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Abstract. Nested parallelism is a well-known parallelization strategy to
exploit irregular parallelism in HPC applications. This strategy also fits
in critical real-time embedded systems, composed of a set of concurrent
functionalities. In this case, nested parallelism can be used to further
exploit the parallelism of each functionality. However, current run-time
implementations of nested parallelism can produce inefficiencies and load
imbalance. Moreover, in critical real-time embedded systems, it may lead
to incorrect executions due to, for instance, a work non-conserving sched-
uler. In both cases, the reason is that the teams of OpenMP threads are
a black-box for the scheduler, i.e., the scheduler that assigns OpenMP
threads and tasks to the set of available computing resources is agnostic
to the internal execution of each team.
This paper proposes a new run-time scheduler that considers dynamic
information of the OpenMP threads and tasks running within several
concurrent teams, i.e., concurrent parallel regions. This information may
include the existence of OpenMP threads waiting in a barrier and the pri-
ority of tasks ready to execute. By making the concurrent parallel regions
to cooperate, the shared computing resources can be better controlled and
a work conserving and priority driven scheduler can be guaranteed.
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1 Introduction

OpenMP, widely used in the High Performance Computing (HPC) domain, is
increasingly gaining attention in others domains [23, 22, 15, 36] due to its effi-
cient parallel execution model in shared memory systems, and also its support
for heterogeneous computing. This is the case of critical real-time embedded sys-
tems, in which new computational intensive functionalities are being developed
(e.g., autonomous driving). Here, OpenMP allows to efficiently exploit the per-
formance capabilities of the newest highly parallel and heterogeneous embedded
architectures, while benefiting from its programmability and portability capa-
bilities. Moreover, OpenMP has been proven to be time predictable [38, 35, 36],
a key aspect to introduce this model in the critical real-time embedded domain.
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OpenMP implements a fork-join model in which the parallel execution is
initiated when a parallel construct is encountered. Then, a new team of
threads (and implicit tasks) is created, associated to the corresponding parallel
region. Moreover, OpenMP supports nested parallelism in which new parallel
regions can be created in contexts that are already being executed in parallel.

Nested parallelism has a number of benefits in both HPC and critical real-
time systems: (1) it is a well-known parallelization strategy to support irregular
(imbalanced) applications, and (2) it can be used to boost performance at the dif-
ferent levels of a complex system or application, where parallelism is exposed. By
using nested parallel regions, applications can benefit from an outer parallel
construct for exploiting coarse-grain parallelism, and multiple inner parallel
constructs for exploiting fine-grain parallelism.

However, this strategy presents two important issues: (1) it may result in
load imbalance and hence, loss of performance [17], and (2) in the case of crit-
ical real-time systems, it may result in an incorrect (or too pessimistic) timing
analysis [38, 35, 37, 33]. The reason is that timing analysis is based on work-
conserving scheduling policies [35], in which computing resources cannot be idle
if there is pending work to do, and priority driven scheduling strategies, where
the preference to execute is given to high priority tasks. These properties are
not guaranteed between different concurrent parallel regions in OpenMP.

In both HPC and critical real-time systems, the reason to obtain worse or
wrong results is that each parallel region operates independently, as a black-box,
over a set of computing resources, either software resources (e.g., pthreads) or
hardware resources (e.g., cores). The scheduler implemented at the OpenMP
runtime level is agnostic of the internal execution of each team of threads. As a
result, a team can have idle OpenMP threads waiting in a barrier, and occupying
computing resources, while there is another team with pending work. The black-
box problem in critical real-time systems was already identified [36], so the use
of a unique team of threads was proposed to parallelize such systems.

In this paper, we propose a new run-time scheduler in which concurrent paral-
lel regions cooperate by sharing internal execution information between different
teams of threads, e.g., the highest priority among the ready tasks and whether
there are idle OpenMP threads waiting in a barrier. This cooperation is used to
(1) share computing resources among different (cooperative) teams by defining a
new OpenMP thread scheduler, and (2) ensure a work-conserving and priority-
driven scheduling, so the timing analysis for critical real-time systems, defined
at analysis time, remains valid at runtime.

It is important to remark that our proposed run-time implementation is
fully compatible with the current OpenMP specification [2]: the number of
OpenMP threads within a parallel region remains fixed, the parallel work defined
within each parallel region is executed exclusively by the corresponding team of
OpenMP threads, and the thread affinity is preserved. Moreover, since the be-
havior of this implementation can be essential for some systems, e.g., critical
real-time systems, we propose to provide the programmer with a new OpenMP
feature to enforce parallel regions to cooperate.
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1 #pragma omp parallel
2 {
3 if ( th work >= THRESLHOLD) {
4 #pragma omp parallel
5 di t r ibute and compute ( ) ;
6 }
7 else {
8 compute ( ) ;
9 }

10 }

(a) Code snippet.

Implicit parallel 
region

First parallel 
region

Nested parallel 
region

(b) Parallel regions.

Fig. 1: Example of nested parallelism with OpenMP.

2 Motivation: The Importance of Nested Parallelism

This section presents the use of nested parallelism in the HPC and critical real-
time embedded domains, and motivates the need for a more flexible and con-
trollable scheduler regarding computing resources and OpenMP teams.

2.1 Nested Parallelism in HPC

Before the introduction of the tasking model into OpenMP (specification v.3.0
[1]), nested parallelism was a well-known pattern used to address irregular HPC
applications (e.g., tree traversal, adaptive mesh refinement [6], and dense linear
algebra [25]). This strategy, which consists on creating new parallel regions in
contexts that are already executed in parallel, may help to reduce load-balancing
issues, because threads that get more work may decide to solve their work in
parallel opening a new parallel region. Figure 1a illustrates this behavior, and
Figure 1b shows a diagram of the parallel execution of that code.

Although in several cases the tasking model has replaced nested parallelism
to exploit irregular applications [3, 39], the latter still outperforms the former in
some cases. This is, for example, the case of imbalanced loops, where dynamic
scheduling or tasking may suffer from poor cache behavior and low data reuse due
to the inability to bind tasks to cores [8]. This, and the high overhead typically
introduced by the runtime to manage the tasking model [26], makes nested
parallelism a valid and still valuable mechanism. Particularly, for modern SMP
machines with hierarchical memory systems, where outer teams can be created
at core level, and inner teams can be created at hardware thread context [30].

The use of nested parallelism may however introduce problems by itself: on
one hand, the overhead associated to the creation of parallel regions and the
synchronizations [13]; on the other hand, the difficulty of tuning the number
of threads of each parallel region. Regarding the former, different works try to
mitigate the overhead of OpenMP parallel regions [13, 21] by reusing structures
when possible (the most significant techniques are introduced in Section 3).
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Regarding the latter, the problem explodes, because an inappropriate definition
of the number of threads in nested parallel regions may entail several issues:
(1) loss of programmability, because more responsibilities are pushed to the
programmer; (2) loss of portability, because a particular set of values might
be optimal for one architecture and mediocre in a different one; (3) situations
of load imbalance, because threads are waiting at synchronization points while
there might be work to do; and (4) oversubscription of the system resources.

Interestingly, the problem of load balancing nested parallel regions has been
tackled widely, underscoring the importance of reusing the resources efficiently,
reducing oversubscription and boosting data locality. Some solutions are based
on a dynamic distribution of the resources between the different nested parallel
regions [14], relieving the programmer from the burden of defining the num-
ber of threads of each parallel region, and thus enhancing programmability and
portability. Others are based in work stealing strategies [29], crucial to ensure
work-conserving schedulers that better exploit the possibilities of the system [7].
These works however, consider scheduling solutions in which the internal infor-
mation about the execution status of the teams executed in parallel is not taken
into account. This prevents teams to cooperate among them to, for example,
avoid having idle threads when there is work to do in other teams.

Next paragraphs introduce an HPC application that presents limitations in
the scheduling of different OpenMP parallel regions.

Human Respiratory Simulations: Alya

Coupled runs, consisting in simulations that solve different physics for a single
run, are very common in HPC environments [10]. They can be found in a variety
of examples from earth science, where some processes simulate the earth while
other the ocean, to biological ones. This section describes the couple run applied
to a biological simulation of the human respiratory system [18]. It is composed of
the simulation of the air going through the human airways, and the simulation
of the transport of particles inhaled through the bronchopulmonary tree.

FluidParticlesFluidFluid
Fluid ParticlesParticlesFluid ParticlesFluid

ParticlesParticles Particles
MPI Process 1
MPI Process 1MPI Process 2
MPI Process 1

a)b)c) Particles ParticlesFluid Fluid Fluid
Fig. 2: Coupled run respiratory system.

Concretely, the simulation can be performed in two different instances of
the program, one solving the fluid (air), and the other solving the transport of
particles (particles inhaled). In this approach, shown in Figure 2a, when the pro-
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cesses solving the fluid have computed its velocity, they send it to the processes
computing the transport of particles, so both can be pipelined in parallel.

This simulation can also be performed by one instance, as shown Figure 2b,
where the program first solves the velocity of the fluid, and then the transport
of particles. Considering that both phases include OpenMP parallel loops, and
given that the computation is completely independent, each physics (fluid and
particles) can be encapsulated within a high level task so they can run in parallel.
This approach may result in a load imbalance scenario, however, if the workload
is not properly distributed among the threads in the nested parallel.

If the concurrent parallel regions within each high level task are cooperative,
the imbalance present in the fluid phase can be used to compute some of the
particles parallel region, as shown in Figure 2c.

2.2 Nested Parallelism in Critical Real-time Systems

OpenMP is increasingly being considered as a convenient parallel programming
model to develop the most advanced critical real-time systems. One of the main
reasons is that the semantics of OpenMP tasks resembles the limited preemptive
scheduling models [33, 34, 37]. The preemption strategy is an important factor in
real-time scheduling because it determines when real-time functionalities, real-
time tasks, can be stopped and resumed. Limited preemptive scheduling has been
shown to reduce preemption-related overheads compared to fully-preemptive sys-
tems, while limiting the amount of blocking typical of fully-non-preemptive sys-
tems [5]. In this regard, OpenMP defines Task Scheduling Points (TSPs) as
points in the execution of a program at which an OpenMP task can be sus-
pended, allowing the associated computing resource to execute other OpenMP
tasks. TSPs are therefore well-identified preemption points of parallel execution
that can be considered in the timing analysis of real-time systems [33, 34].

However, current timing analysis techniques are based on run-time sched-
ulers with two important features: (1) a priority-driven execution, and (2) a
work-conserving nature. Regarding the former, real-time systems typically as-
sign priorities to real-time tasks and give preference to those tasks with a higher
priority (based on the implemented preemption strategy) so that all tasks meet
their deadlines. On the other hand, timing analysis for work non-conserving
schedulers (i.e., there may be idle threads while there is still work to be done)
have been proven to be very complex, and hence lead to unacceptable pessimistic
results [35]. As a result, timing analysis techniques impose the real-time system
to use a single team of OpenMP threads to execute all real-time tasks [36]. The
reason lies in the black-box nature of concurrent parallel regions: the execution
of each parallel region is governed by the team associated to that region, and
each team has access only to the tasks associated to that team. Subsequently,
two problems arise: (1) threads encountering a TSP can only schedule tasks that
belong to its own team, so highest priority tasks from other teams might be de-
layed, and (2) threads waiting in a barrier cannot see there is work to do from
other teams, so a work-conserving policy cannot be guaranteed.
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1 / / Real−time functionality T1

2 #pragma omp parallel \
3 num threads (2 )
4 #pragma omp single
5 {
6 #pragma omp task priority (1 )
7 { . . . }
8 #pragma omp task priority (1 )
9 { . . . }

10 #pragma omp task priority (1 )
11 { . . . }
12 }

(a) Low priority tasks

1 / / Real−time functionality T2

2 #pragma omp parallel \
3 num threads (2 )
4 #pragma omp single
5 {
6 #pragma omp task priority (2 )
7 { . . . }
8 #pragma omp task priority (2 )
9 { . . . }

10 #pragma omp task priority (2 )
11 { . . . }
12 }

(b) High priority tasks

Fig. 3: Concurrent OpenMP parallel regions

As an example, Figure 3 shows the OpenMP code implementing two con-
current real-time tasks1. Figures 3a and 3b correspond to the low-priority and
high-priority real-time tasks respectively, set by means of the priority clause.
Moreover, both parallel regions consider two OpenMP threads and a one-to-one
mapping to physical resources (cores). Figure 4a shows the time diagram of the
expected parallel execution of the OpenMP tasks, as considered by the timing
analysis. Low priority OpenMP tasks are created at time instant t1, and high
priority tasks, at t2, and so low priority tasks start the execution first in cores
1 and 2. The timing analysis considers that, when a low priority task finishes, a
high priority task starts the execution, e.g., at time instant t3. As a result, the
system is considered to be schedulable because all deadlines are meet, i.e., the
high-priority real-time task completes before t5 and the low-priority real-time
task before t6.

However, due to the black-box nature of the two concurrent parallel regions,
the run-time behavior may be different to that computed at analysis time. Figure
4b shows the time diagram of a compliant OpenMP execution of the two parallel
regions, but not consistent with the timing analysis shown in Figure 4a. The
reason is that when the thread executing the low priority real-time task reaches
the TSP at t3, it is not aware of the pending high priority OpenMP tasks ready
to execute in the other parallel region. As a result, the execution of the high-
priority real-time task is delayed, missing its deadline at t5. In this same scenario,
a work-conserving strategy is not ensured, since at t4, one of the OpenMP threads
belonging to low-priority real-time task becomes idle and stays busy-waiting in
the barrier while there is work to do in the other parallel region, instead of
freeing the core to assign it to the other parallel team.

Next paragraphs present a real-time application where nested parallelism is
useful, although its usage can cause the issues described in this section.

1 The parallel region that encloses the two functionalities is not shown for simplicity.
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T1 Low priority tasks T2 High priority tasks

Core 2

Core 1

𝑡𝑖𝑚𝑒𝑡4𝑡1 𝑡2 𝑡3 𝑡5 𝑡6

Core 3

(a) Expected behavior considered in the
timing analysis.

𝑡𝑖𝑚𝑒𝑡4𝑡1 𝑡2 𝑡3 𝑡5 𝑡6

Core 2

Core 1

Core 3

(b) Possible behavior according to current
OpenMP parallel implementations.

Fig. 4: Behavior of two real-time functionalities parallelized with OpenMP.

GPS-aided SINU

Global Positioning System (GPS)-aided Strapdown Inertial Navigation Unit
(SINU) system is a low cost motion measurement device commonly used in
real-time navigation systems. The system, depicted in Figure 5, is composed of
two functionalities: (1) obtain information from accelerometers, gyroscopes and
magnetometers to generate outputs in terms of position, velocity and orientation,
and (2) combine this information with that obtained from a Global Positioning
System (GPS) to minimize errors by implementing a Kalman filter [20].

The Kalman filter is a common recursive application that estimates the in-
ternal state of a linear dynamic system from a series of noisy measurements.
As depicted in Figure 6, it is separated into two distinct phases: the prediction
phase and the measurement phase. Both utilize the Cholesky decomposition to
capture the mean and covariance of the system state.

Accelerometers 

Gyroscopes 

Magnetometers 

Navigation 
equations 

GPS Receiver 
System 

MEMS Strapdown INU (40Hz) 

GPS (5Hz) 

Position, 
Velocity and 
Orientation  

Outputs 

Prediction 
Noise Model 

Kalman Filter 
Estimated 

Errors 

Fig. 5: Block diagram of the
GPS-aided SINU system.

Project prediction 

Project error covariance 

Acquire Optimal  
Kalman Gain 

Update estimation states 

Update error covariance 

Initial estimations 

Prediction 

Sensor Measurements 

Updated Measurement 

Prediction 
phase 

Measurement 
phase 

Fig. 6: Block diagram of the
Kalman filtering algorithm.

Overall, the GPA-aided SINU is a real-time application that can exploit two
levels of parallelism: in the outer level, the computation of the two functionalities
(i.e., computing position, velocity and orientation, and estimating errors) can
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be performed in parallel; in the inner level, the computation of the Cholesky
decomposition used in the Kalman Filter [39] can be further parallelized. The
use of nested parallel regions can however prevent the scheduler from fulfilling
priorities or ensuring work-conserving executions.

3 Current Implementations

The OpenMP [2] specification defines an OpenMP thread as an execution entity
with a stack and associated static memory (so called threadprivate memory) that
is managed by the OpenMP implementation. Then, this high-level concept may
be implemented using different libraries, e.g., pthreads [4] and Windows threads
[32]. Hence, when the specification states that a parallel construct causes the
creation of a team of threads, and that the number of threads remains constant
for the duration of that parallel region, it refers to the high-level concept of
thread, and not the actual computing resources.

In that context, runtimes must consider the overhead introduced by multi-
threading libraries [27] when using computing resources. This includes: (1) thread
library startup overhead, that is one-time overhead occurring when the library
starts; (2) thread startup overhead, that is time to create threads; (3) per-thread
overhead, that is work scheduling overhead; and (4) lock management overhead,
that is time spent managing locks. Two of them are particularly interesting
when it comes to share resources among teams: the thread startup and the per-
thread overheads. On the other hand, thread library startup overhead is usually
negligible, and several works tackle lock management overhead [31, 9].

Current OpenMP runtimes (e.g., LLVM [28], libgomp [19]) try to reduce
the impact of thread startup overhead by using a pool of threads [13], and so
avoid the costly creation and destruction of threads. For example, libgomp safely
reuses idle threads, considering the processor binding and the thread affinity. As
an illustration, for the code shown in Figure 7, LLVM consistently creates X*Y
threads, while libgomp creates a number equal or (a bit) bigger than X*Y. Both
results prove that LLVM and libgomp use pools of threads.

1 #pragma omp parallel num threads (X)
2 for ( int i =0; i <1000; i++) {
3 #pragma omp parallel num threads (Y)
4 { . . . }

Fig. 7: OpenMP example with nested parallelism.

Although OS-threads are reused, the overhead associated with these resources
is still quite high in architectures with a large amount of cores (e.g., the Intel R©

Xeon PhiTM Coprocessor [12]), because more threads are potentially created.
In this context, Intel R© introduced the concept of hot teams [30]. This idea, im-
plemented in the LLVM runtime for OpenMP, exploits the fact that OpenMP
programs may execute many parallel regions with the same set of parameters
(i.e., number of threads, internal control variables and information associated
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with the barrier). So, the runtime maintains one structure per team configura-
tion. Intel also supports nested hot teams, that keep a pool of threads alive (but
idle) during the execution of the non-nested parallel code [21]. This is very use-
ful in cases such as the code presented in Figure 7, where the use of hot teams
allows to create the X inner teams once and not destroy them. Without this, the
runtime would create and destroy them a thousand times.

These techniques, and the behavior they model, are not controllable at an
specification level (and sometimes not even at a runtime level). This is because
OpenMP takes the responsibility of scheduling parallel work out of the hands of
the programmer. Just the scheduling of loop iterations can be tuned by means of
the schedule clause, and the run-sched-var and def-sched-var internal control
variables (as determined in Section 2.9.2.1 of the specification [2]). The schedul-
ing of tasks is completely managed by the runtime following the Task Scheduling
Constraints defined in the specification (Section 2.10.6).

Some runtime implementations, such as Nanos++ [11], allow a finer control
of the scheduler by means of execution modifiers: throttling policies (i.e., define
whether a new task is created and pushed into the scheduler system, or just a
minimal description of the task is created and it is executed right away in the
current context), barrier algorithms (i.e., how threads waiting at barriers execute
remaining work), traversal order (i.e., how tasks are traversed, e.g., work-first
and breadth-first), and thread managers (i.e., control the amount of resources
needed for a specific amount of workload). Regarding the latter, there are specific
libraries, e.g., Dynamic Load Balancing (DLB) [16], that, attached to the runtime
system, allow dynamically managing threads to exploit work-conserving policies.

Overall, a constant behavior of current runtimes is that they tend to apply
work-conserving scheduling policies because: (1) they are proven to be optimal
for multi-threaded scheduling of Directed Acyclic Graphs [7] (as the ones gener-
ated by OpenMP tasks and their dependencies) because it helps load balance,
and (2) they are used in the timing analysis performed for real-time systems
in order to get not too pessimistic results. This policy defines a work queue for
each thread; then, whenever a thread becomes idle, it may steal work from other
busy threads. Both the Intel and the GNU OpenMP runtimes (i.e., KMP and
libgomp) implement work-stealing for tasks (this aspect can be tuned in Intel by
means of the environment variable KMP TASKING). However, the time spent
in busy-waiting is particular to each implementation.

4 Run-time Scheduling based on Cooperative Parallels

As introduced in Section 3, there exist two different kinds of threads involved
in the execution of an OpenMP code. On one hand, the OpenMP threads are
high-level abstractions associated to each team that remain fixed until the team
completes. On the other hand, OS-level threads (e.g., pthreads, as used here-
inafter) upon which OpenMP threads execute may exist along the execution
of the whole application and be reused among different OpenMP teams (using
thread pooling), even when the teams execute concurrently. For instance, the
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pthreads can be shared among two concurrent parallel regions, and so two (or
more) OpenMP threads from different teams (or even the same team) could be
mapped to the same pthread. The use of this technique can lead to incorrect
executions, considered in Section 4.2.

It is OpenMP-compliant to have several OpenMP threads concurrently mapped
to the same pthread. However, in current implementations, the OpenMP thread
scheduler is not aware about the internal execution status of each of the parallel
regions. As a result, different issues relevant for the HPC and real-time domains
may arise, i.e., load imbalance, work non-conserving executions or the impossi-
bility of honoring priorities across teams (see Section 2 for further details).

To address these issues and force a given implementation to provide the run-
time behavior required by HPC or critical real-time systems, we define the coop-
erative parallels, in which concurrent parallel regions communicate to exchange
information about their execution status. Concretely, the run-time thread sched-
uler will act as follows:

– Whenever there is an idle OpenMP thread waiting in a barrier or a
taskwait, barrier), it will communicate with other concurrent paral-
lel regions to check if there is pending work to do. If this is the case, the idle
OpenMP thread will be suspended and the pthread will map to the parallel
region with pending work to do. This will allow to provide better load bal-
ancing execution for HPC and real-time systems, as well as guaranteeing a
work-conserving scheduling execution in case of real-time systems.

– Whenever an OpenMP thread arrives to a TSP, it will check the work pend-
ing in its team and will communicate with the other concurrent parallel
regions to check the priority of the pending ready tasks. If the most priority
ready task belongs to other team, the OpenMP thread will be suspended
and the pthread will map to the parallel region in which the highest prior-
ity OpenMP task belongs to. OpenMP thread (and then the most priority
task). This will allow to accomplish OpenMP tasks priorities as required by
real-time systems.

Moreover, we propose to extend the requires directive with a new im-
plementation defined requirement called ext cooperative parallel. This
directive forces the implementation of OpenMP run-time to handle teams in
such a way that the thread scheduler will take into account the work pending in
all teams executing concurrently as described in this section.

Overall, the implementation of the cooperative parallels requires to have a
global overview of the running OpenMP threads and the pending work of each
team, while maintaining the compliance with the OpenMP execution model.
Section 4.2 describes the properties that could be affected when implementing
cooperative parallels, and must remain valid in the OpenMP specification. Be-
fore, section 4.1 describes an example of the desired behavior of the cooperative
parallels.
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OpenMP teams 
of threads

Pool of software
resources

(e.g., pthreads)

𝑻𝟏.𝟏
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𝑡5

Running

Not running

Fig. 8: Example of two Cooperative parallels.

4.1 Example

Figure 8 shows an example of two concurrent cooperative parallels, each with
two OpenMP threads, that execute OpenMP tasks with a given priority. For
simplicity, there are two priority levels for the OpenMP tasks, high and low,
executed within the parallel region 1 and 2, respectively. There are three pthreads
with IDs 0, 1, and 2. OpenMP threads have IDs 1.0 and 1.1 (parallel region 1),
and 2.0 and 2.1 (parallel region 2).

Runtime behavior of the proposed cooperative parallels.

1. Initially, at time instance t1, we consider that all the OpenMP tasks of both
teams are ready to be executed and the OpenMP threads 1.0, 2.0 and 2.1
are being executed in the available pthreads, with the following mapping:
1.0 mapped to 0, 2.0 mapped to 2 and 2.1 mapped to 1.

2. At time instant t2, the OpenMP thread 2.1 reaches a TSP. Since task T1,2

of parallel region 1 has a priority higher than any other ready tasks of the
parallel region 2, the OpenMP thread 2.1 is suspended and the pthread 1 is
mapped to the OpenMP thread 1.1, and so task T1,2 can start executing.

3. At time instant t3, the OpenMP thread 2.0 reaches a TSP. At this point,
task T1,3 has a priority higher than pending tasks T2,3 and T2,4. However, the
two OpenMP threads of team 1 are already executing, and so the OpenMP
thread 2.0 starts the execution of the task T2,3.

4. At time instant t4, the OpenMP thread 1.1 reaches a TSP but, since all the
tasks in parallel region 2 have lower priority than T1,3, OpenMP thread 1.1
starts the execution of T1,3.

5. Finally, let’s assume that at time instant t5 the OpenMP thread 1.0 reaches
a taskwait), and so it becomes idle. Therefore, since there is still a ready
task pending to be executed in the parallel region 2, OpenMP thread 1.0 is
suspended and the pthread 0 is mapped to the OpenMP thread 2.1 to start
the execution of task T2,4.
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4.2 OpenMP compliance

Possible implementations of the cooperative parallels concept must take into
account some of the features defined in the OpenMP specification in order to be
OpenMP compliant. This section analyses these features.

Thread affinity policy. The thread affinity policy (managed in OpenMP by the
OMP PROC BIND environment variable, the bind-var ICV and the proc bind
clause) establishes how OpenMP threads are assigned to OpenMP places. If
the thread affinity is enabled, the OpenMP implementation should not move
OpenMP threads between OpenMP places once a thread in the team is assigned
to a place. However, an OpenMP place is defined as “an unordered set of pro-
cessors on a device”, i.e., physical resources (hardware threads, cores, etc.), as
described in section 6.5 of the OpenMP API v5.0 [2]. Therefore, the OpenMP
thread affinity, although compatible with the cooperative parallels, may break
the desired behavior if a given computing resource is idle to execute work of
an OpenMP thread that it is not assigned to it. In any case, the programmer
is responsible of defining a thread affinity that does not break the properties
brought by the cooperative parallels.

Deadlocks. The use of the same OS-level thread to execute different OpenMP
regions associated with different OpenMP threads may generate deadlocks. We
recognize two cases: one regarding barriers, and the other regarding locking
routines. In the former case, if some OpenMP threads are blocked executing the
implicit barrier of one parallel region, and some others are executing the implicit
barrier of another parallel region, the OS-level threads may end up having in
their call stack the execution of an implicit barrier that they are not going to
be able to execute until they do not finish the execution of the current one.
In order to solve this issue, our proposal should require an implementation that
does not block the different contexts in the call stack of the OS-level, for instance
implementing the OpenMP threads as user-level threads. In the latter case, when
locking routines are used, compiler analysis [24] can be used to determine the
possibility of a deadlock and hence inform the runtime not to safely share threads
among OpenMP teams.

Threadprivate variables. OpenMP provides Thread Local Storage mechanisms
by means of the threadprivate directive, which allows to specify a list of
variables that must be replicated for each OpenMP thread. Typically, cur-
rent implementations use either mechanisms provided by the base language
(e.g., the C/C++ thread attribute), or mechanisms provided by POSIX (i.e.,
pthread getspecific(), pthread setspecific()), because it is the simpler way to go.
However, this mechanisms are not valid if different OpenMP threads are mapped
to the same OS-level thread, because the latter may end up having incoherent
information coming from the different OpenMP threads. For that reason, when
OS-level threads are to be reused among different cooperative parallel regions,
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the runtime must provide the mechanisms to determine to which parallel region
a OS-level thread is assigned at a given point in time, so the proper threadprivate
data is accessed.

5 Conclusions

Nested parallelism is a well-known strategy used in the HPC and the critical
real-time domains to exploit irregular parallelism in systems exposing paral-
lelism at different levels. However, due to the black-box nature of the parallel
regions, nested parallelism may also result in an inefficient parallel execution
because of load imbalance in the concurrent parallel regions. Moreover, in case
of critical real-time systems, the computation may result incorrect from a timing
perspective because of a work non-conserving execution, and the impossibility
of fulfilling priorities among different parallel regions.

To address these problems, this paper introduces the concept of cooperative
parallels, in which the information about the internal execution status of con-
current teams can be shared among them. Moreover, the possible scheduling
solutions that can take benefit of this information are analyzed. From that dis-
cussion we conclude that a deeper control of the mapping between OpenMP
threads and the underlying OS-level threads (e.g., pthreads) is needed to ful-
fill the work-conserving and priority driven strategies required in both HPC
and critical safety systems to achieve better performance and meet timing con-
straints. An implementation of the cooperative parallel remains as a future work.
Nonetheless, this paper discusses the compliance of the cooperative parallel con-
cept with the current OpenMP specification, and provides tips to inspire future
implementations.
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