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I. EXTENDED ABSTRACT

Cyberinfrastructures are compositions of computing sys-
tems, data repositories and storage systems, data collection
instruments and visualization environments all linked together
to improve research productivity and enable breakthroughs not
otherwise possible.

As for previous computing infrastructure transformations,
developers had to adopt new execution paradigms to exploit
them. Distributed systems deprecated the traditional monolithic
model in favor of service-oriented applications. To exploit the
Cloud and offer SaaS, developers embraced the microservices
model so that services could adjust the number of instances
of each microservice to the current workload. Bringing down
the computation from the Cloud to the Edge mitigates the
network issues - latency and bandwidth - and enables new
opportunities. On Fog infrastructures, computing devices can
join in or leave at their own will. For dealing with such
dynamicity, microservices became serverless and stateless.

IoT devices have sensors that permanently produce data.
These devices can monitor this data themselves and, when a
certain condition is met, trigger a response that may require
heavy computation capabilities, or they can provide other
devices with this information so they process it on a real-time
basis. To support the former scenario, developers can turn to
Function as a Service (FaaS): functions executed on the under-
lying platform in a serverless, stateless approach. To support
the latter, developers need to code using stream processing
frameworks such as Kafka streams or Spark Streams.

A. The COMPSs Programming Model

COMPSs [1], [2] is a framework that aims to ease the
development of distributed applications. Its core it is a task-
based programming model [3], [4] and a runtime toolkit
executed along with the application which automatically de-
tects its parallelism and orchestrates the execution of its tasks
on the available computing nodes. Thus, it is able to exploit
distributed, heterogeneous and highly-dynamic infrastructures
while keeping the code totally unaware of the infrastructure
and parallelism details.

To develop a distributed application with COMPSs, pro-
grammers code the logic of the application in a sequential,
infrastructure-unaware fashion with no API invocations as if
the code was to be run on a single-core computer. For the
runtime system to detect the tasks composing the application,
developers select a set of methods whose invocations create

new asynchronous tasks by annotating them with the @task
tag. In order to guarantee the sequential consistency of the
code, the runtime system monitors the data values accessed by
each tasks to find dependencies among them. So the runtime
can better exploit the application parallelism, developers need
to describe how the method operates (reads, generates or
updates) on each data value by indicating its directionality (IN,
OUT, INOUT, respectively).

The code snippet in Figure 1 shows a sample application
with three tasks: two of them (generateReport) process their
respective input files generating two Report objects that are
merged in a third task – merge report.

@task(file=FILE IN, returns=Report)
def generate report(file):

...
return report;

@task(r1=INOUT, r2=IN)
def merge report(r1, r2):

...

def main(files):
final report = None
for file in files:

partial report = generateReport(file)
if final report:

merge report(final report, partial report)
else:

final report = partial report

Fig. 1. Sample COMPSs application using Python

B. Envisaged Computing Patterns

In cyberinfrastructure environments, authors envisage three
possibilities that require computation. On the first one, known
as sense-process-actuate, the infrastructure is supposed to give
a proper response to an event detected on one of its sensors;
for instance, turning on the AC system when temperature in a
room reaches more than 27 degrees. A second approach that
might require computation is stream processing. Sensors may
continuosly produce data that need to be processed in real-
time to produce a response or update the data visualization
components. For instance, a camera could video-stream the
inside of the room, and the AC system could be turned when
the processing of such stream identifies typical reactions to
heat. Finally, the third scenario that might require computation
is batch processing. Cyberinfrastructures collect, generate and
store big amounts of data. All this information can be analyzed
to produce new knowledge; for instance, machine learning
techniques could be applied to improve the models detecting
people reactions and change the behavior of the infrastructure.

C. Runtime System Infrastructure

Unlike previous environments with a single entry point to
start an application, on cyberinfrastructures any device can
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detect an event and trigger a computation. Thus, the each
device must be able to work in a standalone manner and run
the computation in an efficient way: detecting the parallelism
inherent in the computation and run the detected tasks on
the computing elements embedded on the device. For doing
so, each node of the infrastructure will host the execution
of a COMPSs agent, a deamon process waiting for execution
requests. When a the node triggers a new execution, it contacts
this agent which runs the corresponding code detecting the
tasks composing it and orchestrates their execution on the
available computing resources.

On the one hand, the computing resources locally em-
bedded on the same device might not be enough to host the
expected computation. On the other hand, not all the devices
of the infrastructure will trigger executions; indeed, even those
that raise events may not compute anything temporarily. Thus,
if COMPSs agents were able to only exploit the local proces-
sors, most of the computing power would remain idle. In order
to better exploit the computing power of the infrastructure
and shorten the execution time of the application, COMPSs
agents must interact with each other and offload part of their
computation. For that purpose, one COMPSs agent can call
the same method that started a computation on another agent
to execute a task in the remote agent. This agent will run the
task code, analyze it detecting new tasks on the task code and
orchestrate the execution of these tasks on other agents of the
infrastructure.

For infrastructures with a small number of devices, a
COMPSs agent can individually manage the execution of the
tasks it has detected on any of the other COMPSs agents
composing the infrastructure. However, the bigger the in-
frastructure is, the higher the complexity of the scheduling
problem becomes. Assigning tasks to resources may become
a computational load bigger than the actual computation to
perform, or for very large infrastructures, it may simply not fit
in resource-scarce devices.

To solve that problem, we propose to organize all the agents
of the infrastructure in a hierarchic way. The topology of such
organization can be represented as an acyclic graph where each
node of the graph represents an agent of the infrastructure,
and edges illustrate the possibility of one agent to submit
tasks onto the agent represented by the other end of the edge.
Thus, one agent can decide to run tasks on its local devices
or offload them onto any of the other agents with whom it
is directly connected on the hierarchy. In turn, the receiving
agent could decide to run the task on its local computing
devices or onto any of its direct neighbors. Thus, a computation
triggered by any of the agents could use as many resources
of the infrastructure as the computation needs to ensure that
the application runs and it does so in the shortest execution
time possible without adding a significant overhead due to the
scheduling.

An important aspect to bear in mind when dealing with
cyberinfrastructures is the potential mobility of its components.
Smartphones, tablets and more complex devices attached to a
battery with wireless network connectivity may be part of the
system. These kind of devices may join in the infrastructure or
leave it at their own will. When a device joins in, it is included
in the system topology to add its resources into the pool so
other agents can use them and, on the other hand, the mobile

device can exploit the rest of the infrastructure to enhance
its performance. When a device gets disconnected from the
infrastructure, a communication link is broken and an edge of
the graph is removed. At that point, the agents at both ends of
the edge need to re-schedule the execution of the tasks already
offloaded onto the other agent and assign them to resources to
which it remains connected. Thus, any computation already
started can go on and finish its execution.

Good criteria to build the topology are the stability and
latency of the network. Establishing the topology according to
that ensures that agents will always try to offload tasks onto
nearby resources, on the fog, rather than submitting them to
the Cloud achieving a higher performance. Besides, in the case
of network disruption, the system could remain usable even
without the cloud.
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