
SmarTmem: Intelligent Management of
Transcendent Memory in a Virtualized Server

Luis A. Garrido
Barcelona Supercomputing Center

luis.garrido@bsc.es

Rajiv Nishtala
Norwegian University of Science and Technology

rajiv.nishtala@ntnu.no

Paul Carpenter
Barcelona Supercomputing Center

paul.carpenter@bsc.es

Abstract—Managing memory capacity in virtualized
environments is still a challenging problem. Many solutions have
been proposed and implemented, including memory ballooning
and memory hotplug. But these mechanisms are slow to respond
to changes in virtual machine (VM) memory demands. Transcen-
dent Memory (tmem) was introduced to improve responsiveness
in memory provisioning, by pooling idle and fallow memory in
the hypervisor, and making these physical pages available as
additional memory for the VMs through a key–value store.

However, tmem presents some limitations of its own. State-
of-the-art hypervisors do not implement any efficient way to
manage tmem capacity, letting VMs compete for it in a greedy
way by default, regardless of their actual memory demand.

In this paper, we demonstrate the need for intelligent memory
capacity management for tmem, and we present the design
and implementation of SmarTmem, a mechanism that integrates
coarse-grained user-space memory management with fine-grain
allocation and enforcement at the virtualization layer. Our
results show that our solution can improve the running time
of applications from the Cloudsuite benchmarks by up to 35%
compared to the default tmem allocation mechanism.

I. INTRODUCTION

Virtualization technology is prevalent across cloud service
providers as it reduces capital and operational costs [1]–[6].
Each physical server, or computing node, executes a Virtual
Machine Monitor (VMM) or hypervisor [7], [8], which creates
virtual machines (VMs) to run the guest OSes, and manages
the physical resources allocated to the VMs. The hypervisor
multiplexes the CPUs and I/O devices and it controls the
allocation of the physical memory capacity. In such environ-
ments, memory is often one of the most critical and scarce
resources [9], [10].

State-of-the-art hypervisors have multiple mechanisms to
dynamically manage memory capacity [11]–[13]. Among
these is Transcendent Memory [13], which was introduced
to improve memory reallocation responsiveness, since other
mechanisms like memory ballooning are relatively slow to
reallocate memory upon changes in memory demand [13].
Tmem works by centralizing memory management within the
hypervisor through a key–value store. Tmem has two modes
of operation: 1) frontswap, which serves as a page cache for
pages swapped out by the VMs, and 2) cleancache, which
serves as a page cache for clean pages that were fetched from
disk. In either mode of operation, tmem pools all the idle and
fallow (unassigned to VMs) memory pages in the node, and
the pages get assigned to the VMs as tmem when they need
it. If there are no free pages, any write to a tmem page will
fail, causing an access to the (virtual) disk device.

When multiple VMs use tmem, the hypervisor will assign
pages to the VMs in a greedy manner. The VMs compete for
the tmem capacity by default, so if some VMs take a large
amount of the available tmem, the rest of VMs will starve
and will generate a large number of disk accesses, degrading
performance across the VMs and the computing node [14].

In this paper, we address the issue of optimizing VM
memory allocation using Transcendent Memory in a single
computing node. We introduce SmarTmem, a software stack
for intelligent tmem allocation in a single node, created by
re-purposing the software-stack developed in [15]. Instead
of using tmem for pooling memory capacity across multiple
nodes (as in [15]), this paper analyzes in depth the problem of
tmem optimization at the single node level. To the best of our
knowledge, this is the first effort to analyze tmem capacity
optimization in a single virtualized computing node using a
software-stack with the architecture of SmarTmem.

SmarTmem employs a user-space process executing in
Xen’s privileged domain that implements intelligent tmem
management policies based on the memory utilization behavior
of the VMs. Our results show that using high-level policies
improves the running time of applications compared to the
baseline implementation of tmem.

To summarize, the main contributions of this paper are:
1 We demonstrate that the default way of allocating tmem

at the single node level, used in state-of-the-art hypervisors, is
unable to adapt to changes in memory demand and to ensure
fair and proportional allocation of tmem when multiple VMs
are active.

2 We re-purpose the architecture in [15] to create Smar-
Tmem, a software architecture for intelligent memory man-
agement for tmem in a single virtualized computing node.

3 We implement high-level tmem management policies in
SmarTmem and evaluate them using benchmarks from Cloud-
Suite [16], and our results show up to 35% improvement over
the default greedy approach of allocating tmem.

The rest of this paper is organized as follows. Section 2
provides background on virtualization technologies, tmem and
its implementation in Xen. Section 3 discusses the SmarTmem
architecture and the high-level tmem management policies.
Section 4 describes our experimental framework. Section 5
presents the evaluation results. Section 6 expands on the
related work. Finally, Section 7 states our conclusions and
future work.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this 
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in 
other works

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231705166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. BACKGROUND

This section provides a background on virtualization tech-
nology and the state-of-the-art memory management mecha-
nisms. Additionally, it provides insight into Tmem, its func-
tionality and drawbacks.

A. Virtualization and Memory Management

Cloud services are built on top of virtualization technology
that rely on a hypervisor to multiplex physical resources such
as CPUs and I/O interfaces and allocate others, such as mem-
ory. When a new VM is created, it is allocated a portion of the
physical memory. If the VM increases its demand for memory
capacity, i.e. its memory capacity becomes under-provisioned,
it will start accessing its (virtual) disk device(s), even if some
physical memory may be available in the computing node,
either unallocated by the hypervisor (fallow) or allocated to
another VM that does not need it (idle). When a VM has idle
memory, the VM is overprovisioned of memory capacity. In
general, it is necessary to continuously readjust the allocation
of memory to VMs, in order to optimize memory utilization.

State-of-the-art hypervisors such as Xen, dynamically re-
allocate memory among the VMs using memory ballooning
and memory hotplug. Both of these mechanisms are slow
to respond to rapid changes in memory demand, requiring
successful prediction of memory demand behavior or over-
provisioning of physical memory in the hypervisor [13].

B. Transcendent Memory (tmem)

Transcendent memory (tmem) was introduced to overcome
the limitations of memory ballooning and memory
hotplug [13]. Tmem pools together all the idle/underutilized
and fallow memory in the node, and allocates it to the VMs
through a page-copy–based interface providing a key–value
store with synchronous put, get and flush operations. The
capacity of transcendent memory and the physical locations
of data stored in it are unknown to the guest VMs.

Xen’s tmem can be used by Linux in two modes,
cleancache and frontswap. Linux cleancache is a victim
cache for clean pages that are evicted by the Linux kernel’s
Pageframe Replacement Algorithm (PFRA). Linux frontswap
uses tmem as a cache in front of a swap device, so a
successful store to tmem avoids a disk write and a later read.

In order to use tmem, each VM needs to have a kernel
module with the tmem implementation in either cleancache
or frontswap modes. Upon the module initialization, a pool
of tmem memory pages is created for the VM, which remains
under hypervisor control and is given an identifier. Every tmem
page is identified by a three-element tuple (its key), consisting
of the pool identifier, a 64-bit object identifier and a 32-bit
offset or page identifier [13]. The object identifier and offset
are both extracted by the kernel from the address of the page.

Figure 1 illustrates the operation of cleancache and
frontswap, where VM-j and VM-i put and get a page,
respectively. When the Linux kernel evicts a page from
memory, due to high memory pressure, it will generate a page
fault and the kernel will first attempt to write the page to tmem.

VM-j
User-space
Applications 

Kernel's Memory
Management

Cleancache Frontswap 

VM-j 
Tmem Kernel Module 

Page Fault
Generated

VM-i
User-space
Applications 

Kernel's Memory
Management

Cleancache Frontswap 

VM-i 
Tmem Kernel Module 

Page Fault
Generated

Hypervisor (Xen) 

Hypercall for
Tmem Operations

Hypercall for
Tmem Operations

Ui Ui Ui Ui Ui 
Ui Ui Ui Ui Ui 

Uj Uj Uj Uj Uj 
Uj Uj Uj Uj Uj- - Ui Uj - 

Ui Uj Ui Uj - 

Ui Ui Ui Uj Uj 

Hypervisor's  
Tmem Pool

Memory of VM-i Memory of VM-j

GET for VM-i 

PUT for VM-j 

...

Fig. 1: Using tmem in Linux and Xen. Each VM accesses
tmem pages via hypercalls.

To achieve this, the kernel traps the fault and passes it on to
a tmem kernel module that initiates the tmem put hypercall.
Once the hypecall reaches the hypervisor, it will allocate a
physical page, if available, and will copy the data from the
VM’s memory into tmem. When the hypercall returns, the
data has already been copied into tmem, so the guest OS can
already reuse the memory for a different purpose.

When a user process attempts to access a page in tmem,
the access will cause a page fault into the guest OS’s kernel.
The kernel will trap this fault once again, will send it to the
kernel module that will generate a get hypercall for tmem. If
the hypervisor can locate the page in tmem, it will copy its
contents into the VM’s pseudophysical address space.

The tmem backend also supports two flush operations:
flush page and flush object. These operations are generated
when a VM wishes to invalidate a tmem page or a group of
them identified with the pool or object identifier, respectively.
When this happens, the tmem page or pages are freed by the
domain and can be used to put different VM page(s).

Current implementations of tmem allocate pages on puts in
a greedy way, as long as there are free tmem pages. Thus, it
is possible for one VM to acquire all the tmem pages if its
maximum tmem allocation is not limited somehow. If one VM
is able to take all the tmem pages, the rest of the VMs will
incur in high-latency accesses to the I/O devices, significantly
reducing their performance. As we shall see, it is necessary to
intelligently manage the tmem capacity, in order to improve
fairness, reduce the worst-case and overall running times.

III. SMARTMEM: OPTIMIZING TMEM UTILIZATION

This section describes the architecture of SmarTmem, re-
purposed from [15], with the fundamental difference that



Tmem Operations/Hypercalls 

Privileged Domain VM-i
Memory Manager

Memory Stats.

High-Level Policy

Comm. Interface

Kernel 

Page Fault 
Generated VM-i 

TKM 

Users-space apps.

Application Ak

...

System Calls

Hypervisor (Xen)

Kernel 

Priv. Dom. 
Tmem Kernel
Module (TKM) 

Memory
Stats.

Hypercalls, Policy output

Memory Statistics

Policy
Output

Application A1

...

VM-j

Kernel 

Page Fault 
Generated VM-j 

TKM 

Users-space apps.

Application Ak

...

System Calls

Application A1

...

Fig. 2: SmarTmem architecture. The Memory Manager (MM)
runs in Xen’s privileged domain.

SmarTmem focuses on the intelligent tmem management in a
single virtualized computing node. SmarTmem divides tmem
management between coarse-grain level memory management
in a user-space process running in a privileged domain and
fine-grain allocation and enforcement in the hypervisor.

A. SmarTmem Architecture

Figure 2 shows the architecture of SmarTmem, consisting
of three components:

• Hypervisor support for SmarTmem
• Tmem Kernel Module (TKM)
• Memory Manager (MM) User-space Process for Tmem

Allocation in a Single Virtualized Computing Node

B. Hypervisor support for SmarTmem

This section describes the hypervisor support for SmarT-
mem. The role of the hypervisor is to monitor the metrics
used by the high-level policy, enforce target allocations and
make the fine-grained tmem page allocation.

It is necessary for the hypervisor to gather information about
the tmem capacity utilization by the VMs. This information is
used by the MM to determine the tmem dynamic re-allocation.
Table I summarizes the data collected by the hypervisor.
SmarTmem requires to gather less information in the hyper-
visor than [15], since its scope is within a single computing
node. It does not require to identify nodes or to keep track of
the VMs in different nodes. Thus, the communication demands
from the hypervisor to user-space are reduced for SmarTmem.

When a VM maxes out its memory, any future access that
attempts a swap to disk will generate a put operation to tmem.
The hypervisor monitors the amount of puts of each VM, as
well as other tmem operations, similar to [15]. The hypervisor
also keeps track whenever puts fail, and the amount of memory
used by the VMs. When a put fails, it means that there is no
tmem capacity to satisfy the request. Everytime this happens,
the VM that generated the put will swap the page to disk.

The hypervisor gathers and monitors all the memory uti-
lization behavior and sends it to the TKM in the privileged

Algorithm 1 Tmem allocation in the Hypervisor
1: function HYPERVISOR OP(vm datahyp, id, op)
2: tmem used← vm datahyp[id].tmem used
3: mm target← vm datahyp[id].mm target
4: if op == PUT then
5: if tmem used ≥ mm target then
6: return value← E TMEM
7: else if node info.free tmem == 0 then
8: return value← E TMEM
9: else

10: allocate tmem page(id)
11: vm datahyp[id].tmem used← tmem used+ 1
12: vm datahyp[id].puts succ← puts succ+ 1
13: return value← S TMEM
14: end if
15: vm datahyp[id].puts total← puts total + 1
16: else if op == FLUSH then
17: deallocate tmem page(id)
18: vm datahyp[id].tmem used← tmem used− 1
19: return value← S TMEM
20: end if
21: return return value
22: end function

domain via a virtual interrupt request (VIRQ). This VIRQ is
sent to the TKM every second, and the TKM passes it to
the user-space MM process. With this information, the MM
calculates new target tmem capacities for every VM and sends
these targets back to the hypervisor again through the TKM,
which generates a specific hypercall for this purpose.

Algorithm 1 presents pseudo-code to illustrate the tasks
performed by the hypervisor. When the target allocations reach
the hypervisor, it stores them and keeps them until the MM
modifies them (line 3). Everytime a VM attempts to get a
tmem page (through a put, line 4), the hypervisor checks if
the current amount of tmem used by the VM is less than its
target (line 5). If so, the VM obtains a page from the tmem
pool, the hypervisor allocates a tmem page and copies the
data contained in the VM’s page into the tmem page frame
(line 10). The allocation of pages in SmarTmem is different
compared to [15], because SmarTmem only requires one single
allocator, all the tmem is owned by the current node and no
inter-node transfer of pages takes place. All of this implies
that no special hardware support for SmarTmem is required
and can be deployed in any computer server available on
the market as long as it provides basic virtualization support,
(whereas [15] requires specialized hardware support).

In case there’s no free tmem or if the amount of tmem used
by the VM is equal or exceeds its target, then any put will fail
(lines 5–8), forcing the VM to swap to disk. Every put issued
by a VM will fail as long as the target is equal or smaller to the
current amount of tmem in use. The hypervisor can reclaim
tmem pages from a VM very slowly, but pages can also be
released when a VM explicitly flushes a page (line 16). While
the target remains smaller than the tmem capacity in use, the
VM will be unable to acquire more tmem pages.

The values of vm datahyp[id].tmem used and
vm datahyp[id].puts succ are incremented when a put suc-
ceeds (lines 10–13), and a page is allocated for the VM. The
parameter vm datahyp[id].tmem used is decremented when
a VM releases pages (flush, lines 16–19), deallocating a tmem



TABLE I: Memory statistics used in SmarTmem. The sampling interval is one second.

Memory Statistics Description

E TMEM Value used in the hypervisor indicating that a put (or other tmem op.) cannot succeed.
S TMEM Value used in the hypervisor indicating that a put (or other tmem op.) has succeeded.
node info.free tmem Number of free pages available for tmem.
node info.vm count Number of VMs registered.
vm datahyp[id].vm id Identifier of the VM within Xen
vm datahyp[id].tmem used Number of pages of tmem memory currently used by the VM
vm datahyp[id].mm target Target number of pages allocated the VM.
vm datahyp[id].puts total Total number of puts issued by the VM in the current sampling interval.
vm datahyp[id].puts succ Total number of successful puts issued by the VM in the current sampling interval
memstats Variable storing the last sampled statistics that the hypervisor sent to the MM.
memstats.vm count Amount of active VMs as seen by the MM.
memstats.vm[i].vm id Identifier of the VM within the MM.
memstats.vm[i].puts total Number of puts issued by a VM in the sampling interval.
memstats.vm[i].puts succ Number of puts of a VM that succeeded in the current sampling interval.
mm out Data structure that holds the output parameters of the MM policy.
mm out[i].vm id VM identifier that maps a VM to its target allocation as calculated by the MM.
mm out[i].mm target Memory allocation target as calculated by the policy in the MM.

page. The parameter vm datahyp[id].puts total (line 15) is
incremented when a put occurs, regardless if it succeeds or not.

It is possible for a VM to use more tmem than its target. This
can happen because the targets are continuously modified, and
the target for a VM might be reduced below the capacity it is
using. This might occur because the VM might be temporarily
idle, or executing a phase of the application with reduced
memory pressure with respect to previous ones. However, this
VM won’t be able to obtain additional pages until it releases
enough pages below its target or until its target is increased.

C. Tmem Kernel Module (TKM)

The TKM is a kernel module that functions as an interface
between user-space processes and the tmem implementation
of the hypervisor. The TKM provides support for the baseline
tmem interface through a series of hypercalls. It also provides
additional support for special interrupts generated by the hy-
pervisor to initiate communication with user-space processes,
which requires a series of custom-made hypercalls.

The TKM forwards the memory statistics sent by the hyper-
visor to a user-space process (MM) through a netlink socket
interface. As mentioned before, the MM uses these statistics to
calculate tmem target allocations, and the TKM forwards this
information from the MM back to the hypervisor, for which a
series of custom-made hypercalls were also developed.

D. Memory Manager Process for Tmem Allocation in a Vir-
tualized Computing Node

As mentioned in Section III-B, the MM receives information
from the hypervisor regarding the way the VMs make use of
their memory. The MM keeps track of this information across
time, generating a history of how the VMs use tmem, their
tmem operations and overall system memory status. The MM
uses this information to calculate a tmem capacity target per
VM according to custom-made high-level policies.

E. High-Level Tmem Management Policies

Currently, we have implemented three policies in the MM
besides the greedy approach used by default (greedy), which

Algorithm 2 Static Allocation Policy
1: function STATIC POLICY(memstats, node info)
2: num vms← memstats.vm count
3: ms prev ← memstats.prev
4: local tmem← node info.total tmem
5: mm target← local tmem/num vms
6: for i← 1, num vms do
7: mm out[i].vm id← memstats.vm[i].vm id
8: mm out[i].mm target← mm target
9: end for

10: send to hypervisor(mm out)
11: end function

are: 1) static memory capacity allocation, 2) reconfigurable
static capacity allocation, and 3) smart allocation policy. We
will proceed to explain and analyze each of the policies.

1) Static Memory Capacity Allocation (static-alloc): This
policy divides the available tmem capacity equally across all
tmem-capable VMs, as described by Algorithm 2. This policy
secures a fair share of tmem for every VM, since it assumes
that each VM has a similar demand for memory.

The MM sends target allocations to the hypervisor when it
has calculated a new tmem target. This feature is implemented
within the send to hypervisor() function. If no changes are
detected, then no transmission takes place, avoiding unneces-
sary communication overhead.

For the static allocation policy, the targets are only modified
when a new VM is created (and registers itself with tmem)
or a VM is destroyed. After that, the targets will remain the
same as long as all the VMs stay active, regardless of the
applications they are running. This policy is designed to avoid
starvation on the available tmem capacity, but it might allocate
pages unnecessarily to a VM that does not need to use tmem.

2) Reconfigurable Static Allocation (reconf-static): This
policy divides the available tmem capacity equally among the
VMs that are actively using tmem. That is, the policy monitors
the activity of each tmem-capable VM, and allocates an equal
share of the tmem capacity to each VM that has performed at
least one tmem put, initially allocating no tmem capacity to
any VM. The pseudocode is given in Algorithm 3.



Algorithm 3 Reconfigurable Static Allocation Policy
1: function RECONF STATIC(memstats, node info)
2: num vms← memstats.vm count
3: num active vms← 0
4: for i← 1, num vms do
5: puts failed← memstats.vm[i].cumul puts failed
6: if puts failed > 0 then
7: num active vms← num active vms+ 1
8: end if
9: end for

10: local tmem← node info.total tmem
11: for i← 1, num vms do
12: mm target← local tmem/num active vms
13: mm out[i].vm id← memstats.vm[i].vm id
14: mm out[i].mm target← mm target
15: end for
16: send to hypervisor(mm out)
17: end function

If additional VMs start issuing puts, then the tmem capacity
allocation is reconfigured, and every VM that puts at least
once will get an equal amount of the tmem capacity. This will
remain so during the lifetime of the VMs. The main drawback
of this approach is that it requires for the VM to swap a number
of times before getting any tmem capacity, since their initial
target allocation is equal to zero. This is because the latency
between the time a VM performs its first tmem operation until
the time that this condition is detected by the MM and the
target are reset, is roughly one second. On the other hand, this
policy prevents the hypervisor from allocating memory to a
VM unnecessarily as it might occur for static-alloc.

3) Smart Allocation (smart-alloc): This policy assigns
tmem capacity to each VM depending on their needs. It
monitors every VM, and when it detects that a VM cannot
acquire more tmem because it exceeded its target, the policy
increases its target by a percentage P of the total local tmem
capacity, which is constant. It is possible that all VMs have
swapped during the last interval, needing a target increase by
a percentage P to avoid performance loss. Algorithm 4 shows
the pseudo-code for smart-alloc.

Algorithm 4 uses the failed puts that have occurred in the
last sampling interval as a measure of a VM’s swap activity,
instead of calculating the corresponding rate, as in [15]. The
sampling interval is fixed at one second. In this case, it is not
necessary to establish communication with other nodes, nor to
keep track of node IDs, and the total tmem allocation of the
node does not change (as opposed to [15]). Also, smart-alloc
refrains from sending targets to the hypervisor if they do not
change since the last modification, a condition evaluated by
the function send to hypervisor in line 34.

If all the VMs have their allocation increased by a percent-
age P at every interval, eventually the tmem pages could end
up being overallocated i.e. the sum of the targets of every VM
(sum targets, in lines 4 and 25) is larger than the amount of
local tmem pages (line 27). If this happens, it is unlikely that
the VMs will be able to meet their targets. To avoid this, we
make sure that the following condition is met:

i=n−1∑
i=0

vm dataMM[i].mm target = local tmem (1)

Algorithm 4 Smart Allocation Policy
1: function SMART-ALLOC POLICY(memstats, node info, P )
2: local tmem← node info.total tmem
3: num vms← memstats.vm count
4: sum targets← 0
5: for i← 1, num vms do
6: put total← memstats.vm[i].puts total
7: put succ← memstats.vm[i].puts succ
8: failed puts← put total − put succ
9: if failed puts > 0 then

10: curr tgt← memstats.vm[i].mm target
11: incr ← (P × local tmem)/100
12: mm target← curr tgt+ incr
13: else
14: curr tgt← memstats.vm[i].mm target
15: curr use← memstats.vm[i].tmem used
16: difference← curr tgt− curr use
17: if difference > threshold then
18: mm target← ((100− P )× curr tgt) /100
19: else
20: mm target← curr tgt
21: end if
22: end if
23: mm out[i].vm id← memstats.vm[i].vm id
24: mm out[i].mm target← mm target
25: sum targets← sum targets+mm target
26: end for
27: if sum targets > local tmem then
28: factor ← local tmem/sum targets
29: for i← 1, num vms do
30: new ← factor ×mm out[i].mm target
31: mm out[i].mm target← new
32: end for
33: end if
34: send to hypervisor(mm out)
35: end function

When the pages are over-allocated, we reduce the target of
every VM according to the following equation:

targetvmi =
local tmem× vm dataMM[i].mm target∑i=n−1

i=0 vm dataMM[i].mm target
(2)

By enforcing Equations 1 and 2, the policy ensures that: 1)
all local tmem pages are always assigned to a VM i.e. there
are no tmem pages that will remain unallocated, and 2) the
total amount of local tmem pages that are assigned to the
VMs does not exceed the amount of tmem pages available
in the node. If these conditions are not enforced, and tmem
overallocation occurs, the VMs will compete for the excess
pages, overriding the target allocations and unable to meet
their targets. Equation 2 is implemented in lines 27–33. It
ensures fairness by recalculating the targets and proportionally
reallocating tmem.

The policy decreases the target of a VM by a percentage P
of the amount of tmem it has if the policy detects that a VM
is using less pages than its target plus a threshold value (lines
16–21). This avoids premature target decrements which might
cause the targets to oscillate resulting in an unstable policy.

IV. BENCHMARKING AND EXPERIMENTAL FRAMEWORK

We tested SmarTmem using nested virtualization. We used
a VirtualBox image with Xen 4.5.1, with all VMs running
Ubuntu 14.04 with kernel 3.19. The VirtualBox environment
was executed with two processor cores, 6GB of RAM, 2GB



Fig. 3: Running times for Scenario 1. SM refers to smart-alloc

of swap and a 32GB hard drive. The physical system in which
VirtualBox was executed had a 4-core Intel Core i7 processor
running at 2.1GHz with 8GB of RAM, 4GB of swap and a
320GB hard drive.

We used the CloudSuite Benchmarks [16] and a micro-
benchmark called Usemem to evaluate SmarTmem. Usemem
is a synthetic micro-benchmark that allocates an incremental
amount of memory as it executes, starting from 128MB
and increasing it by 128MB increments. Once it allocates a
region of memory, it traverses it linearly performing write/read
operations. Once it completes a run through a region, it
then allocates a larger block, until it reaches 1GB. Once
there, Usemem stops increasing the allocation but continues
to write/read on the 1GB of memory allocated until stopped.

To demonstrate the effectiveness of SmarTmem and the
policies, we ran multiple VMs in different execution scenarios,
described in Table II. This table shows the scenario names,
the VM parameters (CPU and RAM) and a description of the
benchmark execution, together with the datasets used. Every
scenario is executed five times with every policy. In every
scenario, the amount of tmem enable was 1GB, except for
the Usemem Scenario in which only 384MB was enabled.

The VM parameters in each scenario were chosen for the
benchmarks to work in a realistic setting in relation to the
algorithms and datasets used, so that an enough and reasonable
amount of memory pressure is generated during execution. In
this way, a fair comparison can be made for all the policies.

V. RESULTS AND DISCUSSION

A. Results for Scenario 1

Figure 3 shows the average running times (less is better) and
standard deviations for Scenario 1, with the different policies.
We vary P for smart-alloc and compare the running times
against the case without tmem support (no-tmem).

Figure 4 shows the amount of tmem capacity of each VM
for (a) greedy and (b) smart-alloc with P = 0.75%. In
Figure 4(a), VM3 reaches a tmem capacity peak during the
first run, while VM1 and VM2 can’t reach their fair share.

b) smart-alloc (P=0.75%)

a) greedy

Fig. 4: Utilization of the tmem capacity (nod-tmem) by every
VM in number of pages for Scenario 1. The label target-VM3
refers to the target allocation of the third VM.

During the second run, VM2 is unable to reach a fair share,
while the other two VMs take a higher portion of tmem.
Figure 4(b) shows that smart-alloc maintains similar tmem
capacity across VMs with some adaptability, and it also shows
the allocation target for VM3 and the way it is enforced.

Some policies were not able to obtain performance benefits.
reconf-static showed almost no improvement in most of the
VMs. Something similar happens to static-alloc in the first run
of VM2. The case of smart-alloc with P = 0.25% performed
poorly for almost every case. The lack of improvement shown
by some policies can be attributed to their lack of adaptability
to the changes on the memory demand. For example, when
using smart-alloc with P = 0.25%, the allocation targets
increase at a slower pace, causing the VMs to swap more,
demonstrating the need for the policy to adapt quickly to the
VM’s memory demand, for which it is necessary to tune the
parameters of smart-alloc.

The best runtime performance (fastest) is obtained for
smart-alloc (referred to as sm in Figure 3) with P = 0.75%. Its
standard deviation barely overlaps with greedy, demonstrating
its clear benefits. smart-alloc with P = 0.75% runs faster
than no-tmem by a maximum of 35.7% (first run of VM3)
and by a minimum of 28% (second run of VM2). It also runs
faster than greedy by a maximum of 12.7%, corresponding
to the first run of VM3, and by a minimum of 7.1%. These
results demonstrate the need to manage tmem with an adequate
management policy.



TABLE II: List of scenarios used for benchmarking. In all cases, we deploy 3 VMs.

Scenario
Name

VM Parameters Comments

Scenario 1 VM1, VM2, VM3: 1GB RAM, 1 CPU All VMs execute in-memory-analytics once simultaneously, sleep for 5
seconds and execute it again. The data set was taken from [17].

Scenario 2 VM1, VM2, VM3: 512MB RAM, 1 CPU All VMs execute graph-analytics once. The first two VMs launch the
benchmarks simultaneously, and the third one launches it 30 seconds later.
They all use the same dataset provided by [18], [19], [20].

Usemem
Scenario

VM1, VM2, VM3: 512MB RAM, 1 CPU All VMs execute usemem. VM1 and VM2 start executing usemem simultane-
ously, and VM3 starts when VM1 and VM2 attempt to allocate 640MB of
memory. From this point on, all VMs run concurrently and they are stopped
simultaneously when VM3 attempts to allocate 768MB.

Scenario 3 VM1, VM2: 512MB RAM, 1 CPU
VM3: 1GB RAM, 1 CPU

VM1 and VM2 execute graph-analytics and VM3 execute in-memory ana-
lytics. VM1 and VM2 launch execution simultaneously, and VM3 launches
it 30 seconds later. All VMs use the dataset from [18]–[20].

Fig. 5: Running times for Scenario 2.

B. Results for Scenario 2

The average running times for Scenario 2 are shown in
Figure 5 and Figure 6 shows the use of tmem capacity for
the VMs. In this case, VM1 and VM2 take a lot of tmem
as they start executing since their memory demand rapidly
increases, putting significant pressure on the tmem capacity.
This is shown in Figures 6(a) and (b), for the case of greedy
and smart-alloc with P = 6%, respectively. In Figure 6(a),
the third VM is unable to obtain a fair share of tmem. But
in Figure 6(b), when using smart-alloc, despite the fact that
the first two VMs initially take up a large amount of tmem
capacity really fast, the third VM is able to eventually obtain
a fair amount. This shows that smart-alloc is at the same time
adaptive and fair on how it allocates tmem.

In this case, the best performance is obtained with smart-
alloc with P = 6%, performing better than no-tmem by
a minimum and a maximum of 21% (for VM3) and 28%
(for VM1), respectively. It performs better than greedy by
minimum and a maximum of 4.7% (for VM2) and 9.6% (for
VM3), respectively. This is in contrast to Scenario 1, for which
the best benefit for smart-alloc was obtained with P = 0.75%.
The static policies do not present any improvement in this
scenario. These results demonstrate that fairness in tmem
allocation among VMs and quick adaptiveness to memory

a) greedy

b) smart-alloc (P=6%)

Fig. 6: Tmem use of all VMs in Scenario 2 for a) greedy, and
b) smart-alloc with P = 6%

demand spikes are necessary to improve performance. In this
scenario, smart-alloc is able to achieve both.

C. Results for the Usemem Scenario

The average running times for the Usemem Scenario are
shown in Figure 7. The usemem micro-benchmark is designed
to generate a similar memory demand in each VM, giving
insight on how the policies behave.

The running times were approximately equal for all VMs
when using static-alloc for the same amount of memory allo-
cated. Nevertheless, improvements were observed for reconf-
static when allocating 640MB for VM2 and consistently
across all allocations for VM3. In this case, static-alloc policy
ensures fairness (not adaptiveness) on how tmem is allocated,



Fig. 7: Running times for usemem scenario.

regardless of how much a VM is swapping, and reconf-static
follows the same behavior depending how many VMs are
actually swapping (limited adaptiveness).

Notice how static-alloc and reconf-static perform worse
than greedy for VM1 and VM2, but performing better for
the third VM across all memory allocations. This is because
when VM1 and VM2 are executing, the tmem capacity is not
under pressure, but the policies are still enforced restricting the
access to tmem unnecessarily. Remarkably, greedy performs
significantly worse than no-tmem for the last allocation of
usemem in VM3 (640MB). However, all the other policies
perform better than no-tmem for VM3.

Figure 8(a) shows that VM3 struggles to obtain tmem
pages when using greedy as the tmem capacity is under
pressure. This is similar to the case presented in Figure 6(a)
for Scenario 2. However, in Figure 8(b) and Figure 8(c),
corresponding to reconf-static and smart-alloc with P = 2%,
every VM is able to obtain a fair share of memory.

The case of smart-alloc allows for the VM1 and VM2 to
take much more memory than with reconf-static, but still less
than what greedy allows, as seen on Figures 8(a) and 8(c).
In this case, smart-alloc exhibits more adaptiveness. reconf-
static performs better for when VM3 allocates 384MB and
512MB, as previously seen. These results demonstrate that
reconf-static and static-alloc, both of which are more oriented
towards fairness, despite not showing the best performance in
Scenarios 1 and 2, still present better performance than smart-
alloc for these Usemem cases.

When the third VM starts executing Usemem, smart-alloc
achieves fair allocation at a slower pace. In Figure 8(c), the
three VMs take more tmem than the limit imposed by reconf-
static, demonstrating the better adaptiveness of smart-alloc.

These results are interesting because they highlight a trade-
off between the adaptiveness of a policy to quickly respond
to changes in memory demand (as smart-alloc) and its ability
to fairly allocate tmem (as static-alloc and reconf-static). The
more responsive a policy is, the more tmem it will let a VM

a) greedy

b) reconf-static

c) smart-alloc (P=2%)

reconf-static 
ends sm-2p ends

Fig. 8: Tmem use of all VMs in usemem for a) greedy, b)
reconf-static and c) smart-alloc with P = 2%. The vertical
lines in a) show the time when usemem completes execution.

take, but as other VMs come under pressure, it will be harder
to reach fairness.

D. Results for Scenario 3

The average running times for Scenario 3 are shown in
Figure 9, and Figure 10 show the tmem capacity used by the
three VMs for greedy, static-alloc, reconf-static and smart-
alloc with P = 4%.

The graph-analytics benchmark starts by making use of a
large amount of tmem. For greedy, VM1 and VM2 take up
half of the available memory each, leaving almost no memory
available for when VM3 increases its demand. This helps
explain why VM3 executes very slow with greedy. Notice the
way static-alloc is very rigid (not adaptive), setting an upper-
bound for all three VMs. This seems to benefit VM3 very
much and, surprisingly, VM1 and VM2 also improved.

In Figure 10(c), we see the case with reconf-static. This
policy allows for VM1 and VM2 to share half of the available



Fig. 9: Running times for Scenario 3.

capacity until VM3 starts swapping. By this time, the targets
are reconfigured but VM3 is still unable to reach a fair share.
because pages are released by the VM at a slower pace, despite
the targets already being modified.

Notice how smart-alloc allows for VM1 and VM2 to take
up a similar amount of tmem when compared to greedy, but
reduces their share as soon as VM3 swaps, but VM3 is unable
to reach a fair share, allowing VM1 and VM2 to have more
tmem. This helps explain the results observed in Figure 9,
where VM1 and VM2 run faster for smart-alloc but slower
for static-alloc, while it is the opposite for VM3. Again, this
highlights the trade-off between adaptiveness and fairness.

All the policies improve over greedy consistently, except
for reconf-static which fails for the first two VMs. For VM1
and VM2, smart-alloc with P = 4% performs better than the
other policies. For VM3, the best performance is obtained with
static-alloc by a very significant margin. The maximum and
minimum improvements over no-tmem are 40% (in VM3 for
static-alloc) and 22% (in VM for smart-alloc with P = 4%),
respectively, while the maximum and mininum improvements
over greedy are 35% (in VM3 for static-alloc) and 10.8% (in
VM2 for smart-alloc with P = 4%), respectively.

VI. RELATED WORK

Many research efforts seek to optimize memory alloca-
tion by implementing better control strategies in the balloon
driver [10], [21]–[25]. One similarity we have with respect
to Liu et al. [10] is that we also implement a user-space
process to manage the allocation of memory capacity to every
VM, albeit their communication mechanisms are slightly more
complicated, since they need to communicate the allocation
targets to every VM. In our case, it is the hypervisor in
charge of doing so, which reduces significantly the memory
and communication overheads.

Both Zhao et al. [22] and Liu et al. [10] predict the memory
demands of the VMs. Whereas, Zhao et al. [22] predicts
the working set size of the VMs to dictate target memory
allocations to the balloon driver, Liu et al. [10] predicts the

a) greedy

b) static-alloc

c) reconf-static

d) smart-alloc (P=4%)

Fig. 10: Tmem use of all VMs in Scenario 3 for a) greedy, b)
static-alloc, c) reconf-static and d) smart-alloc with P = 4%.

total memory footprint including swap. In contrast, rather than
predicting memory requirements, we shift the core of the
problem into directly reducing the amount of swapping to disk,
thus keeping the data in system memory. In addition, we focus
entirely on tmem instead of memory ballooning.

Venkatesan et al. [26] use tmem, in both cleancache and
frontswap mode, in a computer node with non-volatile memory
(NVM) alongside traditional DRAM. They use tmem to access



the NVM where the disk device would have normally been
used. They divide the NVM space into a clean region (for
clean cache pages) and a swap region (for processes that
attempt to swap to disk). One difference between SmarTmem
and Venkatesan et al. [26] is that we only make use of tmem
on its frontswap mode. The type of applications we run from
Cloudsuite are memory intensive, and the processes of these
applications dynamically allocate memory pages that are not
backed by the filesystem. Thus, when data is evicted from
memory, those pages have to be stored in frontswap.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduces a mechanism, based on tmem, which
exploits memory resources in a virtualized computing node
executing multiple applications. Our results demonstrate the
need to intelligently and efficiently allocate tmem capacity
to VMs at the node level, showing significant performance
improvements, of up to 35%, over the default greedy policy. At
the same time, we identified a trade-off between the policy’s
adaptiveness and its fairness. These results will be relevant
also for tmem-based memory disaggregation solutions and
to systems that use the tmem interface with heterogenous
memory architectures such as Venkatesan et al. [26].

We evaluated the effectiveness of SmarTmem, in terms of
fairness among VMs and adaptiveness to changing memory
demands. This evaluation was done using micro-benchmarks
and application scenarios using CloudSuite benchmarks. We
also demonstrated that the policies implemented ensure fair
capacity allocation in different scenarios, while being able to
adapt to the changing memory demand of the VMs. This paper
provides a framework and baseline for future development
of more sophisticated tmem memory policies, as well as
integration of tmem and other memory allocation mechanisms.

ACKNOWLEDGEMENTS

This research is part of a project that has received funding
from the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement No 754337 (EuroEXA)
and the European Unions 7th Framework Programme under
grant agreement number 610456 (Euroserver). It also received
funding from the Spanish Ministry of Science and Tech-
nology (project TIN2015-65316-P), Generalitat de Catalunya
(contract 2014-SGR-1272), and the Severo Ochoa Programme
(SEV-2015-0493) of the Spanish Government.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, April 2010.

[2] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 7–18, 2010.

[3] Cloudstack, “https://cloudstack.apache.org/.”
[4] Openstack, “http://www.openstack.org/.”
[5] Z. Zhang, C. Wu, and D. W. Cheung, “A survey on cloud interoperabil-

ity: Taxonomies, standards, and practice,” SIGMETRICS Perform. Eval.
Rev., vol. 40, no. 4, pp. 13–22, April 2013.

[6] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, “The characteristics of
cloud computing,” in Proceedings of the 2010 39th International Confer-
ence on Parallel Processing Workshops, ser. ICPPW ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 275–279.

[7] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–
421, July 1974.

[8] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on
concepts, taxonomy and associated security issues,” in Proceedings of
the 2010 Second International Conference on Computer and Network
Technology, ser. ICCNT ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 222–226.

[9] J. Simão, J. Singer, and L. Veiga, “A comparative look at adaptive
memory management in virtual machines,” in Proceedings of the 2013
IEEE International Conference on Cloud Computing Technology and
Science - Volume 01, ser. CLOUDCOM ’13, vol. 1. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 452–457.

[10] H. Liu, H. Jin, X. Liao, W. Deng, B. He, and C.-z. Xu, “Hotplug
or ballooning: A comparative study on dynamic memory management
techniques for virtual machines,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 5, pp. 1350–1363, 2015.

[11] C. A. Waldspurger, “Memory resource management in vmware esx
server,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181–194, December
2002.

[12] K. Fraser and M. J. Silbermann, “Resizing memory with balloons and
hotplug,” in In Proceedings of the Linux Symposium, 2006, pp. 313–319.

[13] D. Magenheimer, C. Mason, D. McCracken, and K. Hackel, “Transcen-
dent memory and linux,” in Ottawa Linux Symposium, July 2009, pp.
191–200.

[14] X. Li, P. Zhang, R. Chu, and H. Wang, “Optimizing guest swapping
using elastic and transparent memory provisioning on virtualization
platform,” Front. Comput. Sci., vol. 10, no. 5, pp. 908–924, October
2016.

[15] L. Garrido and P. Carpenter, “vmca: Memory capacity aggregation and
management in cloud environments,” in IEEE 23rd Intl. Conference on
Parallel and Distributed Systems (ICPADS), December 2017.

[16] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: a study of emerging scale-out workloads on
modern hardware,” in Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’12. New York, NY, USA:
ACM, 2012, pp. 37–48. [Online]. Available: http://doi.acm.org/10.1145/
2150976.2150982

[17] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, pp. 19:1–19:19,
Dec. 2015. [Online]. Available: http://doi.acm.org/10.1145/2827872

[18] Rossi, Ryan A. and Ahmed, Nesreen K., “soc-twitter-follows - social
networks,” http://networkrepository.com/soc-twitter-follows.php, 2013.

[19] Rossi, R. A. and Ahmed, Nesreen K., “The network data repository
with interactive graph analytics and visualization,” in Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[20] Rossi, R. A. and Ahmed, N. K., “An interactive data repository with
visual analytics,” SIGKDD Explor., vol. 17, no. 2, pp. 37–41, 2016.

[21] T.-I. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone, “Application
level ballooning for efficient server consolidation,” in Proceedings of the
8th ACM European Conference on Computer Systems, ser. EuroSys ’13.
New York, NY, USA: ACM, 2013, pp. 337–350.

[22] W. Zhao, Z. Wang, and Y. Luo, “Dynamic memory balancing for virtual
machines,” in SIGOPS Oper. Syst. Rev, vol. 43, no. 3. ACM, July 2009,
pp. 37–47.

[23] J. Kim, V. Fedorov, P. V. Gratz, and A. L. N. Reddy, “Dynamic memory
pressure aware ballooning,” in Proceedings of the 2015 International
Symposium on Memory Systems, ser. MEMSYS ’15. New York, NY,
USA: ACM, 2015, pp. 103–112.

[24] J.-H. Chiang, H.-L. Li, and T. cker Chiueh, “Working set-based physical
memory ballooning,” in Proceedings of the 10th International Confer-
ence on Autonomic Computing (ICAC 13). San Jose, CA: USENIX,
2013, pp. 95–99.

[25] G. Moltó, M. Caballer, E. Romero, and C. de Alfonso, “Elastic memory
management of virtualized infrastructures for applications with dynamic
memory requirements,” in International Conference on Computational
Science, vol. 18, no. 159-168, 2013.

[26] V. Venkatesan, W. Qingsong, and Y. C. Tay, “Ex-tmem: Extending
transcendent memory with non-volatile memory for virtual machines,”
in Proceedings of the 2014 IEEE Intl Conf on High Performance Com-
puting and Communications, 2014 IEEE 6th Intl Symp on Cyberspace
Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software
and Syst (HPCC,CSS,ICESS), ser. HPCC ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 966–973.

http://doi.acm.org/10.1145/2150976.2150982
http://doi.acm.org/10.1145/2150976.2150982
http://doi.acm.org/10.1145/2827872

	Introduction
	Background
	Virtualization and Memory Management
	Transcendent Memory (tmem)

	SmarTmem: Optimizing Tmem Utilization
	SmarTmem Architecture
	Hypervisor support for SmarTmem
	Tmem Kernel Module (TKM)
	Memory Manager Process for Tmem Allocation in a Virtualized Computing Node
	High-Level Tmem Management Policies
	Static Memory Capacity Allocation (static-alloc)
	Reconfigurable Static Allocation (reconf-static)
	Smart Allocation (smart-alloc)


	Benchmarking and Experimental Framework
	Results and Discussion
	Results for Scenario 1
	Results for Scenario 2
	Results for the Usemem Scenario
	Results for Scenario 3

	Related Work
	Conclusions and Future Work
	References

