
Orchestration of Software Packages in Data Science
Workflows

Cristian Ramon-Cortes∗, Jorge Ejarque∗, Rosa M. Badia∗
∗Barcelona Supercomputing Center (BSC)

E-mail: {cristian.ramoncortes, jorge.ejarque, rosa.m.badia}@bsc.es

Keywords—Distributed Computing, Workflow Managers, Pro-
gramming Models, Data Science pipelines, Dust Forecast

I. EXTENDED ABSTRACT

Nowadays, Data Science applications are complex work-
flows composed of binary executions, MPI simulations, multi-
threaded applications, and user-defined analysis (possibly writ-
ten in Java, Python, C/C++, or R). Our proposal integrates
this heterogeneity into a single task-based programming model
capable of orchestrating the execution of the different frame-
works in a transparent way and without modifying nor its
behaviour, nor its syntax. Thus, our prototype is designed for
non-expert users that want to build complex workflows where
some steps require a highly optimised state of the art software
packages.

A. Integration with Software Packages

To integrate the execution of other frameworks transpar-
ently into a single programming model, our prototype extends
the COMPSs framework [1], [2] to act as an orchestrator
rather than a regular application executor. Next, we detail
the modifications of the programming model annotations,
although the Runtime master, and worker executors have also
been modified to schedule multi-node tasks and executing the
different software packages.

The COMPSs Programming Model [3], [4] defines anno-
tations that must be added to the sequential code in order
to run the applications in parallel. These annotations can be
split into Method Annotations and Parameter Annotations. Our
prototype extends the programming model by providing a
new set of Method Annotations and Parameter annotations to
support the execution of binaries, multi-threaded applications
(OmpSs [5]), MPI simulations, nested COMPSs applications,
and multi-node tasks inside a workflow. From now on, tasks
that must execute software packages are called Non-Native
Tasks.

On the one hand, a new Method Annotation is defined
for each supported non-native task. Notice that the Method
Annotation must contain framework related parameters and,
thus, its content varies depending on the target framework.
Next, we list the currently supported frameworks and their
specific parameters.

• Binaries: Execution of regular binaries (e.g., BASH,
SH, C, C++, FORTRAN)
◦ Binary: Binary name or path to an executable

◦ Working Directory: Working directory for the
final binary execution

• OmpSs: Execution of OmpSs binaries
◦ Binary: Path to the execution binary
◦ Working Directory: Working directory for the

final binary execution

• MPI: Execution of MPI binaries
◦ Binary: Path to the execution binary
◦ MPI Runner: Path to the MPI command to run
◦ Computing Nodes: Number of required com-

puting nodes
◦ Working Directory: Working directory for the

final binary execution

• COMPSs: Execution of nested COMPSs workflows
◦ Application Name
◦ Runcompss: Path to the runcompss command
◦ Flags: Extra flags for the nested runcompss

command
◦ Computing Nodes: Number of required com-

puting nodes
◦ Working Directory: Working directory for the

nested COMPSs application

• Multi-node: Execution of native Java/Python tasks
that require more than one node
◦ Computing Nodes: Number of required com-

puting nodes

On the other hand, in order to input and output data from
the execution of non-native tasks, the Parameter Annotation
also needs to be enhanced. When using multi-node tasks the
parameters and the return value of the task are the same than
when using a regular method task. However, when execut-
ing standalone binaries, OmpSs processes, MPI processes, or
COMPSs applications the exit value of the processes is used as
the return value. Thus, we have decided that the COMPSs non-
native tasks must use the exit value of their internal binary as
the return value of the task. In this sense, our prototype allows
the users to capture this value by defining the return type of
the non-native task as an int (for implicit synchronisation),
as an Integer (for post-access synchronisation) or to forget it
(declaring the function as void).

However, the users do not only need the process exit
value to work with this kind of applications but need to set
the Standard Input (stdIn) and capture the Standard Output
(stdOut) and Error (stdErr). For this purpose, our prototype
includes a new Parameter Annotation, stream, that allows the
users to set some parameters as I/O streams for the non-native

6th BSC Severo Ochoa Doctoral Symposium

64

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231704947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tasks. Stream parameters are not passed directly to the binary
command but rather they are set as stdIn, stdOut or stdErr of
the binary process. Since this kind of redirection is restricted to
files in LINUX Operating Systems, we have decided to keep the
same restrictions to the annotation. Consequently, all stream
parameters must be files.

B. Evaluation

1) NMMB-MONARCH: The NMMB-MONARCH is a
fully online multiscale chemical weather prediction system for
regional and global-scale applications. The system is based on
the meteorological Nonhydrostatic Multiscale Model on the B-
grid [6], developed and widely verified at the National Centers
for Environmental Prediction (NCEP). The model couples
online the NMMB with the gas-phase and aerosol continuity
equations to solve the atmospheric chemistry processes in
detail. It is also designed to account for the feedbacks among
gases, aerosol particles, and meteorology.

The NMMB-MONARCH workflow is composed by five
main steps, namely Initialization, Fixed, Variable, UMO
Model, and Postprocess. Although all the phases spawn several
binaries, the NEMS binary soars above the rest. It is called
during UMO Model step and its a Fortran 90 application
parallelised with MPI. Therefore, NEMS can be executed
in multiple cores and multiple nodes, relying on the MPI
paradigm. The model uses the Earth System Modelling Frame-
work library as the main framework [7].

2) Parallelisation design: The original NMMB-
MONARCH application consists in a BASH script defining
the main workflow and a set of Fortran binaries. Since our
prototype supports Java and Python workflows, we have
ported two different versions of the NMMB-MONARCH.
Both of them parallelise the main workflow while keeping
the Fortran binaries.

Regarding the parallelisation, all the binaries have been
considered as tasks. For instance, Figure 1 shows the annota-
tion of the deeptemperature binary in Python. We do not
show the equivalent Java version due to space constraints.

@binary(binary='/path/to/deeptemperature.x')
@task(returns=int,

seamask=FILE_IN,
deep_temperature=FILE_OUT)

def deeptemperature():
pass

Fig. 1. Annotation of the deeptemperature binary in Python

As previously explained, the NEMS simulator invoked
within the UMO Model step is implemented using MPI. Thus,
in contrast to the rest of binaries, we have annotated it as
an MPI task. Figure 2 shows the annotation of the NEMS
binary in Python. Notice that, considering that the NEMS
execution can be performed with a different number of nodes,
the constraint decorator attached to the MPI task may vary
between executions. Hence, to ease this management to users,
the constraint has been defined using an environment variable.

To conclude, the final workflow structure for both the Java
and the Python versions is depicted in Figure 3. Readers can
identify the Fixed, Variable, UMO Model, Postprocess and
Figures and animations creation steps, where the Variable,
UMO Model and Postprocess are executed thrice.

@constraint(computingUnits='$NEMS_CUS_PER_NODE')
@mpi(runner='mpirun',

binary='/path/to/NEMS.x',
workingDir='/path/to/nems/out',
computingNodes='$NEMS_NODES')

@task(returns=int,
stdOutFile=FILE_OUT_STDOUT,
stdErrFile=FILE_OUT_STDERR)

def nems():
pass

Fig. 2. Annotation of the nems MPI binary in Python

Fig. 3. Dependency graph of three days simulation

3) Computing infrastructure: The infrastructure used in
this comparison is the Nord 3 cluster (a subset of the MareNos-
trum III Supercomputer [8]), located at the Barcelona Super-
computing Center (BSC). This supercomputer is composed of
84 nodes, each with two Intel SandyBridge-EP E5-2670 (8
cores at 2.6 GHz with 20 MB cache each), a main memory
of 128 GB, FDR-10 Infiniband and Gigabit Ethernet network
interconnections, and 1.9 PB of disk storage.

The Java version used is 1.8.0 u112 64 bits, the Python
version used is 2.7.13, and the MPI used is OpenMPI 1.8.1.

4) Performance: Table I compares each step of the previous
version (BASH) against the Java and Python ones using 4
worker processes (64 cores).

Step Execution Time (s) Speed-up (u)
BASH Java Python Java Python

Fixed 290 117 119 2.48 2.43
Variable 26 19 22 1.37 1.18

Model Simulation 244 242 233 1.01 1.04
Post process 38 34 33 1.12 1.15

Total 601 413 415 1.45 1.45

TABLE I. PERFORMANCE PER STEP WITH 4 WORKERS (64 CORES)

Notice that both Java and Python versions improve the per-
formance in the Fixed and Variable steps due to the possibility
of performing multiple tasks at the same time during these
steps. In opposition, the Model Simulation and Post Process
do not improve because they are composed, respectively, by
a single task, and two tasks with a sequential dependency.
However, the performance of these steps does not degrade
either.

6th BSC Severo Ochoa Doctoral Symposium

65

Fig. 4. Paraver trace of the Python version using 4 workers (64 cores)

Figure 4 shows Paraver [9] traces of a three-day simulation
with 4 workers (64 cores) of the Python workflow. There are
three timelines where each row corresponds to a thread in
the worker. The top view shows a task view, where different
coloured segments represent tasks, and each colour identifies
a different task type. The middle and bottom views are the
internals of the MPI NEMS task, where the yellow lines
represent communications between MPI ranks.

The trace detail in the middle and bottom views show,
respectively, the MPI events and the MPI communications
of the Model simulation task. Notice that, during this phase,
both frameworks, COMPSs and MPI, are working together
and sharing the computing nodes. Although in this case MPI
is using the four nodes, other applications may reserve some
nodes for MPI and use the others to compute remaining
sequential PyCOMPSs tasks.

C. Conclusions and Future Work

Our prototype enables non-expert users to develop complex
Data Science workflows where some steps require a highly
optimised state of the art software package. It provides a sin-
gle task-based framework with a homogeneous annotation to
orchestrate the execution of native Java and Python tasks along
with binaries, MPI simulations, multi-threaded applications,
and nested applications. From the users’ point of view, the
annotation is transparent and does not require to modify nor the
behaviour, nor the syntax of the underlying software packages.

Moreover, the evaluation demonstrates that our prototype
eases the development of complex workflows such as NMMB-
MONARCH. We have developed two new implementations
in Java and Python that provide better configuration manage-
ment and object-oriented structure and improve the debugging,
maintenance, and extension of the code. Also, the performance
analysis demonstrates that our prototype is capable of extract-
ing the parallelism of the NMMB-MONARCH application
achieving 1.45 overall speed-up and sharing resources with
multi-node frameworks such as MPI.

II. ACKNOWLEDGMENT

This work has been published in proceedings of the
2018 IEEE 14th International Conference on e-Science (e-
Science) [10]. Cristian Ramon-Cortes predoctoral contract is
financed by the Ministry of Economy and Competitiveness
under the contract BES-2016-076791.

REFERENCES

[1] R. M. Badia and et al., “COMP superscalar, an interoperable
programming framework,” SoftwareX, vol. 3, pp. 32–36, 12 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.softx.2015.10.004

[2] Workflows and Distributed Computing - Barcelona Supercomputing
Center (BSC). (2018) COMP Superscalar. [Online]. Available:
http://compss.bsc.es

[3] F. Lordan et al., “ServiceSs: an interoperable programming framework
for the Cloud,” Journal of Grid Computing, vol. 12, no. 1, pp. 67–91,
3 2014. [Online]. Available: https://digital.csic.es/handle/10261/132141

[4] E. Tejedor et al., “PyCOMPSs: Parallel computational workflows in
Python,” The International Journal of High Performance Computing
Applications (IJHPCA), vol. 31, pp. 66–82, 2017. [Online]. Available:
http://dx.doi.org/10.1177/1094342015594678

[5] A. Duran et al., “Ompss: a proposal for programming heterogeneous
multi-core architectures,” Parallel Processing Letters, vol. 21, no. 02,
pp. 173–193, 2011.

[6] Z. Janjic and R. Gall, “Scientific Documentation of the NCEP Non-
hydrostatic Multiscale Model on the B Grid (NMMB). Part 1 Dynam-
ics, Technical Report,” NCEP, BOULDER, COLORADO, Tech. Rep.
80307-3000, 4 2012.

[7] C. Hill et al., “The architecture of the Earth System Modeling Frame-
work,” Computing in Science Engineering, vol. 6, no. 1, pp. 18–28, 1
2004.

[8] Barcelona Supercomputing Center (BSC). (2017) MareNostrum 3.
[Online]. Available: https://www.bsc.es/marenostrum/marenostrum/mn3

[9] ——. (2017) Paraver Tool. [Online]. Available:
https://tools.bsc.es/paraver

[10] J. Conejero et al., “Boosting Atmospheric Dust Forecast with Py-
COMPSs,” in 2018 IEEE 14th International Conference on e-Science
(e-Science), Oct 2018, pp. 464–474.

Cristian Ramon-Cortes is a PhD Student for
the Computer Architecture Department (DAC -
UPC) working in collaboration with the Workflows
and Distributed Computing group (WDC) at the
Barcelona Supercomputing Center (BSC). He holds
a MSc. on Research and Innovation in Informatics -
High Performance Computing (MIRI - HPC, 2017),
an Engineering Degree on Computer Science (FIB,
2014), an Engineering Degree on Industrial Engi-
neering (ETSEIB, 2014), and a Dual BSc. Diploma
(CFIS, 2014); all of them from the Technical Uni-

versity of Catalonia (UPC). During his career at the BSC he has contributed in
the design and development of COMPSs, PyCOMPSs, and PMES. His areas
of interest include Programming Models for Distributed Platform, Workflow
Managers, Task Flows, Data Flows, and Streaming Technologies.

6th BSC Severo Ochoa Doctoral Symposium

66

