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I. EXTENDED ABSTRACT

In the last few years, acoustic isotropic wave propagation
has been the preferred simulation engine for 3D full-wave
field modelling-based applications. The reason for its success
over better approximations is the lower computational cost it
entails. However, recent trends in seismic imaging rely on an
improved physical model that represents the Earth no more
as a rigid body but as an elastic and anisotropic one. Also,
moving the wave propagation simulation closer to the real
physics of the problem results in a significant increment of the
needed computational resources. New hardware alternatives
appear as a potential solution to satisfy the high demands
of the computing power of the elastic, anisotropic, wave
propagation engine. Also, the last decade has seen a trend
on building systems with dedicated devices and accelerators,
which produce a good FLOPs/Watt ratio. One of the most
promising HPC alternatives comes from Intel R⃝ Phi

TM
product

family.

This work shows several optimization strategies evaluated
and applied to an elastic wave propagation engine, based
on a Fully Staggered Grid, running on the latest Intel Xeon
Phi processors, the second generation of the product (code-
named Knights Landing). The developed propagator is able
to reproduce elastic wave propagation, even for an arbitrary
anisotropy.

A. Elastic FSG wave propagator algorithm

The Algorithm 1 describes our implementation of the
FSG wave propagator using finite differences. It has been
implemented from scratch inside YASK [1] framework using
its domain-specific language (DSL), and it is now available
as one of the example solutions included in the open-source
package.1

B. The Intel Xeon Phi processor

For this study we are using a system with a CPU from the
Intel Xeon Phi x200 processor family (code-named Knights

1https://github.com/intel/yask

Algorithm 1 FSG wave propagator using finite differences
1: function UPDATE VELOCITIES
2: for all cells do
3: 12 × density interpolations
4: 12 × derivative calcs. based on stresses
5: 12 × velocity updates
6: end for
7: end function
8: function UPDATE STRESSES
9: for all cells do

10: 84 × coefficient interpolation
11: 28 × derivative calcs. based on velocities
12: 24 × stress updates
13: end for
14: end function
15: for all timesteps do
16: update velocities ()
17: update stresses ()
18: end for

Landing). These processors have a multi-core architecture
with up to 36 tiles per package connected through a 2D
mesh between them and the memory controllers. Each tile is
composed of two cores that share a 512 MB L2 cache and an
agent that connects the tile to the mesh. Each core appears as
four logical CPUs through hyper-threading. All hyper-threads
on a core share a first-level (L1) cache. The cores are capable
of issuing two instructions per cycle out-of-order, including
vector and memory instructions. The Intel Xeon Phi architec-
ture implements the Intel R⃝ Advanced Vector Extensions 512
(Intel R⃝ AVX-512) instruction set. To be able to provide the
cores with enough data to feed the computing capabilities, the
Intel Xeon Phi processors may be configured with an integrated
on-package Multi-Channel DRAM (MCDRAM) memory of up
to 16 GiB, which can deliver up to 490 GB/s of bandwidth.
The main DDR4 memory on the same platform can deliver
about 90 GB/s.

C. Evaluation Methodology

The set of optimizations applied to the code com-
bine classic and widely used performance improvement ap-
proaches, such as: blocking, prefetching and scheduling, with
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Fig. 1. FSG wave propagator throughput on Intel Xeon Phi

architecture-dependent optimizations like approximate recip-
rocal, and mechanisms from the state-of-the-art like vector
folding. Additional details of the optimization methods are
described below.

Baseline. The reference performance baseline was ob-
tained by executing a fairly optimized version of FSG with
parallelization using hyper-threading and blocking. This ver-
sion uses the default compilation and run-time configuration
provided by YASK. MCDRAM memory. Bandwidth-bound
applications can easily benefit from the MCDRAM of the
Intel Xeon Phi processors, exhibiting better execution times
than with conventional DDR DRAM. Improved blocking. To
improve temporal data reuse and reduce the memory band-
width requirements per updated grid point, we implemented
a loop blocking strategy transforming the memory domain
of our problem into smaller chunks, rather than sequentially
traversing through the entire memory domain. Threads per
core. On Intel Xeon Phi processors is possible to place up to
4 threads per core. Reducing the numbers of threads per core
to just 1 gave us the best performance. Approximate recipro-
cal. We approximated divisions using the reciprocal intrinsic
instructions available in Intel AVX-512-ER which provide a
faster implementation restraining the error. Prefetching. While
the Intel Xeon Phi processor automatically prefetches data into
the L1 and L2 caches it is possible to improve the memory
behavior by using software prefetching. We have enabled
aggressive software prefetching for L1 data cache. Vector
folding. This method stores a small multi-dimensional block of
data in each vector size memory region compared to the single
dimension in the traditional approach. Therefore memory
accesses required are reduced by increasing overlap between
points for the stencil computation [1]. OpenMP scheduling.
In most implementations the default loop scheduling algorithm
in OpenMP is static, but it is not necessarily the best one. We
evaluated the three most relevant loop scheduling strategies:
static, dynamic and guided. The best performance in our case
resulted from using dynamic scheduling. Padding. Padding
improves performance by carefully aligning data in memory
at the expense of using extra memory.

D. Results

Optimizations were enabled incrementally in the given
order. Major changes, such as total number of threads used
per core, or a different, sometimes additional optimization are
clearly stated. To avoid potential outliers, all the experiments
were executed in an exclusive node and repeated several times.
The algorithm and the machine were found to be stable,
showing only negligible variations between experiments. The
throughput results of FSG are summarized in Fig. 1. It repre-
sents the maximum throughput obtained for each optimization
and for the baseline implementation using DDR memory. The
number of threads used in each case is shown after each
configuration (e.g., “4th” indicates four threads per core).
Baseline and MCDRAM ran with 4 threads per core; improved
blocking, hardware trascendentals and L2 prefetching used 2
threads per core; and the remaining experiments ran with 1
thread per core.

E. Conclusion

We have shown a set of optimizations, applied to a Finite
Difference Numerical method solving elastic wave propagation
equations on the second generation Intel Xeon Phi processor.
Moreover, the proposed scheme for solving the elastic equation
supports arbitrary anisotropy at a higher computational cost
when compared to more traditional approaches to address
this problem. The evaluated set of optimizations ranges from
memory to compute optimizations. Our findings indicated that,
compared to a conventionally-optimized version, we were able
to achieve 7× more FLOPS and 8× more bandwidth with
all implemented optimizations. In consequence, we reached
75% of the maximum attainable FP performance at our current
operational intensity.
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