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Abstract: Stainless steel has excellent corrosion resistance properties, considerable long-term
durability, and good mechanical strength. Hollow sections are a versatile and efficient form
for construction applications. The use of cold-formed stainless steel rectangular hollow section
(RHS) and square hollow section (SHS) in construction industry grasps the attention of designers
conceiving long-term, cost-effective structures. For cold-formed RHS and SHS, localized imperfection
(ω) resulting from rolling and fabrication process is inevitable. ω has inherent variability and has no
definitive characterization. In this paper, statistical analysis of the maximum value of ω collected
from available experimental data is conducted. A new approach utilizing Fourier series to generate
the three-dimensional (3D) models of members with random ω is proposed. Probabilistic studies
based on the proposed 3D models are then carried out to evaluate the effect of uncertainty inω on the
ultimate compressive strength of stainless steel columns with cold-formed RHS and SHS. A total of
21 columns that are prone to local buckling reduction are studied. The results show that uncertainty
inω has a considerable influence on the columns with relatively higher cross-sectional slenderness.
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1. Introduction

Stainless steel is a steel alloy that contains a minimum of 10.5% chromium (Cr) content by mass.
There is a wide range of stainless steels with varied levels of corrosion resistance and mechanical
strength. More than 200 standardized stainless steel grades have hitherto been developed. The basic
alloying elements of stainless steel grades are chromium (Cr) and nickel (Ni). According to Cr–Ni
content by mass, stainless steels can be classified into five basic groups [1,2], as shown in Figure 1.

The five types are austenitic, ferritic, austenitic–ferritic (duplex), martensitic, and precipitation
hardening stainless steels. The first three types have a wide and diverse application in the construction
industry, such as building exteriors, facades, and pedestrian bridges. The last two types are for
specialist applications [3]. For instance, martensitic grades are commonly used for bearings and turbine
blades, and precipitation hardening grades are mostly used in the nuclear and aerospace industry.

Steel hollow sections are a versatile and efficient form for construction applications [4–9]. Buildings
that use steel hollow sections have high strength-to-weight ratios. The efficient use of steel hollow
sections reduces material usage, resulting in lightweight structures. It allows for large spans, and thus
is a choice to achieve the optimal economic benefit. As stainless steels have excellent corrosion
resistance properties, considerable long-term durability, and good mechanical strength [10–14], the use
of cold-formed stainless steel rectangular hollow section (RHS) and square hollow section (SHS) (shown
in Figure 2a) in construction industry has attracted considerable attention. For example, these sections

Appl. Sci. 2019, 9, 3827; doi:10.3390/app9183827 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5293-5578
http://www.mdpi.com/2076-3417/9/18/3827?type=check_update&version=1
http://dx.doi.org/10.3390/app9183827
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 3827 2 of 15

have been used in the facade of the building of department of Chemistry, ETH Zürich (Switzerland),
shown in Figure 2b, and the support frame of Marqués de Riscal Vineyard (Spain), shown in Figure 2c.
Also, they can be used for the main frame structure of residential buildings.
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Figure 1. Classification of stainless steels groups based on the content of chromium (Cr) and nickel (Ni).
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Figure 2. Cold-formed stainless steel rectangular hollow section (RHS) and square hollow section 
(SHS) and their applications in construction industry. (a) Cold-formed stainless steel RHS and SHS; 
(b) facade of the building of department of Chemistry, ETH Zürich (Switzerland); (c) support frame 
of Marqués de Riscal Vineyard (Spain). 

Cold-formed hollow sections are manufactured by cold working and welding. There are two 
different forming methods for cold-formed stainless steel RHS and SHS—direct forming and round 

Figure 2. Cold-formed stainless steel rectangular hollow section (RHS) and square hollow section
(SHS) and their applications in construction industry. (a) Cold-formed stainless steel RHS and SHS;
(b) facade of the building of department of Chemistry, ETH Zürich (Switzerland); (c) support frame of
Marqués de Riscal Vineyard (Spain).

Cold-formed hollow sections are manufactured by cold working and welding. There are two
different forming methods for cold-formed stainless steel RHS and SHS—direct forming and round to
square forming. In direct forming (shown in Figure 3a), the steel strip is transformed into a square or
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rectangular hollow section by bending it through rollers, and welding the seam after that. In round to
square forming (shown in Figure 3b), the steel strip is first formed into a circular hollow section and
then it is welded. After forming the circular hollow section, square or rectangular shapes are created
using profiling rollers.
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Figure 3. Two forming methods for cold-formed RHS and SHS. (a) Direct forming [15]; (b) round to
square forming [16].

For the two forming methods, localized imperfection (ω) induced by rolling and fabrication process
is inevitable (shown in Figure 4). It has sufficient variability and has no definitive characterization [17].
The study of Wang et al. [18] and Zhao et al. [19,20] showed that both the shape and magnitude ofω
varied randomly in the longitudinal direction for cold-formed members with box section, as shown in
Figure 4a. The shape ofω in the transverse direction (cross-sectional) was convexity/concavity [21,22],
which can be modelled by a half-sine wave, as shown in Figure 4b. In numerical studies, ω is
typically modelled by local buckling mode (shown in Figure 4c) obtained from linear perturbation
buckle analysis [23]. The local buckling mode gives idealized ω and neglects uncertainty in
localized imperfection.
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The cross-sectional resistance of cold-formed hollow sections, which contain slender thin-walled
elements, is sensitive to initial localized imperfection [24]. These sections undergo local buckling
reduction in advance of failure and their ultimate capacity may be influenced by the uncertainty
in localized imperfection. Nevertheless, research related to the effect of uncertainty in localized
imperfection on the ultimate compressive strength of cold-formed stainless steel RHS and SHS has
not been explicitly reported, even though they have been studied for structural applications at the
material, member, and system levels [1,17,19–23].

For this purpose, a mathematical approach utilizing Fourier series to generate the 3D models
of members with random ω is proposed in this paper. On the basis of the proposed 3D models,
probabilistic studies are carried out to evaluate the effect of uncertainty inω on the ultimate compressive
strength of the columns.

2. Statistical Analysis of the Maximum Localized Imperfection (ω)

Although there is a considerable uncertainty when characterizing localized imperfection (ω)
in cold-formed hollow sections, experimental data on the maximum localized imperfection (ωmax)
are available for the particular case of RHS and SHS stainless steel specimens. A statistical analysis
of experimental results of the ωmax from the literature [19–22,25–31] is carried out in this section.
A total of 161 cold-formed stainless steel RHS and SHS samples are collected. A summary of the
samples is shown in Table 1. The studied samples refer to the stainless steel grades commonly used
in construction. In these references, some studies [21,22] provided the pattern ofω in the transverse
direction (cross-sectional), in which all the reported patterns are very close to a half-sine wave. Few of
them reported the variation of localized imperfection in the longitudinal direction. The distribution of
ω in the longitudinal direction for two tubes reported in the work of [19] is shown in Figure 5. It is
observed thatω in the longitudinal direction has a considerable variability and its characterization in a
definite closed-form is not feasible.

Table 1. Summary of the samples collected from the literature.

Reference Stainless Steel Groups Grade No. of Samples with
Measuredω

B.F. Zheng et al., 2016 [25] Austenitic EN1.4301 4
I. Arrayago. et al., 2016 [26] Ferritic EN1.4003 12

B. Young and W.M. Lui, 2005 [21] Duplex EN1.4162 5

O. Zhao et al., 2015 [20]

Austenitic EN1.4301 10
Austenitic EN1.4571 6
Austenitic EN1.4307 6
Austenitic EN1.4404 6

Duplex EN1.4162 6

M. Theofanous and L. Gardner,
2009 [27] Duplex EN1.4162 8

W.M. Lui et al., 2014 [22] Duplex EN1.4462 10
Y. Huang and B. Young, 2013 [28] Duplex EN1.4162 22

S. Afshan and L. Gardner,
2013 [29]

Ferritic EN1.4003 6
Ferritic EN1.4509 2

M. Bock et al., 2015 [30] Ferritic EN1.4003 8
I. Arrayago and E. Real, 2015 [31] Ferritic EN1.4003 26

O. Zhao et al., 2016 [19] Ferritic EN1.4003 24
Total: 161
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(a) RHS 100 × 40 × 2; (b) SHS 60 × 60 × 3.

The probability distribution for ωmax among the samples collected in the literature was identified
by statistical distribution tests (Anderson–Darling method), as well as from probability plots. Both
distribution tests and probability plots were performed using the statistical software Minitab 18 [32].

For the case of distribution tests, Anderson–Darling statistics (AD) and p-values measure how
well the specified distributions fit the data. For a given sample data and distribution, the smaller the
AD, the better the distribution fits the data. Higher p-values indicate a better fit, and p-values less
than 0.05 typically indicate that the data do not follow the specified distribution. The indicator LRT
P is for three-parameter distributions only. A lower LRT P indicates that the related two-parameter
distribution can be significantly improved by a third parameter. Goodness of fit test results for 16
different distribution tests are shown in Figure 6a. The Box–Cox transformation and the Johnson
transformation are disregarded as the target is to identify probability distribution rather than to
perform any transformation. It is found that the log-normal distribution (AD = 1.016, p-value = 0.011)
represents the best fit for the data ofωmax.

Probability plots are another efficient way to determine whether the specified distribution fits the
sample data. The closer the data to the middle straight line, the better the distribution fits the data.
The probability plot of the sample data is shown in Figure 6b. It is observed that the data points are in
close agreement with the center straight line. It again demonstrates that the sample data follow the
log-normal distribution. The histogram ofωmax is shown in Figure 6c. The log-normal distribution is
fitted to the histogram. Comparison of the cumulative probability (CDF) curve against the log-normal
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distribution is shown in Figure 6d, in which CDF determines the probability that an observation will
be less than or equal to a certain value.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 15 
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Some standards provide the maximum allowable value of localized imperfection in the
transverse direction [33,34]. The tolerance for convexity/concavity of a cross-section specified in
EN-10219-2:2006 [34] is min{ωmax/b, 0.5 mm}, whereωmax/b ≤ 0.008; b is the side (straight side of the
cross-section) length; andωmax represents the maximum deviation from the straight side.

3. Fourier Series-Based 3D Models with Randomω

On the basis of a superposition of Fourier series expansion of different functions, a 3D model with
random localized imperfection (ω) is proposed in this section. The Fourier series technique has been
widely used for 3D surface modeling [35,36]. For a function f(x) that is periodic on an interval [−L, L],
it can be expressed as the Fourier series, given by

f(x) =
a0

2
+
∞∑

k=1

[ak cos
(

kπx
L

)
+ bk sin

(
kπx

L

)
], (1)
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where

a0 =
1
L

∫ L

−L
f (x)dx, (2)

ak =
1
L

∫ L

−L
f (x) cos

(
kπx

L

)
dx (k = 0, 1, 2, 3, · · ·), (3)

bk =
1
L

∫ L

−L
f (x) sin

(
kπx

L

)
dx (k = 1, 2, 3, · · ·). (4)

Assume a surface consists of n×m points in a 3D coordinate system, where X coordinate represents
the longitudinal (length) direction, Y represents the transverse (width) direction, and Z represents
deviation from the flat surface parallel to the XY plane. For a point (xi, yj, zij) (I = 1, 2, . . . , m; j = 1, 2,
. . . , n) on the surface, zij governs localized imperfection (ω). All zij elements comprise an n × m matrix
[Z], which can be determined by

[Z] = [F1] + ([F2] − [F1])[S], (5)

[F1] =


f1(x1) f1(x2) · · · f1(xi) · · · f1(xm)

f1(x1) f1(x2) · · · f1(xi) · · · f1(xm)
...

...
...

...
...

...
f1(x1) f1(x2) · · · f1(xi) · · · f1(xm)


n×m

, (6)

[F2] =


f2(x1) f2(x2) · · · f2(xi) · · · f2(xm)

f2(x1) f2(x2) · · · f2(xi) · · · f2(xm)
...

...
...

...
...

...
f2(x1) f2(x2) · · · f2(xi) · · · f2(xm)


n×m

, (7)

where f1(xi) and f2(xi) are functions that are decomposed into Fourier series.
[S] is an m ×m diagonal matrix,

[S] =


sin

(
πy j/B

)
0 · · · 0

0 sin
(
πy j/B

)
· · · 0

...
...

. . .
...

0 0 · · · sin
(
πy j/B

)


m×m

. (8)

([F2] − [F1])[S] =
[f2(x1) − f1(x1)] sin

(
πy1

B

)
· · · [f2(xi) − f1(xi)] sin

(
πy1

B

)
· · · [f2(xm) − f1(xm)] sin

(
πy1

B

)
[f2(x1) − f1(x1)] sin

(
πy2

B

)
· · · [f2(xi) − f1(xi)] sin

(
πy2

B

)
· · · [f2(xm) − f1(xm)] sin

(
πy2

B

)
...

...
...

...
...

[f2(x1) − f1(x1)] sin
(
πyn

B

)
· · · [f2(xi) − f1(xi)] sin

(
πyn

B

)
· · · [f2(xm) − f1(xm)] sin

(
πyn

B

)
.

(9)

The fundamental principles of generating 3D surfaces with random ω are illustrated by the
following. f1(xi) and f2(xi) are two functions that are decomposed into Fourier series with random
coefficients. [F1] and [F2] govern two curved surfaces, as shown in Figure 7a, where L and B are the
length and width of the surface, respectively. Localized imperfection (ω) is determined by matrix ([F2]
− [F1]) [S]. It consists of two components: the transverse variation and longitudinal variation, as shown
in Figure 7b. The shape and magnitude ofω in the longitudinal direction depends on the curve along
the longitudinal centerline. It is determined by the function [f2(xi) − f1(xi)] sin (π/2). The shape ofω
in the transverse direction is modelled by a half-sine-wave, as its shape in the transverse direction
reported in most literatures is convexity/concavity. The half-sine-wave is determined by the function
[f2(xi) − f1(xi)] sin (πyj/B), as shown in Figure 7b, where the two half-sine waves correspond to (xa, yj)
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and (xb, yj) (j = 0, 1, . . . , m). The generated surface with randomω is determined by [F1] + ([F2] − [F1])
[S], as shown in Figure 7c.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 15 
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The 3D model of a member with random ω is finally assembled by four surfaces. It should be
mentioned that in order to fit the four faces together, relevant coordinate transformation should be
conducted. Coordinate transformation depends on assembling order and the position of the surface
in a 3D space. For developing a 3D model of RHS and SHS with round corners, additional curved
surfaces representing round corners need to be modelled. The generated 3D model for a typical surface
with randomω and half-sine edges is shown in Figure 8a, and for a typical member with randomω

and half-sine edges, it is shown in Figure 8b.
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4. Case Study of Stainless Steel Columns with Cold-Formed RHS and SHS

A total of 21 stainless steel columns with cold-formed RHS and SHS are selected among the
tested specimens reported in the literature [21,28,29,37–39]. The studied columns have cross-sectional
slenderness (λl) higher than 0.776. This is to ensure that the columns undergo cross-sectional local
buckling reduction before they reach the ultimate compressive strength. According to the work of [24],
the nominal compressive strength of a column with RHS or SHS is determined by min{Pne, Pnl},
where Pne and Pnl are the nominal global buckling strength and local buckling strength, respectively.
The interaction between global and local buckling depends on λl and is determined by

When λl ≤ 0.776 Pnl = Pne, (10)

When λl > 0.776
Pnl

Pne
= λl

−0.8
− 0.15λl

−1.6. (11)

A plot of Pnl/Pne versus λl is shown in Figure 9. It should be pointed out that, although Equations
(10) and (11) are developed based on carbon steel members, the two equations are applicable to stainless
steel members with cold-formed RHS and SHS and give an accurate prediction [40,41].
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Details of the studied columns are shown in Table 2. Namely, b1, b2, and t are the depth, width,
and thickness of the hollow cross-section, respectively; R is external radius of the round corner; L is the
length of the column; λc and λl are member slenderness and cross-sectional slenderness, respectively;
ωg is the amplitude of global member imperfection (out-of-straightness). ωg is not reported for some
cases of stub columns (λc ≤ 0.2), while the shape ofωg is adopted as a half-sine wave for other columns.

Table 2. Details of the selected stainless steel columns for probabilistic studies.

Reference Specimen b1
(mm)

b2
(mm) t (mm) R (mm) L (mm) λc λl ωg

[37] SHS2L300 50.1 50.3 1.58 2.8 300 0.14 0.8 -
RHS1L3000 140.1 79.9 3.01 10.0 3000 0.71 0.9 0.927

[28]

C5L200 100.1 50.1 2.5 3.7 200 0.18 1.0 -
C6L200 150.0 50.1 2.5 4.3 200 0.18 1.5 -
C6L550 150.1 50.2 2.49 4.5 550 0.48 1.4 0.5

C5L900R 100.1 50.4 2.49 3.5 900 0.79 0.8 0.857
C6L900 150.4 50.3 2.47 4.7 900 0.79 1.3 0.857

C6L1200 149.9 50.5 2.46 4.5 1200 1.04 1.2 1.143
C6L1550 150.5 50.3 2.49 4.5 1550 1.35 1.0 1.476

[29]

RHS 120 × 80 ×
3-SC2 120.0 80.0 2.83 6.7 362 0.16 0.82 -

RHS 120 × 80 ×
3-1077 120.0 79.9 2.87 6.8 1077 0.35 0.8 0.95

RHS 120 × 80 ×
3-1577 120.0 79.9 2.81 6.4 1577 0.51 0.8 0.96

[38]
R1L1200 120.1 40.1 1.94 5.0 1199 0.48 1.1 0.254
R1L2000 120.2 40.0 1.95 5.1 2000 0.80 1.0 0.444
R3L2000 120.0 80.0 2.80 6.7 2000 0.44 0.8 0.381

[39]

SHS100 × 100 ×
2-LC-2 m 99.8 99.9 1.86 3.2 2000 0.73 1.0 0.1

RHS100 × 50 ×
2-LCJ-2 m 99.8 49.8 1.83 3.7 2000 0.80 0.9 0.6

RHS100 × 50 ×
2-LC-1 m 99.8 50.0 1.82 3.6 1000 0.69 1.0 0.1

RHS120 × 80 ×
3-LC-1 m 120.0 80.2 2.86 5.7 1001 0.45 0.8 1

[21] 160 × 80 × 3 160.1 80.8 2.87 9.0 600 0.09 1.2 -
200 × 110 × 4 196.2 108.5 4.01 13.0 600 0.07 1.1 -

5. Generation of 3D Models of the Studied Columns and Finite Element (FE) Analysis

The structural behavior of stainless steel columns with randomωwas studied using finite element
(FE) software Abaqus 6.13 [42]. The Fourier series-based 3D model of the columns with randomωwas
generated by Matlab 2017b [43]. Then, the generated models were imported into Abaqus to conduct
the FE analysis. The input file of ABAQUS is generated by MATLAB script.

5.1. Generation of 3D Model with Random ω Using MATLAB

The development of the coefficient of Fourier series terms of function f2(x) and f2(x) was performed
in Matlab. For the stub columns (λc ≤ 0.2), Fourier series expansion of function f1(x) generated a
straight line. For other columns, f1(x) generated half-sine-waves, where the magnitude of the half-sine
wave was taken as the corresponding ωg, shown in the above Table 2. For all columns, coefficients
of Fourier series terms of function f2(x) were defined as random. The maximum amplitude of the
modelledω for each column was limited to min{0.008b, 0.5}. For each column, 50 models with random
values of localized imperfection ω were produced. The developed Matlab program automatically
created a Python script associated with an Input file operated in Abaqus. It is worth pointing out that
the distribution of the generated random ωmax followed a log-normal distribution as the experimental
data ofωmax. This was explicitly set in the developed Matlab program.
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5.2. FE Analysis Using ABAQUS

Abaqus/Standard (implicit solver) was employed for FE analysis. A four-node shell element
with reduced integration (S4R) was used. It allows transverse shear deformation, and accounts for
finite membrane strains and arbitrarily large rotations. The number of integration points through the
thickness is five (Simpson’s rule). The load–displacement response was predicted using an incremental
procedure based on arc-length methods. The modified Riks method [44], which is available in Abaqus,
was used. On the basis of a mesh convergence study, at least ten elements across the plate widths
were used. Stainless steels have considerable non-linear stress–strain response. To accurately predict
the structural behavior of the studied columns, the adopted material property for each column was
obtained from a corresponding uniaxial tensile stress–strain coupon test. Details of the parameters
that describe the stress–strain curves can be found in the literature [21,28,29,37–39]. For all the models,
edge elements at both ends (top and bottom) were kinematically coupled and connected to two control
points where the relevant degrees of freedom were constrained.

Spread of plasticity through cross-section and along member length was traced by distributed
plasticity approach. In the FE analysis, residual stresses have to be considered as they may have negative
effects on the ultimate capacity of a structure. As the effect of through-thickness longitudinal bending
residual stresses on the global behavior of stainless steel members with box sections is dominant [45],
only longitudinal bending residual stresses were considered, and they were implicitly included in the
stress–strain curves obtained from the tensile coupons test. For each model of the column with random
ωmax, geometrically and materially nonlinear analysis with imperfections (GMNIA) was carried out to
determine the ultimate compressive strength of the column.

6. Effect of Uncertainty inω on the Ultimate Compressive Strength of the Studied Columns

A probabilistic study was carried out to investigate the effect on the uncertainty in localized
imperfection (ω) on the distribution of the ultimate strength of the stainless steel columns with
cold-formed RHS and SHS. The experimental results and predicted results of the columns with random
localized imperfection are shown in Table 3. Namely, Pu-EXP is the ultimate compressive strength
obtained from experiment; Pu-rand is the predicted ultimate compressive strength for each model
(each column have 50 models); µ and COV are the mean value and coefficients of variation, respectively;
and |εmax| is the maximum value of relative error for each set of 50 models.

Table 3. Experimental results and predicted results for the studied columns. COV, coefficients
of variation.

Specimen λl
Pu-EXP
(kN)

µ(Pu-rand)
(kN)

µ(Pu-rand)
/Pu-EXP

COV(Pu-rand) |εmax|

SHS2L300 0.84 175.7 177.8 0.985 0.086 0.043
RHS1L3000 0.88 513.5 454.7 0.980 0.073 0.077

C5L200 0.95 370.1 387.5 1.103 0.036 0.065
C6L200 1.47 404.1 413.2 0.931 0.175 0.171
C6L550 1.41 353.2 388.1 1.026 0.212 0.175

C5L900R 0.84 336.0 326.0 1.007 0.055 0.029
C6L900 1.32 333.5 345.2 0.988 0.139 0.098
C6L1200 1.20 284.5 300.7 1.142 0.108 0.185
C6L1550 1.02 230.0 249.2 1.008 0.095 0.102

RHS 120 × 80 × 3-SC2 0.82 441.0 434.2 1.072 0.093 0.086
RHS 120 × 80 × 3-1077 0.79 463.0 432.1 1.018 0.109 0.075
RHS 120 × 80 × 3-1577 0.79 382.0 401.5 0.973 0.045 0.058
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Table 3. Cont.

Specimen λl
Pu-EXP
(kN)

µ(Pu-rand)
(kN)

µ(Pu-rand)
/Pu-EXP

COV(Pu-rand) |εmax|

R1L1200 1.07 167.0 153.5 1.02 0.129 0.115
R1L2000 0.97 141.3 137.9 0.999 0.088 0.055
R3L2000 0.79 394.0 355.7 1.071 0.071 0.047

SHS100 × 100 × 2-LC-2 m 1.04 176.0 183.0 1.066 0.162 0.096
RHS100 × 50 × 2-LCJ-2 m 0.92 157.0 145.3 1.041 0.085 0.117

RHS100 × 50 × 2-LC-1 m 0.96 163.0 151.4 1.090 0.133 0.102
RHS120 × 80 × 3-LC-1 m 0.79 448.0 415.5 1.053 0.079 0.086

160 × 80 × 3 1.24 537.3 505.0 0.939 0.158 0.139
200 × 110 × 4 1.07 957.0 928.0 0.958 0.081 0.070

For all the studied columns,µ(Pu-rand)/Pu-EXP and COV (Pu-rand) versusλl are plotted in Figure 10a,b,
respectively. A plot of |εmax| against λl is shown in Figure 10c. It is observed that the value
of µ(Pu-rand)/Pu-EXP ranges between 0.931 and 1.103 for all the columns, except the column with
λl = 1.20. Compared with Pu-EXP, the value of µ(Pu-rand) for most columns with relatively lower
cross-sectional slenderness (λl < 1.0) is overestimated, while the value of µ(Pu-rand) for columns with
higher cross-sectional slenderness seems to be underestimated. For the column with λl = 1.20, the value
of µ(Pu-rand)/Pu-EXP is 1.142. It indicates that most predicted results (from the 50 models with random
ω) significantly overestimate the experimental result. This may be because the value of the actual
maximum localized imperfection for this column, which is not reported in the work of [28], is relatively
larger compared with the modelledω, whose maximum value is min{0.008b, 0.5}.
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On the other hand, both COV (Pu-rand) and |εmax| increase as λl increases. One explanation is
that, the larger the cross-sectional slenderness, the more sensitive the column is to initial localized
imperfection. Consequently, the change in the value of modelled localized imperfection can result in a
larger discrepancy in the ultimate compressive strength.

For the columns with relatively lower cross-sectional slenderness (λl < 1.0), the values of COV
(Pu-rand) and |εmax| are less than 0.13 and 0.12, respectively. The result indicates that uncertainty inω
has no considerable influence on the ultimate compressive strength of these columns. This may be
because the columns with relatively lower cross-sectional slenderness are still not sensitive to initial
localized imperfection. Besides, the result indicates thatω can statistically be modelled as deterministic
for these columns, such as using measuredω in the experimental study.

For the columns with λl ≥ 1.2, COV (Pu-rand) are around 0.139–0.238 and the maximum value
of |εmax| is 17.5%. It demonstrates that random ω results in largely scattered ultimate compressive
strength for the columns with larger cross-sectional slenderness, and it is important to consider the
effect of uncertainty in ω on these columns. The distribution of Pu-rand for a typical column (R1L1200)
is shown in Figure 11. In the figure, Pu-rand is normalized by Pu-EXP. It is found that the distribution of
Pu-rand/Pu-EXP can be fitted by a normal distribution.
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7. Conclusions

In this paper, a new approach for modelling initial localized imperfection (ω) is introduced.
The proposed approach considers uncertainty in ω and is based on superposition of Fourier series
expansion of different functions. The Fourier series-based 3D models for the columns with random
ω were generated by MATLAB, and were then imported into ABAQUS to conduct the FE analysis.
The studied stainless steel columns with cold-formed RHS and SHS are selected among the tested
specimens reported in the literature. The selected columns have relatively higher cross-sectional
slenderness to ensure that they undergo cross-sectional local buckling reduction prior to failure. On the
basis of this study, it is found that both the coefficients of variation and the maximum value of absolute
error for the predicted results increase as cross-sectional slenderness increases. This is because columns
with larger cross-sectional slenderness are sensitive to initial localized imperfection and, consequently,
the change in the value of modelled localized imperfection can lead to much discrepancy in the
ultimate compressive strength. Therefore, the effect of uncertainty in ω on the columns with larger
cross-sectional slenderness requires a careful probabilistic consideration that should be considered in
practical design, in which deterministic methods are often employed.
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