
1

A Quality-Model-Based Approach for Describing and Evaluating Software
Packages†

Xavier Franch, Juan P. Carvallo‡
Universitat Politècnica de Catalunya (UPC)

c/ Jordi Girona 1-3 (Campus Nord, C6) E-08034 Barcelona (Catalunya, Spain)
{franch, carvallo}@lsi.upc.es

Abstract
Selection of software packages from user requirements is
currently a central task in software engineering. Selection
of inappropriate packages may compromise some business
processes and may interfere negatively in the functioning
of the involved organization. Success of package selection
is currently endangered because of many factors, being
one of the most importants the absence of structured
descriptions of both the package features and the user
quality requirements. In this paper, we propose a
methodology for describing the quality factors of software
packages using the ISO/IEC quality standard as
framework. Following this standard, relevant attributes for
a specific software domain are identified and structured as
a hierarchy, and metrics for them are chosen. Software
packages in this domain can be then described in a
uniform and comprehensive way. Therefore, selection of
packages can be ameliorated by transforming user quality
requirements into requirements expressed in terms of the
quality model attributes. We illustrate the approach by
presenting in some depth a quality model for the mail
servers domain.

1. Introduction

The growing importance of commercial software
packages (also known as COTS components or COTS
products [COTS02]) in software development requires
adapting some software engineering practices to this
framework. This includes traditional activities such as
requirements elicitation, architectural design and testing,
but also some specific of the field, among which selection
of software packages (also known as software package
procurement [FSR96, NM97]) plays a prominent role.

In the last years, some methodologies have been
proposed for dealing with software package selection
[Kon96, MN98, BEF+02]. In all of them, one key point is
the comparison of user requirements with the capabilities
of the evaluated packages. Requirements have to be with
different kind of factors, such as managerial, political and
of course quality characteristics, i.e. quality requirements.

† This work is partially supported by the Spanish research
programme CICYT under contract TIC2001-2165.
‡ Juan P. Carvallo’s work has been supported by an AECI grant.

Quality requirements are often difficult to check. This is
partly due to their very nature, but we argue in this paper
that there is another reason that can be mitigated, namely
the lack of structured and widespread descriptions of
software domains (i.e., categories of software packages,
such as ERP systems, graphical or data structure libraries,
etc.). This absence hampers the accurate description of
software packages and the precise statement of quality
requirements. As a consequence, the whole package
selection activity is damaged, and confidence on the result
of the process diminishes. In this paper, we propose the
adoption of a structured quality model as an essential aid
for solving this drawback. A structured quality model for a
given software domain provides a taxonomy of software
quality features and also metrics for computing their value.
For defining the taxonomy, we may use any feasible
existing quality standard; among them, we have selected
the ISO/IEC one1 [ISO91] for the following reasons:

 It just fixes some general characteristics, and so the
quality model may be tailored to any specific
software domain. This is a crucial point, because
quality models may dramatically differ from one
domain to another.
 The standard explicitly recognizes the convenience

of creating hierarchies of quality features, which is
essential in order to build structured quality models.
 It is widespread.

The main goal of this paper is to define a methodology
for building ISO/IEC-based quality models for software
domains. A skilled quality team including experts in the
domain is supposed to be in charge of this construction.
Once the quality model is available, both software package
descriptions and user quality requirements may be
translated into the quality concepts defined therein,
favouring then the whole selection process and also
increasing the confidence in its result.

The paper is structured as follows. In section 2 we give
an outline of the ISO/IEC quality standard. Section 3
provides a general methodology for building ISO/IEC-
based quality models, which is illustrated with an example
in section 4. Section 5 outlines how the quality model may

1 Nevertheless, the concrete standard adopted is not really a
crucial point of the methodology.

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231705272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

help in package description and requirement statement.
Last, section 6 presents the conclusions.

2. The ISO/IEC Software Quality Standard

A set of ISO/IEC standards are related to software
quality, being standard number 9126 (which is in process
of substitution by 9126-1, 9126-2, 9126-3 and 9126-4), the
most relevant one with respect to our work [ISO91].

The main idea behind this standard is the definition of a
quality model and its use as a framework for software
evaluation. A quality model is defined by means of general
characteristics of software, which are further refined into
subcharacteristics, which in turn are decomposed into
attributes2, yielding to a multilevel hierarchy; in fact, as
mentioned by the standard, intermediate hierarchies of
subcharacteristics and attributes may appear. At the bottom
of the hierarchy there are the measurable software
attributes, which values are computed by using some
metric. Throughout the paper, we refer to characteristics,
subcharacteristics and attributes as quality entities. Quality
requirements may be defined as restrictions over the
quality model.

The ISO/IEC 9126 standard fixes six characteristics:
functionality, reliability, usability, efficiency,
maintainability and portability. Furthermore, an
informative annex of this standard provides an illustrative
quality model that refines the characteristics.

Figure 1 presents an abridged UML conceptual model
that summarizes the concepts outlined in this section. Some
OCL-constraints are not included. The “measured by”
association states that the metric for a measurable attribute
may be different depending on the subcharacteristic or
attribute where it appears.

Figure 1 UML conceptual model for the ISO/IEC standard

2 The concept of attribute does not appear in the standard
presentation, but in the description of subcharacteristics.

3. Applying the ISO/IEC Standard

Using the ISO/IEC quality standard as framework, we
propose in this section a methodology aimed at defining a
quality model for a given software domain. This implies
identifying the appropriated subcharacteristics and their
attributes, and also the metrics for these attributes;
attributes and even subcharacteristics will usually be
organized as a hierarchy. Once this is process is completed,
requirements over the domain, as well as package features,
may be stated with respect to the resulting quality model.
The framework can therefore be used to support the
classical characteristics–requirement negotiation process
during software package selection (see figure 2).

Figure 2 Using a quality model in software procurement

The methodology consists of six steps with a

preliminary one. Although they are presented as they were
sequential, they may be intertwined or iterated at any
acceptable extend. We illustrate it with short examples,
and we provide a more complete case study in section 4.

Step 0. Defining the domain

First of all, the domain of interest has to be carefully
examined and described. With respect to the first point,
experts of the field must participate in the quality team.
Concerning the second point, a conceptual model can be
built to keep track of all relevant concepts.

When performing this step, we have discovered that one
of the most endangering points is the lack of standard
terminology in packages of the domain. The same concepts
are named different by different vendors or even worse, the
same name may denote different concepts in different
packages. It is utterly important to discover all these
conflicts during this preliminary step in order to avoid
semantic problems when identifying quality attributes.

Step 1. Determining quality subcharacteristics

The ISO/IEC standard fixes six quality characteristics
but not their further refinement into subcharacteristics; the
proposal of the annex is labelled as “informative”.

The first step in building a quality model for a software
domain is therefore determining the division of
characteristics into subcharacteristics.

Characteristic 6

Subcharacteristic

Attribute

 Entity

{disjoint,
complete}

has

has

1

1..*

1..*

1..*
0..1

*

composed
of

 Requirement

involves
*

1..*

Measurable

{incompl.}

 Metric *

measu-
red by

*

*

*

*

composed
of

 knowledge of
the domain

ISO/IEC-based
quality model

package package
description

 description package

quality
requirement

formalized
requirement

negotiation during
software package
procurement

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

3

As a general rule of thumb, we propose the annex as
starting point: it is quite reasonable, and although not
mandatory, it does appear in the standard itself. The quality
team may then add new subcharacteristics specific to the
domain, refine the definition of some existing ones, or even
eliminate some (although this last situation will seldom
take place). Some examples follow:

 In the domain of ERP systems, a subcharacteristic
for keeping track of the areas covered (finance,
staff, etc.) may be added to functionality.

 In the domain of data structures libraries, the time
behaviour subcharacteristic may be refined as
"execution time of the methods provided by the
classes inside the library".

Step 2. Defining a hierarchy of subcharacteristics

In the general case, subcharacteristics may be further
decomposed with respect to some factors, yielding thus to
a hierarchy of them. It is important to remark that new
subcharacteristics must be at the same abstraction level;
otherwise they would be quality attributes.

A typical example appears in the suitability
subcharacteristic of functionality. Successful software
packages tend to bind applications that were not originally
related to them. This is particularly true if one considers
that product suppliers try to include some features to make
their products different from the others. These added
applications are not usually shipped within the original
packages; they are offered separately, as extensions of the
original one. But in many cases, they are referenced as a
constitutive part of the functions provided by the package.
As a result, it seems quite natural to split the suitability
characteristic into two, basic suitability and added
suitability, keeping track of both of them inside the model
but in a clearly separated way.

Step 3. Decomposing subcharacteristics into attributes

Quality subcharacteristics provide a comprehensible
abstract view of the quality model. But next it is necessary
to go into the details, by decomposing these abstract
concepts into more concrete ones, the quality attributes. An
attribute keeps track of a particular observable feature of
the packages in the domain. For example, attributes in the
learnability subcharacteristic may include quality of the
graphical interface of the product, number of languages
supported (english, …) and quality of the available
documentation.

Sometimes it may not be possible to list all the quality
attributes related to a particular kind of software, but it is
certainly feasible to create a very complete list of the most
relevant ones. Success on the identification of the right
attributes in a particular domain requires not only
inspecting documentation, talking to suppliers and
experimenting with some representative packages, but also

including in the quality team members with a high level of
conceptual knowledge of this domain. Concepts are the key
elements when selecting quality attributes; it is necessary
to keep in mind that the goal is to define a general
framework for many applications of the same brand, not
one for a particular product. To sum up, the quality team
should look for a qualitative list of attributes instead of a
quantitative one.

When decomposing characteristics into attributes, it
turns out that some attributes are suited for more than one
subcharacteristic. For instance, an attribute for the fault
tolerance subcharacteristic in the domain of data structures
libraries may be the type of error recovery mechanism. But
in fact, this attribute may be seen also as a constituent of
the testability subcharacteristic (a powerful error recovery
mechanism makes testability of the library easier). As this
is a natural situation, we do not force attributes to appear in
a single subcharacteristic; they are allowed to be used in
many of them (see the corresponding multiplicity in the
UML model of fig. 1).

As stated in the conceptual model, attributes
categorized under multiple subcharacteristics may use
different metrics (see step 5) for each case depending of
the concept they represent under each particular
subcharacteristic.

Step 4. Decomposing derived attributes into basic ones

Some of the attributes emerging in step 3 may be
directly measurable given a particular product (e.g.,
number of languages supported) but others may be still
abstract enough to require further decomposition. This is
the case of the quality of interface attribute mentioned
above; quality may depend in various factors, as user-
friendness, depth of the longest path in a browsing process,
types of interface supported (web interface, ...) and so on.
Therefore, we distinguish between derived attributes and
basic ones (which we have called measurable in the
conceptual model). Derived attributes should be
decomposed over and over until they are completely
expressed in terms of basic ones.

A particular case of derived attributes appears when
taking their scope into account. Let's consider again the
domain of data structures libraries and error recovery.
There are many mechanisms to deal with error recovery,
for instance: a naive notify-and-abort action, an error
notification via parameters, or an exception mechanism;
even there could be no error recovery at all. But in fact, the
error recovery attribute of the library should be defined in
terms of the error recovery mechanism of the classes
therein, represented with a new attribute bound to classes.
The definition is made with a kind of AND-rule (i.e., if all
the classes have the same error recovery mechanism, this is
the error recovery mechanism of the library) slightly
modified for the case of heterogeneous error recovery
mechanisms.

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

4

In this example, the derived attribute has been
completely defined in terms of their components, but it
could not be the case. Giving a concrete definition of the
quality interface attribute could be considered harmful,
because it would force to use always the same definition
without considering the requirements of a particular
context. Sometimes requirements may give more
importance to the user-friendness factor (e.g., for non-
skilled users), sometimes to its type (for interoperability
purposes) and so on. In this case, the definition of the
derived attribute is postponed. We call the first case of
derived attributes context-free, while the second ones are
context-dependent.

Step 5. Determining metrics for basic attributes

Not only the attributes must be identified, but metrics
for all the basic attributes must be selected, as well as
metrics for those derived context-free attributes. We
strongly recommend the use of mathematical concepts for
describing precisely the meaning of the metric, and of
course the general theory of metrics should be followed
[Zus98]. The simplest kinds of metrics are:
 Boolean. To state presence or absence of a product

feature. For instance, whether the data under the
package control is encrypted or not.
 Numerical. The attribute states some kind of

measure, either integer (e.g., the depth of the
longest path attribute, see above) or real (e.g.,
execution time of a particular function). Upper and
lower bounds should be declared, if they exist.
 Label. The attribute records a name. An example is

the kind of protocol used by a mail server. The label
domain may be closed (i.e., a domain by
enumeration of its values) or open (i.e., a string).

In the case of basic attributes, metrics must be
quantitative; in derived attributes, they could be either
quantitative or qualitative, with explicit formula computing
their value from their component attributes. It is worth
remarking the qualitative label metrics, with values such as
"good", "fair", "poor" and so on, which are referred to as
rating levels in the ISO/IEC standard.

Some attributes require a more complex representation,
yielding to structured metrics. More precisely:
 Sets. The attribute records a collection of values. It

is the case of the number of languages supported by
the interface (set of labels).
 Functions. The value of the attribute is not absolute,

but depends on some other value. A typical case are
the attributes that depend on the underlying
platform. For instance, many attributes related to
the time behaviour subcharacteristic may fall into
this category. Any restriction in the function domain
or range should be stated.

Metrics for some quality attributes may be difficult to
define. However, it is our believe that this is the only way
to have an exhaustive and fully-useful quality model. Also,

the structured description style adopted here, identifying
basic attribute domains in terms of mathematical entities,
and also the definition of the derived context-free ones, can
be seen as the starting point for a formalization in some
structured notation [CNYM00] or an interface description
language [Fra98].

Step 6. Stating relationships between quality entities

To end up with a real complete quality model, it is not
enough with identifying quality subcharacteristics and
attributes; relationships between them must also be
explicitly stated. The model becomes more exhaustive and
as an additional benefit, quality user requirements may get
implicitly extended once they have been expressed in terms
of quality attributes.

Given two quality entities A and B we may identify
various types of relationships:
 Collaboration. Growing of A implies growing of B.

For instance, the security subcharacteristic
collaborates with the maturity one. Sometimes the
relationship is symmetric.
 Damage. Growing of A implies decrease of B. For

instance, the error recovery mechanism attribute
collides with the time behaviour subcharacteristic:
the more powerful the mechanism is, the less fast
the program runs. Sometimes the relationship is
symmetric. Damages are more frequent than
collaborations.
 Dependency. Some values of A require B fulfilling

some conditions. For instance, having an exception-
based error recovery mechanism requires the
programming language being one with exception
constructs.

More elaborate types and also intensities of these
relationships may be built, as done in [CNYM00]. As done
there, the relationships found may be depicted by means of
a tabular representation. Attributes in rows contribute to
attributes in columns, with either a positive influence (+,
collaboration), a negative influence (-, damage) or a
dependency (↔).

4. A Case Study: Mail Servers

As electronic mail services have grown in importance,
companies have increased their use to improve inside and
outside communication and coordination. An
overwhelming number of mail-related products are
currently available and organizations face the problem of
choosing among them the ones that best fit their needs. For
some companies, an inappropriate selection would
compromise their success. For all these reasons, having a
good quality model for this domain can be considered
especially useful. For this and also for having some
experience in the field, we have selected this domain for
illustrating the general methodology seen in section 3.

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

5

Core components of mail systems are mail servers; a
successful mail service deployment depends of their
correct selection and configuration. In the remaining of this
section we will use the methodology stated in section 3 to
define a quality model for mail server packages.

Step 0: Defining the domain
The Internet Mail Consortium (IMC) [IMC02]

describes the basic client-server mailing architecture (see
fig. 3) as the process of relaying mail from an originator
mail user agent (MUA), to a recipient one through one (or
various) mail transfer agents (MTA). When mail arrives to
destination, the final MTA delivers the message to the
appropriated message store (MS); from this MS, mail can
be accessed by the recipient.

In practice, MTA are software packages installed and
running over a single mail server computer or groups of
them (mail server cluster). Similarly, MUA are software
packages known as mail clients running over the user local
machine.

Figure 3. IMC basic mail architecture.

Important topics to be addressed in the mailing domain

are protocols for exchanging messages, directories for
locating information, types of mail client applications to
access the messages, message security issues and other
specialised ones, as clustering of server computers. In
figure 4 some possible mail architectures are described in a
graphical way3.

The accurate description of the domain has shown
different semantic ambiguities that have been corrected.
For example "junk mail filtering", "bulk mail handling"
and "spammers thwarting" were mentioned in different
sources. Although presented as different things, after
carefully analysing them we found that all were making
reference to the possibility of applying filters to incoming
messages and of denying their reception based on the
originator mail address. This reduces the amount of bulk
mail, and helps thwarting spammers.

3 We do not include a conceptual model for lack of space.

Figure 4. Mailing architectures.

Step 1: Determining quality subcharacteristics
We have decided that subcharacteristics suggested in

the ISO/IEC standard are complete enough to be used as
starting point and they have been adopted with just some
minor modifications in their definition.

Step 2: Defining a hierarchy of subcharacteristics

According to the criteria mentioned in section 3, we
decided to split the suitability subcharacteristic into mail
server suitability and additional suitability subcharac-
teristics. This decision was taken because we found that
some additional communication applications such as chat,
instant messaging, whiteboarding or video conference, or
even some collaborative ones such as workflow project
management tools, were increasingly promoted for some
vendors as if they were a constitutive part of their mail
server products (the truth is that additional software is
required). Many companies may be interested in using
them and so we decided that it was important to create a
functionality subcharacteristic to include them.

One could be tempted to apply this principle in other
situations, but it must be done carefully. For instance, in
some contexts the attributes categorized under the
operability subcharacteristic of usability may be seen from
two different points of view: the general user and the
administrator. This is the case for mail servers products
and for this reason at the beginning we considered to
divide this subcharacteristic into two. At the end, we
decided that general user operability on mail servers
depends on the mail client and the privileges given by the
administrator. We were not able to clearly see attributes
related to clients that were independent of those related to
administrators, and so we decided to keep only one
subcharacteristic.

 Mail
Transfer
Agent
(MTA)

 Message
Store (MS)

 Mail User
Agent (MUA)

 Mail User
Agent (MUA)

 Mail
Transfer
Agent
(MTA)

Submission
SMTP

Relay
SMTP

Delivery
File I/O

Access
POP or
IMAP

Originator
Origination Destination

Recipient

Message:
RFC 822 and MIME

 LOCAL DOMAIN INTRANET

LDAP
 MESSAGE

STORE

X.500
 MESSAGE

STORE

PC
(ONLINE

OPERATION)

PC
(OFFLINE,

DISCONECTED
OPERATION)

ACTIVE – PASSIVE
SERVER CLUSTER

BACKUP
SERVER

MAIN
SERVER

POP

SMTP

IMAP IMAP

SMTP
SMTP

MULTIMEDIA FILE
ATTACHMENTS

SMTP
MIME

POP
IMAP

MULTIMEDIA
WORKSTATION

MULTIMEDIA
WORKSTATION +

PERIPHERALS

WORK / HOME
NOTEBOOK PC

PC +
HANDHOLD

PDA

REMOTE DOMAIN INTRANET

POP IMAP IMAP
POP

SMTP
MIME

SMTP

POP

SMTP

LOCAL MAIL
SERVER

NEWS OR
DISCUSSION

LIST SERVERS

NNTP

LOCAL
NEWS /LIST

USERS

IMAP
POP

NNTP
SMTP
MIME POP

WORK / HOME
NOTEBOOK

HOME
PC

WEB
BROWSER

MAIL CLIENT
APPLICATION

REMOTE
MAIL / NEWS
/ LIST USERS

HOME MAIL: NEWS: LIST USERS

DIAL UP
CONNECTION

INTERNET SERVICE PROVIDER

SMTP
MIME
SSL

S/MIME INTERNET

SMTP
MIME

LDAP
SERVER

X.500
SERVER

MULTIMEDIA
PERIPHERAL

WEBMAIL SERVER

MAIL SERVER

POP
IMAP

SMTP

LOCAL WEB
MAIL CLIENTS

HTTP

HTTP
SSL

SMTP
MIME

HTTP SERVER WITH
WEB MAIL SOFTWARE

HTTP

NNTP

SMTP
MIME

X.400
X.400

WAP

WAP
DEVICES

WAP
SERVER

ACTIVE – ACTIVE
SERVER CLUSTER

SMTP

IMAP

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

6

Step 3: Decomposing subcharacteristics into attributes
In order to identify the attributes, extensive research of

the domain has to be done. Different, classical sources are
used for this purpose: general articles about technologies
involved in the domain; articles comparing products as
well as related technologies; advertising information of
products; technical documentation of packages; product
demos as well as public or private presentations carried out
by the vendor; documented selection cases of products of
the domain; and hands-on experimentation.

Once identified, attributes have to be assigned to
subcharacteristics. Contrary to what may be expected, this
process is neither simple nor mechanical. Just to mention
some of the problems that we may found:
 The number of elements may get to be very high,

making it difficult to handle them. In our case we
started with over 200 attributes, and after a detailed
analysis this number was reduced to 160.
 In some cases, values of attributes may be confused

with attributes themselves. For example, at the
beginning we create one attribute instance to
represent each of the POP3, IMAP4, SMTP and
X.400 protocols (which were categorized under the
compliance subcharacteristic). Later we realized
that in practice there are only two attributes mail
transfer protocols and mail access protocols.
 Some attributes may be identified as a single one

but after some analysis may result better to break
them into several ones. For example, average
response time was listed as one of the attributes of
the time behaviour subcharacteristic of efficiency.
Later we split this attribute into two, the average
response time and message throughput, one to
represent the amount of time required for the server
to identify new mail to be send and the other to
represent the time per size unit required to actually
send a message.
 As mentioned in section 3 some attributes are suited

for more than one characteristic. For instance,
message tracking and monitoring may be seen as a
functional attribute that grants accurateness, or else
as a analysability attribute of the maintenance
characteristic.

It is important to notice that, due to their hierarchical
nature, these kind of models help to discover these
problems and facilitates their faster resolution.

Hands-on experimentation is necessary to obtain really
independent information. For instance, attributes such as
administrative or expert analysis tools were mentioned in
the documentation of almost every product, but very vague
description of them was given. We installed some products
and had some hands-on experience to better understand
these concepts. This experiences turned out to be very
valuable as closing point for this step.

Step 4. Decomposing derived attributes into basic
As mentioned in step 4 of section 3 some attributes

require to be decomposed because they are not directly
measurable. We have identified several of them. For
instance, the attribute for resources administration
(characteristic usability, subcharacteristic operability) has
been decomposed into the following basic attributes:
maximum storage time of mail messages; maximum time
of life for inactive accounts; mailbox quotes; mail file
sizes; management of groups of servers as a single entity.

Step 5. Determining metrics for basic attributes
We also have determined metrics for attributes in

model; some of them where hard to define, especially the
qualitative ones. The concepts shown in step 5 of section 3
have been used in this section. Table 1 shows some
attributes with different kind of metrics.

Attribute Metric

Permanent message redirection? Boolean
Maximum account size Integer (megabytes)
Default folders provided Set of labels

Average response time Function from platform to
real numbers

Table 1. Some attributes and their metrics.

Step 6. Stating relationships between quality entities
Having about 160 attributes, it is quite natural that a lot

of relationships between them appear. We present some
collaborations and damages in table 2.

Table 2. Related Efficiency – Reliability attributes.

CHARACTERISTICS Efficiency

 SUBCHARACTERISTICS Time behaviour

 ATTRIBUTES Average resp-
 onse time

Full or selective replication and
synchronization -
Single mailbox backup and recovery -
Online incremental backup -
Online restore -
Dynamic Log rotation -
Event Logging -

R
el

ia
bi

lit
y

R
ec

ov
er

ab
ili

ty

Transaction Logging -
Number of concurrent mail users per server -
Number of active webmail clients -
Management of quotas on message and
mail file size +
Message volume of their target customer - Ef

fic
ie

nc
y

R
es

ou
rc

e
be

ha
vi

ou
r

Single copy store +

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

7

Examples of dependencies are:
 If some certification system is selected, some

encryption algorithm must also be used, because it
is needed to grant confidentiality.
 If mail server supports news groups, it must support

the NNTP protocol which is the TCP/IP standard
application for this kind of message exchange.

5. Package and Requirement Descriptions

Once the quality model for a software domain is built, it
becomes possible to describe packages in this domain and
to express quality requirements to model the needs of a
company in the process of selecting the package that best
fits its needs.

When describing package quality characteristics, it
turns out to be very difficult to find complete and reliable
information of them. Let's consider again the mail server
domain. Manufacturers tend to give just a partial view of
their products. Either they put so much emphasis on their
product benefits, without mentioning the weakness, or they
give a partial look of the truth, making them seem capable
of more features of which they really cover. Some third-
party reports look very independent, but they have been
strongly refuted for technical departments of parties
involved, making them difficult to rely on. Other non-
commercial articles compare features, but they base their
reports on evaluators knowledge of the tools, and their
particular taste, more than in serious technical tests.

This situation points again to the convenience of having
expert users of the tools as members of the evaluation
team; their presence reduces the time required for the
description of product characteristics, improves their
matching with quality attributes and also grants the
accurateness of this information. Also, some degree of
hands-on experimentation is required.

One of the most time-consuming and error-prone tasks
are the computation of attributes whose values depend on
the value of other attributes, which are modelled as
function attributes, especially in the case of platform-
dependencies. For example, average response time
depends of the hardware been used and even of the
operating system in which product is installed (see table 1).
This requires multiple installations of the package and
repetition of its evaluation.

Concerning quality requirements modelling, we have
introduced complete sets of quality requirements that
appeared in real mail server selection processes with very
different characteristics (from a public institution giving
service to 50.000 people to a small software consultant and
ISP provider company). Some requirements were already
presented in a structured way (for example as lists of
interconnection-, functionality- and utilisation-related
requirements) but others not, leading to some extra effort
to arrange them.

Because of the extend of the paper we cannot present
the complete list of requirements of any of these real cases.
Nevertheless, we show in table 3 some requirements that
illustrate some problems we found when expressing them
in terms of the quality model.

Req. Requirement Description
1 Spanish language support
2 Support for the most commonly used certification

standard
3 Support for accessing the server from other applications
4 Protection against viruses and any other risks
5 Mail delivery notifications, possibility of configuring

parameters such as maximum number of delivery
retries, and time between them

6 Message throughput time must be inferior to 1 minute
for messages with no attachments. For messages with
attachments must be inferior to 5 minutes per megabyte

Table 3. Some example requirements.

Requirements such as 1 or 2 can be directly mapped
into one single attribute of the model. The only difference
is that requirement 2 demands the expert team for mapping
the expression "most commonly used certification
standard" to a concrete value of the corresponding
attribute, that is the value "X.509".

Requirements 3 and 4 are example of too general
requirements (what does it mean “other applications” and
“other risks”?). Further interaction to get a more detailed
specification must be provided to better classify them.

Requirements 5 is an example of requirement that either
require or imply a mixture of functionalities, which may be
supported by selecting several attributes. Although further
feedback may be required in order to better classify this
kind of requirements, we succeed in doing so for this
particular requirement.

There are also some requirements that are originally
expressed in a incorrect way but are somehow
understandable. This is the case of requirement 6 which
was originally expressed in terms of average response time.
We reformulated it in terms that made its representation
into the model feasible.

Once all the requirements for a particular company are
incorporated into the model (after completing, discarding
and reformulating them), they can be extensively compared
with respect to available package descriptions. This allows
to detect differences between products as well as
determining to what extend they cover the expressed needs.
Once we arrived to this point in our experience in the mail
server domain, we had no doubts about utility of model as
a valuable tool to help in selection of products (although
this is not the final goal of our methodology and multi-
criteria decision making techniques such as [Saa90] can be
complementary used for this purpose). A feedback process
is recommended once requirements are mounted in the
model, in order to refine and extend them and also to
complete their understanding if required.

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

8

6. Concluding Remarks

Reliable processing of quality requirements demands a
proper quality model to be used as reference, especially in
the context of software package selection. In this paper we
have presented a methodology aimed at building quality
models based on the ISO/IEC quality standard. The
methodology is composed of a preliminary step for
understanding the software domain subject of the work,
and six more steps to organise quality concepts in a
hierarchy, to establish their metrics and also to make
explicit their relationships. We have applied our proposal
to a specific software domain, the one of mail server
products, outlined here and presented in more depth in
http://www.lsi.upc.es/dept/techreps/html/R02-36.html.
Once the model has been built, it can be used for
describing software packages and for expressing quality
requirements.

When applying our methodology, we have observed
that building the quality model is a complex activity,
endangered by many factors: poor description of the
domain, lack of ability when identifying the quality
entities, inappropriate metrics, etc. However, once
available, it becomes a really powerful tool which provides
a general framework to get uniform descriptions of the
(potentially a great deal of) software packages of the
involved domain. Comparison of these packages is then
favoured. Also, quality requirements can be rewritten in
terms of the quality concepts appearing in the model; this
reformulation process may help to discover some
ambiguities and incompleteness in the requirements and,
once solved, the resulting requirements can be more easily
compared with the package descriptions. In fact, a quality
model obtained with our methodology can be expressed in
an interface description language (as we have done in
[Fra98]) and automatic support for package selection
becomes then feasible [FPV99].

Not only the reliability of software package
procurement can be improved with our proposal; also the
cost of the very procurement process can. Just consider for
a moment the amount of repeated work that is done in the
mail server domain used as example in this paper. We
know of many organisations that have faced exactly the
same problems and have repeated the same process over
and over, wasting human resources and money while doing
so. The existence of a quality model for this domain makes
mail server procurement a simpler task, once particular
quality requirements of the organisation have been
expressed in terms of the model.

One of the ongoing applications of our work has to be
with software certification [Voa98]. We think that quality
models can be the framework for expressing the quality
requirements that define a certificate for a software
domain. Certificates for a domain may be different
depending in the kind of organisation (e.g., mail servers for

governmental departments may require stronger quality
than ones for small companies), and also this characteristic
may be expressed with respect to the quality model. The
existence of software certification organisms from whom
manufacturers might require basic quality models, in which
they might place their product characteristics to be
certified, and to whom companies might submit their
particular requirements to be evaluated, would help in
driving a more fair and clear competition between
manufacturers of products. Manufacturers can be sure that
their patents and development efforts would be certified
and enforced by recognized independent organizations.
Companies would also benefit because they would be
granted that their selection would be based on a full
understanding of their requirements and a more technical
and precise evaluation of products.

Part of our future work is related to the adaptation of
the presented methodology for its application in COTS-
based system domains. By means of quality models, user
requirements in these domains could be classified and used
for the identification of the necessary COTS components
as well as alternative architectures.

7. References
[BEF+02] X. Burguès, C. Estay, X. Franch, J. Pastor, C. Quer.
"Combined Selection of COTS Components". In [COTS02].
[CNYM00] L. Chung, B. Nixon, E. Yu, J. Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishers, 2000.
[COTS02] Proceedings of the 1st International Conference on
COTS-Based Software Systems (ICCBSS), LNCS 2255, 2002.
[FPV99] X. Franch, J. Pinyol, J. Vancells. "Browsing a
Component Library Using Non-Functional Information". Procs.
Ada-Europe 1999.
[Fra98] X. Franch. “Systematic Formulation of Non-Functional
Characteristics of Software”. Procs. 3rd ICRE, 1998.
[FSR96] A. Finkelstein, G. Spanoudakis, M. Ryan. "Software
Package Requirements and Procurement". Procs. 8th IWSSD,
1996.
[ISO91] ISO/IEC Standards 9126 (Information Technology –
Software Product Evaluation – Quality Characteristics and
Guidelines for their use), 1991.
[Kon96] J. Kontyo. "A Case Study in Applying a Systematic
Method for COTS Selection". Procs. 18th ICSE, 1996.
[MN98] N. Maiden, C. Ncube. "Acquiring Requirements for
COTS Selection", IEEE Software 15(2), 1998.
[NM97] C. Ncube, N. Maiden. "Procuring Software Systems:
Current Problems and Solutions". Procs. 3rd REFSQ, 1997.
[Saa90] T.L. Saaty. The Analytic Hierarchy Process. McGraw-
Hill, 1990.
[Voa98] J.M. Voas. “Certifying Off-The-Shelf Software
Components”. IEEE Software, June 1998.
[Zus98] H. Zuse. A Framework of Software Measurement.
DeGruyter Publisher, 1998.

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

