6th BSC Severo Ochoa Doctoral Symposium

Enhancing Scheduling through Monitoring and
Prediction Techniques

Antoni Navarro Muiioz*T, Vicen¢ Beltran Querol*, Eduard Ayguadé Parra*
*Barcelona Supercomputing Center, Barcelona, Spain
TUniversitat Politécnica de Catalunya, Barcelona, Spain
E-mail: {antoni.navarro, vbeltran, eduard.ayguade} @bsc.es

Keywords—High-Performance Computing, OmpSs-2, Schedul-
ing, Monitoring, Predictions, Cost

I. EXTENDED ABSTRACT

Modern applications become larger and more complex with
each passing day. To name a few, weather forecasting or par-
ticle simulations are examples of how applications may have
significant differences in features, constraints, and limitations.

Most runtimes supply users with functionalities to tune
their executions. However, many aspects have to be taken
into consideration when optimizing applications. Input sizes,
recursive depths, system workloads, or the underlying archi-
tecture onto which apps are running, are just a few. Users
often try different configurations until they stumble upon one
which seems to yield the most performance. This proves to be
nonportable, as a slight change in any of the aspects mentioned
before might yield undesirable negative effects in performance.

In this work, our primary goal is to add several monitoring
modules to runtimes. These modules introduce precise infor-
mation about the units of work these libraries must schedule.
The extension of these libraries allows for accurate real-time
predictions for present and future executions. Such predictions
can be used to obtain better scheduling of future units of work
automatically and, therefore, improve the overall performance
of executions or the utilization of resources. All this, while
being unnoticed by users, thus giving more power to the
runtimes.

Through the evaluation provided, we demonstrate the
precision of our predictions and how they can be used to
optimize resource utilization among others. We integrate all
the extensions mentioned above on an already existing runtime
maintaining the vision of the integration being capable of any
similar runtime or library.

A. Monitoring Techniques

For the purpose of improving scheduling techniques adap-
tively and automatically, we propose a monitoring infrastruc-
ture. The primary objective of the infrastructure is to gather
metrics and use them in real time. Our approach consists of
an API that couples with an existent runtime. To exemplify
this, we use OmpSs-2, the second generation of OmpSs [1], a
task-based programming model. More specifically we integrate
this infrastructure mentioned above in Nanos6 [2], a runtime
library that implements OmpSs-2.

57

/ Multiprocessor System \
Core 0 Core 1
App App

/ Multiprocessor System \
Core 0 Core 1 Core 0 Core 1

Last Level Cache

Core 0 Core 1
=3

Last Level Cache

Last Level Cache

Last Level Cache

N LN
| | N § Underutilized "
| | B | Cache Space y—1
| ’
L J\ J
Y Y
Cach it Compute-Int Intertwined Executions to Improve Cache
Application: Applications Utilization
warge Working Set) (Small Working Seu K /
Fig. 1. Rebalancing applications across processors for optimal resource

utilization

With this infrastructure, scenarios that are optimizable
come to surface. One of these is to detect when resources
can be exploited more efficiently. To serve as an example, de-
pending on the internal static scheduling policies of a runtime,
resources such as CPUs can be underutilized. Another scenario
includes detecting when units of work can be scheduled more
efficiently to improve execution time and overall performance.

Our primary goal is to detect these scenarios. Figure 1
exemplifies this. In this figure, we can see two multiprocessor
systems, each with a last level cache and two cores. In each
of these cores is running an application. On the first pair of
cores we observe cache-intensive applications. On the second
pair, compute-intensive ones. As shown, the applications on
the left utilize the whole last level cache. This can lead to
inefficient usage of the last level cache, as both applications
will fight over the resources. On the other hand, the ones on
the right underutilize the last level cache. This scenario can
be optimized by rebalancing the workloads. Compute-intensive
applications can be interleaved with cache-intensive ones. This
is shown in the right part of the figure, where applications are
mixed up. Rebalancing in these scenarios is bound to improve
cache utilization.

Two APIs form our monitoring infrastructure. The first
monitors timing metrics for elements such as tasks (units of
work), threads, and CPUs. The latter monitors hardware events
for the same parts. Both are generic APIs, and independent
from each other. Next we show how researchers may benefit
from using our infrastructure by creating smarter scheduling
policies or mechanisms that take advantage of the collected
metrics and predictions.

6th BSC Severo Ochoa Doctoral Symposium

CTE-Power9 s CTE-KNL

Predicted Usage

SSF s Marenostrumy s

Real Usage

100

Accuracy (%)
CPU Utilization (# of CPUs)

55

40

100 200 300 500

Accuracy (%)

CPU Utilization (# of CPUs)

18 1s

L L L L A 0
100 105 110 115 120 125 130
Time (s)

58 60 95
Time (s)

54 56 66

Fig. 2. Accuracy of the CPU predictor across different architectures

B. Current Contributions

So far, our contributions have targeted both of the pre-
viously mentioned scenarios. In our first contribution [3]
we created a mechanism that automatically detects when an
excessive amount of parallelism is being generated in recursive
applications. Upon detecting such an event, the mechanism
adapts the execution through the use of timing metrics and
predictions. Through these predictions, it is capable of auto-
matically ceasing the generation of recursive tasks. Instead,
these are inlined in parent tasks.

In other recent contributions, we created a predictor that
uses real-time data from the same monitoring infrastructure.
This predictor is able to infer the amount of CPU needed to
execute the current workload of the system. Next, we present
the evaluation of the predictor.

C. Evaluation & Results

Our predictor was evaluated using a set of six benchmarks
with varying features and granularities. Moreover, it was tested
in different architectures, as our approaches are application
and architecture independent. Some of the architectures tested
are IBM’s Power9 8335-GTG processors, Intel’s Xeon Phi
Knights Landing processors and Intel’s Xeon Phi E5-2690v4
processors.

In figure 2 we demonstrate the effectiveness of our pre-
dictor in the Cholesky factorization application. We showcase
four figures, each with the real CPU usage, the predicted
CPU Usage and the overall accuracy of the prediction at
each timestep. The four figures represent the accuracy of the
predictor in the four architectures we tested.

Our results show that in all the architectures that were
tested, and for any application or parameter, our predictor was
able to precisely predict the CPU usage for the most part of all
executions. This, as shown in that same figure, is not limited to
sudden drops or peaks of workload. These last scenarios are
tackled by using timing predictions and the size of internal
queues.

D. Future Work

After demonstrating the accuracy of our timing predictions
in previous works, we aim to assess the accuracy of our
hardware-event based predictions.

58

Ensuring a consistent and precise infrastructure for metrics
will lead to creating other mechanisms to ensure efficient
executions — this, taking into account both resource usage and
application performance. Thus, our roadmap includes detect-
ing scenarios like those shown in figure 1 and introducing
countermeasures to tackle them.

E. Conclusion

In our research, we have surfaced the need for adaptive
scheduling policies that are independent of application and
architecture features. We have also proven our predictions to be
both accurate and useful for task-based programming models.
In this study, we have focused on two of our previous works.
The first targets application performance. The second resource
efficiency optimization.

By having established a consistent ground for our research
with a monitoring infrastructure, we are confident that our next
contributions will enable researchers to realize the potential
of adaptive techniques in their programming models and
runtimes.

II. ACKNOWLEDGMENTS

Part of this work has been published in [3]. Other parts
have been introduced in [4], and are expected to be extended
and published in the future.

REFERENCES

[1] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesus
Labarta, Luis Martinell, Xavier Martorell, and Judit
Planas. Ompss: a proposal for programming heterogeneous
multi-core architectures. Parallel processing letters, 21
(02):173-193, 2011.

Barcelona Supercomputing Center Programming Mod-
els Group. The nanos6 runtime repository, 2018.
URL https://github.com/bsc—pm/nanos6. Ac-
cessed: 29-12-2018.

Antoni Navarro, Sergi Mateo, Josep Maria Perez, Viceng
Beltran, and Eduard Ayguadé. Adaptive and architecture-
independent task granularity for recursive applications.
In Bronis R. de Supinski, Stephen L. Olivier, Christian
Terboven, Barbara M. Chapman, and Matthias S. Miiller,
editors, Scaling OpenMP for Exascale Performance and
Portability, pages 169-182, Cham, 2017. Springer Inter-
national Publishing. ISBN 978-3-319-65578-9.

Antoni Navarro, Vicen¢ Beltran, and Eduard Ayguadé.
Enhanced scheduling techniques through lightweight mon-
itoring for OmpSs-2. Master’s thesis, Universitat
Politecnica de Catalunya (UPC), 2019.

(3]

[4]

Antoni Navarro received his BSc degree in Com-
puter Engineering and his MSc degree in the Master
in Innovation and Research in Informatics with High-
Performance Computing specialization from Univer-
sitat Politecnica de Catalunya (UPC), Barcelona, in
2016 and 2018 respectively. Since 2016 he has been
in the Programming Models group of the Computer
Science Department of Barcelona Supercomputing
Center (BSC-CNS). In 2018, he started as a Ph.D.
student at the department of Computer Architec-
ture of Universitat Politecnica de Catalunya (UPC),

Spain.

