Streams

process data through its REST API, allowing objects, services and humans to ac-

cess the information produced by the devices connected to the platform. ServIoTicy

allows for a real time processing of device-generated data, and enables for simple

creation of data transformation pipelines using user generated logic. Unlike tradi-

tional service composition approaches, usually focused on addressing the problems

of functional composition of existing services, one of the goals of the ServIoTicy is

to focus on data processing scalability. Other components that can be connected to

ServIoTicy provide added capabilities to automatically create compositions of high-

level services using existing tools [84].

The core of the ServIoTicy runtime relies on a novel programming model that

allows users to dynamically construct data stream processing topologies based on

user-supplied code. These topologies are built on-the-fly according to a data sub-

scription model defined by the applications that consume data. Once a stream sub-

scriber finishes its work, it is freed from the platform until it is needed again. Each

user-defined processing unit is called a Service Object (SO). Every Service Object

consumes input data streams and may produce output streams that others can con-

sume. Data streams can originate in real-world devices or they can be outputs of

Service Objects deployed in the platform.

Advanced streaming and analytics platforms such as ServIoTicy are complex

pieces of software that integrate a large set of components under the hood. They

hide their complexity behind simple REST APIs and multi-protocol channels, but the

reality is that their deployment and configuration is complex. ServIoTicy leverages

Apache STORM runtime for parallel data processing, that combined with dynamic

user-code injection provides dynamic stream processing pipelining.

We provide insights on the performance properties of ServIoTicy as an starting

point for the construction of advanced cloud provisioning strategies and algorithms.

The work presented here focuses on the processing topologies built in ServIoTicy,

although some details about other platform components are also provided.

Security is one of the main concerns on IoT platforms because they deal with

big amounts of sensitive data. Although the applied security policies are not in the

scope of this work, there has been efforts in that matter. Each update contains prove-

nance data including the data owners and the operations that has been applied. The



3.2. Architecture of ServIoTicy 27

provenance data is used with a security policy manager to decide if an application

can make use of the update.

The source code of ServIoTicy is freely available as an open source project2 in

GitHub. The platform is also available for single node testing as a vagrant box,

downloadable from a github repository3.

The main contributions are:

• A technique for user-code injection on a data stream processing runtime that

allows for dynamic creation and execution of stream processing topologies.

This runtime is the core of the ServIoTicy platform.

• Detail on the operator that composes multiple streams into a single composite

stream.

• An insight on the performance of the code-injection technique, including re-

sponse time end-to-end in a processing pipeline and across stages.

The next sections of the chapter are organized as follows: Section 3.2 introduces

the general architecture and components of the platform; Section 3.3 introduces a set

of abstractions defined in ServIoTicy for managing data associated to objects; Sec-

tion 3.4 describes in detail the stream processing runtime of ServIoTicy; Section 3.5

presents the evaluation methodology and the experiments; Finally, Section 3.6 goes

through the related work and Section 3.7 provides some conclusions and future lines

of work.

3.2 Architecture of ServIoTicy

The Front-End of platform is a Web Tier that implements the REST API that sits at

the core of ServIoTicy. The API contains parts of the logic of the Service Objects and

Data Processing Pipelines, related to authentication, data storage and data retrieval

actions. The Stream Processing Topology is responsible for the execution of the code

associated to Data Processing pipes as well as the forwarding of data across Service

Objects and to external entities (e.g. external subscribers that want data forwarded

2https://github.com/servioticy
3https://github.com/servioticy/servioticy-vagrant



28 Chapter 3. Dynamically Pipelined Processing for Composite Data Streams

on real-time using a push model on top of MQTT or STOMP). Finally, the data Back-

End includes the Data Store that provides scalable, distributed and fault-tolerant

properties to ServIoTicy, and the Indexing Engine that provides search capabilities

across sensors data using different criteria, like timestamps, string patterns or geo-

location. In this section we describe in more detail the main properties of each com-

ponent of the ServIoTicy architecture.

3.2.1 Web Tier

The Web Tier for the REST API is composed of a Servlets Container and a REST En-

gine. As a HTTP Web Server and Java Servlet container we use Jetty [62]. Jetty is

often used for machine-to-machine communications, usually within larger software

frameworks. As a JSON processor we use Jackson [61], which is a high-performance

suite of data-processing tools for Java, including the flagship JSON parsing and gen-

eration library, as well as additional modules. The Jackson Project also has handlers

to add data format support for JAX-RS implementations like Jersey.

3.2.2 Stream Processing Topology

The Stream Processing Topology is implemented on top of Apache STORM [96],

which is a state-of-the-art stream processing runtime. Out-of-the-box, STORM pro-

vides the availability to build topologies composed of spouts (sources of data) and

bolts (processing units). Topologies are static after their deployment, and data keeps

flowing through their bolts until the topology is stopped. STORM provides auto-

scaling capabilities that make it particularly suitable for cloud deployments. Note

that in case that a different topology is needed, the user needs to stop the running

topology and deploy the new one. This situation will not affect the final platform,

as it will be explained in more detail in following sections. The Stream Processing

Topology also requires the support of a queuing system that will act as the spout for

the STORM topology. In ServIoTicy, this is implemented using Kafka [98].



3.3. Abstractions used in ServIoTicy 29

3.2.3 Data Store

A distributed data store is used to keep track of all the object produced data. For

that purpose, CouchBase [42] has been chosen as the data store because it provides

the benefits of NoSQL data stores (highly distributed, high-availability properties,

scalable), and it is document oriented (which fits well for many different data sources

and formats). Couchbase has native support for JSON documents. The definition of

all Service Objects in ServIoTicy and their associated streams are stored as JSON

documents in Couchbase.

3.2.4 Data Indexing

The search infrastructure to resolve queries is provided by an underlying compo-

nent that performs high-performance indexing and search operations. In particular

Elasticsearch [47] is leveraged as it is one of the most powerful and extended search

engines that can be integrated with scalable data back-ends (in particular Couch-

base). The integration between Couchbase and Elasticsearch enables full-text search,

indexing and querying and real-time analytics for variety of use cases such as a con-

tent store or aggregation of data from different data sources.

3.2.5 Multi-Protocol Brokerage

In an attempt to make ServIoTicy platform more accessible to udevices, particularly

those with less computing capacity or with more power constraints, the REST API

is also reachable using other protocols and transports. In particular, STOMP over

TCP and WebSockets, and MQTT over TCP are also available. All these features

are implemented in ServIoTicy using a combination of newly developed bridges

between components and Apache Apollo [12] as the core message brokering engine.

3.3 Abstractions used in ServIoTicy

Several abstractions are used in ServIoTicy to embrace the different entities involved

in the existence of IoT ecosystems.



30 Chapter 3. Dynamically Pipelined Processing for Composite Data Streams

• Web Object: The platform gathers information from objects, either connected

to the Internet or not. The group of objects not directly connected to the Inter-

net (e.g. a bottle of wine with a RFID or NFC tag) will need a proxy to represent

them in the ServIoTicy. There is also a group of objects which may have net-

work capabilities, but limited programmability and support for advanced net-

work protocols. These devices, such as simple sensors, still will need the use

of proxies to be able to communicate with ServIoTicy. Finally, there is a group

of advanced devices (so-called Smart Objects, such as a Smart Phone, tablet, or

an Arduino device) that already hold the capabilities to talk to the COMPOSE

platform directly. Each one of the mentioned objects (enabled with a commu-

nications proxy when needed) is known as a Web Object (WO) in ServIoTicy.

Web Objects are physical objects sitting on the edge of the ServIoTicy and capa-

ble of keeping for example HTTP-based bi-directional communications, such

that the object will be able to both send data to the platform and receive activa-

tion requests and notifications. Not all such objects will support the same set

of operations, but a minimum subset will have to be guaranteed to make them

usable to ServIoTicy.

• Service Object: Service Objects are standard internal ServIoTicy representa-

tions of Web Objects. ServIoTicy specifies an API by which it expects to com-

municate with the Web Objects, in order to obtain data from them, or set data

within them. That API can be embedded directly in the Objects or can be pro-

vided by a mediating proxy that will connect the Objects to their correspond-

ing ServIoTicy Service Objects. This entity serves mainly for data management

purposes and has a well-defined and closed API. That API is needed in order

to streamline and standardize internal access to Service Objects, which can in

turn represent a variety of very different Web Objects providing very different

capabilities. ServIoTicy, in an effort to embrace as many IoT transports as pos-

sible, allows Web Objects to interact with their representatives in the Platform

(the Service Objects) using a set of well-known protocols: HTTP, STOMP [87]

over TCP, STOMP over WebSockets [94], and MQTT [77] over TCP.



3.4. Data Processing Pipelines 31

• Data Processing Pipeline: A Data Processing Pipeline is a data service and ag-

gregation mechanism, which relies on the data processing and management

back-end component to provide complex computations resulting from sub-

scriptions to different Service Objects as data sources. This construct can sup-

port pseudo-real time data stream transformations, combined with queries

concerning historical data. Data analytics code defined by the user may be

provided as well. The end result of a Data Processing Pipeline is inserted into

the ServIoTicy registry along with its description and may be used by higher

level constructs as yet another kind of Service Object building block. Just like

a Service Object, this entity serves mainly for data management purposes and

has a well-defined and closed API.

• Subscription: Data subscriptions are a mechanism in ServIoTicy that allow Ser-

vice Objects, Data Processing Pipelines and external data consumers to get data

updates automatically and asynchronously forwarded for further processing.

• Sensor Update: Sensor Updates are the unit of data sent by a Web Object to

its Service Object. It contains the different synchronously sensed values and a

timestamp that is maintained all over the pipelines. A subscription or a query

to a Service Object will get the data in this format.

3.4 Data Processing Pipelines

Service Objects store their associated data in abstractions called streams. The unit of

data that can be observed for one stream is called a Sensor Update (SU). Applications

can subscribe to or query data associated to any stream. Streams can be of two

different types:

• Simple data streams store data generated in the physical world by a sensing

device, assuming that a device with N sensors will generate N streams of data

that will be grouped in a Service Object abstraction that represents the device.

• Composite data streams represent operations (aggregate, merge, filter or join,

among other possibilities) performed on other data sources (either by devices

located in the physical world or by Service Objects existing in the ServIoTicy



32 Chapter 3. Dynamically Pipelined Processing for Composite Data Streams

platform). They can be thought about as a virtual (non-physical) sensor of the

SO.

From an API perspective there is no difference between a simple stream and a

composite stream, as they both support queries and subscriptions. Therefore, the in-

puts of composite stream can be streams or other composite streams. These chained

transformations of SUs are called Data Processing Pipelines.

Listing 3.1 is a snippet from a SO descriptor that illustrates the case of a com-

posite stream that takes temperature reads in Fahrenheit degrees as input SUs and

produces temperatures in Celsius degrees as outputs if and only if the temperature is

below 0 ◦C. Note how the current-value of the stream is calculated first by transform-

ing the ◦F into ◦C. The following sections will describe in more detail the purpose

of the elements of this example and their semantics.

LISTING 3.1: Example of data transformation: convert from ◦F to ◦C

"streams":{

"frozencelsius": {

"channels": {

"temp": {

"type": "number",

"current -value": "({ $fahrenheit.channels.temp.current -value } -32)/1.8"

} } } }

3.4.1 Data Structures

The structure of a Sensor Update that corresponds to a given stream is basically

composed of a series of Channels associated to the dimensions of the data represented

by the stream (e.g. a geo-location stream may contain two channels representing the

latitude and the longitude correspondingly), and a timestamp reported by the data

source as the time at which the Sensor Update was generated.

The composite stream structure is similar to the structure of a SU. It contains

channels, and each channel contains a so-called ’current-value’ field that represents

the output value that the composite stream will emit after ingesting a new SU, as-

suming that the output is not filtered. In a SO document, the content of a ’current-

value’ field is an operator definition. The result of the assignment to ’current-value’



3.4. Data Processing Pipelines 33

will always be numeric, a Boolean, a string or an array of the previous types. It will

be stored and emitted to its subscribers.

3.4.2 Stages of the Processing Pipeline

Once a SU reaches a composite stream as one of its inputs, it goes through a number

of stages in order to transform it into a new output SU. This process of ingesting a

SU and processing it until a new SU is produced can be summarized as the following

set of stages:

1. Subscriber dispatching: A sensor update gets into the processing pipeline,

along with its origin information. This stage looks for the subscribers of its

origin and if they are composite streams, they are requested and sent to the

next stage with the SU.

2. Data Fetching: The composite stream may need access to the data stored by

other streams that are inputs involved in the data transformation. In each

stage, the sources needed by the stream are queried and their data made avail-

able for the rest of the stages, altogether with the original SU.

3. Operation: Operators are executed by taking all the SUs extracted from all the

data sources, interpreting the operator in the SO and executing it using the

extracted SUs and, optionally, operator-related data in memory. For instance,

a simple transformation uses plain JavaScript code to finally obtain a single

value for the new SU to emit.

4. Store, trigger actions and emit: Finally, the generated SU gets stored and emit-

ted to the stream subscribers. Additionally, in this final stage, actions to be sent

back to SOs are triggered. Such actions will end up being sensor actuations that

will be driven through the WOs that embed the actual physical objects.

In ServIoTicy, basic physical object actuation is driven through SOs. When a SO

gets an action invoked through the SO actions API, the action is initiated on the cor-

responding WO, that will act as a proxy for the physical actuator. If a user needs to

be able to manually request the execution of a composite action (involving multiple

SOs), it is necessary to create a SO that includes the desired action and references to



34 Chapter 3. Dynamically Pipelined Processing for Composite Data Streams

the individual SOs representing each of the physical objects to be actuated, so that

the composite action can be properly triggered.

3.4.3 Design Principles

The data processing pipelines introduced in this work are intended to be scalable

in accordance with other works found in the literature [88]. In particular, the key

design principles considered for the data processing pipelines were:

• Event-driven: A new SU calculation is triggered in a stream when it receives a

SU.

• Lock-free: A stream that needs of several different SUs to generate a new one

will not lock until all of them are received. It makes use of the received SU,

and queries the last SUs from the other needed streams.

• Real-time data processing oriented: Each new SU is processed individually

without waiting for a batch.

The approach followed by ServIoTicy is an asynchronous model for which only

one of the sources needs to issue a sensor update to trigger the processing of the

composite stream. It enforces a high rate of updates and avoids locking the genera-

tion of new updates because one sensor is idle. This situation would lock an entire

pipeline.

Figure 3.1 illustrates the actual approach implemented in ServIoTicy using a

lock-free scalable model. An update owned by stream B is sent to ServIoTicy through

the API and is stored. A composite stream is subscribed to the streams A, B and C,

and so it receives their outputs SUs as inputs. It generates a new SU, stores it and

becomes sent to further composite streams if any. In this particular case, the gener-

ation of SU 4 also requires of SU 1 and SU 3, so the composite stream queries them

to streams A and C. A single event (receiving a SU) generates a single output in the

composite stream.



3.4. Data Processing Pipelines 35

FIGURE 3.1: Lock-free asynchronous model used in ServIoTicy

3.4.4 Time, Data Consistency and Efficiency

A composite stream can take as inputs the most recent SU from any stream declared

in the platform, either from its own Service Object or from any other Service Object.

In the context of a particular data stream, that receives SUs as inputs and stores data

associated to its outputs in the platform, some restrictions need to be in place to keep

chronological consistency of the data being produced by a given composite stream.

More formally, let S be a composite stream that takes as inputs the SUs generated

by N streams. Let suti
i be the the most recent SU associated to the ith stream that is

a data source for S, where 0 ≤ i < N, and let be ti the associated timestamp to

suti
i . Also, let suts

s be the most recent SU associated to the stream S. Notice that it is

possible that ∃i such that i = s if S consumes its own previously generated data to

produce new outputs.

Then we can define SUt
s,in = {sut0

0 , sut1
1 , . . . , sutn−1

n−1} as the set of N inputs that S

will use to produce one new output SUt
s,out with timestamp t. This output will be

defined as a function SUt
s,out = f (SUt

s,in) that is user-defined.

Given these definitions, ServIoTicy needs to guarantee that the function f is cal-

culated (and an output SUt
s,out emitted) only once for the same set of input values,

and that at least one of the SUs in SUt
s,in needs to be updated (with a more recent

timestamp) to trigger the computation again. Furthermore, it is necessary that the

set SUt
s,in satisfies that ∃suti

i ∈ SUt
s,in such that ti > t to initiate the computation of f

to emit SUt
s,out.



36 Chapter 3. Dynamically Pipelined Processing for Composite Data Streams

This restriction can be enforced by checking all the elements of SUt
s,in everytime

that an element of the set is updated. But this approach can result in performing

large amounts of costful operations just to decide that the conditions were not satis-

fied and that no new output needs to be emitted.

LISTING 3.2: Algorithm used to generate new updates

def generateNewUpdate(receivedUpdate , currentStream , streamSubscriptions ):

previousSelfUpdateFuture = getLastUpdateAsync(currentStream)

originStream = receivedUpdate.getStream(receivedUpdate)

streamSubscriptions.remove(originStream)

queriedUpdatesFuture = getLastUpdatesAsync(streamSubscriptions)

// Block to receive the stream last update

previousSelfUpdate = previousSelfUpdateFuture.get()

if receivedUpdate.getTimestamp () <= previousSelfUpdate.getTimestamp ()):

return null

// Block to receive the remaining updates

queriedUpdates = queriedUpdatesFuture

lastUpdates = [receivedUpdate , previousSelfUpdate]

lastUpdates.appendAll(queriedUpdates)

// Obtain highest timestamp from the updates

timestamp = receivedUpdate.getTimestamp ()

for update in lastUpdates:

if update.getLastUpdate () > timestamp :

timestamp = update.getLastUpdate ()

streamCode = currentStream.getCode ()

newUpdate = executeCode(streamCode , lastUpdates , timestamp)

return newUpdates

To mitigate this problem, ServIoTicy relaxes the previously stated restriction to

the form tj > t where 0 ≤ j < N and su
tj
j is the actual element in SUt

s,in that triggered

the computation. This relaxation is possible because if an element exist in the set

other than the one triggering the computation that has a more recent timestamp

than t, then this it is very unlikely that this element has been computed before in

time, because then t would have to be as recent as its timestamp. Otherwise, if the

element with more recent timestamp has not yet triggered the computation, then it



3.4. Data Processing Pipelines 37

(A) (B)

FIGURE 3.2: Old data discard

means that the SU has been stored for the source stream and it must be awaiting in

a queue its time to be processed, and therefore it will trigger the computation soon.

Listing 3.2 summarizes this time-consistency keeping algorithm.

3.4.5 Execution trees of the Data Processing Pipelines

The structure of a pipeline created using the ServIoTicy subscription model is by

definition a directed graph. In practice, though, it behaves more like a set of trees.

The reasoning behind this statement is discussed in this section.

When an update reaches a stream, if it is newer than the last generated update,

the computation will be triggered. But if the received update is as new as the last

generated update, the computation will be discarded. Consider a stream that has

several inputs and they originally come from the exact same entry stream to the

pipeline (source). When one of the inputs receives an update, at some point all the

other inputs will receive an update with the same timestamp and the subsequent

computations will always be discarded. Only the first update to reach the stream will

trigger the computation. An example of this situation can be seen in the Figure 3.2a.

Suppose that all the streams on this pipeline have a SU with timestamp 1 in their

historic data. a is the only source of the pipeline, which has two streams subscribed,

f(a) and g(a). Both of them send their results to x(f,g), but the SU from f(a) is the



38 Chapter 3. Dynamically Pipelined Processing for Composite Data Streams

(A) Pipeline digraph (B) Execution trees

FIGURE 3.3: Relation between a pipeline and its execution trees

first one to reach x(f,g). The one coming from g(a) is discarded because by the time

it reaches x(f,g), there already is in the stored data a SU with timestamp 2 that was

generated using the SUs from f(a) with timestamp 2 and from g(a) with timestamp 1.

This situation is equally valid for cycles, shown in Figure 3.2b, as an input closing

a cycle shares exactly the same sources as all the other inputs in the stream.

From this reasoning it can be deduced that the set of paths of the triggered com-

putations from a single source will always end up looking like a tree. For example

Figure 3.3a represents the graph of a valid pipeline. The computations that would

be generated from the subscriptions d→c and h→e are discarded for the explained

reasons. Therefore the execution graphs look like in Figure 3.3b, and updates from d

to c and from h to e will only be queried.

Another interesting property of a pipeline is the novelty of its generated data,

and it is useful for evaluating the quality of a stream. A stream generates novel data

when it has an input with a source that no other input of the same stream has. The

further a stream is in a path from the last new source addition, the less novel its

generated SUs are. For example in Figure 3.3a, c, g, h and e are 1 level more novel

than f and d. See that e gets data sourced on b from two inputs, but theres also

another input sourced on a. On the other hand f and d are one vertex away from the

most novel source. At the levels of data novelty of this example, getting data from

f or d is not a problem. The problem comes when the distance from the most novel

stream is too far away will always take too much time to process an SU that will not



3.5. Evaluation 39

TABLE 3.1: Pseudo-random topologies

Type Small Medium Big
Id 1 2 3 4 5 6
Max in-degree 9 8 14 16 29 24
Mean in-degree 1.42 1.94 3.54 3.51 5.28 6.18
In-degree std. dev. 2.22 2.63 4.36 5.05 7.43 7.38
Max out-degree 4 7 15 15 25 28
Mean out-degree 1.42 1.94 3.54 3.51 5.28 6.18
Out-degree std. dev. 1.07 2.14 4.59 4.44 7.71 9.48
Edges 30 37 149 151 423 458
Nodes 21 19 42 43 80 74
Sources 11 9 17 18 30 24
Sinks 4 7 15 15 25 28
Density 0.14 0.21 0.17 0.16 0.13 0.16
Connectivity 1 1 1 1 1 1
Edge-connectivity 1 1 1 1 1 1

add much value to what it is already evaluated, and will generate several discarded

computations which will end up being time consumed without a result. Novel data

means faster dispatch, less noise in the pipeline and more added value on the data.

3.4.6 Runtime implementation and user-code injection

The software that dispatches the incoming SUs and executes the pipelines runs on

STORM. STORM topologies are static, but the pipelines can easily change over time,

add connections between them, and have arbitrary sizes. For this reason the STORM

topology in ServIoTicy runs the stages described in Section 3.4.2, common to all

the pipelines to be processed. On the subscribers dispatch stage, the target streams

are requested, with the code to be executed in them (previously deployed by the

owner of the Service Object using the REST API). In the different execution stages

(operators), the JavasScript code related to it is executed on a JavaScript engine. The

JavaScript engine used is Rhino.



40 Chapter 3. Dynamically Pipelined Processing for Composite Data Streams

FIGURE 3.4: Representation of topology #3

3.5 Evaluation

This section presents a performance evaluation of the implementation of the

ServIoTicy Data Pipelines.

3.5.1 Evaluation Methodology and Infrastructure

The evaluation is organized in two different experiments. In Experiment 1, we ex-

plored the performance of several randomly-generated topologies. We present here

the average results for all of them and the specific results of one illustrative case. In

Experiment 2 individual properties of the graphs, like depth of the in and out degree

for a DPP, were isolated and studied in more detail. For each experiment, a number

of SUs were submitted to the topologies, and we measured the time it took for each

SU to be propagated to all the streams that were subscribed directly or indirectly to

the SU.

To drive the evaluation we developed a tool to automate the generation and de-

ployment of randomly generated Data Processing Pipelines. The tool provides sev-

eral control knobs to customize the properties of the topologies being generated. The



3.5. Evaluation 41

(A) Input stage latencies (B) Output stage latencies

FIGURE 3.5: Node latency by degree

FIGURE 3.6: Stage latency by degree

most relevant controls are the number of streams, the number of composite streams,

the number of operands per stream and how the operands are distributed between

the streams.

The tests were run on two sets of nodes: one set for running the client emula-

tors and one set for running the servers of the system under test. The ’server’ set

was composed of 16 two-way 4-core Xeon L5630 @2.13GHz Linux boxes, for a total

of 8 cores per node and 16 hardware threads because hyperthreading was enabled.

Each ’server’ machine was enabled with 24GB of RAM. The ’client’ set was com-

posed of 2 two-way 6-core Xeon E5-2620 0 @2.00GHz Linux boxes, for a total of 12

cores per node and 24 hardware threads because hyperthreading was enabled. Each



42 Chapter 3. Dynamically Pipelined Processing for Composite Data Streams

’server’ machine was enabled with 64GB of RAM. All nodes were connected using

GbE links to a non blocking 48port Cisco 3750-X switch. The ServIoTicy data pro-

cessing runtime was deployed on 2 server machines, and 1 client machine was used

to generate the SUs. The REST API used the other nodes to host its components.

For the data processing pipelines we used Apache STORM v0.9.2-incubating, Kafka

v0.9and ZooKeeper v3.4.5.

3.5.2 Experiment 1

For this experiment, we generated six different testing topologies for ingesting data

produced by a Service Object. The characteristics of these topologies are summa-

rized in Table 3.1. They can be grouped based on their size (small, medium or large),

and we randomly produced 2 samples of each complexity level. Based on our ex-

perience, topologies 1 and 2 emulate two realistically sized situations. Topologies 3

and 4 are large cases. Finally, topologies 5 and 6 are extreme cases. A graphical rep-

resentation of topology number 3 is shown in Figure 3.4. In this figure, dark nodes

indicate a high out-degree and big nodes represent high in-degree. The in and out

degree related properties are also very relevant for this experiment, as they have a

big impact on the metrics taken.

For each data source, 10 Sensor Updates were sent to the platform in sequence:

a new update was generated only after the previous pipeline computation was fin-

ished. During the topology execution, two metrics were measured for each stream.

The first metric is the execution time to perform all the data queries required to com-

plete the processing, named the input stage. This metric measures the effect of using

several inputs to generate a new update. The second metric is the time difference

between the instant at which a new update is emitted and the time at which all sub-

scribers have received it: this metric measures how the topology processing time is

affected by the number of subscribers at each stage of the processing pipeline. This

is named in this section as the output stage.

Other stages were also measured, such as the injected code processing time or

the time an update remained in the Kafka queue. The function to generate a new

update was always a summation of the inputs, and so had complexity O(n), being



3.5. Evaluation 43

n the in-degree. However, these measures resulted on negligible times and have not

been included in the discussion.

Figures 3.5a and 3.5b show all the latencies measured for topology number 3.

Each dot in the plot represents one execution of a topology node with a given in-

degree or out-degree that corresponds to the value in the X-axis. The average latency

for each degree is also drawn in both charts as a solid line. As it can be observed,

latency grows linearly with the degree level as some sequential operations are re-

quired for each operation. Although the communication is made asynchronous, the

stages need to be closed before jumping to the next step for the topology, and there-

fore it is necessary to wait for all on-the-fly operations to complete at some point,

what results in a waiting time that is proportional to the number of initiated opera-

tions and therefore the degree of the stage.

Finally, Figure 3.6 shows the average latency on the input and output stages for

every related degree, across all six topologies. As it can be observed, the latency

of both the input and output stages grow linearly, but in a higher pace in the out-

put stage. While the in-degree latencies look almost the same to Figures 3.5a, the

out degree grows faster. The reason for this worse performance is that this Figure

reports average values that are affected by the higher latencies of the bigger topolo-

gies. Therefore, the time of the output stage not only depends on the out-degree,

but also on the total size of the topology. And in particular, as it will be shown in

the next experiment, the topology length is the most important factor that affects the

performance of the topologies. The larger the topology is, the more operations are

run in parallel in the topology and therefore the largest the response times of the

components, resulting in a slightly higher latency to complete the processing of an

update.

3.5.3 Experiment 2

Following the results of Experiment 1, a second experiment was performed to sep-

arately stress the importance of the in degree, the out degree and the length of a

topology path. The latter measure is also stressed because it can not be parallelized,

and so affects greatly to the overall topology execution.



44 Chapter 3. Dynamically Pipelined Processing for Composite Data Streams

(A) Length (B)
In-
degree

(C)
Out-
degree

FIGURE 3.7: Types of tested pipeline, each one maximizing a property

For the second experiment, three groups of 100 pipelines were deployed, each

one emphasizing one of the following main properties shown in Figure 3.7:

• Length: The length of a pipeline is the maximum number of composite streams

from one of the sources to any sink. It affects the performance of the pipeline

because each one of these streams depends on the result of the previous one,

so there is no possible parallelism.

• Out-degree: A pipeline’s out-degree is the average number of subscribers (op-

erators) its streams have. This is directly affected by the parallelism, the less

available threads on the machines the more it will influence negatively the per-

formance.

• In-degree: The in-degree is the average number of subscriptions (operands) its

streams have. It alters the performance of the execution of a single stream,

mainly. The reason is that having a big amount of operands in a composition

function means that there are more SU queries to perform. The impact on the

performance of the in-degree will depend on the number of available threads,

because the set of queries are asynchronous.

Each pipeline in a group exhibits a different number of streams, ranging from 2

to 101. In the case of the ’in-degree’ type, the pipelines ranged from 1 source and 1

sink to 100 sources and 1 sink. ’Out-degree’ type ranged from 1 source and 1 sink to

1 source and 100 sinks. Finally, the ’length’ type goes from 1 source and 1 sink only

to 1 source and 1 sink with 99 intermediate chained composite streams. This makes

300 pipelines tested.

For each pipeline, 10 Sensor Updates were sent to the platform, at a rate of one SU

per second. During the time all SUs were propagated, several metrics were collected



3.5. Evaluation 45

0

1

2

3

4

5

0 20 40 60 80 100

Ex
ec

u
ti

o
n

 t
im

e
 (

se
co

n
d

s)
 

Number of Streams 

Length

In-degree

Out-degree

FIGURE 3.8: Time to dispatch a SU through an entire topology.

on the ServIoTicy runtime to determine the delays introduced at each stage and the

end-to-end time to process every SU generated.

Figure 3.8 shows the average total execution time of all the pipelines, for each

one of the 3 types of pipelines considered. As it can be observed, for the three cases

the execution time grows linearly with the number of streams.

As it was expected, the time to propagate a SU through the entire pipeline grows

significantly more for the ’length’ pipelines because they can not take advantage of

any parallelism: all streams are calculated sequentially because they contain sequen-

tial data dependencies that can not be skipped.

For the in-degree and out-degree pipelines, it can be observed that the there is

almost no difference on how the execution time is affected. In comparison with Fig-

ure 3.5, the latencies are significantly lower. Specially in the case of the out-degree,

that in this last experiment had a mean latency of 350ms to complete a pipeline with

out-degree 100. Notice that in Figure 3.5, the mean latency value for the output

stage with out-degree 15 is 950ms. Yet the bigger topology on this experiment is not

far from the one of Figure 3.5 in terms of subscriptions, and is bigger in terms of

streams. The output stage of a stream is then highly affected by the longitude of the

pipeline, and not by the overall size as concluded on the first experiment. Nodes

with distance 1 from the source will end up competing for resources with nodes

with distance higher than 1 if the initial out-degree is high enough. There is room

for improvement by prioritizing nodes near to the sources, otherwise some paths on



46 Chapter 3. Dynamically Pipelined Processing for Composite Data Streams

the pipeline will be faster than others.

3.6 Related Work

In the last years several stream processing platforms have emerged, being Storm [96]

the most popular and it is used in this contribution as a platform runtime. Storm is

a distributed, reliable, and fault-tolerant stream processing system, which was open

sourced by Twitter after acquiring BackType and now distributed by the Apache

Software foundation. ZeroMQ or Netty are the messaging interfaces between the

computation units. In the last versions multi-tenancy was added in terms of sev-

eral tenants deploying isolated topologies. This topologies are always in memory

whether are being used or not, and there is not data subscription between tenants.

Also open-source and distributed by the Apache Software Foundation are Apache

Samza [65] and Apache Flink [13] and Apache S4 [81]. Apache Samza uses Kafka for

the whole messaging between the computation units and YARN for resource man-

agement. Apache Flink is a streaming dataflow engine that provides data distri-

bution, communication, and fault tolerance for distributed computations over data

streams. It has two APIs, one for data streams and another for data sets or batch

processing. Flink also bundles libraries for domain-specific use cases like complex

event processing and machine learning. Apache S4 is an already deprecated project

started by Yahoo with a very similar topology based philosophy to Storm and an

architecture resembling the Actors model. Microsoft Research developed a propri-

etary solution for complex event processing called StreamInsight [8]. It also lever-

ages a programming model for temporal data streams, operator algebra and contin-

uous queries. Other relevant foundations on stream processing in real-time from

Microsoft come the CEDR [25] project. It is centered in the problem of keeping

time consistency on event streaming. Other well known research related projects

on data streams are Aurora [1] and its forks Medusa [24] and Borealis [2]. None of

this projects are maintained anymore. From the perspective of data stream sharing,

StreamGlobe [71] offers a Grid Computing solution using a P2P approach. It consist

then in stream sharing between machines but not multi-tenancy.



3.6. Related Work 47

Data Centric view of the IoT is not something new for ServIoTicy as it was widely

covered in the survey presented in [85]. What ServIoTicy uniquely provides is an

open source solution that challenges the features of commercial solutions such as

Xively [99] and Evrythng [48], while extending their capabilities with the ability to

inject user-defined code into its stream processing runtime.

There are other open source platforms for IoT in the market, but they are fo-

cused on other aspects of the Internet of Things. The DeviceHive [44] project offers

a machine-to-machine (M2M) communication framework for connecting devices to

the IoT. It includes easy-to-use Web-based management software for creating net-

works, applying security rules and monitoring devices. Devicehub.net [45] is a

cloud-based service that stores IoT-related data, provides visualizations of that data

and allows users to control IoT devices from a Web page. The IoT Toolkit [60] project

provides a variety of tools for integrating multiple IoT-related sensor networks and

protocols. The primary project is a Smart Object API, but it also aims to develop an

HTTP-to-CoAP Semantic mapping. Mango [45] is a popular open source Machine-

to-Machine (M2M) software, which is web-based and supports multiple platforms.

Key features include support for multiple protocols and databases, and user-defined

events among others. Nimbits [82] can store and process a specific type of data pre-

viously time- or geo-stamped. A public platform as a service is available, but it can

also be downloaded and deployed on Google App Engine, any J2EE server on Ama-

zon EC2 or on a Raspberry Pi. Netquest [26] is a programming model to ease the de-

velopment of ubiquitous applicactions on sensor networks. On paper [27], Netquest

is used to work on a small network of iMote devices. OpenRemote [83] offers four

different integration tools for home-based hobbyists, integrators, distributors, and

manufacturers. It supports dozens of different existing protocols, allowing users to

create nearly any kind of smart device they can imagine and control it using any

device that supports Java. The SiteWhere [86] project provides a complete platform

for managing IoT devices, gathering data and integrating that data with external

systems. SiteWhere releases can be downloaded or used on Amazon’s cloud. It also

integrates with multiple big data tools, including MongoDB and Apache HBase. Fi-

nally, ThingSpeak [95] can process HTTP requests and store and process data. Key

features of the open data platform include an open API, real-time data collection,



48 Chapter 3. Dynamically Pipelined Processing for Composite Data Streams

geolocation data, data processing and visualizations, device status messages and

plugins.

Deployment of IoT platforms on the Cloud is also covered in the literature. In [33],

authors propose strategies for deciding the best approach at the time of making

cloud-based deployments of IoT applications using nowadays regular cloud tech-

nologies. Another recent work [11] studies the implementation of IoT platforms on

top of cloud-based pub/sub communication infrastructures. Finally, authors go one

step beyond in [78] by leveraging completely Software Defined Environments for

managing the Cloud infrastructures in which IoT applications are deployed.

3.7 Conclusions

In this chapter we have introduced a stream processing platform with dynamic

pipeline processing and a programming model based on the stream subscription.

On the one hand the topologies can be constructed on the fly while they are being ex-

ecuting, enabling environments with multiple tenants performing analytics of other

tenants’ streams. On the other hand, each computation node is loaded when it is re-

quired, avoiding unused nodes taking resources in big topologies. STORM provides

auto-scaling capabilities that make it particularly suitable for cloud deployments.

Furthermore, the compose operation is presented as a method to produce composite

streams.

The ServIoTicy runtime allows for users to deploy custom service code inside

Service Objects in the form of composite streams, and subscribe those streams to

multiple sources of data (either outside the platform on real-world devices or in

other streams defined in the ServIoTicy platform by other users). The user-code will

be automatically injected in the STORM topology and executed when a unit of data

is generated from a source to which the composite stream is subscribed.

The runtime is designed to be highly scalable, following a lock-free model that

combines operations triggered by new data being generated inside or outside the

platform, with queries performed over historic data logged for existing Service Ob-

jects. The design imposes some restrictions mainly related to the timestamps of the



3.7. Conclusions 49

updates being processed, and some optimizations are applied to improve the scala-

bility of the platform.

A basic evaluation of the runtime is included in this work, showing how accept-

able response times of less that 100ms can be delivered by basic composite streams,

and that for most realistic pipelines can be processed in the range of less than a sec-

ond. The work presented in this chapter is, to our knowledge, the first IoT data

processing platform with dynamic pipelining for the Cloud.

The next steps to follow after this contribution will be to extend the programming

model to enable some new features. One of them is having sliding window aggrega-

tors defined by static size, time interval and random events. Being this the scenario

of data streams in real-time, the programming model needs to enforce efficient in-

cremental algorithms for the aggregators so the computation time with millions of

updates is ideally lower than the interval between the arrival of each update.

Moreover, another interesting feature is dynamic data stream subscriptions. To

subscribe to one or several streams it is needed to provide their unique ids. A more

flexible way to do that would be subscribing dynamically to the streams that match

some specific features. Every time a stream is added to the platform and it matches

a dynamic subscription criteria, it will be bound automatically to its subscribers.





51

Chapter 4

Constant-Time Sliding Window

Framework with Reduced Memory

Footprint and Efficient Bulk

Evictions

4.1 Introduction

Stream Processing, or processing data on-the-fly, is a critical demand in many envi-

ronments requiring low latency and reduced data movement. Scenarios like teleme-

try data analysis in large data centers, or advanced analytics for the Internet of

Things (IoT), often require fast processing and aggregation of vast amounts of data.

Moreover, processing data close to the source becomes an important factor when

data movement is expensive due to high volume of data or poor connectivity. Due

to these reasons, over the past five years a number of Stream Processing platforms

have emerged, including Apache Storm [96], Apache Flink [37], Apache Samza [16]

and Twitter Heron [70] as the most noteworthy open-source solutions. Furthermore,

commercial solutions from the most important players in the IT industry are also

offered, such as Amazon Kinesis [9], Google MillWheel [3], IBM Streams [58] and

Microsoft Azure Stream Analytics [64].

Data streams are unbounded sequences of ordered atomic updates on the same

information feature. E.g., a stream associated to the temperature of a physical device

D contains a sequence of updates of temperature information coming from device



52
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

D, each update substituting the previous one. Given that a stream emits updates

indefinitely, such sequences of updates can not be traversed upstream as they do

not have finite size and lack boundaries. Instead, selecting a limited window on the

updates within a data stream is commonly considered the most affordable method

for analyzing the data and information coming from a data source. It is for this

kind of processing that projecting data from streams into sliding windows becomes

a convenient mechanism towards data analysis and aggregation.

More formally, a Sliding Window is an abstraction representing a projection over

a data sequence. Sliding windows are usually implemented as FIFO structures con-

taining timestamped data updates, all of the same type. Updates enter the window

when they are received from the data source, and are evicted according to a Window

Slide Policy (WSP) that defines the criteria that older updates need to meet to leave

in the window. Therefore, sliding windows define a contiguous sequence of strictly

ordered data updates, whose length is defined by the WSP, and always containing

the most recent updates generated to the moment.

Applications that process data streams usually define a set of aggregation oper-

ations that when computed produce a result associated to the stream. Due to the

unbound nature of streams, sliding windows are a convenient approach to process-

ing such aggregations, by defining the subset of updates to be considered for pro-

cessing. Therefore, for their computational purpose, sliding windows are associated

with at least one aggregation function, that will be computed for the contained val-

ues whenever the window content is updated.

There are two key aspects of a Sliding Window aggregation framework that de-

fine its applicability and efficiency across different scenarios:

• Firstly, the computational cost associated to the process of adding and evicting

values into the structure through the WSP, and recomputing the values of the

aggregations represented by the Window. Therefore, the algorithms used to

operate the sliding window and the aggregations must be as efficient as pos-

sible, avoiding the computing time to grow with the window size. Naive im-

plementations that recompute all the aggregations for every new update, thus

having linear cost O(n), are not able to keep up with large window sizes and



4.1. Introduction 53

high arrival rates. The Framework introduced in this chapter exhibits amor-

tized constant O(1) time-complexity between updates, and O(log n) for bulk

eviction, positioning itself ahead of the existing state of the art.

• The second aspect is the memory footprint of the Window data structures. Ex-

isting time efficient implementations tend to pre-allocate all the needed mem-

ory, with space cost O(N) from the pre-defined maximum window size N.

While this approach is convenient in terms of computational complexity, it im-

poses serious limitations in terms of the applicability of the technique across

domains. For instance, cloud-based deployments may require extra-large VMs

to host them with their associated additional cost, and Fog-based deployments

will struggle to accommodate these implementations in memory-constrained

edge devices. Furthermore, resizing the maximum window capacity results in

a O(n) time complexity operation. The Framework introduced in this chapter

leverages an efficient decoupling of the computation and data store through

the use of a Key-Value Store, which results in a local space allocation of only

O(log N) from the pre-defined maximum window size N, which also improves

on the existing state of the art.

We introduce the Monoid Tree Aggregator (MTA) General Window Aggregation

Framework, which advances the state of the art in the following aspects:

• Seamlessly combines amortized constant O(1) time-complexity between up-

dates and logarithmic O(log n) cost in the worst-case scenario

• Its data structures only need to statically preallocate space for O(log n) ele-

ments, being n its maximum capacity.

• The window aggregation mechanism and the Window Slide Policy (WSP) are

user-programmable. Aggregations are described as associative operations, based

on monoids, and they do not need to be invertible. The WSP, instead, defines

the criteria that data to be evicted must meet.

• The WSP enforcement mechanism exhibits amortized O(1) computational cost

to perform single evictions on the window and O(log n) for bulk eviction op-

erations. The mechanism is similar to performing searches on Binary Search



54
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

Trees [66]. This aspect is of paramount importance to implement flexible WSPs,

like for instance time ranges (e.g. data accumulated in the last 5 minutes) for a

source that produces data at variable rates. This situation leads to windows

containing a changing number of elements over time and mass evictions at

certain moments in time.

The general purpose and efficient Sliding Window aggregation framework lever-

aged here could be used as an operator for Stream Processing platforms such as

Apache Storm or Apache Flink. They would additionally benefit from the fault-

tolerance provided by the distributed KVS based data structure.

The rest of the chapter is structured as follows: Section 4.2 introduces the main

concepts related to Sliding Window frameworks; Section 4.3 discusses the state of

the art in the field of efficient Sliding Windows for Stream Processing; Section 4.4

discusses the main characteristics of the MTA Window Framework; Section 4.5 dis-

cusses the implementation details of the framework proposed in this work and pro-

vides the results of an experimental evaluation of the MTA Window Framework;

Finally Section 4.6 discusses the conclusions of the work.

4.2 Background: Real-Time Sliding Windows

4.2.1 Sliding Windows: Concept

Sliding Windows are an abstraction representing projections on data sequences, or-

ganized as FIFO structures containing elements of the same type (the data updates),

and a timestamp associated to each element. Data updates enter the sliding window

when they are received from the data source, and are evicted according to a Win-

dow Slide Policy defining the conditions to be satisfied by data updates for leaving

the projected window. Sliding windows define a contiguous sequence of strictly or-

dered values, with a length depending on the slide policy, and always containing

the most recently generated updates.

Therefore, the three main building blocks used by sliding windows as mecha-

nisms to aggregate streams of data and their features are:



4.2. Background: Real-Time Sliding Windows 55

FIFO data structure: An update in the window is not removed until all the

older updates are removed too. Contents are a complete and ordered portion

of the stream being aggregated. Updates are inserted at the end and removed

from the beginning of the structure.

Aggregation algorithm: Aggregations are applied to the data covered by the

window in a specific moment. For instance, the aggregation could be a total

sum and it could be executed every time a new update is inserted to the win-

dow. Some sliding window aggregation frameworks only accept invertible

operations as aggregators, with their inverse functions. This way, the eviction

of data is done in constant-time easily.

Slide policy: Updates leave the FIFO structure according to a window slide

policy (WSP). WSP defines the conditions to be satisfied by the older updates

in order to be evicted from the window. The result after applying the policy

must be a subsequence including the most recent updates in the window. Tra-

ditionally WSP in sliding window aggregation frameworks are delimited by

maximum window size and time-based windows. Regarding the number of

updates to be removed by the policy, it is usually determined by three choices:

a single update, a fixed amount of updates and all the window updates. How-

ever, a WSP can be expressed in terms of the window aggregation itself and

become more rich, customizable and efficient.

4.2.2 Sliding Windows: Running Example

For the sake of clarity, we include here a running example of a Sliding Window used

to compute the maximum of the values of the updates that fall within the windows

according to a WSP. The WSP is complex enough to need to be expressed in terms of

the window aggregation. This will provide an understanding on the need of general

purpose and user-programmable WSP based on the aggregation. The WSP dictates

that the window will contain the updates that add up to a value which is less or

equal than 10, the rest will be removed. From the resulting window we want to

extract the maximum value. For this purpose two aggregations will be used over

the window: the first one will be max, and the other one will sum. The former will



56
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

be used to compute the result of the operation that needs to be calculated for the

window. The latter will be used to estimate the updates that have to be removed

from the window after an update insertion, according to the WSP. This is also an

example of multi-dimensionality of the window in terms of aggregation operations;

the window could be used also considering multiple data dimensions across the

window elements.

More formally, let S be a stream of ordered data and (di)
n
i=1 be the current data

updates in S where i is its timestamp and n is the oldest timestamp in S. Then the

WSP on the window W is:

∀di ∈ S : di ∈W ⇐⇒
n

∑
j=i

dj ≤ 10

In this context, consider a window with the values

[2, 2, 3, 3], ordered in ascending order of their timestamp - that is the leftmost 2 is the

oldest update in the window while the rightmost 3 is the most recent update (corre-

sponding to dn following the notation used above). Therefore, when a new update

with value 4 is inserted to the window, the policy removes the oldest 2 updates and

the result window becomes [3, 3, 4]. This slide policy is enforced using the sum ag-

gregation that is calculated over the values in the stream: 3 + 3 + 4 ≤ 10. The max

aggregation value would have been 3 before the last insertion, and 4 immediately

after.

A naive design of these features can be achieved via the use of a simple queue

that aggregates all its contents every time it is queried. The WSP enforcement pops

updates until the window contents comply the policy. It clearly entails O(n) to ag-

gregate the window, n being the number of updates that are inside; hence it would

quickly struggle to scale with high frequency streams and densely populated win-

dows.

4.2.3 Sliding Windows: Monoids for Aggregators

A monoid is an algebraic structure with an associative binary operation and a neu-

tral element. They are extensively used in the literature for the implementation of



4.3. Related Work 57

data aggregations, and it is the common choice for state of the art Sliding Window

implementations, as it will be discussed in Section 4.3.

More formally, where S is a set and · is a binary operation, it composes a monoid

if it obeys the following principles:

Associativity: ∀a, b, c ∈ S : (a · b) · c = a · (b · c)

For all a, b and c in S, the expression (a · b) · c = a · (b · c) is true.

Neutral element: ∃e ∈ S : ∀a ∈ S : e · a = a · e = a

Exists a value e in S that for all a the expression e · a = a · e = a is true.

Closure: ∀a, b ∈ S : a · b ∈ S

For all a and b in S, the result of a · b is in S too.

Aggregators are then programmed in a map→ reduce→map structure, where the

first map transforms the input value to a member of S, the reduce stage is a monoid,

and the last map converts the monoid result to the desired value out of S. For exam-

ple, an average aggregator could have a monoid with S defined as integer pairs (s, c)

where s is the sum of the values and c is the number of values. The monoid opera-

tion would be (s1, c1) · (s2, c2) = (s1 + s2, c1 + c2). The first map transforms an input

value v to the pair (v, 1) in S, where v is the initial sum and 1 the initial count. (v, 1)

is then operated by the monoid with another mapped value or a previous monoid

result. The last map transforms the monoid reduced result to s
c which is the final

average.

4.3 Related Work

Since the Sliding Window Framework presented in this chapter is compared to the

state of the art in order to demonstrate its novelty, this section will make a survey and

description of the current Sliding Window Framework approaches in the literature.

This will provide context prior to the in-depth description and evaluation of our

contribution.

The state of the art in the literature proposes to use a FIFO structure and incre-

mental operations to reduce the complexity of the aggregation algorithms to O(log n)

and amortized O(1) for variable-sized windows.



58
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

Tangwongsan et al. propose in their prior work two sliding window aggrega-

tion frameworks called Reactive Aggregator (RA) [92] and Sliding-Window Aggregation

(SWAG) [90]. Having important differences between them, both approaches follow

Boykin et al. [34] method of using associative operations as programmatic aggrega-

tors interface. Both RA and SWAG benefit from using associative aggregation, by

enabling the computation of partial results and using the neutral element property

to evict elements from their FIFO structures.

The main claim for RA is that it is O(log n) in all its operations with constant-

sized sliding windows. RA’s sliding window FIFO structure is a flat fixed-sized

binary and complete tree called FlatFAT. Similarly to Log MTA, all the leaves are

the raw updates to be aggregated, the root node is the result and the intermediate

nodes are partial computations. Every update insertion and deletion propagates the

aggregation changes from the leaf to the root. Other work in the literature [76, 100,

22, 29] use tree-like structures in order to keep partial computations in the same way,

making use of binary associative operators. They all have a worst-case O(log n) for

all its atomic operations and a complexity O(n) for windows with bulk evictions.

On the other hand, SWAG is a sliding window aggregation framework that runs

in worst-case O(1) time for each one of its atomic operations. SWAG’s insert, remove

and query operations perform in constant time with constant-sized windows. The

simplified version of its main algorithm is based on a data structure with two stacks

instead of a tree-like structure. One stack receives the new updates, each paired

with a partial result generated by aggregating the update with the previous top par-

tial result in the stack. The second stack is generated by reversing the order of the

updates from the insertion stack and recomputing the partial results. The reverse op-

eration is O(n) but ends up amortized to O(1) during the execution of the window.

However, the reverse operation can be incrementally performed on insert and remove

operations, turning into a worst-case O(1) process if updates are removed one by

one.

The time complexity is better in SWAG than in RA and similar solutions for non-

invertible window aggregators, while MTA Window Framework extends major im-

provements from it. In first place, the window operations are logarithmic for RA-like

algorithms and constant for SWAG. However, this is not considering bulk eviction



4.3. Related Work 59

as an atomic operation, and therefore it works in constant time for constant-sized

windows. Constant-sized windows remove one update for each one received, keep-

ing always the same number of aggregated updates. As only one element needs

to be removed, remove operation complies with the O(log n) time-complexity in RA

and O(1) in SWAG. Yet it is a common situation to work with time-based window

over a stream with an irregular input frequency. This poses a problem: Variable-

sized windows like time-based windows require bulk evictions, and this operation

is worst-case O(n) lineal for the state of the art.

Aside from the efficiency issue that the previous point raises, such a situation

makes it unfeasible to keep partial results and updates in remote data stores, as n el-

ements might need to be retrieved for a single bulk remove operation. Consequently

decoupling the majority of data from the local computation is not considered.

Moreover, a general mechanism for framework users to define custom sliding

policies is not defined in any of the state of the art solutions.

Table 4.1 summarizes the comparison of RA and SWAG, with the mechanisms

introduced in this work: the Log MTA and the more advanced Amortized MTA. The

parameters compared include the amortized and bulk-eviction worst-case case com-

putational complexity of the frameworks, the size of the data structure, the mini-

mum size to be stored locally for processing the stream in the worst-case scenario,

the ability to enforce user-defined Window Slide Policies, and the existence of an

efficient design that supports decoupling of data and computation (e.g through the

use of external key-value stores to keep part of the data).

RA SWAG Log MTA Amortized MTA
Amortized time O(log n) O(1) O(log n) O(1)
Bulk eviction time O(n) O(n) O(log n) O(log n)
Size O(n) O(n) O(n) O(n)
Min. local size O(n) O(n) O(log n) O(log n)
Custom WSP × × X X
Data Decoupling × × X X

TABLE 4.1: Sliding window frameworks comparison

Alternative approaches to improve efficiency in sliding windows found in the

literature [31, 30, 72, 43, 69] consist on keeping in memory partial aggregations from

window updates instead of keeping the original updates. The result is an speed up



60
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

of the aggregation and removal and also the memory needed is reduced. However,

either there is a percentage of error in the number of updates evicted each time,

or the algorithm knows the exact number of updates that will be removed in each

iteration in order to avoid the error. The most relevant case is the Exponential His-

togram from Datar et al. [43], a data structure that maintains an approximation of

the number of 1’s in a sliding window with logarithmic memory and time complex-

ity. The counting is fragmented over a list, where the number of window updates

counted in each list element grows exponentially from tail to head. A general pur-

pose approximate computation similar to Exponential Histogram applied to MTA is

a potential subject for future investigation, which would also improve performance

and memory consumption.

Bifet & Gavaldà contributed ADWIN [31] and K-ADWIN [30] mechanisms, which

implement a variation of exponential histograms. ADWIN is a programmable slid-

ing window framework that automatically adapts its size by detecting changes on

the data. When two subwindows have very different average values, the oldest one

is evicted. The data kept in the window is considered the currently relevant data

from the stream, and guest algorithms can perform aggregations from it. K-ADWIN

combines ADWIN with Kalman filter [63], providing better results than both meth-

ods separately. ADWIN base algorithm can be seen as an adapted MTA WSP that

compares the average value between subwindows, and the monoid aggregator as

the guest algorithm.

Additionally, resource sharing is another methodology discussed in the litera-

ture [22, 68] to enhance performance among incremental aggregations. Although

our solution is not focused on a resource sharing approach, a basic mechanism to

share some resources between aggregations is also present. We introduce window

aggregation multi-dimensionality, which consists in performing several aggrega-

tions on different data in the same stream, sharing resources such as the window

data structure and the WSP. Experiment 4 from Section 4.5 shows the benefits from

this approach. Tangwongsan et al. [92] already compared RA with the resource shar-

ing focused solution from Arasu & Widom [22] positioning RA as a more advanced

solution, and later SWAG [90] [91] as more advanced than RA.



4.4. Framework Design 61

4.4 Framework Design

This section describes the Monoid Tree Aggregator (MTA) Window Framework,

which is this chapter’s main contribution. The MTA Window Framework is an slid-

ing window framework that aggregates values in amortized constant time between

insertions, on par with the most advanced existing solutions in the literature. Addi-

tionally, it exhibits logarithmic time complexity in the worst case scenario, which in-

cludes bulk element eviction. Efficient bulk eviction is an improvement with respect

to the state of the art, and it is of paramount importance for resource-constrained en-

vironments and real-time situations, like the ones considered for Edge Computing in

emerging IoT scenarios. This time complexity is achieved regardless of whether the

aggregation function is invertible or not. Furthermore, it provides programmable

aggregation mechanism and Window Slide Policies. All this combined enables the

framework to decouple most of the data aggregated from the local memory in which

it is being computed, delegating this task to another system such as a distributed

data store, a local hard drive or an NVMe. For these reasons, the MTA Window

Framework positions itself as a significant advance with respect to the existing state

of the art solutions.

For the sake of clarity, we present the core algorithms of the MTA Window

Framework in two steps: first, we describe a set of algorithms (Log MTA in Sub-

section 4.4.1), which create a logarithmic-time window aggregation mechanism, less

efficient than the concluding MTA solution, but much simpler to explain; later, in

Subsection 4.4.2, we extend the Log MTA mechanism to reduce the computation

complexity to an amortized constant cost O(1), in the Amortized MTA mechanism.

4.4.1 Log MTA

The Log MTA mechanism is a logarithmic-time aggregation window, used as base

for the constant-time solution. It sets the foundations on the main MTA Window

Framework features which are discussed in detail in this section, being: general

user-programmable aggregation, efficient computation, general user-programmable

WSP mechanism, data decoupling and efficient bulk element eviction.



62
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

(A)
Log
MTA
Tree

(B) Log MTA level division

FIGURE 4.1: Log MTA Structure and Element Location Examples

Structure

The FIFO data structure in Log MTA is a binary Tree designed as a list of queues.

Each queue is a Tree level, sorted in the main list from leaves (bottom level) to root

(top level). The levels contain the Tree nodes grouped by pairs. The elements in the

same pair are Tree siblings. A neutral element (�) in a pair means an empty branch.

The lowest level contains all the window updates in order. The levels above contain

the monoid aggregation results from lower level pairs. E.g., Figure 4.1a shows an

abstraction of the full binary Tree of a Log MTA performing a sum aggregation, with

[1, 2, 1, 2, 1, 2] as data updates. Figure 4.1b shows its representation as a list of queues.

New Tree nodes are pushed to the level queues and popped when removed, hence

the FIFO behaviour. All the leaves of the Tree will be found in the first level, as stated

by Invariants 1 and Invariant 2.

Invariant 1. Let T be the Log MTA binary Tree, Li the i − essime level from leaves L1 to

root Lh, and h being the height of T. Let (vij)
n
j=1 ∈ Li be the nodes of Li, n be the number of

nodes in Li, � being the monoid neutral element and ∗ any non-neutral element. Then:

vi,1 = 〈�, ∗〉 ∨ vi,1 = 〈∗, ∗〉

vi,n = 〈∗,�〉 ∨ vi,n = 〈∗,∗〉

∀n−1
j=2 vi,j = 〈∗, ∗〉

When n = 1 then only one of the three statements needs to be satisfied.



4.4. Framework Design 63

Invariant 2. Having h as the height of T, n = |Li|, and vij containing a pair of elements:

∀h
i=1∀n

j=1vij 6= 〈�,�〉

Theorem 1. Let (eijk)
1
k=0 be each element in the pair node vij. Let children(eijk) be a

function that returns the children pair of eijk, ∀h
i=2∀n

j=1vij :

vi,1 = 〈�, ∗〉 →children(eijk) = v(i−1),(2j+k−1)

vi,1 6= 〈�, ∗〉 →children(eijk) = v(i−1),(2j+k)

The first pair of a level can be 〈�, ∗〉 when the first element has been removed,

so the node does not have left child. Also, the last pair of a level can be 〈∗,�〉 when

its right child has not been created yet. � can not be found in any other position in

the Tree.

Theorem 1 shows how Tree branches can be traversed, derived from Invari-

ants 1 and 2. The greater part of the Tree traversing is performed through the first

or last element of every level only, the Tree side branches. However, for bulk evic-

tion we will need random branch traversing from root to leaf in order to find the

branches to be removed.

Data Insertion & Aggregation

New updates are inserted to the data structure and aggregated in logarithmic time.

Updates in the window are aggregated by grouping them in ordered pairs and ap-

plying a user defined monoid on each pair. The results are paired and aggregated

again, in a process that is repeated iteratively until a single result is produced. This

process is performed incrementally for each insertion using the binary Tree struc-

ture, as it can be seen in Algorithm 1.

When an update is inserted to the window, it is pushed at the end of the first

level as a new leaf of the Tree. If the last pair in the level is 〈∗,�〉, the new value u is

placed as 〈∗, u〉, otherwise a new pair is created and added as 〈u,�〉. When a new

pair is added, it will not have a parent yet.

After adding the new leaf, it is aggregated with its sibling executing the user

provided monoid, which Log MTA is oblivious to. The result element will be the



64
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

Algorithm 1 Log MTA insertion & aggregation. Inserts update u to Tree T
1: L← levels(T), agg← u
2: for l = 1, ..., |L| do
3: P← Ll,|Ll |
4: if agg 6= � then
5: if P1 = � then
6: P1 ← agg
7: agg← �
8: else
9: Ll(enqueue(〈agg,�〉))

10: end if
11: else
12: Q← Ll−1,|Ll−1 |
13: if P1 6= � then P1 ← monoid(Q0, Q1)
14: else P0 ← monoid(Q0, Q1) end if
15: end if
16: end for
17: if agg 6= � then
18: L({〈agg,�〉})
19: end if

parent of both siblings and need to be inserted in the level above. If the pair already

had a parent in the level above, the parent’s value needs to be updated with the

new one. Otherwise, a new pair needs to be added with the aggregation result. The

parent pair now needs to be aggregated, propagating the process towards the root

level. If the root level now has a pair without �, then a new level will be added that

will become the new root.

This operation has time complexity O(log n), as it executes a fixed set of constant-

time operations for each level on the Tree, with logarithmic height with respect to

the number of updates.

Window Slide Policy Definition

Like the aggregation operation, the WSP is a user-programmable condition that

needs to follow some rules. It has access to the total aggregation of the window

after the last insertion and to the aggregation of a random subsequence from the

head of the window. This aggregated subsequence is the one being checked for re-

moval. If the condition defined by the WSP using these values is met, then at least

this subsequence needs to be removed from the window aggregation.

For instance, consider a window with updates that include an ordered times-

tamp in milliseconds and that it aggregates them with a max operation. Therefore,

the aggregated result timestamp from a sequence of updates is the latest timestamp.

If the WSP example in Listing 4.1 is applied to this window, its result aggregation

will always use updates in the last hour. The condition compares the latest times-

tamp from the subsequence with the lower boundary of the WSP time frame (one



4.4. Framework Design 65

hour before the last update). If the subsequence’s latest timestamp is not inside this

boundary, then the condition is met and it needs to be subtracted from the window

aggregation.

This mechanism enables the user to define from the most basic WSP to complex

and dynamic scenarios using sophisticated aggregations.

LISTING 4.1: Window Slide Policy Example

function wsp(total , old){

return

(total.timestamp - old.timestamp) >= 3_600_000;

}

Efficient Bulk Eviction

After inserting a new update, the WSP needs to be enforced to find the longest sub-

sequence of updates that need to be removed from the head of the FIFO structure, so

a single result is produced. This process takes advantage from the binary Tree based

data structure and it is performed in O(log n). Furthermore, the time complexity is

the same for both removing a single update or performing a bulk update eviction

from the window.

The importance of performing efficient bulk update evictions from a window

resides in the concept of variable-sized windows in contrast with constant-size win-

dows. Constant-size windows remove one update for each one received, keeping

always the same number of aggregated updates. However, it is a common situation

to work with time-based window over a stream with an irregular input frequency.

This poses a problem: after inserting k ≥ 1 data updates to the window, k updates

might need to be evicted at once, triggered by the time based slide policy. In the state

of the art, all the updates need to be traversed and possibly removed, multiplying

by n the time complexity of removing a single update. Variable-sized windows like

time-based windows make the most of performance improvements on bulk evic-

tions, especially on situations in which real-time aggregation is required.

The WSP enforcement performs a O(log n) root to leaf search in the binary Tree

for the oldest valid update in the window, while pruning invalid branches guided

by the user-defined WSP. Algorithm 2 is a detailed specification of this operation.



66
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

Algorithm 2 Log MTA WSP enforcement on Tree T with efficient bulk eviction
1: L← levels(T), sub← �, rm← 0
2: for l = |L|, ..., 1 do
3: P← Ll,1
4: if rm > 0 then
5: Ll(remove_pairs(rm))
6: rm← 2 · rm
7: if P0 6= � then rm← rm− 1 end if
8: P← Ll,1
9: end if

10: if P0 6= � then
11: subseq← monoid(rm_subseq, P0)
12: if wsp(subseq, result(T)) then
13: if l = |L| ∧ l 6= 1 then L(remove(l))
14: else if P1 = � then Ll(remove_pairs(1))
15: else P0 ← � end if
16: rm_subseq← subseq
17: rm← rm + 1
18: end if
19: end if
20: end for
21: P← L1,1
22: agg← monoid(P0, P1)
23: for l = 2, ..., |L| do
24: P← Ll,1
25: if P0 6= � then P0 ← agg else P1 ← agg end if
26: agg← monoid(P0, P1)
27: end for

The Tree levels are traversed from root to leaves executing the WSP with the first

level value as the aggregated value of its leaves subsequence. If removed, the node’s

branches will be evicted from the next levels before running the WSP on the new first

element. As the remove_pairs function in Algorithm 2 only updates the pointer to the

first pair of the level queue, it has constant time. The elements can be removed in the

background by a garbage collector, minimally affecting the process of getting a result

aggregation. When this process is finished, the nodes in the leftmost branch might

not be consistent and have aggregated values that have been removed. Therefore,

the leftmost branch is recomputed bottom-up, propagating the value changes to the

root pair and resulting in a valid aggregation result.

A running example of this process can be found in Figure 4.2, where timestamps

are inserted to the window and the WSP only allows a window of 4 time units. When

timestamp 8 is inserted it triggers the WSP enforcement to evict all the other updates

in the window in three steps. It checks the first valid element of each level from root

to leaves with the WSP. All of them are found out from the window, leaving only the

newest update.

Time complexity is O(log n), as this operation performs a fixed number of constant-

time operations for each level of the Tree, by visiting them twice.

Once the WSP has been enforced, the aggregation result can be queried to the



4.4. Framework Design 67

FIGURE 4.2: Log MTA Bulk Eviction. Monoid: max(x, y);
WPS: total − old ≥ 4.

FIGURE 4.3: Log MTA KVS data structure

window. This operation returns the aggregation of the window contents in constant

time, by returning the monoid result in the root pair. Furthermore, if we require a re-

active behaviour from the window, then the following pipeline needs to be executed

when a new update arrives: insert update→ enforce WSP→ query result. Every time

a new update is introduced, it produces the result in logarithmic time.

Reducing Local Memory Footprint

From inserting a new update to generating a new result, Log MTA needs to traverse

at most O(log n) elements: for each level queue, the tail element and probably an

element near the head. Therefore, the rest of the data in the window does not need

to be waiting in local memory and the resources could be used to run other aggre-

gations. In the worst case, a bulk eviction will need to traverse a Tree branch that is

not currently in local memory, which will require an immediate memory retrieval of

only O(log n) elements.

In the proposed data structure, each level queue has three sections between two

different memory layers, as it can be seen in Figure 4.3. The pairs in the tail of the

level queues are in the Tails list in local memory, the central pairs wait in a shared

Key-Value Store (KVS), and the pairs in the queues’ head can be found in a Cache in

local memory again.



68
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

The rightmost branch of the Tree is found in the Tails list. It receives updates as

they are being inserted to the structure, and pushes the replaced pairs to the KVS.

The pairs pushed to be sent to the KVS are first kept into a buffer in order to reduce

the number of interactions with the data store. When the maximum capacity of

the buffer is reached, all its contents are moved to the KVS. The key in each KVS

document maps its contents to its Tree level and its position it has inside the queue,

so a O(1) single pair retrieval can be achieved. The store can be anything from a

local HDD file to a remote and dedicated cluster. Finally, the Cache contains at least

the head pair from each level queue, with the exception of the root level. The Cache

is refreshed from the KVS and the buffer when its size is under an specific threshold

or in a Cache miss situation. Its capacity can be adapted to reduce the interactions

with the KVS.

Having the data stored by an external entity, apart from the scalability enhance-

ment it provides, makes it easier to recover aggregation data from a failure.

4.4.2 Amortized MTA

In this section we present the Amortized MTA (AMTA) sliding window mechanism.

It is an approach aimed to reduce Log MTA’s time complexity without having an

impact deteriorating its other benefits in comparison with the state of the art: space

complexity, its user-programmable WSP mechanism, efficient bulk evictions and the

reduced local memory footprint.

Structure

Amortized MTA is an sliding window mechanism that inserts, aggregates and re-

moves elements in amortized constant time, with logarithmic time in the worst case.

It satisfies Log MTA Invariants 1 and 2, and shares the data structure level division

and the memory layers, although the data structure operates differently. In the new

data structure, the Tree is replaced by a Forest of binary trees where the rightmost

pair of each level is the root of its own tree, as defined in Invariant 3. Figure 4.4a

is an example of an Amortized MTA window performing a sum aggregation with

the updates [1, 2, 1, 2, 1, 2, 1, 2]. The lower level contains the values in the window to



4.4. Framework Design 69

(A)
AMTA
For-

est

(B) AMTA level division

(C) AMTA KVS data structure

FIGURE 4.4: Amortized MTA Structure and Element Location Exam-
ples

be aggregated, while the levels above contain partial aggregations of these values.

Considering Invariant 3 now, Theorem 1 is also valid as a tree traversing guide.

The data structure also introduces the Stack and the Result Pair, as it can be seen

in Figure 4.4b example. As an addition to Tails and Cache, they are the parts of

the structure required to be local memory at all times. E.g., Figure 4.4c shows the

memory distribution of the data structure.

Result Pair (R = 〈R0, R1〉) maintains the aggregated result from the leftmost

tree in R0 and the aggregated result from the rest of the Forest in R1. The Stack

contains the aggregated results of the leftmost tree without the first element from

each level. The top value from the Stack is always R0 minus the update in the head

of the window. In Figure 4.4b we can see that the Stack top element is 5, which is R0

minus the head element in the first level: 6− 1 = 5. Likewise, the next element in

the Stack is 3, which corresponds to R0 minus the head element in the second level:

6− 3 = 3.

Essentially, AMTA insertions aggregate the new values in R1, while single up-

date evictions pop values from the Stack onto R1. For instance, inserting 1 to the



70
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

data structure in Figure 4.4 would result on R1 = 6 + 1 = 7, while evicting the

first element would pop 5 from the Stack and put it on R0. Aggregating R always

produces the final result value for the window. The Forest is used to keep the Stack

updated, to compute R1 from scratch when necessary and to perform bulk evictions.

Therefore, new updates also need to be inserted and removed from the Forest struc-

ture.

The main goal of AMTA is to improve its time complexity without giving up

its other benefits in comparison with the state of the art: space complexity, its user-

programmable WSP mechanism, efficient bulk evictions and the reduced local mem-

ory footprint. More details on how this is achieved using this structure can be found

in the following sections.

Invariant 3. Having h as the height of T and L1 the leaf level for all the binary Forest,

n = |Li|, and vij containing a pair of elements, ∀h
i=1vi,n is a tree root.

Amortized insertion

Log MTA update insertion is O(log n) because for every new update, the Tree nodes

need to be updated from the leaf to the root. This can be avoided by only adding a

node to the Tree when its value is definitive. In other words, a pair will only have

a parent if both members in the pair have been inserted. In AMTA, a pair will only

have a parent if it is not in the tail of its level queue. Figure 4.4a example shows that

the last 〈1, 2〉 pair in level 0 is not aggregated in level 1 and there is a � at its tail

instead. The consequence in the shape of the data structure is Invariant 3, the tail

pair on each level is the root of its own binary tree. This process is amortized O(1)

and O(log n) in the worst case.

However, the pair in the upper level does not contain the full aggregation result,

only a part of it. Therefore, every inserted update is aggregated in R1 (O(1)), which

contains the aggregation of all the trees except the leftmost one. R0 contains the

aggregated result of the leftmost tree, so the aggregation of R is the full window

aggregation result.

As the window grows, R1 aggregated trees merge with the leftmost tree. In this

situation, part of the aggregation moves from R1 to R0. Therefore, R and the Stack



4.4. Framework Design 71

Algorithm 3 AMTA update insertion. Inserts u to data structure C
1: L← levels(C), R← result_pair(C)
2: agg← u, l ← 1, h← max(|L|, 1)
3: R1 ← monoid(R1, u)
4: while l ≤ h ∧ agg 6= � do
5: P← Ll,|Ll |
6: next_agg← �
7: if P1 6= � then
8: next_agg← monoid(P0, P1)
9: L(〈agg,�〉)

10: else
11: P1 ← agg
12: end if
13: agg← next_agg
14: l ← l + 1
15: end while
16: if agg 6= � then
17: L({〈agg,�〉})
18: else if l > h then
19: C(compute_le f t_result())
20: C(compute_right_result())
21: end if

need to be recomputed from scratch, which has an amortized O(1) time complexity

with O(log n) in the worst case.

Algorithm 3 describes the operation more formally. The new update u is firstly

aggregated to R1, overwriting its value to keep the Result Pair up to date. Then,

u is inserted in the Forest’s first level queue and the aggregation is propagated up

to its tree root. Finally, when an element is inserted to the already existing high-

est level, R must be recomputed from scratch using compute_left_result for R0 and

compute_right_result for R1, both O(log n).

Algorithm 4 Compute AMTA R0 and Stack S in the data structure C
1: S← stack(C), L← levels(C)
2: S(clear()), R← result_pair(C)
3: for l = |L|, ..., 1 do
4: P← Ll,1
5: if P0 6= �∧ P1 6= � then
6: S(push(monoid(P1, S(peek()))))
7: end if
8: end for
9: if P0 6= � then R0 ← monoid(P0, S(peek())))

10: else R0 ← monoid(P1, S(peek()))) end if

Algorithm 5 Compute AMTA R1 in the data structure C
1: L← levels(C), R← result_pair(C)
2: for l = 1, ..., |L| do
3: P← Ll,|Ll |
4: R1 ← monoid(monoid(P0, P1), R1)
5: end for

compute_left_result places into R0 the aggregation of the leftmost tree while repop-

ulating the Stack, as described in Algorithm 4. The head pairs from each level queue

are traversed, from root to leaf. When a pair P is 〈∗, ∗〉, its element P1 is aggregated



72
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

with the top of the Stack (or with � if the stack is empty), and then stacked. Once

all levels have been visited, the older update in the window is aggregated with the

top of the Stack, and placed in R0. The contents in the Stack will be used to perform

eviction of single updates in amortized constant time.

compute_right_result operation aggregates into R1 all the rightmost pairs (except

for leftmost tree) in the Forest, as described in Algorithm 5.

The continuous execution of an update insertion in the Forest makes each ele-

ment in the data structure to be visited once for the bottom-up propagation. As

the space used for the data structure is O(n), the cost of inserting n updates be-

comes O(n). Then, functions compute_left_result and compute_right_result affect only

O(log n) in a whole round of n elements insertions, complexity remaining O(n) for

inserting n updates. So, the amortized cost for aggregating 1 update to the window

becomes O(1).

Single update evictions

In Log MTA, performing a bulk eviction is a O(log n) operation, and it is the only

option to remove any number of updates from the window aggregation. Removing

a single update from its data structure and propagating the changes on the head of

each level would have the same logarithmic cost. To amortize this cost, the solution

we followed for AMTA is to find a way to perform amortized constant single update

evictions and to save bulk evictions for when the number of elements to be removed

is equal or greater than a factor of log n.

The Stack from AMTA’s data structure is the key element to achieve an amortized

constant time single update eviction. It contains the future R0 values after removing

the head element from each level, being the oldest update removal always in the

Stack’s top. The rest of the elements will be used at some point, both for single

update evictions and to maintain the Stack in amortized constant time.

The single update eviction operation is formally described in Algorithm 6. The

Results Pair R is updated by popping an element from S into R0. At this point, R

aggregation already provides the correct aggregation result, but the Forest and the

Stack need some maintenance before removing the next update.



4.4. Framework Design 73

The first update is removed from the head of the leaves level in the Forest, and

the parent-child relations in the branch are updated. If a pair is removed from the

Forest, then its parent element must be replaced by �. However, the tree aggre-

gations will not be updated, leaving inconsistent values in the data structure. The

main implication of only updating the branch parent-child relations instead of also

updating all the values is that, while it still keeps the tree consistent with Theorem 1,

the amortized cost is constant and not logarithmic. During this process, all the new

head pairs from each traversed level are pushed in the new_heads stack.

The current Stack top element might not be the next R0. The Stack needs to be

updated with new elements, using update_stack, which can be found in Algorithm 7.

Similarly to compute_left_result, it updates the stack using values from new_heads.

For every pair P popped from new_heads, its element P1 is aggregated with the top

of the Stack (or with � if the stack is empty), and then stacked.

If the number of levels has decreased after this process, the first tree has been

completely removed and the second one took its place. Therefore R1 needs to be

recomputed.

Figure 4.5 shows an example of this situation. It is a window performing a sum

aggregation on the sequence [1, 3, 2, 1, 2, 1, 1, 0, 3, 1] with result 15. When the first

update is removed, the top of the Stack (6) is moved to R0 and the update is replaced

by � in the Forest. The result is now 6 + 8 = 14, which corresponds to 15− 1 =

14. No further actions are required after this update removal. The same steps are

followed for the second update removal, but in this case the head pair from the first

level is removed and the head element from the second level is replaced by �. Also,

〈2, 1〉 is used to update the Stack (1 +� = 1).

The continuous usage of this operation results in each element being removed,

without updating any value. Furthermore, each pair is traversed once to update the

Stack and computation_right_result affects only O(log n). Therefore, the amortized

cost for a single removal from the window is O(1).

This process does not make use of the inverse functions of the aggregation oper-

ation to subtract the evicted updates, which would run in worst-case O(1) time. For

example, if we sum [1, 2, 3] the result would be 6. When evicting 1, we could use the

inverse function with result 6− 1 = 5 in one step. The problem is that the inverse



74
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

FIGURE 4.5: AMTA single update eviction running example

function does not always exist or is easy to find. AMTA single eviction mechanism

provides an equivalent computational cost with a less restrictive aggregation pro-

gramming interface.

Amortizing Bulk Evictions

Enforcing the WSP, like in Log MTA, removes updates from oldest to newest while

the WSP is satisfied. In this case, the WSP enforcement starts by checking the head

update of the window. If the WSP condition is met, the update is removed using

the single update eviction operation. For constant-size sliding windows, this solu-

tion already runs in amortized constant time with logarithmic time in worst case

scenario.

However, the worst time would become linear with variable-size windows. Our

solution is to use the bulk eviction after the WSP enforcement removed a factor of

log n elements from the Forest using the single update eviction. Theorem 1 is valid

for the independent trees in the Forest. Therefore, Algorithm 2 can be applied to

a single tree in the Forest while keeping the same cost. This solves the problem

of evicting a partial amount of updates from a tree, which only affects one tree. If

other trees from the forest have updates evicted, they will be the older ones and will



4.5. Evaluation 75

Algorithm 6 AMTA’s single update eviction from the data structure C
1: S← stack(C), L← levels(C), l ← 1
2: removed_pair ← true, new_heads← {}
3: R0 = S(pop())
4: while removed_pair ∧ l ≤ |L| do
5: P← Ll,1
6: if removed_pair ← (P0 = �∨ P1 = �) then
7: Ll(remove_pairs(1))
8: P← Ll,1
9: if P0 6= �∧ P1 6= � then

10: new_heads(push(P))
11: end if
12: else
13: P0 ← �
14: end if
15: l ← l + 1
16: end while
17: C(update_stack(new_heads))
18: if removed_pair then
19: C(compute_right_result())
20: end if

Algorithm 7 AMTA Stack update. Updates S from new_heads in the data structure
C
1: S← stack(C),
2: while |new_heads| 6= 0 do
3: P← new_heads(pop())
4: S(push(monoid(P1, S(peek()))))
5: end while

be evicted completely. In terms of forest levels traversing, the eviction of elements

can be done by traversing the levels only once, similarly to LMTA; either a level is

completely removed (level composed exclusively with evicted trees), some elements

from the level are removed (level with a partially evicted tree), or there is no element

removal at all. The only precondition is to recompute the values from the leftmost

branch from the forest, in order to make them consistent, which is a O(log n) process.

4.5 Evaluation

The evaluation is divided into four experiments concerning different aspects from

the MTA Window Framework and state of the art general sliding window solutions.

The analysed algorithms correspond to implementations of Amortized MTA,

Log MTA, DABA and Naive window aggregation. DABA is the featured algorithm

from the state of the art SWAG framework [90], discussed in Section 4.3. All DABA

operations are O(1), but it does not feature a bulk eviction mechanism. Therefore,

performing an eviction of n elements is O(n), which is amortized with a higher

worst-case than AMTA. On the other hand, the Naive approach aggregates all the

elements in the window every time a new result has to be produced.



76
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

All algorithms use monoids as the aggregation mechanism, so we are evaluating

sliding window algorithms that do not need to have invertible aggregations. Addi-

tionally, we will use MTA’s WSP mechanism in all the algorithms, with an adapted

WSP enforcement. Both DABA and Naive will use the head element in the window

individually as the subsequence to compare in the WSP, because they don’t have

efficient bulk eviction mechanisms.

4.5.1 Implementation

All algorithms are implemented in Java 1.8 and executed as operators in an Apache

Storm based stream processing runtime called rapids. rapids processes all data units

as objects with a shared class and several data dimensions, meaning that updates

and partial results will be objects with multiple values rather than single scalar val-

ues. The purpose of running the algorithms in rapids rather than isolated is to show

how they perform in a production environment.

MTA Window Framework will be evaluated in two different implementations:

one where the algorithm’s data structure resides in pre-allocated local memory, and

another with the KVS-based data structure described in the previous sections. The

local memory implementations of MTA replaces each level’s Cache-based KVS in-

teraction mechanism by a simple CircularFifoQueue. They compare on equal terms

with DABA and Naive aggregation, as neither of them have a data structure adapted

to work with remote data stores. For these algorithms, the data structure is preal-

located and never reallocated, to avoid evaluating the latency added by performing

incremental memory allocation strategies or static resizing. Furthermore, DABA im-

plementation contains the optimizations described by its authors regarding caching

results (Cached DABA). They have been evaluated on its most favourable implemen-

tation for the rapids runtime. The MTA local memory implementations will be re-

ferred as Mem. LMTA and Mem. AMTA, while the memory decoupled versions will

be KVS LMTA and KVS AMTA.

All tested algorithm implementations include a WSP enforcement mechanism.

For Amortized MTA and Log MTA, the WSP enforcement algorithms are the ones

described in Section 4.4, including the O(log n) bulk eviction. DABA and Naive ag-

gregation WSP enforcement check the first elements in the window, one by one, as



4.5. Evaluation 77

the algorithms themselves do not have the capability to perform efficient bulk evic-

tions.

KVS LMTA and AMTA buffer up to 512 new elements from the data structure

before storing them to a distributed data store. Each level have a cache containing

up to 512 elements retrieved from the data store. When a level cache size is less than

256, it synchronizes with the data store to fill it up if possible, depending on the size

of the level. Moreover, the data store used in the experiments is Couchbase [42].

Couchbase is a KVS based on memcached [50], with a distributed LRU cache in

RAM. It prioritizes access in memory over disk for low-latency.

Naive window aggregation consists of a fixed size circular queue. When an up-

date is inserted or removed to the window, it is simply inserted or removed from the

queue. Querying the result aggregates all the updates contained in the queue, if it

does not have the result already cached.

4.5.2 Optimizations

On top of the main algorithms that were previously explained, some optimizations

were used for the evaluation. Those were not included in the description of the main

algorithms for the sake of simplicity.

Aggregation results are cached for all the algorithms evaluated. While a cached

result value is valid, no computation needs to be performed to produce a result.

After a new insertion or eviction from the window, the cached result is flagged as

invalid and the aggregation final result will need to be computed.

In Amortized MTA, both an update insertion and the WSP enforcement might

trigger a full Result Pair recomputation. It can happen that the arrival of a new up-

date triggers a full result pair recomputation twice, if both the insertion and WSP en-

forcement require so. In order to avoid such a situation, result pair recomputations

are requested by each stage, but they are executed only once after the operations

finished.

KVS LMTA and AMTA communication with the data store is done in the back-

ground when it is possible. Storing the buffered elements is always a background

operation. However, although updating a level cache is also performed by back-

ground threads, a cache miss will always require a synchronous update.



78
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

DABA contains all the optimizations defined in its corresponding papers (Cached

DABA).

4.5.3 Environment

The experiments were run in a cluster with 2-way Xeon E5-2630 (broadwell) v4

clocked at 2.20GHz nodes. Each one features 128GB of DDR4-2400 R ECC RAM.

All nodes were interconnected using a non-blocking 10GbE switching fabric. Al-

though an external NFS folder was mounted on the systems, it was not used as a

backend for the experiments. Instead, all data was stored locally using four 7.2K

rpm 2TB SATA HDDs per nodes, mounted as four independent volumes. Experi-

ments comprising Naive aggregation, DABA, Mem. AMTA and LMTA only used a

single node. KVS AMTA and LMTA logic was executed in a single node, but Couch-

base ran as a cluster in three extra nodes. Therefore, the contents of both algorithms

data structures were distributed between 4 nodes.

LISTING 4.2: Experiments’ monoid

function monoid(left , right){

Element result = new Element ();

result.count = left.count + right.count;

result.maxSize = right.maxSize;

return result;

}

LISTING 4.3: Experiments’ WSP

function wsp(total , old){

return total.count - old.count >= total.maxSize;

}

4.5.4 Experiment 1: Constant-sized window latency

In this experiment we analyze the average latency of inserting a new update and

generating a result with a constant-sized window. Its aim is to demonstrate the ef-

fective time complexity of each algorithm, and how they compare to each other. Each

measurement was performed for different window sizes by inserting one update to

the window, removing the oldest one, and retrieving the total aggregation. The user



4.5. Evaluation 79

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

20 25 210 215 220 225

KVS AMTA

KVS LMTA

Mem. AMTA

Mem. LMTA

DABA

N
ai

ve

T
im

e(
ns

)

Window Size (number of elements)

KVS AMTA
KVS LMTA

Mem. AMTA
Mem. LMTA

DABA
Naive

FIGURE 4.6: Average latency for constant-sized windows

defined operations for this experiment are the monoid in Listing 4.2 and the WSP in

Listing 4.3. Updates and partial results contain two dimensions: count and maxSize.

count is always 1 on an update inserted to the window, as it counts itself. maxSize

establishes the size of the window, and so it is used by the WSP to remove updates

from the window when this size is exceeded. The evaluated window sizes go from

1 to 225. Each iteration of the experiment starts by filling the window up to max-

Size. Once the window size is maxSize, update insertions are performed until all the

initial updates from the filling up stage are removed by the WSP, hence traversing

all the window possible states. The latencies shown in Figure 4.6 for each window

size correspond to the average latency of the process triggered by an update inser-

tion, including aggregation, WSP check and update removal. The chart is drawn in

a logarithmic scale for the x-axis for clarity.

As it can be observed, Naive aggregation initially has the lowest latency, but

it grows linearly with the window size and rapidly becoming the obvious worst-

performant algorithm in terms of time complexity.

As it was expected, AMTA and DABA show a constant time complexity be-

haviour. Being Mem. AMTA the algorithm with the lowest latency with a window

size 29 or greater, its distance with KVS AMTA is relatively low and affordable given

the memory usage benefits. The impact on storing the majority of the data in a

distributed data store is around 1 microsecond with the greater window sizes and

less than 500 nanoseconds compared to DABA. This is the result of keeping data



80
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

0

1

2

3

4

5

6

25-1 210-1 215-1 220-1

MTA

D
A

B
A

Naive

T
im

e 
(s

ec
on

ds
)

Eviction size

DABA
Naive

Mem. AMTA
Mem. LMTA
KVS AMTA
KVS LMTA

(A) General View

0

1

2

3

4

5

6

25-1 210-1 215-1 220-1

KVS LMTA

KVS A
M

TA

Mem. AMTA

Mem. LMTA

D
A

B
A

T
im

e 
(m

ill
is

ec
on

ds
)

Eviction size

DABA
Mem. AMTA
Mem. LMTA
KVS AMTA
KVS LMTA

(B) Detail of MTA: Y
scale in milliseconds

FIGURE 4.7: Window bulk eviction average latency, using different
y-axis scales to show different details

store communications asynchronous when possible. The same difference can also

be appreciated in the Log MTA implementations, which has a the expected O(log n)

behaviour.

This experiment proves that the theoretical complexity for constant-sized win-

dow is also shown in practice. Furthermore, the average AMTA latency for constant-

sized windows goes in line with the state of the art, and the data-computation decou-

pling performed in KVS AMTA and LMTA have marginal a effect for constant-sized

windows.

4.5.5 Experiment 2: Bulk eviction latency

This experiment evaluates the variable-sized windows scenario. In these cases, sev-

eral updates need to be evicted from the window triggered by a single new update

insertion. Using the monoid in Listing 4.2 and the WSP in Listing 4.3, we measured

the average latency of the enforceWSP operation for each algorithm. The windows

are initialized with the same initial size: 223 updates. A series of iterations evict from

1 to 223 − 1 updates per insertion, averaging its latencies for each removal size. The

results can be seen in Figure 4.7, divided in two different y-axis crops to visualize

distinct groups of results, one in seconds and the other in milliseconds. The x-axis

have a logarithmic scale.

Figure 4.7a is the global view and emphasizes DABA and Naive windows. Naive

aggregation bulk eviction latency is around 2 seconds constantly. All updates in the

Naive window are aggregated when generating a result. On the one hand, it needs



4.5. Evaluation 81

to aggregate all the updates checked by WSP after an insertion. On the other hand,

it also needs to aggregate the remaining elements to produce a result for the opera-

tion. Therefore, the number of aggregated elements remains constant. Furthermore,

DABA has a clear linear latency growth behaving worst than Naive when removing

sub-windows with size 220 − 1 or greater, and becoming an unfitted operation for

real-time stream processing.

Figure 4.7b reduces the y-axis scale by three orders of magnitude, and Naive win-

dow is now out of the scope of the chart. It focuses on comparing the four MTA solu-

tions and DABA. Bulk eviction latencies are very similar between the KVS MTA im-

plementations, growing logarithmically. KVS LMTA is a almost a millisecond faster

for most periods as its WSP enforcement process has the same complexity but fewer

stages, i.e. trying multiple single update evictions. In this scenario, they suffer from

the greatest impact of having the majority of the data in a distributed data store. The

consistent latency growth from KVS MTA compared to the Mem. MTA counterparts

is due to the data store query time, triggered by cache misses. However, the laten-

cies decrease significantly in the last iteration, because the data can be found locally

in the structure buffer. Maximum latency for both algorithms is around 5 millisec-

onds, 400 times less than Naive window running completely in local memory. The

effect of having most of the data structure in a KVS is noticeable by comparing them

with Mem. AMTA and LMTA. The Mem. MTA algorithms have the best time per-

formance: Mem. AMTA has 455 microseconds worst latency and Mem. LMTA 258

microseconds. Note that Mem. LMTA also performs better for the greater part of the

iterations than Mem. AMTA, like in the KVS scenario.

AMTA Framework shows a significant improvement compared to the state of

the art for bulk window evictions. For big window bulk evictions, even KVS MTA

behaves faster than the memory allocated DABA, while the Mem. MTA solutions is

faster throughout the execution. The latency/memory tradeoff offered by KVS MTA

is demonstrated later on.

4.5.6 Experiment 3: Stream analytics latency

The previous experiments show how the different algorithms behave in terms of

latency. In this experiment we evaluate how different real window aggregations



82
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

Naive KVS LMTA Local LMTA DABA KVS AMTA Local AMTA
Sum 3.69 · 108 14 320 10 341 4 288 6 253 4 163
Mean 3.26 · 108 14 027 10 378 4 389 6 111 4 033
G. Mean 2.83 · 108 15 267 11 166 4 795 6 198 4 183
Std. Dev. 3.5 · 108 15 439 12 934 4 880 6 131 3 864
Max 2 554 8 501 6 188 3 500 2 886 1 763
LIS 19 294 22 306 19 794 10 027 7 350 6 476

TABLE 4.2: Window latencies in nanoseconds with different monoids
and WSPs

behave with each algorithm. The analysed stream consists on 62 208 000 updates

monitoring computer memory usage, one reading per second for two years.

This stream has been subjected to different operations performed by the window

monoid: sum, mean, geometric mean, standard deviation, maximum and longest increas-

ing subsequence (LIS). The particular case of LIS is the most complex one, since it

measures multiple dimensions: initial timestamp, final timestamp, interval covered

by the subsequence, and the number of updates in the subsequence.

In terms of WSP, there is a general rule for all the operations: the window con-

tains at most 220 elements. This policy alone makes the window static-sized. How-

ever, max and LIS extend the size limit policy: max operation evicts the older subwin-

dow not containing the maximum value in the window, and LIS operation evicts the

older subwindow not containing any portion of the LIS. Updates older than a max

value or a LIS are never going to contain a future new result, it will only be found

within newer updates. Therefore, these updates are not necessary to perform the ag-

gregation and the memory they are using can be cleared. By doing that, an efficient

bulk eviction mechanism can reduce the total time of evictions performed during

the whole data stream analysis.

Table 4.2 shows the mean latency in nanoseconds for each operation and sliding

window algorithm. All operations run faster in Local AMTA than in the other al-

gorithms. In DABA they behave slower but similar to Local AMTA, except for max

and LIS, where the difference is more noteworthy. Both operations clearly benefit

from reducing the number of single evictions in both KVS and Local AMTA, getting

better performance than executed in DABA. These operations also perform well in

the Naive algorithm, being Naive the second best algorithm to run max. The cost of

an insertion in the Naive algorithm without evicting any update is as cheap as per-

forming a single monoid execution, while the evictions cost is very expensive but

constant for evicting any number of updates (Figure 4.7a).



4.5. Evaluation 83

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 3x107

 3.5x107

128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB 32GB

Window capacity (goal)

W
in

do
w

 s
iz

e

Allocated memory (MB)

KVS AMTA
KVS LMTA

Mem. AMTA
Mem. LMTA

DABA
Naive

FIGURE 4.8: Average window size reached per allocated memory
amount, for a 225 updates capacity.

In this experiment we proved that the performance and time-complexity exhib-

ited in the previous experiments has a relevant impact in different stream analytics

on real data. Furthermore, the experiment tests multiple distinctive monoids and

WSPs, analysing their impact rather than testing only the algorithms with a minimal

aggregation. It shows consistency with the theoretical complexity of each algorithm

and their tested performances.

4.5.7 Experiment 4: Memory requirements

This experiment evaluates the local memory requirements in order to run each slid-

ing window algorithm in rapids. As previously introduced, rapids is a stream pro-

cessing platform written in Java. For this experiment, we assigned different memory

heap sizes for the Java Virtual Machine (JVM), up to 32GB; and for each size, the slid-

ing window algorithms were executed individually, with capacity for 225 updates.

There are three possible outcomes for each execution: In the first one, the win-

dow is filled up and older updates start to be removed, showing a normal behavior.

In this case the window size reached is its capacity and the goal is met. In the second

one, rapids runs out of memory as the window requires more memory than the heap

provides, and the last window size measured is the reached window size. In the

third one, the computation becomes very slow because of the lack of memory and

the impact of the JVM Garbage Collector (GC). Given a timeout for update computa-

tions set to 5 seconds, when exceeded, the last window size measured is the reached



84
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  10  20  30  40  50

T
im

e(
µs

)

Number of count aggregations

Proportional Linear Growth
Linear Regression

FIGURE 4.9: Average latency for multiple aggregators

window size. This experiment was done using the same GC (Java 8 G1GC) as in the

rest of experiments.

Figure 4.8 shows the average window sizes for each tested heap size, for capac-

ities of 225 updates. Not appreciated in the chart but relevant, is that KVS AMTA

was able to insert 1 281 and 59 276 updates with heap sizes of 128MB and 256MB

respectively, while KVS LMTA was able to insert 1 459 and 66 171 updates. Mem.

AMTA, Mem. LMTA and DABA were able to insert updates from 256MB heap size

and greater, starting with 1 015, 877 and 1 120 updates each. Naive inserted elements

from 512MB heap size and greater, starting with 171 923 updates.

The reasons why the KVS algorithms AMTA and LMTA start inserting messages

with less memory is their reduced need of allocated memory for the empty data

structure, being O(log n) compared to O(n) in the other algorithms. Also notice that

KVS AMTA and LMTA reached the window capacity with 512MB of heap memory

behaving normally. This size is smaller by far compared to the heap sizes of the

other algorithms. Except for Naive that reached the window capacity with 16GB of

memory heap, the rest did not reached such capacity until memory heaps of 32GB.

This proves the memory-wise benefits of using the AMTA Framework by decou-

pling most of the data from the local memory aggregation. It also shows that KVS

LMTA has a slightly better performance in terms of memory usage than KVS AMTA,

in addition to the capacity to perform fast bulk evictions.



4.6. Conclusions 85

4.5.8 Experiment 5: Multi-dimensional aggregation

Finally, we evaluate the impact of operating over multi-dimensional data, by analyz-

ing how adding dimensions to data, and making the aggregations on each dimen-

sion share resources like the sliding window data structure and the WSP), affects the

average computation latency.

Streams can contain synchronous dimensions of data, and the window can ag-

gregate each one individually in the user defined monoid. E.g. dimensions like

wind speed, humidity, and temperature, coming from the same stream, might need

to be independently averaged with the same WSP. Here we ran a constant-size KVS

AMTA window with the WSP from Listing 4.3 and with maxSize = 215, then mea-

sured the latency of update insertions for a different number of stream dimensions.

The dimensions in the stream are maxSize and a k number of count dimensions (from

count1 to countk). We chose dimensions with simple aggregations in order to quan-

tify the overhead around them. Figure 4.9 shows: 1) the average latency for k from 1

to 50 as a barplot, 2) the linear regression on the collected results, highlighting the la-

tency growth, and 3) how the latency would sum if each dimension was sequentially

aggregated in different windows, repeating operations like data structure manage-

ment or WSP with their corresponding latencies. E.g., the latency from k = 1 being

4 895 nanoseconds, with k = 2 it would be 4 895× 2 = 9 790.

We can see that the linear regression grows slower than the proportional latency,

as the monoid computation is a small fraction of the average latency for k = 1.

The latency of a single count aggregation is quantified in 411 nanoseconds and 4, 158

nanoseconds are spent differently and shared between data dimensions. The latency

grows linearly with the number of dimensions, although the monoid’s impact would

be higher depending on the operators used.

4.6 Conclusions

In this chapter we have introduced the Monoid Tree Aggregator Window Frame-

work, a new framework for general sliding window aggregation that advances the

state of the art in several aspects: 1) it exhibits an amortized constant O(1) time-

complexity between updates, and for the worst-case scenario it exhibits logarithmic



86
Chapter 4. Constant-Time Sliding Window Framework with Reduced Memory

Footprint and Efficient Bulk Evictions

cost O(log n) ahead of the linear cost O(n) of the current existing solutions; 2) it

includes a general aggregation mechanism that uses binary associative operations,

and a general mechanism to enforce the Window Slide Policy (WSP) with amortized

cost O(1), both programmable by framework users; 3) it provides a mechanism to

automatically enforce the Window Slide Policy, which enforces efficient bulk data

evictions with cost O(log n) which, to our knowledge, is not supported by any other

existing framework; 4) it provides support for multi-dimensional data aggregation,

that can be also leveraged to implement the Window Slide Policies; and 5) it was

designed to support a scalable implementation backed by a distributed key/value

store instead of leveraging local memory only.

The framework has been presented through a detailed description of the main

algorithms involved in the manipulation of the critical data structures of the sliding

window. The framework has been implemented in two flavours: a local version in

which all data is stored in memory and a remote-store version that leverages a dis-

tributed Key-Value Store to keep most of the data. In both cases, the algorithms have

been implemented on top of Apache STORM, which has been used as the streaming

platform, providing a multi-tenant environment to build several sliding window ag-

gregations in parallel. A comprehensive evaluation has been conducted to proof the

efficiency of the implementation, and results show that the framework can manage

large windows (up to tens of millions of elements) efficiently, with a cost in the order

of a few microseconds to insert elements and slide the window. The experiments on

bulk data eviction show that the cost of removing large amounts of elements from

the window is extremely low, which is a critical requirement for implementing effi-

cient and reactive Window Slide Policies that drive the criteria to include or exclude

elements in the sliding window.



87

Chapter 5

Approximate Sliding Window

Framework with Error Control

5.1 Introduction

Data stream aggregations are a critical requirement for many data mining and mon-

itoring scenarios. Such scenarios, like telemetry data analysis in large data centers,

or advance analytics for the Internet of Things, often require continuous low-latency

aggregation of vast amounts of data and immediacy of the aggregation results in

order to produce fast on-site actuations. Processing data close to the source also

becomes an important factor when data flow is expensive due to high volume of

data and poor connectivity. The environments in which the data analytics need to

be computed are not always favorable. Low power consuming hardware, limited

resources and unreliable internet access are usual conditions for Smart Cities and

Fog Computing [32].

As we saw in Chapter 4, due to the unbound nature of streams, sliding windows

are a convenient approach to process aggregations on data streams. However, the

size of the contents in a window can still be considerably big and this can have a

big impact in terms of performance. Therefore, sliding windows ideally also need

to: a) have low latency and low time complexity, b) work with low memory re-

sources and unreliable connectivity. Chapter 4 introduced Amortized Monoid Tree

Aggregator (AMTA) as an amortized constant-time sliding window framework with



88 Chapter 5. Approximate Sliding Window Framework with Error Control

its contents distributed in a Key-Value Store (KVS) instead of residing in local mem-

ory. AMTA takes advance of incremental aggregation algorithms optimized for dis-

tributed fault-tolerance data replication, in order to free the local memory from the

window data-structure. The aggregation functions can be provided by the user with

a MapReduce-like programing model, in which the reduce function is an associative

operation (monoid). However, when the connectivity to the KVS is unreliable, the

window aggregation will either fail or its data-structure will indefinitely grow in lo-

cal memory. On the other hand, when the connectivity is reliable, the data-structure

might still be consuming a substantial amount of shared resources from the KVS

cluster that could be used for multiple additional aggregations.

In this chapter we introduce the Approximate and Amortized Monoid Tree Ag-

gregator (A2MTA) general window aggregation framework. A2MTA is an approxi-

mate aggregation framework that benefits from the work in AMTA as to: 1. Amor-

tized constant O(1) time-complexity between updates, while logarithmic O(log(n))

in the worst-case scenario. 2. Distributed and replicated data-structure in a KVS,

freeing local resources and facilitating a fault-tolerance system. 3. Only O(log(n)) of

the data in the data-structure sits in local memory. 4. User-programmable window

aggregation mechanism and window slide policy. 5. Bulk update evictions triggered

by the window slide policy are considered atomic operations and have a worst-case

O(log(n)) cost.

On top of AMTA, A2MTA provides a set of mechanisms that reduce considerably

the size of the data-structure and the computation time, in exchange of a degree of

error in the aggregation results. In other words, provides an approximate computing

framework for scalable sliding window aggregations. In this scenario, the granular-

ity in a sliding window contents is divided into multiple aggregated updates, or

update buckets, instead of individual stream updates. For instance, in a summation

window, we keep only update buckets containing the summation of k updates in-

stead of k separated updates. When evicting stream updates from the window, the

minimum unit to be evicted are whole buckets, even if only a portion of the bucket

needs to be evicted. More specifically and within a defined confidence level, A2MTA

defines buckets by:



5.2. MTA Enhancements 89

• Aggregation error control. The aggregation in a bucket is used to estimate its

impact in the window aggregation result and contain it. In cases in which en-

forcing a level of error is necessary to make buckets grow, that error is bounded

by the user.

• Size of predicted bulk evictions. Frequent and highly probable evictions of at

least k updates will entail buckets with k aggregated updates.

• Maximum number of buckets, as an ultimate memory resources restriction

(constant O(1) size). Updates are spread out among buckets to distribute the

weight of the window in order to comply with the restriction.

• Network availability. The number of buckets in local memory will be limited.

Therefore, when it is not possible to send them to a KVS, the buckets need to

aggregate more updates. This can done by dynamically reducing the maxi-

mum number of buckets.

The rest of the chapter is structured as follows: Section 5.3 defines the Approximate

AMTA Framework; Section 5.4 provides the results of an experimental evaluation

of the Approximate AMTA Framework; Section 5.5 discusses the state of the art in

the fields of both approximate computing and efficient sliding windows; Finally,

Section 5.6 summarizes the conclusions extracted from this work.

5.2 MTA Enhancements

The work in this chapter is strongly bound to AMTA, which can be found in Chap-

ter 4. After finalizing AMTA related contributions and its evaluation, we spend some

efforts to add some improvements to its base algorithms and mechanisms. These

enhancements are not part of the main contribution presented in this chapter. How-

ever they are introduced here, because they were used in the evaluation performed

in Section 5.4, but not implemented for Chapter 4 and its evaluation. In this section

we summarize the aspects of AMTA that are affected, and introduce the additional

features in the Window Slide Policy definition and its enforcement in bulk evictions.



90 Chapter 5. Approximate Sliding Window Framework with Error Control

5.2.1 Window Slide Policy Definition

Like the monoid aggregation operation, the Window Slide Policy is a user-programmable

condition with an specific structure. WSP will be divided into two parts, and at least

one needs to be defined by the user:

Window Invariant. It is a function that has a window result candidate as an input,

and it evaluates if the result candidate is valid. A valid window result candidate

does not require any more evictions. If it is not valid, an undisclosed amount of

updates need to be evicted to make it valid. For example, if a window result contains

the number of aggregated stream updates in the field count, the number of stream

updates in the window could be limited to 1 000 with this invariant:

window.count ≤ 1 000

Eviction Invariant. WSP can additionally be defined as a comparison between

an aggregated sequence of values considered to be evicted, the window result be-

fore the eviction and the window result after the eviction, focusing this time in the

eviction and its effect on the window. If the invariant is valid, at least the eviction

candidate needs to be evicted from the window. For instance, a sliding window cal-

culating the maximum value within 1 000 updates does not always need to keep the

1 000 updates inside the window. The two requirements are to aggregate at most

1 000 updates and that the oldest update in the window has the maximum value. In

order to do that, the user would use the previous example’s window invariant and

the following eviction invariant:

eviction_candidate.max ≤ post_eviction_window.max

This eviction invariant triggers the eviction of all the updates older than the cur-

rent max value. This updates will not affect the aggregation result in the future and

their eviction both frees resources and boosts performance of future aggregations.

A window will not need any eviction if its result satisfies the window invariant,

and if the oldest update does not satisfy the eviction invariant as eviction candi-

date. This WSP definition mechanism, based on the aggregation contents, enables

the user to define from the most basic WSP to complex and dynamic scenarios using

sophisticated aggregations.



5.2. MTA Enhancements 91

5.2.2 Bulk Eviction

The enforcement of a WSP finds the greatest window that satisfies the window in-

variant with the greatest eviction candidate that satisfies the eviction invariant, using

the current window contents. WSP’s window invariant and eviction invariant have

a set of rules for increasing or decreasing the size of evictions:

• Window invariant.

– When satisfied, any smaller window result candidate is assumed to sat-

isfy the invariant, but bigger window candidates might also satisfy it.

– When not satisfied, the window candidate needs to evict more updates.

• Eviction invariant.

– When satisfied, any smaller eviction candidate is assumed to satisfy the

invariant, but bigger eviction candidates might also satisfy it.

– When not satisfied, the eviction candidate needs to be smaller.

The method used to enforce this set of rules can be found in Algorithm 8. It is

divided in three phases: find the top level to prune, remove levels of exclusive to

evicted trees, and remove elements from levels with a partially evicted tree. It does

not only differ from the algorithm used in AMTA by using a more complete WSP,

but also by initially searching the top level to prune instead of either doing single

evictions or root-to-leaf evictions.

Algorithm 8 is a formalization of this method. wc, w, ec and e stand for window

candidate, window, eviction candidate and eviction.

The loop from line 3 to line 13 uses the eviction stack to calculate the window

candidate and finds the highest level (l) that needs to be pruned. From line 14 to line

30, it removes top levels containing exclusively evicted trees. result_pairs_stack()

builds a stack containing the data structure result pairs after evicting each tree: the

top result pair in the stack is the current result pair, and the following ones aggregate

one tree less each. These result pairs are used to This operation is O(log n) since it

consists on incrementally aggregating the root pairs of each tree, see Algorithm 9.

From line 31 to the end of the algorithm, it removes the evicted trees from each

level and prunes the partially evicted tree.



92 Chapter 5. Approximate Sliding Window Framework with Error Control

Algorithm 8 A2MTA bulk eviction in data structure C
1: L← levels(C), S← stack(C), R getsresult_pair(C)
2: wc, w, ec, e← �, r ← monoid(R0, R1), hop← 0
3: for l = 1, ..., |L| do
4: Ll(recompute_ f irst())
5: wc← monoid(S(peek)), R1)
6: ec← Ll,0
7: if window_invariant(wc) ∧ ¬eviction_invariant(ec, wc, r) then
8: l ← l − 1
9: w← wc

10: break
11: end if
12: S(pop())
13: end for
14: if l = |L| then
15: results_stack← result_pairs_stack(C)
16: for m = l, ..., 1 do
17: R← results_stack(peek())
18: wc← R1
19: ec← monoid(e, R0)
20: if ¬window_invariant(wc) ∨ eviction_invariant(ec, wc, r) then
21: results_stack(pop())
22: e← ec
23: hop← |Ll |)
24: Ll(remove())
25: else
26: w← wc
27: break
28: end if
29: end for
30: end if
31: if hop = 0 then
32: P← Ll,0
33: P0 ← �
34: hop← 1
35: end if
36: for n = m, ..., 1 do
37: P← Ll,0
38: pairs_hop← 2 · hop
39: if P0 = � then hop← hop− 1 end if
40: Ln(remove_pairs(pairs_hop))
41: if P0 6= � then
42: wc← monoid(P1, w)
43: ec← monoid(e, P0)
44: if ¬window_invariant(wc) ∨ eviction_invariant(ec, wc, r) then
45: e← ec
46: hop← hop + 1
47: P0 ← �
48: else
49: w← wc
50: end if
51: end if
52: end for

Algorithm 9 result_pairs_stack method in data structure C
1: results_stack← {}
2: accum← �
3: for l = 1, ..., |L| do
4: P← Ll,|Ll |
5: p← monoid(P0, P1)
6: results_stack(push({p, accum}))
7: accum← monoid(p, accum)
8: end for



5.3. Approximate AMTA 93

5.3 Approximate AMTA

Approximate computing is a widely used paradigm in data analytics algorithms that

can drastically reduce the needed resources in order to obtain a result. It relies on

the degree of tolerance a system may have to some loss of quality or optimality in

the computation result.

In this section we introduce Approximate AMTA (A2MTA), a sliding window

framework that assumes the AMTA, data-structure, based on binary trees. The

leaves level of a tree contains the values inserted to the window, while the rest of the

tree levels contain partial incremental aggregations. Depth-wise, the closer a node is

to the root, the more updates it aggregates. Breadth-wise, the closer a tree node is to

the leftmost branch, the older the aggregated updates are. The aggregation functions

are monoids: binary associative functions with a neutral element and function inputs

and output from the same set; i.e. + monoid is a binary and associative function, its

neutral element is 0 and integer inputs result in integer outputs. This data-structure

has been demonstrated to keep its amortized constant-time, efficient bulk evictions

and enable horizontal scalability with a distributed data store.

In A2MTA we propose to only keep partial aggregations from consecutive up-

dates, called buckets, building the window as a histogram of updates. For example,

a count window with the updates [1, 1, 1, 1] could be [2, 2] in A2MTA. The required

memory can be drastically reduced with this method, and we will prove that the

performance is also improved. However, the aggregation result might not be accu-

rate due to having effectively too many or too few updates in the window, due to

the coarse granularity given by the buckets.

Consider the scenario pictured in Figure 5.1, in which we have a static size sliding

window that performs an update count using buckets. Its WSP limits the number

of counted updates up to 10. Since it is a count operation, all the input updates will

have value 1 and the result should always be 10. The window requires to evict one

update for every insertion. However, once the window result reaches 11, a bucket

with value 3 is evicted. The result is finally 8, instead of 10, generating a result error

of 2. In other words, any bucket eviction policy may turn out to result in: a false

positive bucket, by keeping a bucket aggregating updates that need to be evicted; a



94 Chapter 5. Approximate Sliding Window Framework with Error Control

FIGURE 5.1: Error generated by stream update buckets.
Monoid: count; WSP: count > 10

false negative bucket, by removing a bucket aggregating updates that should be kept

in the window. Note that removing a false positive bucket would result in a false

negative bucket, and vice versa.

In order to mitigate the effects of false positive/negative bucket error, the pro-

posed methods in this section decide whether a new update must start its own

bucket in the window, or it must be aggregated to the newer existing bucket. This is

done by either: controlling the result error, keeping a reduced number of inaccurate

results, or prioritizing a maximum number of elements in the data-structure.

Different kinds of aggregations need for specific approaches to adjust the error.

Hirzel et al. [57] classify the types of window aggregations into five groups: Sum-

like, max-like, collect-like, median-like and sketch-like. Sum-like aggregations compute

values with invertible functions and include aggregations such as sum, count and

average. This kind of aggregation have a single neutral element (i.e. 0 for a sum), and

therefore the results tend to vary. Max-like aggregations generally make a selection

of a non-ranked input update, leaving the rest of the updates without any effect on

the result. They are not invertible and include algorithms like max, min, argMax,

argMin and maxCount. Neutral elements in a max aggregation, for example, would



5.3. Approximate AMTA 95

be all values below the current result, therefore there is a high probability that a new

update insertion does not affect the result.

Collect-like and median-like aggregation algorithms have collections of values as

the monoid set instead of a single one, and therefore the result error can not be quan-

tified with a single numerical value. Sketch-like algorithms are approximate comput-

ing algorithms by themselves, such as HyperLogLog or Bloom filter, and therefore

will not be considered in this section either.

On the one hand, we propose two approximate computing methods with result

error control, one specific for sum-like aggregation algorithms and another for max-

like ones: Sum-like histogram and Max-like histogram. On the other hand, we propose

two more methods that can be combined with the previous ones: Hop histogram,

which focus aggregating frequent bulk evictions into buckets, and Maximum size en-

forcement, which forces the window data-structure to have a deterministic maximum

number of buckets while keeping a uniform bucket size.

5.3.1 Sum-like histogram

Since sum-like aggregations only have a single neutral element, its result change

whenever a non-neutral value (all except for one) is inserted or evicted. That makes

this kind of aggregation improbable to keep without any error while keeping the

values in aggregated buckets. The goal of value error control for sum-like aggrega-

tions is to make buckets grow while keeping the aggregation error under the error

tolerance defined by the user.

The bucket error can be calculated as the maximum between its false positive and

false negative bucket errors. The false positive bucket error is the maximum absolute

aggregation of the oldest updates aggregated in a bucket, not including the single

newest one. On the contrary, the false negative bucket error is the maximum absolute

aggregation of the newer updates aggregated in a bucket, not including the single

oldest one. For example, if a bucket contains an aggregation of the sequence of

updates [1, 1,−1,−1], the false positive error is 1 + 1 = 2, while the false negative

error is −1 − 1 = −2. In this example, both errors have the maximum absolute

error value: 2. In case that we want to control the error of multiple dimensions of



96 Chapter 5. Approximate Sliding Window Framework with Error Control

the aggregation (i.e. sum and count in an average aggregation), this process can be

applied to each dimension.

The error can be constrained by the user either relatively to the result or as an

absolute error. When the aggregation requires to calculate the error relative to the

result, we need a window result prediction interval. The extremes of the prediction

interval will be used to estimate the maximum error the bucket can generate when

the bucket becomes a potential false positive or negative bucket. We estimate the

aggregation result with a prediction interval using a sample of the previous results

and assuming the central limit theorem as follows:(
x̄− t∗s

√
1 +

1
n

, x̄ + t∗s

√
1 +

1
n

)
Where x̄ is the sample mean, s is the sample’s standard deviation, and t∗ is the two

tailed percentage point of Student’s t distribution given a specific confidence level

with n − 1 degrees of freedom. We defined the sample as, at least, all the results

generated by each update currently aggregated in the window, with a minimum of

30 elements.

The use of this method can be generalized to any kind of aggregation in terms of

controlling the error on the number of elements in the window, instead of controlling

the actual result of the window. This way, even non-numerical aggregations can

benefit from A2MTA, getting an approximate result.

5.3.2 Max-like histogram

In max-like aggregations (or extreme value aggregations) only a subset of the com-

puted values have any influence on the result. The rest of the elements are irrelevant

and the aggregation would provide the same result if they were ignored. The goal

of this method is not to discard the irrelevant updates, but to aggregate all the con-

secutive ones in the same bucket.

For instance, in the window [3, 1] with monoid max, ’1’ might be the result of

the window when ’3’ gets evicted. However, in the window [3, 1, 2], the update ’1’

will never affect the result in this window. When the update ’3’ gets evicted from

the window, the result will be at least ’2’. If we knew that the window results would

be between ’3’ and ’2’, ’1’ could have been aggregated in the same bucket as ’3’, and



5.3. Approximate AMTA 97

there would not have been any difference in the result. In case that there were not

other dimensions aggregated in the window, the update could even be discarded.

A2MTA estimates a range of value candidates to become the result in the win-

dow. If an inserted update is found within this range, it will generate a new bucket.

The update will be aggregated to the last bucket otherwise. There is no error con-

straint specified by the user to be considered, but the aim is to mainly produce ac-

curate results. The range result candidates is estimated using extreme value the-

ory [40].

The Fisher-Tippett [49] theorem states that the cumulative distribution function

from a sample of size n with independent and identically distributed random vari-

ables converge to the Generalized Extreme Value (GEV) distribution, as n → ∞.

There are three parameters for the GEV distribution: µ for the location, σ for the

scale, and ξ for the shape. By this theorem, it is possible to estimate a fitting GEV

distribution given a sample of extreme values. A2MTA uses Block Maxima (BM) [53]

and the GEV probability-weighted moments (PWM) estimation method [59, 46].

The main reason to use PWM rather than Maximum Likelihood Estimation (MLE)

method is because it performs better with small samples, and our goal is to keep

the minimum amount of data possible. From the estimated GEV we will be able to

extract the estimated boundaries for the extreme values.

Following the BM method, the monoid is applied to the inserted updates in

blocks of an specified size. The result of each aggregated block will be added to

the sample of extreme values. The sample size has been set to 30, and the block size

is defined by the user. With this sample a fitting GEV distribution is computed using

PWM. From there, the upper and lower bounds can be extracted. If ξ ≥ 0, then the

upper bound that we will consider will be a GEV quantile (e.g. 0.99). Otherwise, if

ξ ≤ 0 then the lower bound considered will be the remaining quantile (e.g. 0.01).

Deciding an optimal block size is out of the scope of this work, and therefore

is left as a user decision, although in many situations the block periods can appear

naturally [79, 35, 97]. Small block sizes would compute wide GEV boundaries and,

therefore, the rate of bucket aggregations would be very low. Also, having small

blocks causes a higher ratio of more costly GEV fitting computation. On the other

hand, big block sizes would cause a biased GEV fitting computation that would



98 Chapter 5. Approximate Sliding Window Framework with Error Control

translate to multiple inaccurate results. In Section 5.4 we compare how different

block sizes behave.

This method is compatible with a window eviction policy performing bulk evic-

tions of all the updates that precede the update that brings the window result. As

it was evaluated in AMTA’s article, this kind of eviction policy significantly im-

proves time performance as it reduces average window size. Furthermore, the use

of buckets improves these figures and reduce the number of inserted elements in the

data-structure and in the KVS.

5.3.3 Hop histogram

Consider sliding windows programmed to evict multiple updates each time. Usu-

ally referred as hopping window, they remove constant amounts of updates from the

window. For example a hopping window could remove 500 updates when the size

of the window is 1500. In such a situation, if the updates waiting to be evicted were

aggregated in a single bucket, then the size of the window would be reduced and

there would not be an effective error in the result. In addition, if we managed to

aggregate all the future evictions in the window into buckets, the window size re-

duction would be vast and produce no error at all. From the previous example, if

we aggregated every 500 in a single bucket, we would have only three buckets in

memory instead of 1500 updates.

However, AMTA eviction mechanism gives freedom to program dynamic sized

windows with evictions sizes changing over time. That can create scenarios in which

there is some variability between bulk evictions. We propose a method that aggre-

gates the inserted updates into buckets within a predicted eviction size. We estimate

the size of the evictions with a prediction interval using a sample of the previous

eviction sizes and assuming the central limit theorem, same as in Section 5.3.1. We

defined the sample as, at least, all the evictions that fit in the current window, with

a minimum of 30 elements.

The prediction interval is used to predict sequences in the window with high

probability to include future eviction boundaries. Figure 5.2 shows a window where

every square represents an update in a bucket, with eviction size prediction interval

of 6± 1 so far. As it can be seen, the window updates are divided into sequences



5.3. Approximate AMTA 99

FIGURE 5.2: Bulk eviction buckets. Predicted eviction: 6± 1

containing as many elements as the mean eviction size. The number of elements in

the probable eviction boundaries (prediction interval) cover the updates around the

mean eviction size. These updates will not be aggregated in a bulk eviction bucket,

avoiding introducing error to the window according to the prediction. However

they will be aggregated using criteria from other methods. That leaves a block of

four updates that are predicted to be evicted together in the same bulk eviction. As

we saw previously, the size error in a window is generated by the false positive

and false negative bucket errors. Considering this, the complete aggregation of the

probable bulk eviction generates an error if it becomes the last evicted bucket or

oldest bucket in the window, even if the estimation was correct. In this situation

we can not know if the eviction was performed as predicted or the prediction was

actually incorrect. In order to avoid the error after a successfully predicted eviction,

the bucket needs to contain all the updates from the probable bulk eviction block but

the ones in its boundaries, one from each side.

In case that the prediction actually failed, it should be reflected in the statistics

from the eviction size sample. Otherwise the prediction interval would be biased.

Therefore, the worst-case eviction size is added to the statistics sample.

5.3.4 Constrained footprint enforcement

A2MTA can be executed in environments with resource constraints that need to be

taken into account, either because it is running on a low-resources environment or

because it is a shared multi-tenant environment. Particularly, A2MTA needs a de-

terministic limit of its data-structure size and the network traffic a distributed data



100 Chapter 5. Approximate Sliding Window Framework with Error Control

FIGURE 5.3: A2MTA data-structure constrained with 6 leaves

store. The A2MTA maximum size enforcement method uses two mechanisms in or-

der to limit the data-structure size. The first mechanism is level eviction. A2MTA

data-structure is based on trees, in which the leaves level contain the buckets, and

the rest of the tree levels have aggregations from the nodes on the previous level.

Each level is a queue with level nodes and the levels are found in a circular queue.

When the number of elements in the leaves level is going to be exceeded, the level

is marked as empty and moved from the front to the back of the circular queue.

Therefore, the new leaves level contains the previous leaves aggregated into bigger

buckets.

Figure 5.3 shows the level eviction mechanism applied to an example A2MTA

data-structure. From the constant-time AMTA data-structure, the nodes in level 1 are

the parents that aggregate the initial four elements from level 0. The size constraint

in this window is of 6 leaves (level 0). After inserting the update ’1’, the window

would have 7 leaves, exceeding the limit set. Before inserting the update, the level 1

is shifted to the position 0 and the previous leaves level is now in the position 1 and

marked as empty. Then, the last pair in the previous leaves level is aggregated (’3’)

and inserted to level 0, and its aggregation propagated upwards generating a new

root ’6’. Now the window structure is consistent and contains the same aggregation

as before starting the insertion, but with an evenly distributed growth of the buckets

sizes. The new update is now inserted to the data-structure without exceeding the

size limit.

The second mechanism for constraining the window size consist of aggregating

updates into buckets with a calculated size continuously after the first level evic-

tion. This mechanism has three main goals: keep uniformity in terms of bucket size

and therefore, have a uniform update count error; reduce the number of element in-

sertion operation in the data-structure, which can be more costly than inserting the

update to the bucket; reduce the level evictions, and use them as a last resort. The



5.4. Evaluation 101

max size of the currently building buckets is calculated as: d count
constrainte, where count

is the number of aggregated updates in the window and constraint is the max num-

ber of buckets in the sliding windows. While the number of updates in the window

changes, the bucket size increases or decreases with it. This mechanisms reduces

the number of elements inserted to the data-structure, by aggregating new updates

in existing elements. By reducing insertions, the number of nodes transferred to

the AMTA distributed data store is also reduced. Therefore, when the bandwidth

to the distributed data store and local memory are too low, the maximum window

size can be reduced in order to reduce the data traffic in exchange for aggregation

granularity.

Another advantage of having a deterministic data-structure size regardless of the

number of updates aggregated is that the time and size complexities are effectively

constant in the worst case.

5.4 Evaluation

The evaluation of Approximate AMTA analyzes how it behaves in terms of result

accuracy, time performance and footprint. The the data-structure footprint affects

both the memory usage and the network traffic. Reducing the data-structure foot-

print implies a slower growing window and less elements sent to the distributed

data store or KVS.

This section is divided into two main parts. The first one analyzes the effect

of different values in the user-configurable parameters of each A2MTA method ap-

plied to its respective use case. Furthermore, the maximum size enforcement will

be tested on the three scenarios: sum-like aggregation, max-like aggregation and

hopping window. The second part is focused on the time performance impact of

the three scenario-specific methods, compared to the state-of-the-art sliding window

framework with best performance to our knowledge.

The data set used as a stream in the following experiments contains two years

of a server’s RAM memory usage monitoring in KB, where the available memory is

64GB. There is one memory usage update per second, which adds up to 62 208 000



102 Chapter 5. Approximate Sliding Window Framework with Error Control

updates. The operation performed in the experiments and its eviction policy will dif-

fer between the experiments due to the nature of the different scenarios considered,

but they all share a maximum of 2 592 000 aggregated updates, which corresponds

to a month worth of updates.

5.4.1 Implementation

All methods are implemented in Java 1.8 and executed in the A2MTA operator in

an Apache Storm based stream processing runtime called rapids. rapids processes all

data units as objects with a shared class and several data dimensions, meaning that

updates and partial results will be objects with multiple values rather than single

scalar values. The purpose of running the algorithms in rapids rather than isolated

is to show how they perform in a production environment.

A2MTA will buffer up to 512 buckets from the data-structure before storing them

to a distributed data store. Moreover, the data store used in the experiments is

Couchbase [42]. Couchbase is a KVS based on memcached [50], with a distributed

LRU cache in RAM. It prioritizes access in memory over disk for low-latency.

5.4.2 Environment

The experiments were run in a cluster with 2-way Xeon E5-2630 (Broadwell) v4

clocked at 2.20GHz nodes. Each one features 128GB of DDR4-2400 R ECC RAM.

All nodes were interconnected using a non-blocking 10GbE switching fabric. Al-

though an external NFS folder was mounted on the systems, it was not used as a

backend for the experiments. Instead, all data was stored locally using four 7.2K

rpm 2TB SATA HDDs per nodes, mounted as four independent volumes. The logic

was executed in a single node, but Couchbase ran as a cluster in three extra nodes.

Therefore, the contents of the data-structure were distributed between 4 nodes.

5.4.3 Experiment 1: Parameters

On this first experiment we tested different user-configurable parameter values in

each bucket aggregation method, for the different considered aggregation scenarios.



5.4. Evaluation 103

Footprint
Max error Sum-like histogram

10−4% 44.02%
10−3% 6.591%
10−2% 8.335 · 10−1%
10−1% 9.9 · 10−2%

1% 1.022 · 10−2%
10% 9.854 · 10−4%

Footprint
Block size Max-like histogram

10 91.33%
102 91.1%
103 95.49%
104 60.97%
105 4.394%
106 19.88%

Footprint
Parameter Hop histogram

× 5.229 · 10−1%

TABLE 5.1: Scenario-specific bucket aggregation method’s footprint
relative to AMTA’s

Footprint
Max size Sum-like aggregation Max-like aggregation Hopping window

106 33.33% 42.98% 38.56%
105 3.846% 11.75% 4.583%
104 3.845 · 10−1% 2.189% 4.679 · 10−1%
103 3.858 · 10−2% 3.368 · 10−1% 4.69 · 10−2%
100 3.864 · 10−3% 3.676 · 10−2% 4.7 · 10−3%

10 4.018 · 10−4% 3.298 · 10−3% 4.9 · 10−4%

TABLE 5.2: Constrained A2MTA footprint relative to AMTA’s

Three scenarios were considered: sum-like aggregation, max-like aggregation and

hopping window.

Sum-like aggregation computes the average of the monitored memory values

in a static-size window of 2 592 000 updates. This scenario is designed to evaluate

the sum-like histogram method’s parameters. The sum-like histogram method is

configured with a 95% confidence, and it controls two dimensions from the update:

the sum value and the count of elements.

Max-like aggregation extracts the maximum value from a window of 2 592 000

update. A relevant consideration about this scenario is that the eviction policy keeps

the current maximum update as the oldest one in the window. This is applied in all

cases, including the accurate aggregation, as it improves the computation time and

the memory footprint. Also, only when the max update changes, a new result is

produced. This scenario is used to evaluate the max-like histogram method’s pa-

rameters. The max-like histogram method is configured with a 95% confidence.

Hopping window will reach 2 592 000 and then perform a bulk eviction with a

random number updates with mean 864 000 and standard deviation 100. The ag-

gregation performed is also an average of the monitored memory values. The hop

histogram method is also configured with a 95% confidence.

For each scenario we also evaluated the behavior of a constrained footprint win-

dow. The evaluated parameter values were incremented exponentially in order to



104 Chapter 5. Approximate Sliding Window Framework with Error Control

 0

 20

 40

 60

 80

 100

10-8 10-6 10-4 10-2 100 102

4.4%0.84%0.098%0.0098%0.00095%0.000077%

R
es

ul
ts

 %

Error %

10-4% max error
10-3% max error
0.01% max error
0.1% max error

1% max error
10% max error

FIGURE 5.4: Effective error in a sum-like histogram

get a clear sense of its impact.

The impact of the parameters is evaluated in terms of the effective error pro-

duced on the aggregation when compared to the accurate aggregation, and the gen-

erated footprint using the accurate aggregation footprint as baseline. The error will

be shown as cumulative distribution. The footprint is calculated as the number of

new elements generated in the MTA data-structure. This number affects the mem-

ory usage, but also network traffic to the KVS; 1% smaller footprint means using 1%

less of memory, but also 1% less of messages exchanged with the KVS.

Sum-like aggregation

In Figure 5.4 we can see the error cumulative distribution of the sum-like histogram,

with a max error parameter from 10−4% to 10%. The x-axis has a log-scale for read-

ability. The most noticeable outcome from this figure is that, indeed, the max error

defined by the user has not been exceed. Particularly, 10−4% has a 45% of accurate

results. However, in Table 5.1, where it shows the footprint of each parameter, we

can see that the same max error has also big footprint (half of A2MTA’s) compared

to the rest values. As it can be seen, footprint of the window grows linearly as the

specified max error decreases.

For the constrained footprint sum-like window, in Figure 5.5 and Table 5.2, we



5.4. Evaluation 105

 0

 20

 40

 60

 80

 100

10-8 10-6 10-4 10-2 100 102

11.6%2.26%0.38%0.028%0.0024%0.00016%

R
es

ul
ts

 %

Error %

106 max size
105 max size
104 max size
103 max size
100 max size
10 max size

FIGURE 5.5: Effective error in a constrained sum-like window

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

R
es

ul
ts

 %

Error %

101 block size
104 block size
105 block size
106 block size

 98

 99

 100

 0  2  4  6  8  10  12  14

FIGURE 5.6: Effective error in a max-like histogram



106 Chapter 5. Approximate Sliding Window Framework with Error Control

 86

 88

 90

 92

 94

 96

 98

 100

 0  2  4  6  8  10  12  14

R
es

ul
ts

 %

Error %

106 max size
105 max size
104 max size
103 max size
100 max size
10 max size

 86

 88

 90

 92

 0  0.002  0.004

FIGURE 5.7: Effective error in a constrained max-like window

 0

 20

 40

 60

 80

 100

10-5 10-4 10-3 10-2 10-1 100 101

R
es

ul
ts

 %

Error %

106 max size
105 max size
104 max size
103 max size
100 max size
10 max size

FIGURE 5.8: Effective error in a constrained hopping window



5.4. Evaluation 107

chose max size values that generate the same count aggregation error as in the sum-

like histogram. Since the window have a static size in both cases, the accurate count

value is always 2 592 000. In order to generate a maximum error of 10−4%, we need

to limit its size to 106 buckets. We can see that the constrained footprint shows a

similar trend to the sum-like histogram, but with smaller footprints. However, as

there is no error control (needed for the sum aggregation), in Figure 5.5 can be seen

that the error is greater in the constrained footprint window in all cases. Also fewer

results have accurate results, with parameters from 103 to 10 notably having none.

Max-like aggregation

Figure 5.6 shows the max-like histogram’s error with different block sizes. As we

expected, the a block size too big (106) makes a biased estimation of the GEV dis-

tribution and ends up generating results with elevated error, and low number of

accurate results. The rest of the block sizes have more than 98% of accurate results,

and maximum errors from none to 12%. In the figure, block sizes 102 and 103 can

not be found because all their results are accurate. However, in Table 5.1 we can see

that small block sizes generate very little footprint reduction. In contrast to sum-like

histogram which choosing the parameter is a matter of priorities, in this case we

have a clear most convenient parameter: 105, which covers a sample of 3 000 000 ele-

ments. It is the best managing the trend changes on the data values. It has a 4.583%

of footprint, 98.55% of accurate results and a maximum error of 12.51%.

On the other hand, in Figure 5.7 we can see the behavior of a constrained max-

like window, with different max number of buckets. We can see that even though the

max errors are similar to the max-like histogram and the number of accurate results

are acceptable (between 87.11% and 91%), with similar footprints as the optimal

parameter in the max-like histogram experiment we get a lower number of accurate

results. With a footprint of 11.75% (Table 5.2) we get 88.92% of accurate results,

while with 2.189% footprint the number of accurate results is 88.73%. Therefore, the

estimation of the GEV distribution has to predict extreme values has a clear effect on

the error control and the footprint. It is worth noticing that the footprint is one order

of magnitude higher than Sum-like aggregation, and that is due to the bulk evictions

done when the maximum value is between the newer updates in the window.



108 Chapter 5. Approximate Sliding Window Framework with Error Control

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  1  2  3  4  5  6  7  8  9  10  11  12  13

R
es

ul
ts

 %

Time (microseconds)

AMTA
A2MTA

FIGURE 5.9: Sum-like histogram: 0.1% error

Hopping window aggregation

Hopping window histograms do not have any configurable parameters, therefore in

Table 5.1 we can only see a single value from the performed experiment. The foot-

print is as small as the 0.5229% of the accurate window. Furthermore, in the experi-

ment all results were 100% accurate. This clearly demonstrate that non-deterministic

hopping windows can be greatly improved by using hopping window histograms.

This method requires the window to have a clear hopping pattern in its bulk evic-

tions in order to reduce the footprint. However, when this scenario happens, the

footprint reduction is generally at no cost.

However, the constrained windows show a poor behavior in terms of error in

Figure 5.8, with no accurate results in any of the tried parameter values. Table 5.2

shows that the footprint is higher than Sum-like aggregation due to the sudden size

changes, but not as high as Max-like aggregation.

5.4.4 Experiment 2: Time performance

In this experiment we will focus on a single parameter value from the scenario-

specific methods from Section 5.4.3 in order to compare their time performance with

the same aggregation executed in AMTA. The goal is to determine if the additional

computation required from the different bucket aggregation methods make the ap-

proximate computation more costly in terms of time performance, or if it generally

saves computation time from the AMTA baseline.



5.4. Evaluation 109

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7

R
es

ul
ts

 %

Time (microseconds)

AMTA
A2MTA

FIGURE 5.10: Max-like histogram: 105 block size

 0

 10

 20

 30

 40

 50

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7

R
es

ul
ts

 %

Time (microseconds)

AMTA
A2MTA

FIGURE 5.11: Hop histogram



110 Chapter 5. Approximate Sliding Window Framework with Error Control

From the three scenarios considered, the one that is more time consuming in

AMTA is the sum-like aggregation. The reason is that for every insertion it also

needs to perform a O(1) eviction, while the two other scenarios perform O(logn)

bulk evictions after fewer insertions. For that reason, it can be seen in Figure 5.9

that there is a clear improvement with A2MTA’s sum-like histograms. The maxi-

mum error in this execution was 0.1$. The time interval that the aggregations take

is narrower and lower than in AMTA. A2MTA concentrates all the result times be-

tween 1.5µs and 6.5µs with almost 80% of the results between 1.5µs and 3.5µs, while

AMTA is spreaded from 3.5µs to 13µs. There are two main reasons for these results.

On the one hand, buckets reduce the number of evictions. If an static size window

with 1 000 updates is divided by 10 buckets, then there will be 1 eviction for every

100 insertions. On the other hand, when an update is aggregated into a bucket, the

insertion cost is always constant.

In Figure 5.10, for the max-like histogram with 105 block size, the A2MTA still

has a narrower interval of execution times in relation to AMTA, with 70% of the

results having times between 2µs and 3µs. Whereas, the same amount of results can

be found between 1.5µs and 3.5µs in AMTA. However, the improvement is not as

noticeable as in the sum-like aggregation: the peak time in AMTA is already low,

because it is getting benefit from bulk evictions that reduce the number of overall

evictions.

Finally, Figure 5.11 shows the hopping window scenario. In this case, as the

eviction size is estimated and used as the bucket size, then the bulk eviction cost is

close to a single eviction (lower). Therefore, the time for A2MTA is globally better

both in terms of peak minimum time and interval size, compared to AMTA and to

the other A2MTA methods.

5.5 Related Work

Extensive work has been done in the last years on efficient sliding window aggre-

gations and frameworks. Aside from Amortized MTA, which is the initial sliding

window framework to which we applied the approximate computing paradigm,



5.5. Related Work 111

the literature propose FIFO data-structures and incremental operations that keep a

logarithmic or constant complexity in stream processing aggregation algorithms.

Tangwongsan et al. proposed two sliding window aggregation frameworks called

Reactive Aggregator (RA) [92] and Sliding-Window Aggregation (SWAG) [90]. Being

SWAG an important improvement from RA, both approaches follow Boykin et al. [34]

method of using associative operations as programmatic aggregators interface. RA

has O(log n) time complexity in all its operations with constant-sized sliding win-

dows. RA’s sliding window FIFO structure is a flat fixed-sized binary and complete

tree called FlatFAT. All the leaves are the raw updates to be aggregated, the root node

is the result and the intermediate nodes are partial computations. Every update in-

sertion and deletion propagates the aggregation changes from the leaf to the root.

Other work in the literature [76, 100, 22, 29] use tree-like structures in order to keep

partial computations in the same way, making use of binary associative operators.

They all have a worst-case O(log n) for all its atomic operations and a complexity

O(n) for windows with bulk evictions. On the other hand, SWAG runs in a constant

O(1) time for each one of its atomic operations, bulk eviction not included among

them. The algorithm is based on a data-structure with two stacks, one in charge of

managing the insertions and the other the single evictions. The lack of an efficient

bulk eviction operation for these frameworks’ FIFO data-structures, make them un-

suitable to distribute the window contents using, for example, a KVS.

Approximate computing for data analytics has been a wide area of study for

decades, mainly for aggregations in relational databases, with techniques such as

sampling [54, 69, 6, 51], histograms [43, 31, 30, 72], stream sketches [39, 41, 10] or

online aggregation [55]. Goiri et al. [54] proposed an approximate computing set of

mechanisms for batch processing for Hadoop, called ApproxHadoop. Like A2MTA,

ApproxHadoop distinguishes between sum-like and extreme value aggregations.

However, the approach is to perform multi-stage sampling, instead of histograms.

Regarding sliding window approximate aggregation, Datar et al. [43] propose an

exponential histogram count aggregation, with a O( 1
ε log N) overhead and a 1 + ε

loss in accuracy concerning number of elements. This method can be easily ap-

plied to other aggregations, but the error is always measured in terms of number of



112 Chapter 5. Approximate Sliding Window Framework with Error Control

aggregated elements. Bifet et al. contributed ADWIN[31] and K-ADWIN [30] frame-

works, based on Datar’s exponential histograms. The two sliding window frame-

works aggregate data that has a similar tendency. When two subwindows have

very different average values, the oldest one is removed. Having a defined evic-

tion policy based on the difference between buckets containing similar values, the

error is kept very low while the time complexity is constant and the window over-

head is given by exponential histograms. However, while the aggregation is user-

programmable, by design it does not support any kind of programmable eviction

policy. Arasu & Manku [21] describe a variety of algorithms to calculate approxi-

mate count and quantile sliding windows. Krishnan et al. present IncApprox [69], a

general purpose incremental approximate computing framework with error bound-

aries. Having a logarithmic time complexity, instead of building a histogram, it ben-

efits form an online stratified sampling algorithm guided by an error prediction.

5.6 Conclusions

In this chapter we have introduced the Approximate AMTA (A2MTA) framework, a

novel general sliding window aggregation framework that combines a constant-time

FIFO data-structure with the resource reduction benefits from the approximate com-

puting paradigm. While a completely user-programable sliding window is bound to

have a non-deterministic resource consumption, the leverage of approximate com-

puting techniques delimits it and contributes with better performance. Furthermore,

the accuracy of the results can be configured with some confidence levels.

We described A2MTA as a framework with a set of the different approximate

computing methods for the different kinds of sliding windows. On the one hand we

defined Sum-like histograms and Max-like histograms, which are applied to different

types of aggregations and therefore can not be combined. The first will keep the

aggregation error bellow the boundaries set by the user, while the second aims to

produce accurate results with a confidence level. On the other hand, Hop histograms

focuses on the detection of a usual type of eviction policy that corresponds to hop-

ping windows and also aims for accurate results, as long as the Constrained footprint



5.6. Conclusions 113

enforcement prioritizes the window memory footprint over the error. These last two

methods can be combined with all the rest.

A thorough evaluation has been performed to give evidence of the impact of

the approximate aggregation techniques. In addition, we evaluated the controlled

degradation of the aggregation results, confirming that it behaves accordingly to the

parameters given by the user. The result show that even having as a baseline the

most efficient sliding window aggregation framework to our knowledge, the com-

putation time has been improved in all the tested cases. Furthermore, the impact on

the window footprint, which affects both memory and bandwidth resources, makes

A2MTA very engaging for adverse environments.





115

Chapter 6

Conclusions & Future Work

In the course of this Doctoral Thesis, stream processing has been a research and de-

velopment field that gained a lot of momentum. Many stream processing platforms,

either open-source or commercial, appeared in the last few years and already be-

came archetypes in Big Data architectures. Also, there has been a lot of discussion

on the role stream processing have to play in Big Data and IoT analytics alongside

batch computation. Furthermore, there have been a lot of parallel efforts to provide

programming models with specialized operators that match the performance expec-

tations that real-time computation require. Despite all the aligned research happen-

ing in this field, this Doctoral Thesis produced a series of contributions to the topic

that, to our knowledge, can still be considered state of the art in terms of stream

processing programming model and efficient aggregation algorithms. Nonetheless,

we found multiple potential contributions close to the work presented here that are

worth exploring in future work.

The following are summarized conclusions from the contributions of this Doc-

toral Thesis:

• Dynamic Pipelining Programming Model: A singularity from stream pro-

cessing analytics is that its results are new streams. Sharing results between

tenants with batch processing analytics is not as challenging as in stream pro-

cessing, since it will generally entail a closed number of results between big

intervals of time. We extract summaries from a Big Data scale of informa-

tion. However, stream processing analytics produce an infinite and unbound

amount of data with high frequency.



116 Chapter 6. Conclusions & Future Work

While cloud stream processing services were still in very early stages during

the work on the initial contribution of this Doctoral Thesis, we proposed a

stream processing programming model that enables sharing of stream data an-

alytics through a subscription model. We also showed its viability; it has good

scalability in terms of the computation topology graph degree, but it is suscep-

tible to bottlenecks in the longitude of its pipelines. Therefore, it is imperative

to control the computation latency of its operators.

• Composite Streams: One of the usual operations for stream processing of IoT

data is the composition of streams. With a programming model based on

stream subscriptions, composition is used to enrich one stream information

with other related streams. We proposed a set of rules to keep the computa-

tion lock-free and time-consistent, while producing the maximum number of

results.

• Constant-time Sliding Window Framework: Aggregation functions are the

most relevant operations in data analytics, since they extract single results

from multiple values. They are also the most complex operations and can

easily become bottlenecks in the computation. Since streams are infinite and

unbounded sequences of data, sliding windows are a recurrent type of aggre-

gation function, because it sets boundaries on the amount of data that is going

to be aggregated.

We proposed a completely programable framework that allows a user to de-

ploy efficient sliding windows. We demonstrated that its time-complexity is

amortized O(1) with low latencies for aggregations like average or sum. Aside

from giving freedom to program the aggregation by only requiring it to be a

monoid, it is also viable to program the policy that defines the size of the win-

dow. It allows the user to define the size of the window not only in terms

of static size, but using other dimensions like time or maximum aggregated

value.

• Efficient Window Bulk Evictions: Dynamically sized sliding windows have

the particularity that they have multiple elements evicted at once from time to

time. That has been called bulk evictions in this work. In order to avoid that this



Chapter 6. Conclusions & Future Work 117

situation turns into a pipeline computation bottleneck, we demonstrated that

this operation can be performed in O(log n) which is amortized to O(1) in all

the insertions in the window.

• Distributed Scalable Window: The aggregation of vast window of updates,

requires these updates to be kept in order to aggregate and evict them. Since

the algorithm proposed is lightweight to not have any gain from distribut-

ing its execution. However, keeping all the elements from the computation in

local memory can easily become a resources problem. The proposed sliding

window algorithms has mechanisms to distribute and replicated the elements

like it would be done for a Big Data batch computation. We demonstrated that

the effect of not having O(n) elements from the data structure not locally, but

distributed, has as low effect on the overall latency and in many cases is com-

pensated by the possibility of having multiple efficient sliding windows in the

same node.

• Approximate Computing Window Aggregation: Stream processing for the

IoT is being tightly bound to Edge and Fog computing, for good reasons.

Stream processing in the IoT is meant to be used when low latencies and fast

reaction to events are required. In order to reduce that latency between an

event happening and its reaction, all the related computations need to be per-

formed in-situ. This usually translates to execution environment with low or

unreliable resources, such as energy, memory, CPU or network connectivity.

Running the proposed window from the previous contribution in a resource-

scarce scenario can be problematic, as it either requires memory to store el-

ements locally or reliable network bandwidth to send them to a distributed

store. We demonstrated that it is possible to apply the approximate computing

paradigm to the our previous efforts on sliding windows in order to reduce

the network connectivity — distributed aggregation store — while preserving

a low local memory usage, and improve general computation latencies. The

properties from the original algorithm are preserved, and only the accuracy of

the results is affected. However, we also demonstrated that the error can be

predicted and contained, and therefore it is user configurable.



118 Chapter 6. Conclusions & Future Work

While working on each contribution, multiple research paths opened with poten-

tial to become relevant contributions. Due to limited time and strategic convenience,

we choose and developed the contributions presented in this document. However,

the following summary works as a record of the other research paths that were con-

sidered for future work and would still be considered novel contributions:

• Dynamic Stream Subscriptions: By having rich stream descriptions in an in-

dexed repository, streams can be easily searchable and queried. In a system

as the one presented in this work, we search for streams with a compatible

structure with the computations that will follow. Therefore, usual search pa-

rameters are the type, unit and metrics of each channel. Other descriptive

information from the stream is also relevant, such as the location where the

stream is being generated. That location can be in terms of latitude and lon-

gitude, or being generated from an entity like a city or a street. The results of

such queries are streams to which we want to subscribe our analytics.

We propose to expand the stream processing programming model to be able

to make the union operation subscribe to the results of a stream query, instead

of an static list of streams. Therefore, the user would describe the kind of

stream it is needed instead of choosing some specific streams that might fail

in the future. When a query changes its results because a stream was created,

updated or replaced, the analytics subscribed to that query would also change

its inputs. For example, if we want to compute analytics on the temperature

sensors in district, a dynamic stream subscription would characterize the kind

of sensor needed: with one number-type channel, using Celsius expressing

outdoor temperature and originated in the specified district. Whenever one of

these sensors gets replaced, they will be automatically bound to the DPP.

• Composer Aggregator: Consider a stream that is the union of a vast amount

of sensors and that stream is partitioned by the origin sensor. We might want

to perform an aggregation using the last update from each sensor, generating

a composite stream from multiple compatible streams. The Composer Aggre-

gator would be an aggregator of the last update of each partition, producing



Chapter 6. Conclusions & Future Work 119

a new stream update for every new update received. Although this aggrega-

tor shares with the compose operation that they both combine multiple inputs

to produce a single one, the aggregator does not combine a closed number of

incompatible streams. The number of partitions can change dynamically, i.e.

because this operator is combined with a Dynamic Stream Subscription and

streams were added or removed. For example, aggregate the mean tempera-

ture from all the sensors in a specific area, each sensor producing a partition of

the same streams.

However, partitions might become inactive for reasons such as a sensor run-

ning out of battery or low-frequency streams, and aggregations might be us-

ing expired values. This aggregator needs to consider user-defined policies

to remove partitions from the aggregation, such as the WSPs for the Sliding

Windows presented in this work.

Following a strategy similar to the one followed in this work for the sliding

windows, we estimate that the computation time would be O(log n) while the

memory usage would be O(n), n being the number of aggregated streams.

• Provenance and Security for Multi-tenancy: In order to have a controlled

multi-tenant environment in which different tenants can control how to share

their streams, we require a notion of update provenance. P. Buneman et al. [36]

describe data provenance as:

Data provenance — sometimes called “lineage” or “pedigree” —

is the description of the origins of a piece of data and the process by

which it arrived in a database. The field of molecular biology, for

example, supports some 500 public databases, but only a handful of

these are “source” data in the sense that they receive experimental

data. All the other databases are in some sense views either of the

source data or of other views. In fact, some of them are views of

each other, which sounds nonsensical until one understands that the

individual databases are not simply computed by queries, but also

have added value in the form of corrections and annotations by ex-

perts (they are “curated”). A serious problem confronting the user



120 Chapter 6. Conclusions & Future Work

of one of these databases is knowing the provenance of a given piece

of data. This information is essential to anyone interested in the ac-

curacy and timeliness of the data.

In a system where the data generated can have multiple origins, with multiple

intermediate operations and multiple tenants providing these operations, data

provenance have many applications.

Collecting data provenance with different levels of detail can help to monitor

the quality of a stream in terms of origins, frequency or latency. Furthermore,

it would allow tenants in the system to apply multiple policies to their streams

such as white/black lists of input stream tenants or white/black lists of sub-

scriber tenants. Such policies could facilitate the creation of a stream analytics

marketplace between tenants.

However, attaching provenance data to every update is challenging. An up-

date can have a long lineage that needs to be stored and processed in order to

apply security permissions or extract monitoring information. All this needs

to be performed in a way that it does not affect the performance required to

run in a real-time environment.



121

Bibliography

[1] Daniel J Abadi et al. “Aurora: a new model and architecture for data stream

management”. In: The VLDB Journal—The International Journal on Very Large

Data Bases 12.2 (2003), pp. 120–139.

[2] Daniel J Abadi et al. “The Design of the Borealis Stream Processing Engine.”

In: CIDR. Vol. 5. 2005, pp. 277–289.

[3] Tyler Akidau et al. “MillWheel: Fault-tolerant Stream Processing at Internet

Scale”. In: Proceedings of the VLDB Endowment 6.11 (Aug. 2013), pp. 1033–1044.

ISSN: 2150-8097. DOI: 10.14778/2536222.2536229. URL: http://dx.doi.org/

10.14778/2536222.2536229.

[4] Tyler Akidau et al. “The dataflow model: a practical approach to balancing

correctness, latency, and cost in massive-scale, unbounded, out-of-order data

processing”. In: Proceedings of the VLDB Endowment 8.12 (2015), pp. 1792–

1803.

[5] Akka. Accessed in: 10-October-2018. 2009. URL: http://akka.io/.

[6] Mohammed Al-Kateb and Byung Suk Lee. “Stratified reservoir sampling over

heterogeneous data streams”. In: International Conference on Scientific and Sta-

tistical Database Management. Springer. 2010, pp. 621–639.

[7] Algebird. Accessed in: 4-July-2015. 2012. URL: https://github.com/twitter/

algebird.

[8] Mohamed Ali et al. “The extensibility framework in Microsoft StreamInsight”.

In: Data Engineering (ICDE), 2011 IEEE 27th International Conference on. IEEE.

2011, pp. 1242–1253.

[9] Amazon Kinesis. https://aws.amazon.com/kinesis/. Accessed: May 2017.

2017.

https://doi.org/10.14778/2536222.2536229
http://dx.doi.org/10.14778/2536222.2536229
http://dx.doi.org/10.14778/2536222.2536229
http://akka.io/
https://github.com/twitter/algebird
https://github.com/twitter/algebird
https://aws.amazon.com/kinesis/


122 Bibliography

[10] Henrique CM Andrade, Buğra Gedik, and Deepak S Turaga. Fundamentals of

stream processing: application design, systems, and analytics. Cambridge Univer-

sity Press, 2014.

[11] Aleksandar Antonic et al. “A Mobile Crowdsensing Ecosystem Enabled by a

Cloud-based Publish/Subscribe Middleware”. In: The 2nd International Con-

ference on Future Internet of Things and Cloud (FiCloud-2014). 2014.

[12] Apache Apollo official website. URL: http://activemq.apache.org/apollo.

[13] Apache Flink official website. URL: http://flink.apache.org.

[14] Apache Hadoop. Accessed in: 4-July-2015. 2011. URL: http://hadoop.apache.

org/.

[15] Apache Kafka. Accessed in: 4-July-2018. URL: http://kafka.apache.org/.

[16] Apache Samza. http://samza.apache.org. Accessed: May 2017. 2017.

[17] Apache Solr. Accessed in: 4-July-2015. URL: http://lucene.apache.org/

solr/.

[18] Apache Spark Streaming. URL: https://spark.apache.org/streaming/.

[19] Apache Storm. Accessed in: 10-October-2018. 2013. URL: http://storm.apache.

org/.

[20] Apache Thrift. Accessed in: 10-October-2018. URL: http://thrift.apache.

com.

[21] Arvind Arasu and Gurmeet Singh Manku. “Approximate counts and quan-

tiles over sliding windows”. In: Proceedings of the twenty-third ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems. ACM. 2004, pp. 286–

296.

[22] Arvind Arasu and Jennifer Widom. “Resource sharing in continuous sliding-

window aggregates”. In: Proceedings of the Thirtieth international conference on

Very large data bases-Volume 30. VLDB Endowment. 2004, pp. 336–347.

[23] Joe Armstrong et al. “Concurrent programming in ERLANG”. In: (1993).

http://activemq.apache.org/apollo
http://flink.apache.org
http://hadoop.apache.org/
http://hadoop.apache.org/
http://kafka.apache.org/
http://samza.apache.org
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
https://spark.apache.org/streaming/
http://storm.apache.org/
http://storm.apache.org/
http://thrift.apache.com
http://thrift.apache.com


Bibliography 123

[24] Magdalena Balazinska, Hari Balakrishnan, and Michael Stonebraker. “Load

management and high availability in the Medusa distributed stream process-

ing system”. In: Proceedings of the 2004 ACM SIGMOD international conference

on Management of data. ACM. 2004, pp. 929–930.

[25] Roger S Barga et al. “Consistent streaming through time: A vision for event

stream processing”. In: arXiv preprint cs/0612115 (2006).

[26] Michel Bauderon et al. “Netquest: An Abstract Model for Pervasive Appli-

cations”. In: Proceedings of the 7th Int’l Conf. on Pervasive Computing (Pervasive

2009). 2009, pp. 467–481.

[27] Michel Bauderon et al. “Programming iMote Networks Made Easy”. In: The

Fourth International Conference on Sensor Technologies and Applications. Wash-

ington, DC, USA: IEEE Computer Society, 2010, pp. 539–544. ISBN: 978-1-

4244-7538-4.

[28] Beating the CAP Theorem Checklist. Accessed in: 4-July-2015. URL: http://

ferd.ca/beating-the-cap-theorem-checklist.html.

[29] Pramod Bhatotia et al. “Slider: Incremental sliding window analytics”. In:

Proceedings of the 15th International Middleware Conference. ACM. 2014, pp. 61–

72.

[30] Albert Bifet and Ricard Gavalda. “Kalman filters and adaptive windows for

learning in data streams”. In: International Conference on Discovery Science.

Springer. 2006, pp. 29–40.

[31] Albert Bifet and Ricard Gavalda. “Learning from time-changing data with

adaptive windowing”. In: Proceedings of the 2007 SIAM international conference

on data mining. SIAM. 2007, pp. 443–448.

[32] Flavio Bonomi et al. “Fog computing and its role in the internet of things”. In:

Proceedings of the first edition of the MCC workshop on Mobile cloud computing.

ACM. 2012, pp. 13–16.

[33] Alessio Botta et al. “On the Integration of Cloud Computing and Internet of

Things”. In: The 2nd International Conference on Future Internet of Things and

Cloud (FiCloud-2014). 2014.

http://ferd.ca/beating-the-cap-theorem-checklist.html
http://ferd.ca/beating-the-cap-theorem-checklist.html


124 Bibliography

[34] Oscar Boykin et al. “Summingbird: A framework for integrating batch and

online mapreduce computations”. In: Proceedings of the VLDB Endowment 7.13

(2014), pp. 1441–1451.

[35] HW Van den Brink et al. “Estimating return periods of extreme events from

ECMWF seasonal forecast ensembles”. In: International Journal of Climatology:

A Journal of the Royal Meteorological Society 25.10 (2005), pp. 1345–1354.

[36] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. “Why and where: A

characterization of data provenance”. In: International conference on database

theory. Springer. 2001, pp. 316–330.

[37] Paris Carbone et al. “Apache flink: Stream and batch processing in a single

engine”. In: Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering 36.4 (2015).

[38] Badrish Chandramouli et al. “Trill: A high-performance incremental query

processor for diverse analytics”. In: Proceedings of the VLDB Endowment 8.4

(2014), pp. 401–412.

[39] Kenneth L Clarkson and David P Woodruff. “Numerical linear algebra in the

streaming model”. In: Proceedings of the forty-first annual ACM symposium on

Theory of computing. ACM. 2009, pp. 205–214.

[40] Stuart Coles et al. An introduction to statistical modeling of extreme values. Vol. 208.

Springer, 2001.

[41] Graham Cormode et al. “Synopses for massive data: Samples, histograms,

wavelets, sketches”. In: Foundations and Trends R© in Databases 4.1–3 (2011),

pp. 1–294.

[42] Couchbase official website. URL: http://couchbase.com.

[43] Mayur Datar et al. “Maintaining stream statistics over sliding windows”. In:

SIAM journal on computing 31.6 (2002), pp. 1794–1813.

[44] DeviceHive official website. URL: http://www.devicehive.com/.

[45] Devicehub official website. URL: http://devicehub.net.

http://couchbase.com
http://www.devicehive.com/
http://devicehub.net


Bibliography 125

[46] Jean Diebolt et al. “Improving probability-weighted moment methods for the

generalized extreme value distribution”. In: REVSTAT-Statistical Journal 6.1

(2008), pp. 33–50.

[47] ElasticSearch official website. URL: http://elasticsearch.org.

[48] evrythng official website. URL: evrythng.com.

[49] Ronald Aylmer Fisher and Leonard Henry Caleb Tippett. “Limiting forms of

the frequency distribution of the largest or smallest member of a sample”.

In: Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 24. 2.

Cambridge University Press. 1928, pp. 180–190.

[50] Brad Fitzpatrick. “Distributed caching with memcached”. In: Linux journal

2004.124 (2004), p. 5.

[51] Minos N Garofalakis and Phillip B Gibbons. “Approximate Query Process-

ing: Taming the TeraBytes.” In: VLDB. 2001, pp. 343–352.

[52] Seth Gilbert and Nancy Lynch. “Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant web services”. In: Acm Sigact News

33.2 (2002), pp. 51–59.

[53] Manfred Gilli et al. “An application of extreme value theory for measuring

financial risk”. In: Computational Economics 27.2-3 (2006), pp. 207–228.

[54] Inigo Goiri et al. “Approxhadoop: Bringing approximations to mapreduce

frameworks”. In: ACM SIGARCH Computer Architecture News. Vol. 43. 1. ACM.

2015, pp. 383–397.

[55] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. “Online aggregation”.

In: Acm Sigmod Record. Vol. 26. 2. ACM. 1997, pp. 171–182.

[56] Pieter Hintjens. ZeroMQ: messaging for many applications. " O’Reilly Media,

Inc.", 2013.

[57] Martin Hirzel, Scott Schneider, and Kanat Tangwongsan. “Sliding-Window

Aggregation Algorithms: Tutorial”. In: Proceedings of the 11th ACM Interna-

tional Conference on Distributed and Event-based Systems. ACM. 2017, pp. 11–

14.

http://elasticsearch.org
evrythng.com


126 Bibliography

[58] Martin Hirzel et al. “IBM streams processing language: Analyzing big data

in motion”. In: IBM Journal of Research and Development 57.3/4 (2013), pp. 7–1.

[59] Jonathan RM Hosking, James R Wallis, and Eric F Wood. “Estimation of the

generalized extreme-value distribution by the method of probability-weighted

moments”. In: Technometrics 27.3 (1985), pp. 251–261.

[60] IoT Toolkit official website. URL: iot-toolkit.com.

[61] Jackson official website. URL: http://jackson.codehaus.org/.

[62] Jetty official website. URL: http://www.eclipse.org/jetty/.

[63] Rudolph Emil Kalman. “A new approach to linear filtering and prediction

problems”. In: Journal of basic Engineering 82.1 (1960), pp. 35–45.

[64] Scott Klein. “Azure Stream Analytics”. In: IoT Solutions in Microsoft’s Azure

IoT Suite. Springer, 2017, pp. 71–84.

[65] Martin Kleppmann and Jay Kreps. “Kafka, Samza and the Unix Philosophy

of Distributed Data”. In: ().

[66] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting

and Searching. Redwood City, CA, USA: Addison Wesley Longman Publish-

ing Co., Inc., 1998. ISBN: 0-201-89685-0.

[67] Jay Kreps. “Questioning the Lambda Architecture”. In: Online article, July

(2014).

[68] Sailesh Krishnamurthy, Chung Wu, and Michael Franklin. “On-the-fly shar-

ing for streamed aggregation”. In: Proceedings of the 2006 ACM SIGMOD in-

ternational conference on Management of data. ACM. 2006, pp. 623–634.

[69] Dhanya R Krishnan et al. “Incapprox: A data analytics system for incremental

approximate computing”. In: Proceedings of the 25th International Conference on

World Wide Web. International World Wide Web Conferences Steering Com-

mittee. 2016, pp. 1133–1144.

[70] Sanjeev Kulkarni et al. “Twitter Heron: Stream Processing at Scale”. In: Pro-

ceedings of the 2015 ACM SIGMOD International Conference on Management of

Data. SIGMOD ’15. Melbourne, Victoria, Australia: ACM, 2015, pp. 239–250.

iot-toolkit.com
http://jackson.codehaus.org/
http://www.eclipse.org/jetty/


Bibliography 127

ISBN: 978-1-4503-2758-9. DOI: 10.1145/2723372.2742788. URL: http://doi.

acm.org/10.1145/2723372.2742788.

[71] Richard Kuntschke et al. “Streamglobe: Processing and sharing data streams

in grid-based p2p infrastructures”. In: Proceedings of the 31st international con-

ference on Very large data bases. VLDB Endowment. 2005, pp. 1259–1262.

[72] Jin Li et al. “No pane, no gain: efficient evaluation of sliding-window aggre-

gates over data streams”. In: ACM SIGMOD Record 34.1 (2005), pp. 39–44.

[73] Jimmy Lin. “Monoidify! monoids as a design principle for efficient mapre-

duce algorithms”. In: arXiv preprint arXiv:1304.7544 (2013).

[74] Nathan Marz. “How to beat the CAP theorem”. In: Thoughts from the Red

Planet (2011).

[75] Nathan Marz and James Warren. Big Data: Principles and best practices of scal-

able real-time data systems. New York; Manning Publications Co., 2015.

[76] Bongki Moon, Inés Fernando Vega López, and Vijaykumar Immanuel. “Scal-

able algorithms for large temporal aggregation”. In: Data Engineering, 2000.

Proceedings. 16th International Conference on. IEEE. 2000, pp. 145–154.

[77] MQTT official website. URL: http://mqtt.org.

[78] Stefan Nastic et al. “Provisioning Software-defined IoT Cloud Systems”. In:

The 2nd International Conference on Future Internet of Things and Cloud (FiCloud-

2014). 2014.

[79] Philippe Naveau et al. “Modelling pairwise dependence of maxima in space”.

In: Biometrika 96.1 (2009), pp. 1–17.

[80] Netty. Accessed in: 10-October-2018. URL: http://netty.io/.

[81] Leonardo Neumeyer et al. “S4: Distributed stream computing platform”. In:

Data Mining Workshops (ICDMW), 2010 IEEE International Conference on. IEEE.

2010, pp. 170–177.

[82] Nimbits official website. URL: http://www.nimbits.com.

[83] OpenRemote official website. URL: http://www.openremote.com.

https://doi.org/10.1145/2723372.2742788
http://doi.acm.org/10.1145/2723372.2742788
http://doi.acm.org/10.1145/2723372.2742788
http://mqtt.org
http://netty.io/
http://www.nimbits.com
http://www.openremote.com


128 Bibliography

[84] Carlos Pedrinaci et al. “iServe: a linked services publishing platform”. In:

CEUR workshop proceedings. Vol. 596. 2010.

[85] Yongrui Qin et al. “When Things Matter: A Data-Centric View of the Internet

of Things”. In: CoRR abs/1407.2704 (2014). URL: http://arxiv.org/abs/

1407.2704.

[86] SiteWhere official website. URL: http://www.sitewhere.org.

[87] Stomp repository. URL: http://stomp.github.io.

[88] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. “The 8 requirements

of real-time stream processing”. In: ACM SIGMOD Record 34.4 (2005), pp. 42–

47.

[89] Roshan Sumbaly et al. “Serving large-scale batch computed data with project

voldemort”. In: Proceedings of the 10th USENIX conference on File and Storage

Technologies. USENIX Association. 2012, pp. 18–18.

[90] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. “Constant-Time Slid-

ing Window Aggregation”. In: IBM, IBM Research Report RC25574 (WAT1511-

030) (2015).

[91] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. “Low-Latency Sliding-

Window Aggregation in Worst-Case Constant Time”. In: Proceedings of the

11th ACM International Conference on Distributed and Event-based Systems. ACM.

2017, pp. 66–77.

[92] Kanat Tangwongsan et al. “General incremental sliding-window aggrega-

tion”. In: Proceedings of the VLDB Endowment 8.7 (2015), pp. 702–713.

[93] The Apache Cassandra Project. Accessed in: 4-July-2015. 2008. URL: http://

cassandra.apache.org/.

[94] The WebSocket API. URL: http://dev.w3.org/html5/websockets.

[95] ThingSpeak official website. URL: https://thingspeak.com/.

[96] Ankit Toshniwal et al. “Storm@ twitter”. In: Proceedings of the 2014 ACM SIG-

MOD international conference on Management of data. ACM. 2014, pp. 147–156.

http://arxiv.org/abs/1407.2704
http://arxiv.org/abs/1407.2704
http://www.sitewhere.org
http://stomp.github.io
http://cassandra.apache.org/
http://cassandra.apache.org/
http://dev.w3.org/html5/websockets
https://thingspeak.com/


Bibliography 129

[97] AG Van der Valk et al. “The biomass of an Indian monsoonal wetland before

and after being overgrown with Paspalum distichum L.” In: Vegetatio 109.1

(1993), pp. 81–90.

[98] Guozhang Wang et al. “Building a replicated logging system with Apache

Kafka”. In: Proceedings of the VLDB Endowment 8.12 (2015), pp. 1654–1655.

[99] Xively official website. URL: xively.com.

[100] Jun Yang and Jennifer Widom. “Incremental computation and maintenance

of temporal aggregates”. In: Data Engineering, 2001. Proceedings. 17th Interna-

tional Conference on. IEEE. 2001, pp. 51–60.

xively.com

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contributions and Publications

	Background
	General Concepts
	Stream Processing Platforms
	Big Data Architectures
	Operations on IoT data

	Dynamically Pipelined Processing for Composite Data Streams
	Introduction
	Architecture of ServIoTicy
	Abstractions used in ServIoTicy
	Data Processing Pipelines
	Evaluation
	Related Work
	Conclusions

	Constant-Time Sliding Window Framework with Reduced Memory Footprint and Efficient Bulk Evictions
	Introduction
	Background: Real-Time Sliding Windows
	Related Work
	Framework Design
	Evaluation
	Conclusions

	Approximate Sliding Window Framework with Error Control
	Introduction
	MTA Enhancements
	Approximate AMTA
	Evaluation
	Related Work
	Conclusions

	Conclusions & Future Work
	Bibliography

