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Abstract. In this project, we present a novel approach to calculate and engineer

the photon correlations emerging from the interference between an input field and the

field scattered by an atom in free space. Historically, it has been difficult to observe

robust quantum correlations in the total field, as the inefficient atom-light coupling in

free space usually causes the scattered field to be small in comparison to the input.

To overcome this issue, we propose the use of separate pump and probe beams, where

the former effectively enhances the atomic emission to be comparable to the probe.

Additionally, we elucidate the physical origin of the non-classical correlations predicted,

by studying the transient atomic state after the measurement of a photon.

1. Introduction and motivation

One of the main purposes of quantum optics is to describe the phenomena resulting

from the interaction between atoms and photons [1]. At the same time, promising

applications of quantum physics like quantum information or computation rely on being

able to control and tune this interaction [2, 3]. To observe these quantum phenomena,

one needs a strong coupling between light and matter. Nowadays, this can be obtained

with a handful of different approaches: high finesse cavities [4, 5], large atomic ensembles

[6] or optical wave-guides [7], among others. In the case of a single atom in free space,

the usual approach is to use diffraction-limited focusing, motivated by the fact that the

absorption cross-section of an atom is on the order of the wavelength squared [8].

However, such tight focusing is not easy to obtain. The atom-light coupling

is inefficient under standard laboratory conditions, where optics with low numerical

apertures (NA< 0.9) are typically used [9]. Even so, larger focusing with a single beam

increases the coupling to moderate strength, not enough for some applications. An

enhancement of this method consists in using techniques to deal with the diffraction

limit, such as the 4π illumination [10], obtaining a stronger light-matter interaction.

In this work, we would like to explore a different approach to observe quantum

optical effects at the single-atom level. Among all the possible phenomena to discuss,

we study the quantum photon correlations emerging from the interference between an

input field and the field scattered by an atom in free space.
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1.1. Photon correlations with single atoms

Figure 1: Total field correlations expressed

through the g(2)(0, r) for a paraxial, Gaussian

input beam with waist w0 = 5λ. The atom

is placed at (0,0). Color code: yellow for

bunching and blue for anti-bunching. Data

truncated at g(2) ≤ 50.

As seen by S. J. Van Enk and H. J. Kimble

[11], non-trivial photon correlations emerge

from the interaction between an ideal two-

level atom and an input coherent field. These

include extremely large photon bunching,

g(2)(0, r) → ∞, and total photon anti-

bunching, g(2)(0, r) → 0. It is possible to

prove that these phenomena only occur when

two conditions are met. First, the input and

scattered fields must have similar amplitudes.

Depending on the amplitude ratio, one has

photon bunching (Ein/Eatom = 1) or anti-

bunching (Ein/Eatom = 1/2). Second, the

superposition has to be destructive, meaning that input and scattered fields must have

opposite phases. In Figure 1, we simulate the g(2)(0, r) at each point of the plane (y,+z)

obtained from the superposition between a paraxial, Gaussian beam with waist w0 = 5λ,

propagating along z and polarization x; with the field scattered by a two-level atom. We

see two narrow lines at y ≈ ±10λ with the non-trivial total bunching and anti-bunching.

Figure 2: Maltese cross setup.

The follow up question is whether this is measurable

or not. A point-like measurement of the fields to obtain

g(2)(0, r) is not feasible from the experimental standpoint:

we need to collect the fields with lenses. Extrapolating

the conditions from the point-like case, we hypothesize

that the collected input field must be comparable to the

scattered one to see these effects. However, the scattered

field is much weaker than the input one due to inefficient

light-atom coupling. Without requiring a diffraction-limited

focusing, we propose the following approach to increase the power of the scattered field.

We illuminate the atom with two beams (called pump and probe) in perpendicular

directions. We measure the g(2)(0) of field collected at the probe lens, which contains

the probe and the scattered field. The pump is added to enhance the atomic dipole,

effectively increasing the scattered field, and is not collected at the lens of interest.

A setup allowing all of the above could be a Maltese cross-illumination configuration,

where four aspheric, high-NA lenses are placed as in Figure 2 [12] such that the pump

and probe only cross at the position of the atom. Then, our physical system will consist

of a two-level atom and three fields: pump, probe and scattered.

The aim of this project is to study if relevant effects in the g(2)(0) can be observed

when collecting the light in the aforementioned conditions. To do so, first we will

introduce the theoretical framework. Afterwards, we will discuss how the photon

measurements are done and we will study the quantum photon correlations.
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2. Theoretical framework

This section provides a brief introduction to some results and definitions needed for the

following sections. We start addressing the quantum dynamics of the single-atom within

the density matrix formalism. After that, we define the concept of mode projection.

2.1. Quantum description of the atomic state

The full dynamics of the light emission and re-scattering by a neutral atom in free-

space can be related to an effective model containing only atomic degrees of freedom

and the incident fields [13, 14]. Within this framework, the atom has ground state |g〉
and excited state |e〉, as well as a dipolar transition moment deg (assumed to be along

x̂) coupled to a free space optical mode. The effective dynamics for the atomic density

matrix ρ̂ are described by the master equation

˙̂ρ = −i[Ĥ, ρ̂] + L[ρ̂] = −i[Ĥ, ρ̂] +
Γ0

2
(2σ̂geρ̂σ̂eg − σ̂eeρ̂− ρ̂σ̂ee) , (1)

where Γ0 is the decay rate in vacuum and σ̂ij are the atomic coherence operators |i〉〈j|
with {i, j} ∈ {e, g}. The Hamiltonian from Eq. (1) contains a free energy term and a

light-atom interaction term. In the rotating frame, it has the form

Ĥ = −~∆ σ̂ee − ~
(

Ω

2
σ̂eg + h.c.

)
, (2)

where ∆ = ω − ω0 is the detuning of the field at frequency ω with respect to the

transition frequency ω0 and Ω = Ein ·deg/~ is the Rabi frequency, which in general can

be complex. The steady state solutions of Eq. (1) for the excited state population ρee
and the coherence ρeg are [15]

ρee(t→∞) =
|Ω|2

Γ2
0

1

1 +
(

2∆
Γ0

)2

+ 2 |Ω|
2

Γ2
0

, ρeg(t→∞) =
iΩ

Γ0

1 + i2∆/Γ0

1 +
(

2∆
Γ0

)2

+ 2 |Ω|
2

Γ2
0

. (3)

Throughout this work, we will be interested in the resonant, weak driving regime, where

Ω � Γ0 and ∆ = 0. The steady state solutions under these conditions take the form

ρee → |Ω|2/Γ2
0 for the excited state population and ρeg → iΩ/Γ0 for the coherence. Now

we define the concept of mode projection.

2.2. Mode projecting measurements and fields

Let us start from the quantization of the electromagnetic field. Here we will outline

the main results obtained from the full derivation in Appendix A. One can decompose

any field operator in terms of quantized plane-wave modes with a specific wave vector k

and polarization ε̂k,j [16]. Each mode has associated bosonic annihilation and creation

operators, with the usual conjugation relations. In the Schrodinger picture, we have

Ê(r) =
∑
k

∑
ε̂k,j

E0(k)
[
âk,ε̂k,je

−ik·r + â†k,ε̂k,je
ik·r
]
ε̂k,j , (4)
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where E0(k) = [~ωk/(2V ε0)]1/2 is a normalization constant for the Hamiltonian to be in

the right units. Next, we split Eq. (4) into a positive and negative frequency parts. We

change our notation such that the positive frequency part is Ê, with the annihilation

operators, and the negative frequency part is Ê
†
, with the creation ones. The positive

part of each mode in Eq. (4) has the form Êk,ε̂k,j(r, t) = E0(k)uk,ε̂k,j(r, t)âk,ε̂k,j , where

uk,ε̂k,j(r) = e−ik·rε̂k,j is the spatial plane-wave mode. From Fourier analysis, we know

that any spatial function can be decomposed as a linear combination of plane waves,

since they constitute a complete basis in free-space. The orthogonality between two the

modes, i.e. 〈uk,ε̂k,j |uk′,ε̂k′,j′
〉 = (2π)2δjj

′
δ(k− k’), is defined by the scalar product

〈Eα(r)|Eβ(r)〉 ≡
∫∫
z=cte

d2r E∗α(r) · Eβ(r) , (5)

where the mode overlap is evaluated at the plane perpendicular to the propagation

direction (which we will take to be z without any loss of generality). The result of

the overlap is independent from the plane z = cte where the integral from Eq. (5) is

evaluated. Note that two modes are orthogonal if their spatial parts are orthogonal.

Now imagine that we want to measure an incoming field. To do so, we collect the

light with a lens and couple it to an optical fiber. The lens-fiber system allows certain

spatial modes to be better transferred than the others. We call these privileged modes

detection modes. Since the spatial parts and quantized amplitudes go together, only the

ones shared between input and detection modes will have non-zero contribution due to

orthogonality. This makes sense because to measure (annihilate) an excitation in one

mode, we need the quantum operator acting on that specific mode.

3. The detection operator

With the tools from section 2, the next step is to obtain the total field operator associated

to our specific case. Following the scheme described in section 1, our system has three

fields: the pump, the probe and the one scattered by the atom. At any lens, our total

field operator can be derived from the input-output relation [13, 17]

Ê(r) = Êin(r) + µ0degω
2
geG(r, r’, ωeg) · d σ̂ge , (6)

where the first term is the input field (the probe) and the second one is the field

scattered by the atom in terms of the Green function G(r, r’, ωeg). Here we do not

write explicitly the annihilation operators to simplify the notation. However, formally,

the total field operator Ê(r) acts on the infinite Hilbert space of the electromagnetic field

modes tensor product the Hilbert space of the two-level atom (under the Born-Markov

approximation). We already know that their spatial part can be decomposed in terms

of plane-wave modes. Thus, we project the spatial parts of the operators from Ê(r) into

a certain detection mode. The resulting field operator associated to the detection is

Êproj(r) = Êin,det(r) +
idegk0

2ε0
E∗det(rd) · d σ̂ge , (7)
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where Êin,det(r) is the input field operator projected into a certain detection mode

and Edet(rd) is the spatial part of the detection mode evaluated at the atom position.

See Appendix B from the supplementary material for more details on how Eq. (7) is

derived. In our case, we are interested in the fields collected at the probe lens, where

only the probe and the scattered field are detected. For simplicity, let us assume that

the detection mode coincides with the probe mode. The next step will be to obtain a

more intuitive expression for Eq. (7) by connecting it to other physical quantities.

3.1. Connection between overlap and power

First, we notice that one can relate the self-overlap of a certain spatial mode with the

electromagnetic power of the field. The energy per unit of time of a certain field can

be obtained by integrating the z-component of its Pointing vector in the plane z = 0.

From the definition of power flux (Eq. 2.56 [18]) and using Maxwell equations and Eq.

(5), it is possible to define the power of an electromagnetic field as

P = 2ε0c

∫
z=cte

d2r E∗(r) · E(r) = 2ε0c 〈E|E〉 . (8)

3.2. Normalization of the projected total field operator

From Glauber’s photo-detection theory [19], we know that the first-order auto-

correlation function G(1)(0) = 〈Ê†projÊproj〉 coincides with the counting rate of an ideal

photo-detector. Then, it is convenient to re-normalize our fields to have G(1)(0) in units

of photons per second. If one detects the light from an ideal source that emits entirely

in the detection mode, the measured photon rate should be Φdet = Pdet/~ω. Then:

〈NÊ†det(r)NÊdet(r)〉 = N2|〈Edet|Edet〉|2 ≡ Φdet → N =

√
Φdet

|〈Edet|Edet〉|
. (9)

Since we assume the detection mode to be the probe mode, one could substitute one by

the other in Eq. (9). From now on, any field operator will have this normalization.

3.3. Detection efficiency

The detection efficiency for the scattered field η is the ratio between the detected energy

emitted by the dipole into the detection mode and the total emitted energy, i.e. ~ωeg.
Additionally, the detected energy is the time integral of the power in the detection mode

during the emission. Thus, considering the second term (associated to the scattered

field) of the total field operator from Eq. (7) and the normalization Eq. (9),

η =
1

~ω

∫ ∞
0

dt |Êsc
proj(t)|2 =

3πΓ0

2k2
0|〈Ep|Ep〉|

|Ep(rd) · d|2
∫ ∞

0

dt σ̂ee(t) . (10)

If the atom starts in the excited state, the population decays exponentially at a rate Γ0

so that

η =
3π

2k2
0

|Ep(rd) · d|2

|〈Ep|Ep〉|
≈ 3

8π2

λ2

w2
0

, (11)
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where, to give a more intuitive result, we have substituted the values for the particular

case of a paraxial, Gaussian probe field with beam waist w0. Putting everything

together, we start from Eq. (7), introduce the normalization from Eq. (9) and substitute

the detection efficiency from Eq. (11) to obtain

Êproj = Êin,p + i
√
ηΓ0 σ̂

ge ≈ Êin,p + i

√
3Γ0

8π2

λ

w0

σ̂ge . (12)

The normalization is such that 〈Ê†in,pÊin,p〉 is the input photon flux projected into the

probe mode Φp. Let us check if the previous result makes sense. Computing the expected

value of the first term modulus squared, we get the number of photons per second

detected from the probe, i.e. Φp. Since the probe is the detection mode, any input

probe photon gets detected. Doing the same for the second term, we get ηΓ0〈σ̂ee〉, i.e.

the photon flux measured from the scattered field into the detection mode.

4. Glauber correlation functions with the projected field operator

Once the operator associated to the detection has been established, the first and second-

order auto-correlation functions associated to the operator from Eq. (7) are [19]

G(1)(0) = 〈Ê†in,pÊin,p〉+ 2
√
ηΓ0 R{i〈σ̂geÊ†in,p〉}+ ηΓ0〈σ̂ee〉 , (13)

G(2)(0) = 〈Ê†in,pÊin,p〉
[
〈Ê†in,pÊin,p〉+ 4

√
ηΓ0 R{i〈σ̂geÊ†in,p〉}+ 4ηΓ0〈σ̂ee〉

]
, (14)

where 〈Ê†in,pÊin,p〉 = Φp. However, to discuss the statistical properties of the photon

correlations in a quantitative way, we need to compute the normalized version of

the correlation functions. We will only focus on the normalized second-order auto-

correlation function defined as g(2) = G(2)(0)/|G(1)(0)|2. Since the resulting expression

is quite dense, we would like to give a much more intuitive result. Thus, let us work the

following particular case.

4.1. Particular case: paraxial, Gaussian probe field

To simplify things out, let us assume that the input probe field is a paraxial, Gaussian

field. Second, we notice that the input field and the scattered one are not independent

from each other. If we increase the input photon flux, the scattered flux will also

increase. The final results for the g(2)(0) will depend on the ratio between these two

fluxes, so it is convenient to know beforehand its value. In general, the parameter that

relates them is what we call the scattering ratio (or scattering probability) Rsc. Imagine

that we illuminate our atom with a single probe field (no pump) with photon flux Φp.

Then, the atom will scatter RscΦp photons per second. At the same time, the photon

flux scattered by the atom is Γ0ρ
ee
probe where, in the weak driving regime, ρeeprobe ∼ Ω2

p/Γ
2
0.

Thus, we can establish the relation RscΦp = Γ0ρ
ee
probe.

If we add a pump beam, the previous relation is still valid in the linear regime.

However, the total scattered flux is now Γ0ρ
ee, where ρee is then associated to a global
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Rabi frequency Ω. Here we have Ω = Ωp + ΩP , where Ωp is the contribution from the

probe and ΩP is the one from the pump. With all this, we can relate the probe photon

flux to the total scattered photon flux (with the pump illuminating) through

Φatom

Φp

=
(Γ0ρ

ee)(
Γ0ρeeprobe
Rsc

) = Rsc
|Ω|2

|Ωp|2
. (15)

Finally, combining Eq. (13), Eq. (14), the definition of the g(2)(0), dividing everything

by Φ2
p to use Eq. (15), assuming that we have a paraxial, Gaussian probe field and

working in the weak driving regime we get:

g(2) =
G(2)(0)

|G(1)(0)|2
≈

1− 4 3
8π2

λ2

w2
0
R
{

Ω
Ωp

}
+ 4 32

82π4
λ4

w4
0

∣∣∣ Ω
Ωp

∣∣∣2∣∣∣∣1− 2 3
8π2

λ2

w2
0
R
{

Ω
Ωp

}
+ 32

82π4
λ4

w2
0

∣∣∣ Ω
Ωp

∣∣∣2∣∣∣∣2 , (16)

which depends exclusively on the probe beam waist w0 and the Rabi frequencies Ωp and

ΩP respective to each one of the input beams. Here we are free to take the probe beam

in phase with the dipole matrix element such that Ωp is real. Then, if the pump has a

certain relative phase with respect to the probe, ΩP becomes complex. From Eq. (16)

it is possible to find conditions for the total bunching (G(1)(0) → 0, g(2)(0) → ∞) and

anti-bunching (G(2)(0)→ 0, g(2)(0)→ 0) such that

Bunching when
8π2w2

0

3λ2
=

Ω

Ωp

, Anti-bunching when
4π2w2

0

3λ2
=

Ω

Ωp

, (17)

which are valid for Ω ∈ R, i.e. the pump and the probe having equal phase. This result

agrees with what we discussed in section 1. To have relevant photon correlations due to

the interference between scattered and input fields, we need them to have comparable

strengths. Since the scattered field contribution is in general smaller, we introduce a

pump beam that compensates for the low scattering probability and detection efficiency.

This tells us that for an arbitrary focusing of the input fields, one can find a pump/probe

ratio such that relevant features in the g(2)(0) can be observed. For the equations to hold,

one has to ensure Ω � Γ0 for the weak driving approximation to be valid. This could

set a practical limit, in the sense that, for very bad focusing, the required attenuation

in the probe is so large that few events are registered among large periods of time.

However, this constitutes a novel approach to obtain interesting photon statistics with

single atoms in free space without diffraction-limited focusing.

To give some numerical values, we simulate the g(2)(0) from the light collected at

the probe lens. In Figure 3(a), large bunching and anti-bunching are observed for a

particular w0 when Ω is close to real (relative phase between pump and probe is zero,

φ = 0). Additionally, in Figure 3(b) we show that the Rabi frequency is inversely

proportional to w2
0/λ

2 when bunching appears, as predicted from Eq. (17). Therefore,

as long as the beam waist is not much larger than the wavelength, we can find a pump

intensity to satisfy Eq. (17) within the weak driving approximation.



Quantum photon correlations at the single-atom level in free space 8

Figure 3: Plots of the second-order auto-correlation function. In (a) we set the probe beam waist to

w = λ and change the relative phase and amplitude between pump and probe. In (b) we set the phases of

pump and probe to be equal and change the pump/probe amplitude ratio and the probe beam waist. The

color code is the usual: yellow for bunching and blue for anti-bunching. We truncate at g(2)(0) < 103.

Finally, we would like to give more arguments in favor of the presented results. To

give some intuition on the origin of these effects (specially in the bunching case), let us

study the atomic state after the measurement of a photon at the detector.

4.2. State after the mode-projecting measurement

Let us consider the initial atomic state |Ψ〉 = |g〉 + α|e〉, where |α| is very small

(since we are in the weak driving regime). The parameter α can be obtained from

α = 〈σ̂ge〉 = iΩ/Γ0 because 〈Ψ|σ̂ge|Ψ〉 = α. Intuitively, the measurement of a photon

from the collected field will project the atom into a certain atomic state. We use the

mode-projected field operator from Eq. (12), which we know that also acts on the

atomic Hilbert space. To express the normalized, final state, it is more convenient to

use the Bloch Sphere representation. In that framework, the transient state after the

measurement is |Ψ′〉 ≡ cos(θ/2)|g〉+ sin(θ/2)eiγ|e〉, where θ satisfies

tan(θ/2) =

∣∣∣√Φp
Ω
Γ0

∣∣∣∣∣∣√Φp −
√
ηΓ0

Ω
Γ0

∣∣∣ =

√
Φp√

G(1)(0)

|Ω|
Γ0

. (18)

Here we have identified the G(1)(0) from Eq. (13) in the weak driving regime. From

Eq. (18), the atom is projected into the ground state when tan(θ/2) = 0. This occurs

for Ω = 0 (when the atom is not being driven at all) or for Φp = 0 (only the scattered

photons can be measured, projecting always the atom into the ground state). On the

other hand, again from Eq. (18), the excited state is obtained when the G(1)(0) is

cancelled, which occurs when the bunching condition from Eq. (17) is fulfilled. This

suggests the connection |Φ′〉 → |e〉 ⇐⇒ G(1)(0)→ 0.

To justify this, let us consider the case where the system is close to meet the

bunching condition. Since the pump field compensates for the low scattering rate

and detection efficiency, the probe field can be effectively cancelled by the enhanced,
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projected scattered field. Since it is unlikely to measure input field photons or photons

scattered linearly by the atom, this opens a window to measure photons from non-linear

processes, like frequency mixing. In these cases, the atom transforms two resonant

input photons into two photons with frequencies ωeg ± Ω. This is usually depicted as

the side-peaks of the Mollow triplet in the two-level atom emission spectra. The shift in

frequency prevents them from being cancelled by the resonant input field‡. Therefore,

we are left with only the photons from non-linear processes, which are the ones detected.

From Eq. (18), the measurement of a single-photon when close to the total

bunching condition (G(1)(0) ≈ 0) projects the atom into a transient state in which

it is mostly inverted. This has to be understood as the atom being very likeable to emit

a second photon, completing the two-photon process. The scattered photons become

highly correlated as it is not possible to measure independent ones (linear processes are

cancelled). With all this, we identify the connection between the projection into the

excited state and the bunching condition. In Figure 4, we plot the population in the

excited state after the measurement of a photon. By comparing Figures 4(a) with 3(a)

and Figures 4(b) with 3(b), one explicitly sees the previous connection.

Similar arguments can be used to justify the anti-bunching case. In that case, we

need to study the state after the measurement of one and two photons. When the anti-

bunching condition is close to being fulfilled, the probability to detect the first photon is

relatively high. However, the detection of the second photon is very unlikable, because

the field of the second photon is very weak (second-order processes are suppressed by the

input field). Thus, in the majority of events, one gets the detection of a single photon

which justifies the anti-bunching.

Figure 4: Population in the excited state of the atom after the measurement of a photon. In (a) we fix

the beam waist of the probe field to w0 = λ and study the g(2)(0) and the population in the excited state

as a function of |Ω|/|Ωp| and the relative phase between pump and probe. In (b) we do the same but

now fixing the relative phase between pump and probe to zero and explore different probe waists.

‡ As it can be seen in the Appendix B, the scattered field part of Eq. (7) contains a combination

of annihilation operators in different frequencies that covers the atomic emission spectra. Thus, the

non-linear photons can also be measured by the operator associated to the detection from Eq. (12).
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5. Conclusions

We have presented a novel approach to calculate and engineer the photon correlations

emerging from the interference between an input field and the field scattered by an atom

in free space. Without requiring a diffraction-limited focusing, large bunching and total

anti-bunching could be found with a proper tunning of the pump and probe (as long as

the weak driving approximation holds).

Additionally, we have seen a physical justification for the non-trivial photon

correlations to appear. When the system is close to the total bunching condition, the

linear scattered field is suppressed by the input field. The probability of detecting the

first photon is very low, since the total field is weak (G(1)(0) ≈ 0). However, once it

is detected, it is always followed by a second photon. This is so because we are left

with second-order processes, the photons of which are intrinsically bunched. There is a

similar connection between anti-bunching and the suppression of second-order processes.
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