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The risk posed by a fully operational quantum computer has anticipated a revolution in the
way to approach the level of security provided by a cryptographic algorithm. Public key-
based solutions such as RSA or ECC will be easily broken once we enter the post-quantum
era. Multivariate quadratic cryptosystems are a promising candidate for the need of quantum
resistant digital signature schemes. In order to estimate if these approach will someday be
able to replace current standards, it is necessary to determine how efficiently can they op-
erate on diverse platforms and at which level of security can they do it. This aspects are
particularly relevant for reduced size devices with restricted energy, memory or computa-
tional power.
In this work, a theoretical description of the so-called Rainbow multivariate signature al-
gorithm is given, which is later implemented on a memory-constrained environment. An
optimization approach is proposed in order to improve the efficiency of the scheme, in terms
of message signature and verification speed. A performance comparison is also presented
between various state-of-the-art post-quantum signature cryptosystems and the optimized
instances of Rainbow, in order to study its characteristics from a wider perspective.
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1 Introduction

Cryptography is essential for providing security over the exchange of data between two
or more communicating parties. In modern society, we have become frequent users of
cryptographic techniques, in tasks such as online shopping, mail accessing, website visiting
or file downloading. Not only for private usage, but also institutions like banks, governments
or the military protect their data by making use of cryptographic solutions. Furthermore,
given the growth in the number of services offered on the cloud, it is expected that the
number of secure algorithms keeps increasing in the future.

Most asymmetric key cryptosystems currently used in practice are based on large integer
factorization and discrete logarithm calculation. Cryptographic approaches that base their
security on these mathematical operations are considered to be unbreakable using current
computing systems. However, since the invention of Peter Shor’s algorithm [Sho99] in 1997
for efficiently solving both problems, the security community has been forced to develop new
cryptographic solutions to anticipate a post-quantum cryptography standarization process,
before the appearance of a sufficiently large quantum computer.

Post-quantum candidate algorithms are based in mathematical problems that are supposedly
resilient against classical, as well as post-quantum cryptanalysis. These quantum immune
techniques also need to be feasible for all kind of systems, including small embedded micro
controllers. Due to the limited amount of resources on such platforms, the implementation
of these solutions to provide post-quantum security on such devices does sometimes lack
of feasibility.
Current research related to post-quantum cryptography has been mainly focused on the se-
curity provided by the different post-quantum cryptographic solutions. The feasibility of these
approaches can be validated by studying the computational complexity of the algorithms and
testing their efficiency experimentally.

This work is based on a practical study of the performance concerning the Rainbow mul-
tivariate signature cryptosystem on an ARM Cortex-M4 microcontroller. The efficiency is
characterized in terms of execution speed and the memory consumption of the scheme, as
well as the reachable security levels in the constrained device where the analysis is per-
formed.
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The contribution of this thesis is concluded as follows:

1. We present an implementation of the Rainbow multivariate signature scheme, which
provides post-quantum security on a suitable device for the Internet of Things.

2. We evaluate the feasibility of the different parameter sets available to provide a specific
level of security on our platform.

3. We analyze the performance in terms of execution time and memory consumption of
the scheme’s different functionalities, considering different compiler optimizations.

4. We propose an optimized solution with increased efficiency on our target device.

5. Based on the observations, we compare the behaviour on the same computing ar-
chitecture of various Rainbow instances with different state-of-the-art quantum secure
digital signature cryptosystems.

Organization. The research and experimental work that has been carried out in the thesis
is organized as follows. In Section 2, we introduce post-quantum cryptography and describe
the characteristic features of the multivariate approach. In Section 3, we give an overview
on finite field algebra, focusing on two aspects that are later exploited during the optimiz-
ation procedure. In Section 4, we present the construction methodology and the different
algorithms provided by the Rainbow signature scheme. Section 5 gathers all the aspects
related with the experimental part of the project. The obtained benchmarks are evaluated
and discussed in Section 6. Finally, we conclude with some remarks in Section 7, based on
the observed results.
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2 Post-Quantum Cryptography

2.1 Introduction to PQ-Cryptography

Quantum computers are high-speed parallel computing systems, whose properties and op-
eration principles are based on the behaviour of subatomic particles ruled by quantum mech-
anics. This systems use qubits instead of bits, which can exist in any superposition of the 0
and 1 states in a conventional device. This principle grants the ability to perform calculations
simultaneously, solving problems that require an enormous amount of computing power in
current available computers. With operational tasks being drastically accelerated, quantum
computers offer promising solutions to complex problems in different fields such as gen-
erating sophisticated market models, creating new medicines or exponentially increasing
database search speed, among others.

Current quantum computers are far from their capabilities in terms of efficiency, as they op-
erate at temperatures close to the absolute zero. Nevertheless, there are tasks that quantum
computers can fulfill in a more efficient way than classical computers do. One of the prom-
inent applications for quantum computers is decoding traditional cryptographic protocols in
polynomial time. In particular, there exist two main algorithms that executed in a quantum
computing system would be able to break the security of most asymmetric cryptography
approaches employed nowadays.

Shor’s Algorithm was invented by Peter Shor in 1994. It is a method [Sho99] capable of
efficiently solving some of the problems that back up the security of the most popular and
currently used public key cryptosystems, based on integer factorization and (elliptic curve)
discrete logarithm. All these mathematical trapdoor functions are considered to be hard to
solve by classical computing systems, even though a quantum computer with sufficiently
powerful resources could break them in polynomial time.

Grover’s algorithm consists in another quantum approach [Gro96] that can invert functions
in O(

√
n) time. This algorithm reduces the security of a symmetric key cryptosystem by a

root factor when being executed in a quantum computer. However, it is not considered a
major threat as doubling the level of security of the scheme can mitigate these attacks.

The future construction of a quantum computer capable of executing these algorithms is
quite unknown as only speculations have been made about the moment when such systems
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could be brought to light. Nevertheless, in 2006, NIST proposed a competition1 in order to
enhance the development of new candidates to replace RSA and ECC and implement post-
quantum cryptography as the standard security model.

Post-quantum cryptography is the study of cryptosystems that can be implemented in a
classical computing systems while being able to protect against quantum computer attacks.
Post-quantum schemes provide confidentiality, integrity, authenticity, and non-repudiation,
as well as traditional cryptosytems do. There exists 6 different types of approaches [LSY+16],
which are briefly described below.

• Lattice-based
Lattices are considered the most flexible approach among the others because they
provide strong security reductions and are also capable of performing key exchange
as well as generating digital signatures. The trapdoor of this scheme is based on
solving a system of linear equations that contains an error variable which gets bigger
at each step of the Gaussian Elimination algorithm in order to solve the system, until
the point where any useful information about the secret key gets hidden. This is called
the Learning With Errors problem (LWE), based on finding the shortest vector in a
lattice, which is considered to be NP-hard.

• Multivariate
Such schemes base their security both on the NP-hardness of solving systems of
multivariate equations over finite fields and the Extended Isomorphism of Polynomials.
The size and the speed at which the signatures are generated by this approach, place
multivariate cryptosystems as a potential candidate for post-quantum authentication
schemes. However, the length of the public and secret keys generated notably reduce
the feasibility of this approach, specially on low-resource embedded platforms.

• Elliptic curves / Isogenies
Elliptic curve cryptography relies on the hardness that involves finding the discrete log-
arithm of a random elliptic curve element with respect to a publicly known base point.
The size of the elliptic curve determines how much difficult the problem turns out to
be. The main advantage is the small size of the keys generated, respect to other
cryptosystems that employ finite fields (discrete mathematics), providing the same
level of security.
Elliptic curve cryptosystems can be broken by quantum computers by performing dis-
crete logarithm operations. In order to provide a secure approach, a supersingular
isogeny-based scheme is developed. In this case, the security is based on super-
singular elliptic curves in order to create a modified Diffie-Hellman key exchange that
can be used as a replacement for the Diffie-Hellman and elliptic curve Diffie–Hellman
methods used nowadays. This scheme provides extremely small key sizes even
though it is the slowest algorithm for key generation and shared secret acquisition.

1https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
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• Hash-based
Hash-based signature techniques use the input to a hash function as the secret key
and the output as the public key. The generated digital signatures by this approach
have been studied ever since as an interesting alternative to other authentication ap-
proaches, like RSA and DSA, that are based on number theory. For any hash-based
public key, there exists a limit that constrains the number of signatures that can be
generated using a single set of private keys. This fact reduced the interest on this
cryptographic technique until post-quantum cryptography was introduced, given the
resistance that they oppose against quantum computer-based attacks. Hash signa-
tures are not memory efficient. However, approach is considered to be fast and the
security relies on the underlying hash function

• Code-based
During the transmission of binary messages, there is a certain probability that errors
occur by getting the bit flips. Error-correction codes provide the possibility to detect
and revert a certain number of bit flips at the expense of message compactness. The
most prominent type is called linear codes, represented by matrices, whose size de-
pends on the length of the original message and the length of the encoded message.
It is computationally expensive to decode a message without information about the
underlying linear code. This problem backs up the security of the so-called McEliece
public key cryptosystem. The secret key of this cryptosystem is a random code from a
class called Goppa codes. The public key consists of an invertible matrix with binary
entries. Like lattices, code-based cryptographic schemes suffer because of the size
of the matrices that are used to represent the public and secret keys. Altough, various
modifications have been done to the original scheme to improve this aspect.

2.2 Multivariate Public Key Cryptosystems (MPKC’s)

Multivariate cryptography is a post-quantum asymmetric key approach based on multivariate
polynomials over a finite field. The security of this cryptographic technique relies on both the
MQ-problem and the Extended Isomorphism of Polynomials (EIP). The former has been
proven to be NP-complete [GJ90] and doubly exponential, even in the simplest case, using
a finite field composed by two elements. The latter is related to the construction principle of
multivariate schemes.
Unfortunately, there is no security proof regarding the problem regarding the followed pro-
cedure to buildMQ cryptosystems. For this reason, most MPKC’s have been broken except
the Unbalanced Oil and Vinegar signature scheme [KPG99] and its variants Rainbow [DS05]
and enTTS [YC05].
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2.2.1 Construction of MPKC’s

The standard construction, also called bipolar, of a multivariate cryptosystem, requires
an easily invertible polynomial system of m multivariate quadratic equations in n variables
(central map) Q : Fn

q → Fm
q . Right after, two affine maps S : Fm

q → Fm
q and T : Fn

q →
Fn
q are chosen. All the scalar parameters and variables that describe the polynomials are

randomly chosen within a finite field F of size q.

The public key is computed as the composition between the central map and the affine
transformations P = S ◦ Q ◦ T : Fn

q → Fm
q . As a result, the public key becomes a hardly

invertible set of polynomials without any trace of the center map in it, whose structure has
been completely hidden among the equations after obfuscating the multivariate equations
system Q with the affine transformations S and T .
The central map can be modeled as a matrix of multivariate quadratic polynomial equations
represented by the following the structure:

P =


p(1)(x1, x2, · · · , xn)

p(2)(x1, x2, · · · , xn)
...

p(m)(x1, x2, · · · , xn)



p(m)(x1, ...xn) :=

n∑
j=1

n∑
i=1

p
(m)
ij xixj +

n∑
i=1

p
(m)
i xi + p

(m)
0 = xTP(m)x

where Pm is the matrix of size n × n that describes the quadratic form of the polynomials
in the public map. The linear and constant terms could be neglected from the public key
equation system as they are never mixed with the quadratic terms and therefore, don’t con-
tribute to the security of the scheme. This procedure reduces the memory required to store
the entire keys of the cryptosystem.

xTP(m)x :=
[
x1 x2 · · · xn

] 
pm1,1 p

(m)
1,2 · · · p

(m)
1,n

...
. . .

p
(m)
n,1 p

(m)
n,2 · · · γ

(m)
n,n



x1
x2
...
xn



The equation system that describes the public key must be hard to invert without the know-
ledge of a secret. Knowing S,Q, T and their structure, allows the possibility of inverting
the obfuscated polynomial system. Thus, the private key is formed by the coefficients that
describe the equations of the central map and the affine transformations.
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Bipolar Constructions

Most multivariate cryptosystems have been built following the bipolar methodology described
in 2.2.1. Depending on the structure given to the central map Q, there exists three different
alternatives to the standard construction can be differentiated.

• Single Field
The computations are made between elements of a relatively small Galois field. The
number of equations m (domain) is chosen smaller than the number of variables n
(codomain) and the central map describes a surjective function. This fact restricts this
type of construction to signature schemes. By creating such surjection, all the ele-
ments from the domain are mapped to, at least, one element in the codomain.
In this case, the trapdoor is achieved by following a special algebraic pattern to as-
semble the private polynomials of the central map, instead of using field extensions.
In Figure 2.1 it is described the methodology followed for computing the encryption
and signature functions in a small field approach.

Figure 2.1: Encryption and signature authentication in the lower path and decryption and
signature generation procedures in the upper path, following the bipolar con-
struction.

• Big Field
In this case, the number of equations m equals the number of variables n. Thus,
the central map is bijective, which implies that each element from the domain is
mapped to a single element of the codomain. Big Field constructions can be used
to design both encryption and signature schemes. It is defined a degree n extension
field E of F by E = F[X]/g(X), being g(X) an irreducible polynomial from F[X], and
the transformation Φ : Fn → E. Once at this point, the central map is defined as
Q = Φ−1 ◦ Q̂ ◦ Φ where Q̂ : E → E. Finally, the public key is computed as the
composition between the affine transformations S : Fn

q → Fn
q and T : Fn

q → Fn
q and

the modified central map, which is expressed as P = S ◦Q◦T = S ◦Φ−1 ◦ Q̂◦Φ◦T .

• Middle Field
The difference between Big Field and Middle Field constructions is that the latter uses
an extension field of degree n

k , being k an integer, instead of n, as in Big Field con-
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structions. The number of equations m and the number of variables n is equal which
implies that this construction can also be used for designing encryption or signature
schemes.

Figure 2.2: Modification of the Single field methodology for Extension field encryption and
authentication.

In Big and Medium Field schemes, vector spaces and hidden field structures, also called
extensions of Fq, are employed to generate the trapdoor. The parameters and variables of
the invertible quadratic central map are searched directly in the extension field
[WYHL06]. The illustration in Figure 2.2 shows the modification that is made over the single
Field construction in order to build a scheme based on field extensions.
In the following lines, it is described the encryption methodology followed in Big and Middle
Field constructions, and the message signature procedure carried out in Single Field con-
struction inMQ cryptosystems.

Encryption: Big and Middle Field (m ≥ n)

The standard encryption procedure in MPKC’s, consists in computing the public key poly-
nomial system with the plaintext z as the input, in order to obtain a ciphertext w. Otherwise,
for decrypting a given ciphertext w, the decrypting person has to compute y = T −1(w)→
x = Q−1(y) → z = S−1(x) recursively in order to get the associated plaintext. Examples
of multivariate cryptosystems built for encryption are TTM-related schemes [TC01], ZHFE
[PBD14] or PMI+ [Che06].
With encryption and decryption schemes, the number of equations m is chosen bigger
than the number of variables n, in order to have an almost injective transformation. By do-
ing this, the probability of mapping two different plaintexts to the same ciphertext is reduced,
as the public map becomes a close approximation to a one-to-one transformation. In other
words, it will rarely happen to compute the preimage and obtain a wrong plaintext.
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Signature: Single Field (m < n)

In order to sign a message, the signer hashes the associated plaintext, obtaining w and
computes y = T −1(w) → x = Q−1(y) → z = S−1(x) recursively, to acquire the corres-
ponding signature z. To check the authenticity of a signature z for a given message d, the
public key is used to map the signature as it is done for the encrypting procedure w = P(z).
Right after, it is verified that the hash of the message to verify equals the decrypted signature
H(d) = w. The most commonly known multivariate cryptosystems built for authentication
are Sflash [PCG01], HFEv [CDF02] or UOV-based schemes like Rainbow [DS05] and TTS
[YC05].
Unlike the encryption procedure, in signature and verification schemes, the number of
variables n in the domain is chosen bigger than the number of equations m in the codo-
main. This practice ensures that every hashed message will be mapped to a signature,
even though more than one different digests can share the same image in the codomain. In
this case, the public key describes a surjective transformation.

2.2.2 Security Principles (Underlying Problems)

Without the knowledge of the private key, an attacker that wants to decrypt a ciphertext
that has been encrypted by a multivariate cryptosystem has basically two alternative paths.
On the one hand, he can try to solve the system of equations given by the public key (MQ
problem), while on the other hand, he can make an attempt to find the underlying structure of
the secret key to break the algorithm. In this case, the attacker dives into a different problem
caused by the bipolar construction approach (Extended Isomorphism of Polynomials).

• MQ Problem
Finding (x

′
1, · · · , x

′
n) such that p(1)(x

′
1, · · · , x

′
n) = · · · = p(m)(x

′
1, · · · , x

′
n) = 0 is

satisfied, where P = (p(1), · · · , p(m)) in the variables (x1, · · · , xn), is known as the
multivariate polynomial (MP ) problem. This problem has been proven to be NP-hard
even for the simplest case [YDH+13], using a finite field of size 2. Employing quantum
computing, the best known attack solves this problem in exponential time, while in-
teger factorization is teared apart in subexponential time.
Almost all multivariate cryptosystems use second degree polynomials for two main
reasons. One is related to the efficiency, as using higher order terms makes the num-
ber of coefficients increase rapidly producing unnoticeable efficiency gain. The other
concerns the principle that any set of high degree polynomials can be rewritten as a
set of quadratic equations. When second degree polynomials are used, the MP prob-
lem changes its name toMQ problem. Attacks made against this principle are called
after Direct attacks.
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• EIP Problem
Because of the construction of the schemes, the security of MPKC’s is not only backed
up by theMQ problem but also by the Isomorphism of Polynomials problem. There
exists three different versions of IP’s. When the central map is unknown, as in most
multivariate cryptosystems, the problem is based on the third version of this problem,
known as Extended IP.
Knowing the structure of the public key P , an attacker will find nearly impossible
to obtain two affine transformations S and T , as well as a central map Q [Pat96],
that belong to a special class of nonlinear polynomial systems, whose composition
generates a mapping P ′

that matches the transformation given by the public key
P ′

= S ◦ Q ◦ T = P . The cryptanalysis techniques that consists in trying to re-
produce the structure of the private key are called Structural attacks.

2.2.3 Strengths and Limitations

Besides being supposedly resistant against quantum computer attacks, cryptosystems based
on multivariate polynomials, the Rainbow authors presents a series of advantageous fea-
tures in the supporting documentation[DPSY19] that supposedly allow their efficient imple-
mentation in software, which directly turns them into potential solutions for small embedded
devices security.

• Speed and Signature Size
MPKC’s are much faster in comparison to approaches like ECC or RSA, offering high
speed signature generation. Furthermore, their size is about a few hundreds of bits,
much less than other post-quantum signature approaches.

• Simple Arithmetic
The operations that are performed in multivariate cryptosystems are based on reduced
size finite field arithmetic involved in matrix products and linear system solving. Thus,
MPKC’s can be efficiently implemented on devices without an integrated cryptographic
co-processor.

• Multiproblem-based Security
Most cryptosystems used nowadays base their security on integer factorization or dis-
crete logarithms. If anybody could find a way of solving these mathematical problems
efficiently, all the encrypted data between communicating parties will be threatened.
Using security principles that differ from the ones commonly employed nowadays, re-
lieves the risk of a cryptanalytic success.

On the other hand, two main drawbacks are introduced also in [DPSY19], which limit the
implementation feasibility of this post-quantum approach on memory-constrained devices.
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• Key Size
The size of the keys is much larger compared to the ones used in traditional ap-
proaches. In case of the public keys, huge quantities of memory are needed to store
them, ranging from tenths to hundreds of kBytes. When it comes to private keys, even
being smaller, they are still not able to fit in devices with memory limitations. Further-
more, the number of clock cycles elapsed for generating the keys is much higher than
in the signature generation and verification procedures.

• Parameter Set Choice
The security level offered by any cryptosystem mainly depends on the parameters
that are chosen to define its structure. Within the context of multivariate cryptography,
this is still a blurry aspect, as it is not completely defined the correlation between the
security and efficiency of a scheme, depending on the selected set of parameters.

The main challenge of MPKC’s is to reduce the amount of memory needed to store its keys.
When an application has to verify a message, it has to store the public key, which becomes
an infeasible task for those platforms that are limited in memory. If this application also
needs a method for generating digital signatures, the secret key has to be kept in memory
too, which despite being smaller than the public key, is still large enough for small embedded
system implementations.
However, while research remains focused on the reduction of the generated keys, there
are still other exploitable advantages over traditional approaches, such as the high speed
algorithms thanks to the simple arithmetic employed, unlike RSA or ECC for example, which
require hundreds of bits to represent each operand and therefore increase the time needed
to compute the result of the operations.
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3 Finite Field Theory

3.1 Finite Field Algebra

A field is an abstraction of a set of elements with mathematical operations defined over
them, so that calculations can be made between the numbers so that the result stays always
inside the field. These operations should satisfy the field axioms, such as associativity,
commutativity and distributivity. It is also needed to have both an additive and multiplicative
inverse. When the field has a finite number of elements is called Finite Field or Galois Fields,
in honor of Évariste Galois, creator of the concept.
The order of a the field is the number of elements that compose the field. A Galois field
F of order q exists, if and only if q is a prime power, such as q = pm where p is a prime
number known as the characteristic of F, and m is a positive integer. The name of the fields
changes according to the value that takes m. It can be distinguished between prime fields
when m = 1 and extension fields when m ≥ 2. Finite fields are unique for a characteristic q,
meaning that despite the possibility of having a different representation of its elements, they
will be structurally the same. For this reason, two finite fields with characteristic q are called
isomorphic and denoted as Fq.

• Prime Fields
Being p a prime number, integers modulo p consisting of the integers {0, 1, 2, ..., p−1}
with addition and multiplication operations performed modulo p, form a finite field of
order p.

• Binary Fields
Finite fields of order 2m are called binary fields. One way to construct them is using
a polynomial basis representation, where the elements of F2m are the polynomials of
degree at most m− 1, whose coefficients belong to F2 = {0, 1}.

F2m = {am−1zm−1 + am−2zm−2 + · · ·+ a1z + a0 : ak ∈ {0, 1}}.

Addition of field elements is computed as the usual addition of polynomials, with coeffi-
cient arithmetic performed modulo 2. Multiplication is performed modulo an irreducible
polynomial f(z) degree m. The structure of the irreducible polynomial has a direct im-
pact on the efficiency of the arithmetic opeartions where reduction is needed. In fact,
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choosing third and fifth degree polynomials are the best alternative for this purpose.

Some reasons why finite fields are employed in many cryptographic algorithms is be-
cause GF (2m) all the operations carry-less, there are is no rounding performed and
the word length is constant [BDKR03].
Moreover, the structure of the field can be reformulated where we can consider dis-
playing a k-bit input as m contiguous n-bit groups which corresponds to instructions
in SIMD architectures. These principles offer the possibility to efficiently implement
finite field arithmetic operations.

• Extension Fields
The polynomial basis representation can be generalized to any extension field. Let p
be a prime and m ≥ 2. With Fp[z] denoting the set of all polynomials in the variable
z whose coefficients belong to Fp. The irreducible polynomial f(z) is chosen to be of
degree m in Fp[z]. The coefficients that compose Fpm are the polynomials in Fp[z] of
degree at most m− 1.

Fpm = {am−1zm−1 + am−2zm−2 + · · ·+ a1z + a0 : ak ∈ Fp}

3.2 Tower Field Representation

If it is possible to decompose an integer N as the product of l and m, it is possible to derive
a representation of GF (2N ) over GF (2l). This is because, even though the form of the
elements differs between GF ((2l)m) and GF (2N ), they define the same finite field.
The elements of GF (2N ) are polynomials of degree at most N − 1 whose coefficients are
in GF (2) = {0, 1}, and the elements of GF ((2l)m)) are polynomials whose coefficients are
in GF (2l) of degree at most m− 1. The tower field can be constructed with as much layers
as possible, depending on the power representation of the order. Modelling a field following
this approach receives the name of tower (or composite) field representation.

Instead of using a base B1 = {1, α, α2, ..., αN−1} and generating the coefficients of the
field as A =

∑N−1
i=0 aiα

i, where ai are the elements from GF (2), we use the alternative
base B2 = {1, β, β2, ..., βm−1} and the generation equation turns into B =

∑m−1
i=0 biβ

i with
bi as the elements of GF (2l). Employing this technique provides the capability of modelling
the coefficients of a finite field, using a lower amount of elements equal to the order of the
field below in the tower structure. Moreover, downgrading the order of the field translates
into a fewer quantity of bits to represent the coefficients.
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3.3 Karatsuba-Ofman Method

The efficient implementation of finite field arithmetic is key to the development of cryptosys-
tems whose underlying mathematical principles are based on arithmetic operations between
the elements of a field with a finite number of elements.

The Karatsuba-Ofman methodology provides an alternative representation to multiplications
in order to reduce the number of computations needed to obtain the final result
[GCL92]. The algorithm relies on the "divide-and-conquer" principle. It consists in solving
partial problems separately and combining the solutions to obtain a joint result. In order
to multiply two n-bit integers using the "schoolbook" method, considered the slowest, m2

multiplications and (m − 1)2 additions are required. By means of Karatsuba-Ofman al-
gorithm applied recursively, the number of operations is reduced to nlog23 multiplications
and 6nlog23 − 8n + 2 additions [Eyu15]. Since the complexity of addition and subtraction is
linear (O(n)), this reformulation is justifiable. In order to employ this approach, the number
of bits of each element has to be a power of 2. Otherwise, they are padded with zeros.

Two integers from a given finite field are represented as polynomials A(x) and B(x) of
degree n− 1. The goal is to obtain a resulting polynomial of degree at most 2n− 2 given by
C(x) = A(x)B(x). The Karatsuba-Ofman alternative model is shown in the next equations.
Every step halves the number of bits required to represent the integers in the equations by
using the upper and lower parts of each of the operands (A1, A0, B1, B0):

A(x) = A1x
n
2 +A0 = (x

n
2
−1an−1 + · · ·+ an

2
)x

n
2 + (x

n
2
−1an

2
−1 + · · ·+ a0)

B(x) = B1x
n
2 +B0 = (x

n
2
−1bn−1 + · · ·+ bn

2
)x

n
2 + (x

n
2
−1bn

2
−1 + · · ·+ b0)

Multiplying the two polynomials A(x) and B(x) expressed in this form, gives the following
result

C(x) = A(x)B(x) = A0B0 + x
n
2 [(A0 +A1)(B0 +B1)−A0B0 −A1B1] + xnA1B1

This methodology terminates after log2n steps when is applied recursively, until the point
where only constant monomials compose the polynomial equations.
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4 Rainbow Signature Scheme

4.1 Unbalanced Oil & Vinegar Polynomials

The Oil and Vinegar and later Unbalanced Oil and Vinegar are schemes employed in mul-
tivariate cryptosystems for generating digital signatures. The trapdoor is achieved not by
using field extensions but giving the polynomials a special algebraic structure.

The name of this approach comes from the distinction of the variables that is made over
two different groups, the Oil and the Vinegar. The unknowns of each group are mixed in the
polynomials of the central map. Having a balanced or unbalanced scheme, depends on the
number of variables from each group present in the equations. The unbalanced case was
born after the balanced approach was broken, after exploiting the possibility of building oil
and vinegar polynomials independently, because of the number of variables from each group
in the construction (v = o). To prevent this attack, the unbalanced approach was developed
where a different number of unknowns is chosen from each group (v > o) [KPG99].

The number of unknowns is defined by n = o+ v. The variable sets are divided into vinegar
V = {x1, ..., xv} and oil O = {xv+1, ..., xn}. The number of polynomials in the central map
equals the number of oil variables m = o = n− v.

The structure of a UOV polynomial equation is given by

f (m)(x1, ...xn) :=

v∑
i=1

v∑
j=1

α
(m)
i,j xixj +

v∑
i=1

n∑
j=v+1

β
(m)
i,j xixj +

n∑
i=1

γ
(m)
i xi + δ(m)

where α(m)
i,j , β(m)

i,j , γ(m)
i,j and δ(m)

i,j are chosen from a finite field of size q (Fq).

The most significant algebraic property of this scheme is that the oil and vinegar variables
are not fully mixed, which means that there will not exist quadratic terms between two vari-
ables from the oil set in the equations of the central map. This principle makes the central
map Q easily invertible. This is not the case for the public map P , as the affine transforma-
tion S fully mixes all the variables.
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In order to sign a given message x = (x1, ..., xo), a vector w = (w1, ..., xn) that satisfies
x = P(w) the public key polynomial equation system has to be inverted, which is a possible
task if information about the secret key is available.
To invert the central map, random values are chosen for the vinegar variables x1, ..., xv,
obtaining o linear equations in the oil variables xv+1, ..., xn.
This linear system is, with high probability, solvable by Gaussian Elimination [Laz83]. In
case that the system has no solution, different random vinegar variables are chosen and the
process is restarted.

To generate the public key of a cryptosystem based on UOV polynomials, only one affine
map is needed to obfuscate the polynomials of the central map. The reason that explains
this practice comes from the fact that the trapdoor remains unaltered after composing S with
Q, and thus does not contribute to the security of the scheme. Therefore, S is dropped and
the public key is constructed as P = Q ◦ T : Fn → Fo.

The main drawback of the Unbalanced Oil & Vinegar approach is the size of the keys and
signatures generated, which becomes infeasible for some practical applications. In order to
reduce the size of the keys without degrading the security level of the scheme, Rainbow
was first proposed in 2005 by J. Ding and D. Schmidt in [DS05].

4.2 Rainbow Construction Principle

Rainbow is a signature scheme based on multivariate cryptography whose central map is
constructed stacking various Unbalanced Oil & Vinegar-based layers [DS05, DYC+08]. The
multi-layered structure is designed hierarchically, in order to reuse already computed coef-
ficients in upcoming layers and create dependencies between them, to improve the overall
efficiency of the algorithm. An exhaustive analysis of Rainbow’s security can be found in
[DYC+08].

Let V be the set of integers {1, v1, v2, ..., vu, n}. For a Rainbow signature scheme with u
stacked layers, two variable sets are defined to design the polynomials of the central map,
where l = 1, ..., u− 1; In the one hand, Vl = {1, ..., vl} with vl elements and in the other hand
Ol = Vl+1 \ Vl = vl + 1, ..., vl+1 with ol = vl+1 − vl elements, as it shown in Figure 4.1 for a
2-layer Rainbow construction. Following this construction manner, the vinegar variable set
for each layer satisfies V1 ⊂ V2 ⊂ ... ⊂ Vu = V .

The central mapQ is represented as a set ofm = n−v1 polynomial equations f (v1+1), ..., f (n)

that present the following form:
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f (k)(x1, ...xn) :=
∑
i,j∈Vl

α
(k)
i,j xixj +

∑
i∈Vl,j∈Ol

β
(k)
i,j xixj +

∑
i∈Vl

⋃
Ol

γ
(k)
i xi + δ(k)

where α(k)
i,j , β(k)i,j , γ(k)i,j and δ(k)i,j are chosen from Fq and l is an integer such that k ∈ Ol.

The polynomials of the central map are distributed between the different layers. As in UOV,
there are no crossed terms between xixj where i, j ∈ Ol.

Figure 4.1: Quadratic distribution of the central map in each of the two-layer Rainbow
scheme. Green parts correspond the v × v variables, mixed yellow-green to
v × o crossed variables and white to zero entries.

The public key P of the Rainbow scheme consists in a system of n− v1 polynomial equa-
tions, composed by a central map Q with the described form in 4.1, and two affine trans-
formations S and T . In order to mix the variables from the polynomials of the central map,
we compute S ◦ Q ◦ T : Fn → Fm. The central map Q can be displayed as a matrix-vector
product.

Q =
[
x1 · · · xn

]


x11 · · · x1v x1(v+1) · · · x1n
...

...
...

...
xv1 · · · xnv xn(v+1) · · · xvn

x(v+1)1 · · · x(v+1)v 0 · · · 0
...

...
...

...
xn1 · · · xnv 0 · · · 0


x1...
xn



The private key consists of the three mappings S,Q, T . In this case, it is required a second
affine transformation to mix the polynomials from S ◦ Q between them, unlike the UOV ap-
proach, as the trapdoor Q does not get altered when it is composed with T , and therefore
its contribution to the scheme’s security is null.

21



Rainbow is considered a booster stage to the Unbalanced Oil & Vinegar approach, where
the size of the keys and signatures is notably shortened. Because of the hierarchical stack
building manner, the parameters that define the scheme (v1, o1, o2, ...) can be chosen smal-
ler than in the simple UOV construction, leading to shorter keys and smaller message to
signature ratios. The number of coefficients from Fq that compose the public and the private
keys of an u-layered Rainbow scheme is given by the following equations.

sizepk = m · (n+ 1) · (n+ 2)

2

sizesk = m · (m+ 1) + n · (n+ 1) +
u∑

i=1

ol · (
vl · (vl + 1)

2
+ vl · ol + vl+1 + 1)

Signing Methodology.
To sign a message, the trapdoor function has to be inverted, which is an easy task if there is
information available about the mappings that compose the secret key. Reverting the affine
transformations S and T is simple, while performing this task for the central map is slightly
more complex. Below is explained the signing procedure for a two-layer Rainbow scheme.

In Figure 4.2, it is shown the polynomial structure of the central map. The steps followed to
sign a message are described in the following lines and illustrated in 4.3 and 4.4. The colors
employed in the plots are organized as follows : blue for quadratic terms, green for linear
terms in V1, yellow for linear terms in O1, red for linear terms in O2 and white for constant
terms.

Figure 4.2: Central map of the Rainbow scheme

• Random values for the vinegar variables x1, ..., xv1 are chosen and substituted into the
central map polynomials (f (v1+1), ..., f (n)) obtaining a system of o1 linear equations,
given by the polynomials of the first layer k ∈ O1.

• Oil variables xv1+1, ..., xv2 are found by solving the o1 linear equations from the first
layer. After that, these are substituted into the equations of the second layer.

• The central map turns into an equation system of o2 linear polynomials of the second
layer k ∈ O2 over the oil variables xv2+1, ..., xvn which can be solved with Gaussian
Elimination.
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Figure 4.3: First step of the Rainbow signature procedure

Figure 4.4: Second step of the Rainbow signature procedure

In case that one of the linear equation systems does not have a solution, new vinegar
variables x1, ..., xv1 from the first layer are chosen and the process is repeated again.

4.3 Parameter Sets

Choosing a certain set of parameters to build a cryptographic scheme defines its level of
security as well as the capacity to implement it efficiently. Rainbow offers two degrees of
freedom to build its structure. In the one hand, the size q of the finite field (Fq) where the
numerical units used in this approach are selected from. On the other hand, the parameters
corresponding to the number of layers u and the size of both the oil and vinegar variables
sets of each layer (v1, o1, · · · , ou).

Regarding the choice of the field’s size, it is a common practice to select 28 as its size given
the efficient implementations that can be implemented when working with 8-bit variables.
Multiples of this size are also chosen, even though further processing of the elements of the
field, like splitting or merging is required, for implementing fast arithmetic operations.

About the choice of this parameters in order to design the structure of each layer, it can
be claimed that, even though Rainbow can be defined for an arbitrary number of stages u,
choosing u = 2 offers a more efficient scheme that generates shorter keys at the same level
of security offered by a scheme designed with other values of u. Choosing u > 2 leads to
a small improvement in performance terms while increasing notably the size of the keys to
reach the same level of security. It is a common practice to choose the size of the layers to
be equal (o1 = o2 = · · · = ou) due to implementation ease and efficiency-related reasons.
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Furthermore, the number of vinegar variables is chosen to be two (v = 2o) or three (v = 3o)
times the number of oil variables, given that v ≤ o and v >> o compromises the security of
the cryptosystem. All these principles are presented and justified in [DS05].

Diverse research has been made to determine the suitable parameters depending on the
user’s interest by studying the correlation between the selection of values and the level
of security offered by the scheme. In fact, on the supporting documentation of Rainbow
[DPSY19], the authors claim four statements that relate the choice of concrete parameter
sets with the vulnerabilities that are generated over the security of the cryptosystem which
can be exploited by different cryptanalysis techniques. These remarks are listed below.

• If the number of equations (o1 + o2) that form the public key mapping is not large
enough, the scheme becomes vulnerable to direct attacks.

• The value of v1, corresponding to the number of vinegar variables of the first layer,
has to be large enough to prevent the Rainbow-Band-Separation attack.

• Choosing the number of oil variables in the second layer o2 too high will make the
scheme vulnerable to the UOV attack.

• A small value of o2 can get the security of the scheme compromised when facing the
HighRank attack.

4.4 Algorithms

The Rainbow signature scheme provides three different available cryptographic functional-
ities. The first is Key Generation, which returns a duple composed by the public and the
secret key whose size will depend on the parameters chosen to design the structure of the
cryptosystem. The second is Signature Generation, which implies the encryption, with the
secret key, of the hash value generated from the message to sign, in order to obtain its di-
gest. The last procedure is Signature Verification, which authenticates the actual sender
of the signature to verify, by comparing both the hash of the message and the hash of the
decrypted signature using the public key.
Along the following pseudo-code description of the algorithms, different functions are be-
ing called. Instead of also showing their whole implementation, we directly provide a brief
description for each of them in Table 4.1.
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Functions Output
isInvertible(M) True or False if the input matrix has an inverse

Aff(M, c) Affine transformation M · x+ c

Matrix(q, s1, s2) s1× s2 matrix with random coefficients from Fq

CentralMap(q, v1, o1, o2) Rainbow central map according to the input parameters
Aff−1(f̂ (v1+1), ..., f̂ (n)) Affine inverse of the system (f̂ (v1+1), ..., f̂ (n))

Gauss(f̂ (v2+1,...,n) = (xv2+1, ..., xn) Random solution of the input equation system

Table 4.1: Description of the functions implicitly called in the KeyGen, Sign and Verify al-
gorithms pseudo-code.

4.4.1 Key Generation

The private key consists in two invertible affine maps S(MS , cS) : Fm → Fm and T (MT , cT ) :
Fn → Fn, as well as a quadratic central map Q : Fn → Fm. Random values from a given
finite field of size q are selected to fill the coefficient matrices and vectors of each mapping.
The public key is generated by computing the composition P = S ◦ Q ◦ T : Fn → Fm.
The affine transformation S mixes the variables of in the polynomials of the central map.
Otherwise, the mapping T is responsible for mixing the polynomials of the composition
between them. As mentioned in 4.2, after this process the public map P looks like a random
polynomial system.

Algorithm 1 Rainbow Key Generation
Input: Rainbow parameters (q, v1, o1, o2), length of salt l
Output: Rainbow key pair (pk, sk)

1: m← o1 + o2
2: n← m+ v1
3: while isInvertible(Ms) == FALSE do
4: MS ← Matrix(q,m, n)

5: cS ← rand(Fn)
6: S ← Aff(MS , cS)
7: while isInvertible(MT ) == FALSE do
8: MT ← Matrix(q, n, n)

9: cT ← rand(Fn)
10: T ← Aff(MT , cT )
11: Q ← CentralMap(q, v1, o1, o2)
12: P ← S ◦ Q ◦ T
13: pk ← pk, l
14: sk ← sk, l
15: return (pk, sk)
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4.4.2 Message Signature

To sign a message d, x = S−1(h) ∈ Fm is computed, where h=H(d) ∈ Fm andH:{0,1}→ Fm.
After that, a pre-image y ∈ Fn of the central map Q is found as explained at the end of
Section 4.2. Finally T −1(y) is computed to obtain the signature z ∈ Fn.

Algorithm 2 Rainbow Signature Generation
Input: message d, private key sk = (InvS, cS ,F , InvT, cT ), length l of the salt
Output: signature s = (z,r) ∈ Fn × {0, 1}l such that P(s) = H(H(d) ‖ r)

1: while isInvertible(F̂ ) == FALSE do
2: y1, ..., yv1 ← rand(Fn)
3: f̂ (v1+1), ..., f̂ (n) ← f (v1+1)(y1, ..., yv1), ..., f (n)(y1, ..., yv1)
4: (F̂ , cF )← Aff−1(f̂ (v1+1), ..., f̂ (n))

5: InvF = F̂−1

6: while t == FALSE do
7: r ← {0, 1}l
8: h← H(H(d) ‖ r)
9: x← InvS · (h− cs)

10: yv1+1, ..., yv2 ← InvF · ((xv1+1, ..., xv2)− cF )
11: f̂ (v2+1), ..., f̂ (n) ← f (v2+1)(yv1+1, ..., yv2), ..., f (n)(yv1+1, ..., yv2)
12: t, (yv2+1, ..., yn ← Gauss(f̂ (v2+1) = xv2+1, ..., f̂

(n) = xn)

13: z = InvT · (y− cT )
14: s← (z, r)
15: return (s)

4.4.3 Signature Verification

In order to check the authenticity between a signature z and a given document d, one obtains
the hash value h = H(d) ∈ Fm in first place and computes h’ = P(z) ∈ Fm in second place.
In case that both h and h’ are equal, the signature z is verified successfully.

Algorithm 3 Rainbow Signature Verification

Input: message d, signature s = (z,r) ∈ Fn × {0, 1}l
Output: Boolean True or False

1: h← H(H(d) ‖ r)
2: h’ = P(s)
3: if h’ == h then then
4: return TRUE
5: else
6: return FALSE
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5 Rainbow in ARM Cortex-M4

5.1 Description of the Environment

As it has been exposed in the introduction of this project, the purpose of this work is to
evaluate the performance of Rainbow in a small embedded microprocessor, followed by the
study of optimization alternatives to improve the efficiency on our platform.
As starting point, we used the Round 1 [rou17] and Round 2 [rou19] reference implement-
ation of the Rainbow algorithms, which have been obtained from the post-quantum crypto-
graphy submissions in the CSRC proposed by NIST.

An ARM Cortex-M4 on a STM32 Nucleo L4R5ZI board (STMicroelectronics) has been used
as the target device. The MCU presents a 32-bit architecture and is provided with a FPU,
as well as a ART Accelerator, MPU and DSP instructions. The clock frequency of the core
is 120 MHz and the memory space is shared between 2 Mbytes of Flash and 640 Kbytes of
SRAM.

The code is written in C. To compile and optimize the code, we used the version 6.3.1 of the
gcc-arm-none-eabi cross-compiler, obtained from the GNU Embedded Toolchain for ARM1.
In order to interact with the MCU, without the need of reaching register level to access
certain features of the board, HAL drivers have been used for this purpose. The device has
an integrated USB to UART bridge. Therefore, the communication between the PC and the
MCU is straightforward with the corresponding HAL driver.

The linker script defines where are stored the different sections of the code, either in the
SRAM or in the Flash memory. This has to be taken into account to keep the size of the
stack and the heap under control and to be aware of how much memory left is available,
which is required to evaluate the memory footprint that has any program/function during its
execution. The program instructions (.text) are stored in the Flash, as well as constant data.
The SRAM contains other sections such as uninitialized (.bss) and initialized (.data) data.
The remaining unused space in the SRAM is left for stack and heap usage.

1https://launchpad.net/ubuntu/+source/gcc-arm-none-eabi
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5.2 Implementation Details

The schemes that NIST intends to standardize should enable existentially unforgeable digital
signatures concerning an adaptive chosen message attack. This property is called EUF-
CMA security. In order to fulfill this security model in both Round 1 and Round 2 reference
implementations of the algorithm, a binary vector r called salt is introduced in the scheme’s
cryptographic procedures, in order to ensure that no attacker is able to forge any hash-
signature pair. The length of this vector is chosen such that 264 plaintexts can be signed
with a single key pair.

Below are described the modifications that are applied to the standard methodology of key
generation, message signature and signature verification, concerning the security level that
has to be obtained.

• Rainbow Key Generation [Algorithm 1]
An integer l is chosen as the length of the salt vector and later appended both to the
public and private key.

• Rainbow Signature Generation [Algorithm 2]
Vinegar variables are randomly chosen (x1, ..., xv1). After that, a random salt vector
of length l is chosen r ∈ {0, 1}l and the standard signature procedure is executed for
H(H(d) ‖ r) to obtain a signature s = (z ‖ r). If any linear equation system has no
solution, a new salt vector r is chosen and the process is restarted .

• Rainbow Signature Verification [Algorithm 3]
The algorithm uses H(H(d) ‖ r) instead of H(d), to check the equality to P(z) and
thus verify if the signature z corresponds to the message d.

The implementation uses SHA-2 functions to hash messages during the signature and veri-
fication procedures. This family provides four different options: SHA224, SHA256, SHA384
and SHA512 which output hash values of length equal to 224, 256, 384 and 512 bits respect-
ively.
Random numbers are generated both during the keys and signature generation. For that
purpose, the submitted reference implementation uses functions from the OpenSSL library.
A secret seed is required to generate random integers in the same way a pseudo-random
number generator would do.
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5.2.1 Representation of Finite Field Elements

The reference implementation of Round 1 and Round 2 stores the coefficients from each
finite field as polynomials following a Tower field structure, in order to obtain time-constancy
and prevent side-channel attacks.

The tower field employed in the Rainbow implementation is constructed as follows

GF (4) := GF (2) [x] / x2 + x+ 1
GF (16) := GF (4) [y] / y2 + y + x

GF (256) := GF (16) [z] / z2 + z + xy

The elements from GF (4) are {0, 1, x, x− 1}, where the coefficient set consists in {0,1} and
the base of the field is B4 = {1, x}. To generate GF (16), the coefficients are the elements
from GF (4) and the base is B16 = {1, x, y, xy}. Finally, GF (256) is assembled combining
of the coefficients from GF (16) and B256 = {1, x, y, xy, z, xz, yz, xyz}. The elements of
the finite field are generated by creating different linear combinations between the elements
of the base and the coefficients from GF (2).

• GF (16)
Two bits are needed to store each GF (4) coefficient of the linear polynomial (α ·
x + β) representing the elements of GF (16). Therefore, 4 bits are needed to store
an element of GF (16). Coefficients from GF (2) are stored in 1 bit. The linear and
the constant term of the polynomials are stored in the most and least significant bits
respectively. Elements from this field are usually packed in pairs into the same 8-bit
integer which is the smallest unit available in C language.

• GF (256)
One byte is enough to store a GF (256) element, as the coefficients of the linear
polynomial require 4 bits each, given that they belong to GF (16). From this point, the
values are stored as mentioned above down to GF (2).

5.2.2 Key Storage

Before implementing a MPKC’s on a micro controller, it is important to think about an efficient
way of storing the keys in memory in order to speed the process of reading them during
execution. As explained in the last chapter, the mappings in any multivariate quadratic
construction are represented by the coefficients of their polynomials. Taking into account
that random accesses to memory produces a big amount of overhead while calculating the
address every time, the best alternative consists in storing the coefficients serially, where
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only increments are required. Following this methodology, there are no gaps in memory
which is also a memory efficient technique.

Public Key

The public key of the Rainbow scheme is based on a system of m multivariate quadratic
polynomials in n variables. The equations take the following form

yk = q1,1,kx1x1+q2,1,kx2x1+q2,2,kx2x2+q3,1,kx3x1+ · · ·+ l1,kx1+ l2,kx2+ · · ·+ ln,kxn+ck

where qi,j,k is the quadratic coefficient of xixj , li,k the coefficient of the linear monomial xi
and ck the constant term of the polynomial yk (1 ≤ j ≤ i ≤ n, 1 ≤ k ≤ m).

In order to arrange the public key in the same array, we store the linear terms first, followed
by the quadratic and the constant terms. The following sequence exemplifies how does the
MQ polynomials look in memory.

[l1,1, l1,2, · · · , l1,m, l2,1, · · · , ln,m, q1,1,1, q1,1,2, · · · , q1,1,m, q2,1,1, · · · , qn,n,m, c1, · · · , cm]

Secret Key

The private key, consisting of two affine transformations and a multi-layer UOV central map,
are stored in the order S,Q and T .

The affine maps S : Fm → Fm and T : Fn → Fn are comprised by a m ×m matrix and a
m× 1 vector for S and a n× n matrix and a n× 1 vector for T .

T (x) =

t11 t12 · · · t1n
...

. . .
tn1 tn2 · · · tnn


x1...
xn

+

c1...
cn


The matrix M is stored first in column-major form. The components of the vector c are
appended next to the last element of the matrix. Therefore, the affine transformation
T : Fn → Fn are displayed in memory as the following array.

[t11, t21, · · · , tn1, t12, · · · , tnn, c1, · · · , cn]
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The same technique is used for storing the affine map S : Fm → Fm.

The central map Q is composed by two layers. In the first stage, there is V1 = {1, ..., v1}
and O1 = {v1 + 1, ..., v1 + o1} and in the second V2 = {1, ..., v2 = v1 + o1} and O2 =
{v2 + 1, ..., n = v2 + o2}. Each layer is stored independently following the same manner.

The coefficients that describe the equations of the central map are divided into 3 different
groups depending on the type of variable that they multiply: vv, vo and o-linear. They are
stored in memory in the order o-linear, followed by vo and vv.

vv : The vv part is a multivariate quadratic equation system that is composed, not only
by the quadratic vinegar crossed terms (v × v), but also by the linear coefficients of the
vinegar variables and the constant terms. The coefficients of the vv part are stored following
the same manner as the public key MQ polynomial system. The components of this group
present the following form

∑
i,j∈Vl

α
(k)
i,j xixj +

∑
i∈Vl

γ
(k)
i xi + δ(k)

vo : The vo part contains the quadratic crossed terms between the oil and the vinegar
variable set

∑
i∈Vl,j∈Ol

β
(k)
i,j xixj →


β
(k)
11 β

(k)
21 · · · β

(k)
v11

...
. . .

β
(k)
1o1

β
(k)
2o1

· · · β
(k)
v1o1


The coefficients from the vo group that correspond to the polynomials of the first layer are
stored in the form of a o1 column-major matrix of size o1 × v1, as can be observed in the
following array

[β(v1+1)
11 , β

(v1+1)
21 , · · · , β(v1+1)

1o1
, β

(v1+1)
21 , · · · , β(v1+1)

v1o1 , β
(v1+2)
11 , · · · , β(v1+2)

v1o1 ]

o-linear : This group contains the linear coefficients in the oil variables of the first layer. The
terms that correspond to this part of the central map take the form

∑
i∈Ol

γ
(k)
i xi →


γ
(v1+1)
v1+1 γ

(v1+1)
v1+2 · · · γ

(v1+1)
v2

...
. . .

γ
(v2)
v1+1 γ

(v2)
v1+2 · · · γ

(v2)
v2
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The o-linear group of coefficients is stored in the form of a row-major matrix, as shown in
the following sequence

[γ(v1+1)
v1+1 , γ

(v1+1)
v1+2 , · · · , γ(v1+1)

v2 , γ
(v1+2)
v1+1 , · · · , γ(v2)v2 ]

5.2.3 Finite Field Arithmetic

Galois Field Arithmetic plays a key role in the performance of cryptographic schemes. For
this reason, it is important to look for efficient software implementations, given that only in a
few fields of concrete size is possible to perform hardware-supported operations.

• Addition
The reference implementation performs additions and subtractions with 8-bit integers,
corresponding to elements from GF (256), so no merging or splitting of has to be
performed. It is the most efficient way to exploit the size of the smallest variable
type provided by the integer standard library of the C language. For this reason,
numbers fromGF (16) have to be arranged in pairs before being added to another pair
of GF (16) coefficients. In case of additions between GF (256) integers, the operation
is performed directly. The addition performed modulo 2, as an XOR binary function.

• Multiplication
In the reference algorithm of both rounds, the multiplication is implemented to be time-
constant, taking advantage of the tower field representation. The methodology used
is the so-called Karatsuba-Ofman, which is recursively employed until the terms of
the multiplication are expressed with coefficients from GF (2), where the operation
is entirely performed at hardware level as an AND function. Multiplications between
GF (16) elements are faster than GF (256), as in the latter case, one more decom-
position stage of the tower representation has to be undergone.

5.2.4 Comparison between Rainbow Variants

Up to this point, we have described the most relevant details in the implementation that are
shared between the two submissions of Rainbow to the NIST post-quantum competition.
The following lines describe the differing parts between both rounds and the impact they
have over the general behaviour of the scheme. The second round submission of the al-
gorithm is basically a variant of the first submission, that yields three different algorithms
for each parameter set provided, with improved performance in terms of execution time and
memory called after Classic, Cyclic and Compressed Rainbow.
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• Improved Key Generation
The three proposed schemes in Round 2 generate the pair of keys much faster, given
that the interpolation method, used in Round 1, is substituted by a matrix multiplication
approach, which reduces drastically the number of instructions to perform the task.

The mappings that describe the private key S,Q and T are restricted to an homogen-
eous composition which results into an homogeneous public key P . A polynomial is
called to be homegenous when its non-zero terms have the same degree. Therefore,
all the Rainbow mappings are composed only by second degree polynomials, leaving
out the linear and the constant terms.
The security level of Rainbow is not compromised by this modification, given that
the non-homogeneous part of the matrices does not provide further resilience to the
scheme.

Furthermore, the linear maps S and T are arranged in a special form, as shown below.

S =

[
1o1×o1 S

′
o1×o2

0o1×o2 1o2×o2

]
T =

1v1×v1 T
(1)
v1×o1 T

(2)
v1×o2

0o1×v1 1o1×o1 T
(3)
o1×o2

0o2×v1 0o2×o1 1o2×o2



• Parameter Sets
From the 9 parameter sets that are proposed in Round 1 by combining GF (16),
GF (31) orGF (256) and the different options to choose from SHA-2, Round 2 reduces
the number of sets available to 3. The roman numbers indicate the NIST security cat-
egory that the scheme aims at. Moreover, I and II employ SHA256, III and IV SHA384
and V and VI SHA512. The letter indicates the finite field used (a for GF (16), b for
GF (31) and c for GF (256)).

Set Parameters #Equations #Variables
Ia (F, v1, o1, o2) GF (16), 32, 32, 32 64 96

Ib (F, v1, o1, o2) GF (31), 36, 28, 28 56 92

Ic (F, v1, o1, o2) GF (256), 40, 24, 24 48 88

IIIb (F, v1, o1, o2) GF (31), 64, 32, 48 80 144

IIIc (F, v1, o1, o2) GF (256), 68, 36, 36 72 140

IVa (F, v1, o1, o2) GF (16), 56, 48, 48 96 152

Vc (F, v1, o1, o2) GF (256), 92, 48, 48 96 188

VIa (F, v1, o1, o2) GF (16), 76, 64, 64 128 204

VIb (F, v1, o1, o2) GF (31), 84, 56, 56 112 196

Table 5.1: List of the proposed parameter sets for the Round 1 submission of the Rainbow
algorithm
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Set Parameters #Equations #Variables
Ia (F, v1, o1, o2) GF (16), 32, 32, 32 64 96

IIIc (F, v1, o1, o2) GF (256), 68, 36, 36 72 140

Vc (F, v1, o1, o2) GF (256), 92, 48, 48 96 188

Table 5.2: List of the proposed parameter sets for the Round 2 submission of the Rainbow
algorithm

• Memory-Speed Trade-Off
Cyclic and compressed Rainbow variants are characterized by drastically reducing
the memory usage while losing efficiency during execution. In the one hand, cyclic
Rainbow is based on Petzoldt’s cyclic scheme [PBB10], which allows, not only to
insert cyclic matrices into the public key map but also to generate most of its parts
by using a stored seed [DBM12]. This approach saves up to the 70% of the memory
space employed in Round 1. In the other hand, the compressed version stores the
secret key as two 256 bit seeds. The loss of efficiency is given by the fact that every
time the public or secret keys have to be used in either verification or signing routines
respectively, they have to be decompressed from the stored seed that generates them,
leading to a slower execution.

5.3 Modifications to the Reference Implementation

In order to implement the Rainbow algorithm in the Cortex-M4, we have to get rid of most
of the libraries used in the reference implementation due to the huge overhead that is gen-
erated. The strict memory constraints imposed by the MCU and the incompatibilities in the
code between x86_64 and ARM compilers are the reasons that explain this practice. For-
tunately, only the OpenSSL library is employed, both for document hashing and generating
random bytes.

We replaced the OpenSSL library used in the given reference implementation with the
mbedTLS2, a cryptographic library with SSL and TLS capabilities for ARM microprocessors.
Even though we managed to compile the mbedTLS library for our architecture, a huge
amount of memory was consumed in order to handle the storage of this library, without
leaving enough space for implementing the algorithm on the device.

After discussing which could be the best option for omitting the use of libraries without down-
grading the overall performance, we decided to

2https://tls.mbed.org
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• Hash Functions
Employ the hashing functions for SHA256, SHA384 and SHA512 based on Daniel
Bernstein’s public domain implementation.

• RNGeneration
Use the Pseudo-Random Number Generator (PRNG) integrated in the Nucleo L4R5ZI
board, which uses hardware noise as the source to obtain a seed for generating aleat-
ory numbers. Therefore, all the functions and structures related to seed generation
and PRNG configuration are dismissed.
To take advantage of the integrated PRNG, we use the HAL driver available for this
purpose. More specifically, we call the function HAL_RNG_GenerateRandomNumber,
that returns a 32-bit random number. As the original function from the reference im-
plementation returns n random bytes, we had to adapt our method to return the de-
manded number of bytes correctly by performing 8-bit splits over the output of the HAL
PRNG function.

• Memory Allocation
Instead of using aligned_alloc() for dynamically allocating memory, we directly use
malloc(), given that the C standard library for the cross-compiler arm-none-eabi-gcc
does not provide this function. This change is only applied in Round 2.

5.4 Rainbow Embedded Application

For visualizing and evaluating the way key generation, signature and verification algorithms
work, we embedded the Rainbow scheme in a real application.
The MCU is flashed with three different instances of the Rainbow scheme constructed from
the parameter sets Ia and Ic from Round 1 and Ia from Round 2. The security provided by
these parameter sets corresponds to level 1 of the NIST security categories for the Ia and
level 2 for the Ic. The parameter sets that we evaluate in this thesis use SHA256 to generate
hash values. Because of the limitations imposed by the memory of our device, we could not
fit any of the other parameter set alternatives proposed.
From round 2 we only select the Ia_Classic approach, leaving out the cyclic and compressed
variants from the evaluation. Furthermore, We have not included the set Ib, which uses
GF (31) as the underlying finite field, given that most part of the research papers tend to
dismiss its use due to the efficiency loss that it generates.

The application we have implemented is based on a finite state machine to communicate the
PC and the microprocessor. The methodology is quite straightforward, given the simplicity
of our MCU which does not have neither an OS nor a file system.
The program runs over an infinite loop and listens to the PC that through UART until a
command is received. Once at this point, the MCU processes the message and executes
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a callback function, according to the content of the command that has been received. The
microprocessor can be interpreted as a server, while a python script on the PC side performs
the task of a client. The client application is capable of sending commands and documents
to the MCU, as well as receiving results, like keys, signatures, performance metrics...
We designed a simple transmission protocol in order to communicate both ends and have a
synchronous functioning of the whole system.

In a certain time instant, the application finds himself in a concrete state, where a handler
function is executed. The next state is determined by the return value of this function. This
methodology is followed indefinitely during the execution of the program.
The starting point is the IDLE state, which waits for the client to send a SPACE character
(0x20) to launch the application. Once received, the application jumps to the D_IN state,
where the the program waits for the commands corresponding to the algorithm that user
demands to execute. The characters that refer to Key Generation, Signature and Verification
are 0x00, 0x01 and 0x02 respectively. The D_RX state is responsible for checking the
command received.

The KEY (keygen_Handler()), SIGN (signature_Handler()) or VERIF
(verification_Handler()) states correspond to the three functions provided by the cryptosys-
tem. After the program has returned from the handler of any of the mentioned states above,
the application jumps back to the REST state, which allows the user to keep the application
running or to terminate it. As the MCU does not have a file system, the keys and signatures

Figure 5.1: States diagram of the Rainbow embedded application

36



are stored in arrays of 8-bit integers that are declared as global variables in the code. Within
the states SIGN and VERIF, the application waits for the client to send the entire message
that has to be signed or verified before calling the corresponding handler, which implies that
two more buffers are required to store this data. These arrays are allocated dynamically,
once the whole messages have been received in the microprocessor side. Every time the
application is terminated, all the buffers are freed from memory.

5.5 Performance Optimization

Regarding the performance of the Rainbow instances from Round 1 and Round 2 in our
platform, we made the decision to optimize the execution time for the key generation, mes-
sage signature and verification, in order to further increase the speed of the algorithm.
The number of clock cycles elapsed to execute these functions is higher than in various
post-quantum digital signature approaches. We want to prove that taking advantage of the
scheme’s construction features, the execution speed can be accelerated in order to get a
modified Rainbow that processes the basic functions faster than other state-of-the-art digital
signature alternatives in our platform.

It is important to notice that the implementation runs slower in our MCU than in other plat-
forms with higher complexity, not only because of the faster clock but also because of the
different instructions that are employed.
The microprocessor that is used is a reduced instruction set computing (RISC), resulting
into smaller and simpler instructions fetched to the core. Therefore, in order to perform a
specific task, the number of instructions needed is bigger in a RISC than in a CISC (complex
instruction set computing) architecture, where longer and more complex instructions are ex-
ecuted. The instructions of the last ISA mentioned usually require various clock cycles to be
executed. This is why CISC architectures are usually implemented in systems with a high
frequency clock in the order of GHz. In our case, we have a lower frequency system clock
combined with a huge amount of 1-cycle instructions, which ends up in a slower execution.

5.5.1 Data Collection

To quantify the performance of the optimized version of the algorithms that have been im-
plemented, we analyze two different features: execution speed and stack memory usage.
Below is described the methodology followed for obtaining these metrics.

• Stack Memory Usage
The stack usage is obtained by first filling the stack memory from a known address,
given by the declaration of a variable, down to a concrete amount of bytes with known

37



dummy values. After that, we check the values stored from the lowest memory ad-
dress storing a dummy value as starting point, to the first appearance of a different
value. We claim the amount of stack used by subtracting the address corresponding
to the first non-dummy value and the address of the declared variable before calling
the function to evaluate. The stack usage is given in Bytes among all the tables that
are exposed in this work. This sequential procedure is shown from left to right in 5.2.

Figure 5.2: Stack usage measurement. The first picture shows the sectioned structure of
the RAM. The second picture presents the memory with filled dummy values.
The third picture illustrates the RAM layout before returning from a function.

• Execution Time
For measuring the number of clock cycles spent in each function, we take advantage
of the DWT_CYCCNT internal register of the Cortex-M4 3. This register increments
by one the current stored value, every time a clock cycle elapses during the execution
of a program. The number of cycles that can be represented range from 0 to 232 − 1.
When the register overflows it is wrapped around 0.
Therefore, in case that the function takes longer than 232 clock cycles, we must know
the number of times that the register overflows to obtain the total time. For this pur-
pose, we use the internal SysTick timer. Using the HAL drivers functionalities, we can
set a concrete number of elapsed ticks before the MCU throws an interruption calling
HAL_SYSTICK_Config. In our case, we set this value to the maximum number that
can be stored in the 24-bit SYST_CVR register4.

3http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0439c/BABJFFGJ.html
4http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/Bhccbfia.html
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This register stores the current value of the SysTick Timer. The interruption handler is
implemented to add one to uwTick, which is the global variable storing the number of
times that the register has been overflowed.

Finally, we can compute the total number of clock cycles elapsed making use of both
measurements with the following equation:

Clock_Cycles = numIRQ * maxTicks_Counter + current_Counter

5.5.2 Optimization Approach

The first step of the optimization process consists in evaluating the different factors that
characterize the algorithms so that we can exploit them in order to achieve an optimized
version. The fact that all the parameter sets evaluated are using the same hash function
(SHA256), we can assume that no difference in performance between them will come from
the hashing procedure, but from the size difference of the finite fields employed, as well as
the parameters chosen to design the scheme.
As the latter factor is fixed to achieve a established level of security, we decide to focus
on finite field arithmetic in order to increase the efficiency of the cryptographic functions
provided by the Rainbow scheme.

The second step is based on exploring alternatives to the multiplication reference imple-
mentation, so that we can reduce the number of clock cycles to compute the operation. In
order to do so, we took advantage of the following principles:

• Arithmetic in GF (2N ) for large N can sometimes be too expensive in terms of com-
putation, specially when using traditional multiplication methodologies. The use of the
composite field representation can speed up the opeartions since the coefficients are
represented by n-bit words, which is advantageous for the implementation of on mi-
croprocessors, specially when n is selected properly. However, this property can not
be fully exploited as the size of the fields is relatively small.

• The use of look up tables allows us to substitute the reference implementation log2n-
step Karatsuba-Ofman algorithm called every time a multiplication is performed, where
n corresponds to the degree of the polynomials, for memory accesses to a pre-
computed table, containing the multiplications between every combination of elements
from the underlying field. The construction time of the tables can be reduced if the de-
gree of the irreducible polynomial in the tower structure equals 3 or 5 [SK10].

The look up table for multiplying GF (2N ) elements is initialized once when the application
is launched, so no overhead is generated. It is constructed using the Karatsuba-Ofman al-
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gorithm to reduce the number of submultiplications to obtain the results.
For generating the GF (16) table, we used logarithmic look-up tables to speed up the execu-
tion of this suboperations obtained after applying the Karatsuba decomposition method. The
log-antilog tables compute the multiplications in the ground field. Therefore, we only used
them to compute multiplications in GF (4). The GF (16) look up table is reused to tabulate
the products from GF (256).

The motivation to use log-antilog tables is given by the fact that a multiplication between two
integers from a finite field a · b can be alternatively written as log−1(log(a) + log(b)), which
allows the user to compute the operation by simply performing three memory accesses to
tables which size equals the number of elements of the field, and a modulo computation.
Furthermore, the clock cycles can be reduced even more, by using an inverse logarithmic
table twice the size of the original approach instead of the modulo. This methodology fits
perfectly in small field multiplications, where doubling their size does not increase too much
the number of elements in the antilog table.

It is required to ensure that after the modifications made to improve the efficiency, the
scheme remains immune against timing attacks. As mentioned in 5.2.3, the tower field rep-
resentation provides time-constant arithmetic opeartions between the components of the
private key. Therefore it can be ensured that no side-channel information is leaked .
The use of look up tables can be exploited by performing cache-timing attacks, such as
PRIME+PROBE and its variant FLUSH+RELOAD, which take advantage of the shared last-
level cache [DHF+10]. The time difference between the cache hits or misses to the look up
tables leaks information about the structure of the secret key. This attacks consist in three
stages. Firstly, the attacker flushes a cache line from the cache hierarchy. Secondly, he
waits until the victim accesses that line. Then, the attacker reloads the content on that line
and measures the access time. If the line has been stored in the cache (hit), the number
of clock cycles to perform the task will be lower. Otherwise, it will take significantly longer,
as the data will have to be brought from memory. This reveals the positions on the look up
table that were accessed, and thus, the location where the elements are stored.

In our case, although using the look-up table approach, the security of our scheme will
not get compromised, as the Cortex-M4 microprocessor does not have a cache memory
structure.

Round 1

We compute the elements for the table of GF (16) and GF (256) using GF (4) and GF (16)
look-up tables respectively, as it has been mentioned above.
Algorithms 4 and 5 describe the generation procedure of these tables in pseudo code.
The functions gf16_mul_lookupTable and gf4_mul_lookupTable perform the memory ac-
cesses in order to get the result of the multiplications.
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Therefore, we need to store a table of 256 (28) elements for Ia and 65536 (216) elements for
Ic.

Algorithm 4 GF (16)Look-up Table Generation
Input: GF (4) look-up table gf4_tab
Output: GF (16) look-up table gf16_tab

1: size← 1 << 4
2: for i ≤ size do
3: for j ≤ size do
4: a0b0 ← gf4_mul_lookupTable(x0, y0, gf4_tab);
5: a1b1 ← gf4_mul_lookupTable(x1, y1, gf4_tab);
6: abx ← gf4_mul_lookupTable(x0

⊕
x1, y0

⊕
y1, gf4_tab)

⊕
a0b0

⊕
a1b1;

7: a1b1_2← gf4_mul_lookupTable(a1b1, 2, gf4_tab);
8: gf16_tab[16i + j]← (abx

⊕
a1b1) << 2)

⊕
a0b0 + a1b1_2;

9: return (gf16_tab)

Algorithm 5 Look-up GF (256) Table Generation
Input: GF (16) look-up table gf16_tab
Output: GF (256) look-up table gf256_tab

1: size← 1 << 8
2: for i ≤ size do
3: for j ≤ size do
4: a0b0 ← gf16_mul_lookupTable(x0, y0, gf16_tab);
5: a1b1 ← gf16_mul_lookupTable(x1, y1, gf16_tab);
6: abx ← gf16_mul_lookupTable(x0

⊕
x1, y0

⊕
y1, gf16_tab)

⊕
a0b0

⊕
a1b1;

7: a1b1_8← gf16_mul_lookupTable(a1b1, 8, gf16_tab);
8: gf256_tab[256i + j]← (abx + a1b1) << 4)

⊕
a0b0

⊕
a1b1_8;

9: return (gf256_tab)

There is an alternative for GF (256) multiplications to save space in the SRAM, given that
the size of the table used of size 216 in addition to the public and secret key buffers, con-
strain drastically the amount of memory available left for the execution of the cryptographic
procedures of key generation, signing and verification. Given that the Karatsuba-Ofman
decomposition of the GF (256) multiplication consists in 4 GF (16) multiplications, we can
perform 4 memory accesses to the GF (16) table instead of 1 access to the GF (256).

Choosing between the two variants depends on the user’s interest. The GF (256) table op-
tion is faster but needs a huge table to store all the values. Even though accessing a bigger
table is slower than checking entries in a smaller table, it is still faster than the second option,
where 4 accesses are required. In this case, the table’s size used is very small compared
to the other alternative, thus saving a great amount of memory space. In this case, the
difference in size between the tables of both methods is 65280 bytes, given by 216 − 28.
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Round 2

In this case, the reference implementation of Ia_Classic computes multiplications on a single
32-bit variable composed by 8 GF (16) elements to make an efficient use of the variables.
We want to apply the look up table approach employed on the Round 1 parameter sets in
order to speed up this procedure. In order to do so, we build a look up table of GF (16)
that consists of precomputed multiplications between all the possible numbers that can be
formed by a combinations of two GF (16) integers (0 to 255) and a single GF (16) element.
Thus, we obtain a table of 4096 bytes, given by 256 × 16. The generation procedure is
described in algorithm 6. To compute the multiplication, instead of splitting 8 times the 32 bit
variable into elements of GF (16) and then apply the recursive Karatsuba-Ofman, we save
4 splits in the generation of the look up table. Therefore, our optimized method to compute
8 multiplications in GF (16) consists in 4 splits and 4 memory accesses.

Algorithm 6 Look-up GF (256) Table Generation (32-bit version)
Input: GF (16) look-up table gf16_tab
Output: GF (16) look-up table gf16_tab_v32

1: size1← 1 << 4
2: size2← 1 << 8
3: for i ≤ size1 do
4: for j ≤ size2 do
5: j0 ← j & 7;
6: j1 ← (j & 240) >> 4;
7: mul0 ← gf16_mul_lookupTable(j0, i, gf16_tab));
8: mul1 ← gf16_mul_lookupTable(j1, i, gf16_tab));
9: gf16_tab_v32[16j + i]← mul0

⊕
(mul1 << 4);

10: return (gf16_tab_v32)

5.5.3 Reference Implementation Performance

To analyze the variation in the efficiency of the optimized version of Rainbow that we imple-
mented, we first need to evaluate the performance of the reference implementation.
For quantifying the performance we based ourselves in the one hand, on the size of the
keys, signatures and hash values generated, to be aware of how much memory is employed
for their storage which is exposed in (Table 5.3). The length of these elements is directly
determined by the parameters set that is chosen to construct the scheme.

On the other hand, we extract the number of clock cycles elapsed and the amount of Bytes in
the stack employed by the key generation, signing and verification functions for the different
parameter sets evaluated. The results are presented in Tables 5.4, 5.5 and 5.6, correspond-
ing to Ia, Ic and Ia_Classic respectively.
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Set Parameters Public Key Private Key Hash Size Signature
Ia (GF (16), 32, 32, 32) 152097 100209 256 512

Ic (GF (256), 40, 24, 24) 192241 143385 256 832

Ia_Classic (GF (16), 32, 32, 32) 148992 92960 256 512

Ia_Cyclic (GF (16), 32, 32, 32) 58144 92960 256 512

Ia_CompCyclic (GF (16), 32, 32, 32) 58144 64 256 512

Table 5.3: Key, Hash and Signature Sizes in Bytes for Ia and Ic parameter sets from Round
1 and the different variants from Ia in Round 2.

Ia
Optimization

Level
Metrics Key Gen Sign Gen Sign Verif

Og
Cycles 34095356078 52853987 36995702

Memory 1618752 24576 6912

O1
Cycles 28182442856 16352581 14968190

Memory 1619520 24736 7040

O2
Cycles 28182105383 16454817 16196426

Memory 1619584 24576 6368

Ofast
Cycles 25023292079 16216028 14800683

Memory 1620800 24032 6304

Table 5.4: Performance Metrics of the reference Rainbow procedures in the Ia parameter
set

Ic
Optimization

Level
Metrics Key Gen Sign Gen Sign Verif

Og
Cycles 67861477282 60182653 60384694

Memory 1162944 23168 6720

O1
Cycles 57182539666 52380394 52522017

Memory 1164288 23808 7296

O2
Cycles 58163239932 54790748 54953725

Memory 1165504 23072 6368

Ofast
Cycles 58250523705 55102359 55704486

Memory 1167616 21632 6368

Table 5.5: Performance Metrics of the reference Rainbow procedures in the Ic parameter
set
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Ia_Classic
Optimization

Level
Metrics Key Gen Sign Gen Sign Verif

Og
Cycles 151223541 2157586 1981264

Memory 1792 7744 6080

O1
Cycles 144266399 1960422 1715855

Memory 2304 7904 6240

O2
Cycles 135691905 1815468 1638395

Memory 2048 8416 6304

Ofast
Cycles 134354438 - 1618523

Memory 2752 - 6560

Table 5.6: Performance Metrics of the reference Rainbow procedures in the Ia_Classic
parameter set

5.5.4 Optimized Implementation Performance

In order to evaluate the impact of the changes applied, we analyzed the time spent by both
the reference and optimized multiplication algorithms isolated, in each of the different para-
meter sets employed. After that, we measured the number of clock cycles elapsed during
the three different cryptographic procedures to test the influence of the new multiplication
approach. The stack memory usage is also presented in the tables.
We obtained the time in milliseconds computing the division between the number of clock
cycles elapsed and the system’s clock frequency, which in our case is 120 MHz.

We are using most of the available compiler optimization flags for ARM microprocessors,
in order to explore as much alternatives as possible to minimize the size of the code while
squeezing the execution time. It is not possible to exactly determine the metrics that would
present the different cryptographic functions by looking at the isolated multiplications table,
as the compilation process takes into account all the code in order to optimize its execution.
Therefore, there is no strict relationship between the two measurements, given that there
exists a huge different between both cases in the amount of code visible by the compiler.

Tables 5.7 references the metrics extracted from the optimized Rainbow built using the Ia
set from Round 1. The same is exposed in Table 5.8 for the Ic set. Regarding Round 2, the
performance results using the Ia_Classic parameters set are shown in tables 5.9.
It can be observed that signature procedure on the Ia_Classic parameter set with the Ofast
compiler flag is not shown. This is because the implementation was falling into undefined
behaviour when selecting this optimization option.
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Ia
Optimization

Level
Metrics Key Gen Sign Gen Sign Verif

Og
Cycles 2248623368 5362571 4801500

Memory 1617984 24192 6464

O1
Cycles 3525035725 4323043 3701322

Memory 1618688 24320 6656

O2
Cycles 1295429175 3611927 2936378

Memory 1618816 24224 5984

Ofast
Cycles 1446131173 3428842 3185447

Memory 1621120 25440 5984

Table 5.7: Performance Metrics of the optimized Rainbow procedures in the Ia parameter
set

Ic
Optimization

Level
Metrics Key Gen Sign Gen Sign Verif

Og
Cycles 6939685249 4093260 4211083

Memory 1162048 22784 6272

O1
Cycles 5295748895 3287900 3021377

Memory 1162816 22848 6464

O2
Cycles 4218783615 3122501 2889175

Memory 1162880 22240 5600

Ofast
Cycles 4185819248 3186323 3052783

Memory 1163328 22624 5600

Table 5.8: Performance Metrics of the optimized Rainbow procedures in the Ic parameter
set

Ia_Classic
Optimization

Level
Metrics Key Gen Sign Gen Sign Verif

Og
Cycles 178936017 2472074 2292619

Memory 1856 7872 6208

O1
Cycles 164643555 2362744 2065065

Memory 2304 8256 6592

O2
Cycles 146019481 2930942 1321850

Memory 2176 8640 6528

Ofast
Cycles 115099104 - 1376828

Memory 2688 - 6528

Table 5.9: Performance Metrics of the optimized Rainbow procedures in the Ia_Classic
parameter set
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6 Results Analysis

6.1 Key Generation

In Figure 6.1, it is shown the number of clock cycles that are elapsed during the Key Gen-
eration process on the three parameters sets that we are evaluating, for different compiler
optimization flags. Looking at the bar graph, we can claim that the interpolation method
employed in Round 1, is much slower than the matrix multiplication approach from Round
2. In the modified versions of Rainbow of Ia and Ic, the multiplications are made as a single
memory access, which results into a notable increase in the speed of the function, that
originally uses the Karatsuba-Ofman algorithm until GF (2) for computing the operation.
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Figure 6.1: Optimized and Reference Rainbow Performance for Key Generation on Ia, Ic
and Ia_Classic.

In the Ia_Classic set, the multiplications in the reference implementation are made on 32-bit
variables, which are decomposed into GF (4) before being bit-wise multiplied, which turns
out to be very efficient because of the word length of our hardware architecture. In this
case, the optimization approach that we proposed consists in 4 memory accesses to a table
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of 4096 bytes, which also requires the decomposition of the entire variable into 4 elements
of GF (256) and the reassembly of the variable to return. This procedure’s overhead results
into a longer generation time of the keys, compared to the reference implementation for
some of the compiler optimization flags used.

6.2 Signature Generation

Figure 6.2 shows the bar graphs for signature generation. The overall behaviour of the
different parameter sets is very similar to the key generation process. The difference in
the number of clock cycles is increased 9 times for Ia and 11 for Ic. In the Ia_Classic,
the optimized approach is not able to reduce the time respect the reference implementation.
Between the optimized versions of both Round 1 and Round 2, the speed difference is about
2× 106 clock cycles.
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Figure 6.2: Optimized and Reference Rainbow Performance for Signature Generation on
Ia, Ic and Ia_Classic.

6.3 Signature Verification

The gain of verification time between the reference and optimized versions of Ia_Classic
is minimal as can be observed in Figure 6.3, equally to the key and signature generation,
given that the multiplication by table look ups has no significant run-time difference at all,
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in comparison to the 32-bit multiplication approach implemented in the reference version.
We are able to improve the speed of this set only with -O2 and -Ofast optimization flags.
Otherwise, for the sets from Round 1, the execution time is reduced by the same factor as
the achieved in the signature procedure.
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Figure 6.3: Optimized and Reference Rainbow Performance for Signature Verification on
Ia, Ic and Ia_Classic.

6.4 Comparison with other Cryptosystems

To evaluate the functioning of the Rainbow cryptosystem in a global scene, we provide
a quantitative comparison of the performance achieved during the signature and verifica-
tion functions, with timing benchmarks for various state-of-the-art post-quantum signature
schemes [KRSS]. These algorithms are the Lattice-based DilithiumIII[DKL+17] and qTesla-
II [BAA+19], the Hash-based SPHINCS+sha256-128f[BDE+19], and the multivariate LUOV-
II [BPSV19]. In order to give a fair comparison, we have selected concrete versions of the
post-quantum techniques whose security level [BBB+12] is equal to the achieved by the
Rainbow parameter sets that are evaluated in this thesis: 128-bit post quantum security
(levels 1 and 2 of the NIST requirements). The Rainbow metrics shown in the plots corres-
pond to the best result achieved, in terms of speed, for each of the parameter sets.

Although, many aspects should be taken into account to offer an exact comparison, such as
computational assumptions, implementation details or constant-time against non-constant-
time approaches, we intend to give a precise differentiation between different algorithms that
compete to become the quantum secure digital signature standard.
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Methodology. The timings for Rainbow Ia, Ic and Ia_Classic sets are obtained with the
core running at 16MHz, while the measurements for the other algorithms are acquired at
24MHz. However, the benchmarks have been generated in the same exact platform (Cortex-
M4). Even though the times are obtained using different clock frequencies, the fact that the
instruction set architecture of the MCU’s is the same in all cases (ARMv7-M), allows the
scaling of the time to give a highly precise approximation of the milliseconds elapsed in a
common clock frequency basis. The measurements are taken at a certain frequency where
the wait cycles due to the speed of the memory controller are not added to the elapsed
time.

Algorithm Sign Time (ms) Verif Time (ms) Pk (KB) Sk (KB) Signature (B)
Ia 0.028 0.026 152.097 100.209 64

Ic 0.026 0.024 192.241 143.385 104

Ia_Classic 0.015 0.013 148.992 92.960 64

qTesla-II 0.156 0.027 2.336 1.600 2144

LUOV-II 1.133 0.898 12.100 0.032 311

Dilithium-III 0.077 0.019 1.472 - 2701

SPHINCS+ 128 4.349 0.174 0.032 0.064 16976

Table 6.1: List of the algorithms evaluated their corresponding performance metrics in terms
of execution time and size.

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

0.01

0.1

1

10

E
la

ps
ed

Ti
m

e
(m

s)

Signature Verification

qTesla-II LUOV-II Ia Ic IaClassic Dilithium-III SPHINCS+

Figure 6.4: Execution time comparison between different public key algorithms during sig-
nature and message verification.
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Figure 6.5: Size of the public key and secret key on the left and signature on the right. The
measurements are expressed in Kbytes.

Analyzing the bar plot in Figure 6.4, we can claim that during the signature procedure, all
the different versions of Rainbow are faster than any of the other post-quantum approaches
presented, concretely by 0.062 ms in case of Ia_Classic and 0.049 ms and 0.051 ms in case
of Ia and Ic respectively, compared to the signing speed of Dilithium-III, which is the fastest
algorithm right after the Rainbow schemes.
The Ia_Classic Rainbow is still the fastest in verification speed, although in this case, Dilithium-
III overcomes by 0.015 ms the sets Ia and Ic. The lattice-based qTesla is quite fast during
verification speed unlike in the signature case. It is interesting also to compare the different
behaviour between Rainbow and the multivariate approach LUOV-II, which is a single layer
version of the former, that employs a different representation of its keys to drastically reduce
the amount of memory needed for their storage. This has a huge impact over the speed of
both the signature and verification cases.

Regarding the size of the keys and signatures generated by the cryptographic techniques
in Figure 6.5, we can affirm that Rainbow generates the smallest signatures, although the
size of its keys its about hundreds of kilobytes, which are very big compared to the ones
provided by the other algorithms. The SPHINCS+sha256-128f cryptosystem needs the
smallest amount of space to store the pair of public and private keys (96 Bytes). The biggest
signatures are generated by the the lattice-based Dilithium-III (2.7 KBytes) and the hash-
based SPHINCS+sha256-128f (16.9 KBytes).
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Based on the observations, we can conclude that there clearly exists a trade-off between the
execution time of the different procedures and the memory needed to store the key pair and
the signature. The bar plots show that there is not any approach from the ones analyzed,
that actually has a good balance between the aspects evaluated.
We can hold that the Rainbow cryptosystem offers the fastest signature and message verific-
ation among the approaches compared. It also has the shortest signatures even though the
size of its keys is very large in contrast to the other authentication cryptographic solutions.
This results are based on the fact that all cryptosystems share the same level of security.
It would be interesting to evaluate how the speed and the memory amount required vary
depending on the security level of the scheme as the choice of the parameters is not done
equal in all the algorithms but according to its own structure.

There are still a few other signature schemes submitted to the NIST competition that have
not been included in this comparison: Falcon [PFH+19], GeMSS [CFMR+19], MQDSS
[SCH+19] and Picnic [ZCD+19]. The reason why we dismissed this approaches is because
they are unable to fit in the memory of our target device, due to the large keys generated
and the extensive use of the stack that they perform.
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7 Conclusions

In this thesis, we evaluated the efficiency of the Rainbow multivariate scheme in an ARM
Cortex-M4 microprocessor, in order to study the feasibility of its implementation on a con-
strained device.
It has been shown that the level of security that Rainbow can provide is notably constrained
due to the memory limitations of our platform, even though the parameter sets according
to the two first security categories proposed by NIST, are still suitable options. Rainbow
has been proven to be the fastest in both signature generation and verification, compared
to a group of several state-of-the-art post-quantum digital signature techniques, sharing the
same security level (category 1). We also manifested the limitation that implies the size of
the keys generated by this MQ-based algorithm, which is the main obstacle faced during
the implementation in limited-resource platforms.
We proposed an optimized version of the Rainbow reference constructions that were able to
fit in our MCU, by implementing a look-up table-based approach, exploiting the characteristic
architecture of our platform and the construction principles of the scheme. The modifications
resulted in the reduction of the signing and verifying times by a factor of 17.5 and 19 respect-
ively, in two out of three cases. In consequence of the optimization approach followed, we
implemented a more efficient Rainbow instance, providing category 2 security, with a faster
signature generation than all the different post-quantum cryptographic solutions analyzed.

7.1 Further Improvements

Rainbow provides notably short signatures due to its construction principle, even though
the public and private keys are too big to fit all the possible parameter sets available in a
constrained device. Once known that this approach provides short signatures which are
generated at a relatively high speed compared to other post-quantum families, the next step
would consist in reducing the amount memory required to store the keys. Below are some
options that have already been proposed for this purpose.

• Private Key : The affine transformations and the central map from the secret key are
composed by random values from the same finite field generated by a PRNG. Instead
of storing all the bytes corresponding to the coefficients of the polynomials, we can
simply store a n-bit seed, which is enough to always generate the same random num-
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bers. The drawback of this technique is the efficiency reduction during the signature
generation, as all the elements that constitute the private key have to be generated
every time that the key has to be employed.

• Public Key : The size of the Rainbow construction is tightly related to the parameter
set that is chosen to build the scheme. Exhaustive research has been made on the
optimized selection of parameters, in order to find combinations between them that
are able to reduce the size of the keys without downgrading the level of security.
Another option to efficiently store the key is based on Macauley matrices. The tech-
nique consists in inserting a structured submatrix into the public map coefficient Ma-
cauley matrix. This construction provides the possibility to the user to fix most part
of the public key so the central map of the scheme is computed out of it. Partially
circulant matrices or linear recurring sequences are two alternatives for choosing the
composition of the structured matrix. Furthermore, depending on the submatrix struc-
ture, the verification process of the scheme can be speed up.

As mentioned several times along the thesis and further proven in Section 6.4, there exists
trade-off that has to be respected between the memory needed for storing the keys and
the speed at which the key generation, message signature and verification are executed.
Employing the techniques proposed in different research papers for reducing the memory
footprint, it is shown that the execution time elapsed for signing and verifying messages gets
always longer.
Given the advantage that has Rainbow in terms of speed, in front of other post-quantum
approaches, this algorithm has still margin to improve the memory efficiency while still being
one of the fastest cryptographic solutions among quantum secure digital signature propos-
als.
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