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Abstract: The Multifractal Detrended Fluctuation (MF-DF)      
algorithm is applied to measure the complexity of two time series,           
the inter-event hypocentral distance Δδ(t), and the inter-event time         
series Δτ(t) In particular, we apply this methodology to the seismic           
sequences produced in the Carterbury region during 18 years         
(2000-2018). Results indicate a clear multifractal behavior of        
Δδ(t) and Δτ(t). Moreover, an increses in the complexity is          
observed when a large event occurs . These results suggest that the            
MF-DF algorithm could be useful as a seismic precursor index. 

I. I​NTRODUCTION 

The concept of multifractal modeling has been used        

intensively in various fields of science for       

characterizing measures with self- similarity. Since [1],       

numerous studies have characterized the self-similar      

(or scale-invariant) properties of a wide variety of        

natural phenomena by using the concepts of fractal        

geometry and fractal dimension [2].In the case of        

earthquake phenomena, several studies found that the       

temporal, epicentral and hypocentral, and also the       

energy distribution of earthquakes, have multifractal      

characteristics [3-6]. 

In this work the Multifractal Detrended Fluctuation       

(MF-DF) algorithm is applied to characterize      

multifractal scaling properties of two time series, the        

inter-event hypocentral distance Δδ(t), and the      

inter-event time series Δτ(t) from a particular seismic        

catalogue. These series give information of the seismic        

distribution in space and time. 

 

II. S​EISMIC CATALOGUE  

 

New Zealand is located at the border of two major          

tectonic plates, the Australian and Pacific plates. ​The        
slowly driving movement of these plates breaks the Earth’s         
crust into separated blocks producing fractures, also known        
as faults. One example is the Alpine Fault, which it is over            
600 km long and is responsible for some of the largest           
earthquakes in New Zealand’s history. 
We analize in the Carterbury region, located in the South          
Island, close to Christchurch city. From 2000 to 2018 the          

seismic network registered 15889 events with magnitude       
larger than 1. However, we only consider the events with          
magnitudes larger than 2.5, because from this value a         
completeness in the seismic catalogue is assured to follow         
the Gutenberg-Richter relation [7]. 

   

Fig. 1. Frequency-Magnitude distribution of 15889 events registered in          
Carterbury (New Zealand) region from 2010 to 2018. Red line indicates the            
magnitude of completeness 2.5 

 

III​.    ​M​ETHODOLOGY 

A. Multifractal Detrended Fluctuation algorithm  

The multifractal properties of nonstationary series is       
analysed by means of the multifractal detrended fluctuation        
MF-DF, analysis [8-11]. After appling the MF-DF       
algorithm, one can compute the singularity spectrum f(⍺) as: 

f(⍺) = ​q​⍺ - τ(​q​) (1) 

where ​q is the q ​-th order fluctuation moment computed from          
the MF-DF algorithm, ⍺ is the singularity strength or Hölder          
exponent, and τ(​q​) is the global scaling exponent.  

Fig. 2 shows an example of the singularity spectrum for an           
empirical time series. Eq. (1) can be well fitted by a           
polynomial of second order around the position ⍺​0 which is          
Hölder exponent with maximum singularity spectrum, being  

 f(⍺) = A(⍺- ⍺​0​)² + B(⍺- ⍺​0​) + C                  (2)  
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Fig. 2 Example of the singularity spectrum f(⍺) for an empirical time series             
(dotted line). Blue line is the fitting of a polynomial of second order.  

 

We use the complexity index, CI, proposed in [12] to          
quantify the degree of complexity in a time series. This          
value is defined as,  

CI(Z) = {Z - <Z>} / σ(Z) (3) 

where Z = z(⍺​0​) + z(B’) + z(W), W is the spectral amplitude,             
B’= -B/2A is the asymmetry, and <Z> and σ(Z) are the           
mean and the standard deviation of the standardized Z         
respectively 

B.  Seismic data 

We divided the total series using a moving window, in a           
sub-series of 1000 events length and shifted by 25 events          
each one. In total we consider 355 windows (or sub-series),          
and for each we compute their singularity spectrum and         
measure its multifractal behavior. Fig. 3 shows the length in          
time of each sub-series. The larger events are marked by          
dotted lines 

III. R​ESULTS AND CONCLUSIONS 

To summarize the results Fig. 4 shows the CI parameter          
because it is a combination of the other parameters (Eq. 3)           
and gives a measure of the multifractal behavior of ​Δδ(t)          

and Δτ(t) ​series. The results indicate evident multifractal        
behavior for the analyzed series Δδ(t) and Δτ(t). Moreover         
the maximum of the parameters captures a large event in the           
analyzed window. We interpreted that not only a large event          
produces a complexity increase in the seismicity but this         
could also be generated by seismic swarm. We explore the          
MF-DFA as a possible precursor index measure. However it         
is not obvious to define a precursor threshold value. To          
confirm this hypothesis would require to repeat this        
procedure in other series to obtain a wide perspective about          
the MF-DFA as a precursor tool.  

Fig. 3 Evolution of each window length considering the same number of            
events per each one. 

  

Fig. 4 Complexity Index as function of each window number. In dotted 
color lines the largest events are indicated.
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