
C/R Support for Heterogeneous HPC Applications

Konstantinos Parasyris, Leonardo Bautista Gomez
Barcelona Supercomputing Center (BSC)

E-mail: {konstantinos.parasyris,leonardo.bautista }@bsc.es

Keywords—Fault Tolerance, High-performance computing, Re-
liability

I. EXTENDED ABSTRACT

As we approach the era of exa-scale computing, fault
tolerance is of growing importance. The increasing number
of cores as well as the increased complexity of modern
heterogenous systems result to substantial decrease of the ex-
pected mean time between failures. Among the different fault
tolerance techniques, checkpoint/restart it is vastly adopted in
supercomputing systems. Although, many supercomputers in
the TOP 500 list use GPUs, only a few checkpoint restart
mechanism support GPUs.

In this paper, we extend an application level checkpoint
library, called fault tolerance interface (FTI), to transparently
support multi-node/multi-GPU checkpoints. Upon a check-
point invocation the extended library tracks the actual location
of the data to be stored and handles the data accordingly. When
data are stored in the GPU side, to hide the extra latencies, we
overlap the copying of device memory to host memory with
the writing of the data to the checkpoint file.

II. IMPORTANCE OF FAULT TOLERANCE

The last decades the supercomputers have increased in size
and computing cababilities. Exascale computing is the next
objective, which will bring even more computing power to
scientific applications and to industries. However several chal-
lenges are raised with exascale computing, the most important
ones are the power consumption and the error resiliency. As
the number of components increase in large scale systems,
the systems become more error prone, and thus more prone
to failures. It is expected that the next generation of high
performance computing machines will experience failures up
to several times an hour, making the need for effective fault
resilience effective for building tomorrows HPC systems [1].

Another important consideration for the fault resiliency of
extreme-scale HPC systems is the increasingly heterogenity
of the components within the system. The future exascale
will consit of multiple nodes with each node consisting of
a high-performance system that combines a balance of high
throughput general-purpose (GPGPU) pipelines for extreme
high performance, coupled with high performance multicore
CPUs targeting single-thread performance. The GPUs provide
the high throughput required for exascale levels of compu-
tation, whereas the CPU cores handle hard-to-parallelize code
sections and provide support for legacy applications. However,
GPUs are more error prone than CPUs. In TSUBAME 40%
of the total number of failures are caused by GPU errors,
however the number of CPU related failures is below 5%

[2]. When injecting faults [3] to a applications executing
on CPUs, only 2.3% of the injected faults manifest as silent
data corruptions, in GPUs this percentage rises to 16-33%.
For all these reason the mean time between failures (MTBF)
is expected to decrease even more in future systems.

To overcome failures, supercomputers typically use check-
point restart techniques, by storing the state of the computation
in reliable storage. Upon a failure, the most recent state is used
to restart the computation. Unfortunately, the amount of data
to be checkpoint increase, since HPC applications nowadays
are able to process more information. On the one hand, the
decrease of the MTBF results to higher checkpoint frequency
to reduce the amount of re-computation. On the other hand,
the increase of the data to store, increase the overhead of the
checkpoint procedure. To make things even worse, typically, in
GP-GPU HPC applications portions of the application data are
stored in the CPU-memory, whereas other portions are stored
in the GPU main memory. This distribution of data increases
the overhead of the checkpoint procedure. For all these reasons,
checkpoints reduce heavily the system’s efficiency. To maintain
high productivity in supercomputers and large data centers, it
is important to: i) reduce the programmers effort to implement
checkpoints ii) reduce as much as possible the data to be stored
iii) reduce the total overhead of the checkpointing procedure.

We have extended a checkpoint library called Fault Tol-
erance Interface (FTI) [4] to support transparent checkpoint
of data stored in differen CUDA-enabled GPU devices. Our
method does not extend the library’s API, but automatically
tracks the physical memory location of user defined virtual
addresses. The functionality transparently handles CPU, GPU
as well as unified memory addresses. The methodology sup-
ports all the checkpointing techniques of the library, namely
incremental checkpointing, hash based differential checkpoint-
ing and normal checkpointing.

III. FTI GPU/CPU IMPLEMENTATION

FTI handles checkpoints in three different phases. The first,
called initialization-phase, corresponds to the initialization
of the library and the definition of the protected memory
regions. The second layer, (Checkpoint/Restore(C/R))-phase,
corresponds to the actual C/R procedure, hence it moves the
data from the device and host memory to the stable local
storage device (SSD, NVMe) and vice versa in the case of
the recovering. When the checkpoint-phase is terminated, the
application resumes the normal execution, and the async-
phase starts. In the async-phase the FTI managers start in the
background encoding and transferring the checkpoint files to
the respective checkpoint level.

To support Hybrid GPU/CPU support to FTI we extend

6th BSC Severo Ochoa Doctoral Symposium

95

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231704962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chunk1 Chunk2 Chunk3 Chunk4H2D engine

Chunk1 Chunk2 Chunk3 Chunk4CPU

Chunk1 Chunk2 Chunk3 Chunk4I/O engine

Overhead

Fig. 1. Checkpoint communication scheme to overlap data transfers.

the initialization-phase and the C/R-phase. In the initialization-
phase we identify the physical location of the address. The li-
brary through an FTI-call (FTI Protect) identifies the physical
location of the data. This is done through the CUDA driver
API support, namely the function cudaPointerGetAttributes(
&attributes, address ). The function raises an error when called
with a host address, whereas it returns normally with a device
or an UVA address. In the second case we further check the
values of attributes field which provides information whether
the address is UVA or not. In the end we tag each address as
CPU,GPU,MANAGED.

During C/R phase, depending on the tag of each address
we perform a different action. In the case of CPU or UVA
addresses, we invoke the normal FTI C/R procedure. In the
case of UVA addresses we use the CUDA driver to fetch
the data from the GPU and move them to the stable local
storage. Finally, in the case of GPU addresses, we overlap
the writing of the file with the data movement from the
GPU side to the CPU side. This is done through streams and
asynchronous memory copies of chunks from GPU memory to
host pinned memory. The procedure of transferring data from
the GPU memory to the CPU is depicted in detail in Figure 1.
Each protected memory region is divided into smaller blocks.
The size of the block, from now on called communication
block (cBlock), is controlled through a configuration option.
The CPU requests from the Host to Device (H2D) engine an
asynchronous transfer of the first cBlock, when the cBlock is
copied to the host memory, the CPU requests the next cBlock
and starts performing the necessary actions with the current
cBlock. The main actions are the following: i) Update the
checkpoint integrity checksum ii) Copy the cBlock to the I/O
layer through the respective I/O library call.

When the data are copied to the I/O layer the CPU starts
processing the next chunk, which ideally should already be
copied in the host memory. The application process does not
wait for the I/O operations to finalize, when all data are
moved to the I/O layer it informs the FTI-managers to start
the background actions and resumes the user code execution.
The described scheme is optimal only if the execution time
to compute the integrity checksum and copy the cBlock to the
I/O layer is equal to the execution time needed to copy the
data from the device to the host. In any other case, either the
H2D engine or the CPU is idle.

A. Evaluation

In this section we analyze the FTI GPU checkpoint scheme.
We use a micro-benchmark for profiling and analysis purposes.
The micro-benchmark checks the strong/weak scaling of our
approach using different mixtures of device/host memory allo-
cations. The micro-benchmark allocates two memory buffers,
the first buffer, called hBuff, is allocated on the host memory,
whereas the second one, called dBuff, is allocated on the device

10% Host 
90% Device

50% Host 
50% Device

90% Host 
10% Device

0

10

20

30

40

4 (48 Gb) 16 (48 Gb) 64 (768 Gb) 512 (758 Gb)

Host memory / (Device + Host)Memory

S
e

c
o

n
d

s
 (

s
)

Fig. 2. Execution time of the checkpoint procedure for the configurations

memory. The size of each memory buffer is user defined.
The application protects these two buffers and performs a
checkpoint every 5 minutes. To test both the weak and the
strong scaling of our approach we execute each benchmark on
4 different node/process mappings. Specifically, we executed
experiments using 1 and 16 nodes, with 4 and 32 processes
in each node. The checkpoint size of each node is 48 Gb
regardless the number of processes. On each of these mappings
we execute 3 different memory allocation schemes. In the first
scheme, for each process we allocate 10% memory on the host
and the remaining 90% to the device memory. The second
scheme allocates 50-50% on the respective memories and the
final scheme allocates 90-10%. In Figure 2 we depict the
results of the executed experiments the X-axis represents the
memory schemes, the Y-axis the amount of time spend by the
user process to perform a single checkpoint and the different
lines correspond to the different node/process mappings.

IV. CONCLUSIONS

Interestingly, regardless the actual memory location of
the checkpoint data the checkpoint overhead remains the
same. The implementation demonstrates nice weak and strong
scaling. We profiled the execution time of the checkpoint
procedure. The communication between the GPU and the CPU
is completely overlapped, therefore there is almost no-overhead
to move the data from the GPU to the CPU. Interestingly,
the execution time is mainly spend in computing the integrity
checksum of the checkpoint file. We plan to move the com-
putation of the checksum on the GPU and overlap it with the
actual writing of the C/R file. This will dramatically decrease
the execution time of the checkpoint procedure.

REFERENCES

[1] F. Cappello, “Fault tolerance in petascale/ exascale systems: Current
knowledge, challenges and research opportunities,” The International
Journal of High Performance Computing Applications, vol. 23, no. 3,
pp. 212–226, 2009.

[2] B. Pourghassemi and A. Chandramowlishwaran, “cudacr: An in-kernel
application-level checkpoint/restart scheme for cuda-enabled gpus,” in
2017 IEEE International Conference on Cluster Computing (CLUSTER),
Sep. 2017, pp. 725–732.

[3] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer, “Hauberk:
Lightweight silent data corruption error detector for gpgpu,” in 2011
IEEE International Parallel Distributed Processing Symposium, May
2011, pp. 287–300.

[4] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama,
and S. Matsuoka, “Fti: High performance fault tolerance interface for hy-
brid systems,” in SC ’11: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis,
Nov 2011, pp. 1–12.

6th BSC Severo Ochoa Doctoral Symposium

96



Konstantinos Parasyris is a Postdoctoral researcher
at the Barcelona Supercomputing Center where he
works on Resilience and Optimization. He received
the B.Sc., M.Sc., and Ph.D. at the electrical and
computer engineering at the university of Thessaly
(Greece). His research is focused on fault tolerance
and application level error resiliency. During his
PhD he developed GemFI a simulation based fault

injection tool as well as XM2 a hardware level fault
injection. He has been involved in FP7 ScoRPiO
and H2020 Uniserver European projects. In ScoRPiO

he actively participated in the development of a task-based approximate
programming model, whereas in Uniserver he participated on dynamically
identifying the voltage margins of modern processors for reliable operation.

6th BSC Severo Ochoa Doctoral Symposium

97




