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Subject-Exoskeleton Contact Model Calibration
Leads to Accurate Interaction

Force Predictions
Gil Serrancolí , Antoine Falisse , Christopher Dembia, Jonas Vantilt , Kevin Tanghe ,

Dirk Lefeber, Ilse Jonkers, Joris De Schutter, and Friedl De Groote

Abstract— Knowledgeof human–exoskeletoninteraction1

forces is crucial to assess user comfort and effectiveness2

of the interaction. The subject-exoskeleton collaborative3

movement and its interaction forces can be predicted in4

silico using computational modeling techniques. We devel-5

oped an optimal control framework that consisted of three6

phases. First, the foot-ground (Phase A) and the subject-7

exoskeleton (Phase B) contact models were calibrated8

using three experimentalsit-to-stand trials. Then, the collab-9

orative movement and the subject-exoskeleton interaction10

forces, of six different sit-to-stand trials were predicted11

(Phase C). The results show that the contact models were12

able to reproduce experimental kinematics of calibration13

trials (mean root mean square differences (RMSD) coor-14

dinates ≤ 1.1° and velocities ≤ 6.8°/s), ground reaction15

forces (mean RMSD≤ 22.9 N), as well as the interaction16

forces at the pelvis, thigh, and shank (mean RMSD ≤ 5.4 N).17

Phase C could predict the collaborative movements of pre-18

diction trials (mean RMSD coordinates ≤ 3.5° and veloc-19

ities ≤ 15.0°/s), and their subject-exoskeleton interaction20

forces (mean RMSD ≤ 13.1 N). In conclusion, this optimal21

control framework could be used while designing exoskele-22

tons to have in silico knowledge of new optimal movements23

and their interaction forces.24

Index Terms— Movement prediction, exoskeleton, con-25

tact forces, dynamic optimization.26
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I. INTRODUCTION 27

OVER the last twenty years, different types of exoskele- 28

tons have been designed and their wearability has 29

been improved. However, obtaining user comfort and a safe 30

cooperation between exoskeleton and user is still challeng- 31

ing [1], [2]. Both safety and comfort are related to interaction 32

loads [3]. These loads can produce high pressures between 33

the bony prominences and the device, which are the main 34

cause of pressure ulcers [4]. The knowledge of the magnitude 35

of these interaction forces and pressures during the design 36

process of an exoskeleton would be crucial, since the design 37

of exoskeletons could be adapted to avoid high pressures 38

due to misalignments [5] and rigidity of the subject-device 39

interface [6], which are common issues in exoskeleton designs. 40

However, experimental values of these forces are usually not 41

known in advance. 42

Computational modeling techniques could be used to esti- 43

mate the interactions between a subject and an exoskeleton 44

while building a physical prototype. However, the accurate 45

prediction of the human–exoskeleton contact interactions and 46

collaborative movement of the subject wearing the exoskeleton 47

are still a challenge. This is mainly due to the dynamics 48

redundancy (different combinations of forces can lead to 49

the same kinematics), which makes it difficult to accurately 50

estimate all involved forces and the kinematics simultaneously. 51

Thus, the validation of computational models is crucial for 52

trusting the results of these simulations [7]. 53

There are some studies in the literature that attempted to 54

optimize the movement of a subject wearing an exoskeleton 55

with the goal of obtaining optimal controller designs of 56

exoskeletons and improve their efficiency. Zhang et al. [8] 57

optimized the assistance of an ankle exoskeleton exper- 58

imentally to minimize the human energy of walking. 59

Millard et al. [9] predicted the collaborative subject– 60

exoskeleton movement of lifting a box solving an optimal 61

control problem and coupling the subject and device with kine- 62

matic constraints. Manns et al. [10] optimized the parameters 63

of a back exoskeleton modeled as a torsional spring for the 64

prediction of the subject–exoskeleton collaborative movement 65

of lifting a box. Apart from simulation, some experimental 66

studies used sensors to measure interface pressures between a 67

subject and an exoskeleton [11], [12]. 68
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However, as far as the authors know, no simulation study69

has yet rigorously validated or predicted human–exoskeleton70

contact forces. The novel contribution of this study is the71

calibration of both foot–ground and subject–exoskeleton com-72

pliant contact models using experimental data of sit-to-stand73

trials for one subject wearing a bilateral lower-limb exoskele-74

ton, and the prediction of collaborative movement and its75

interaction forces for a separate set of sit-to-stand trials. This76

framework is intended to be the basis for simulating new77

optimal movements and their realistic forces while building78

exoskeletons. We hypothesize that we can accurately describe79

resultant human-exoskeleton interaction forces and collabo-80

rative human-exoskeleton movements using a simple, well-81

calibrated contact model.82

II. METHODOLOGY83

A. Experimental Measurements84

Kinematic and dynamic data of a healthy 29 year-old subject85

(gender: male, mass: 70 kg) wearing a bilateral exoskeleton86

were recorded during sit-to-stand movements. The bilateral87

exoskeleton was actuated at the ankle, knee, and hip joints88

with the purpose of assisting subjects with muscle deficiency89

during sit-to-stand movements [13], [14]. Contact pressures90

were measured at the contact zones between the subject91

and exoskeleton. These contact surfaces were at the pelvis92

through a module covering the circumference of the pelvis,93

and two commercial braces at the thigh and shank linked to94

the structure of the exoskeleton.95

Kinematic data were obtained at 100 Hz from trajecto-96

ries of 56 markers attached to the human (Vicon Motion97

Systems, Oxford, UK) and they were low-pass filtered with98

a Butterworth filter at 6 Hz. Foot–ground and chair–ground99

contact forces were measured by three force plates (AMTI,100

Watertown, MA) at 1000 Hz, and low-pass filtered at 6 Hz.101

Exoskeleton joint angles were obtained from encoders at the102

joints and exoskeleton joint moments were estimated as a103

function of joint angles (also low-pass filtered at 6 Hz) and104

previously-identified dynamic parameters [15], [16].105

Subject–exoskeleton interface pressures were measured at106

50 Hz with two matrices of capacitive sensors (matrices of 16 x107

8 sensors and 32 x 8 sensors, with 2 cm2 each sensor,108

S2140 and S2154, Novel, Munich, Germany) attached to the109

body of the subject. These data were low-pass filtered using110

a Butterworth filter at 6 Hz. Two configurations were tested,111

one with both sensor matrices covering the whole interface112

between the subject and the pelvis module, and the other with113

one sensor matrix covering the interface area at the thigh and114

the other one covering the shank region (Fig. 1 right).115

For each sensor matrix configuration, we captured 3D scans116

(Artec, Luxembourg, Luxembourg) of the subject with the117

sensors to know their location with respect to the segments of118

the body. We used the subject-specific geometry of the body119

to map the pressure values of the sensor matrix to the surface120

points of the subject. The resultant contact force vector was121

calculated at each frame by multiplying the pressure values122

by the covered area.123

Five trials of three sit-to-stand movements were captured124

for each sensor configuration, with the exoskeleton providing125

Fig. 1. Left: initial model to calculate human joint resultant moments with
six DOFs. Middle: model to simulate the collaborative movement with
nine DOFs. Right: picture of the subject wearing the exoskeleton. q1, q2
and q3: DOFs of the foot with respect to ground; q4, q5 and q6: relative
DOFs of the human; q7, q8 and q9: relative DOFs of the exoskeleton.
Conf. 1 and 2 indicate the locations where we had experimental contact
forces.

sit-to-stand assistance (active mode) and with the exoskeleton 126

unpowered (passive mode). In total, 60 movements were cap- 127

tured. Of those, 3 sit-to-stand trials were used to calibrate the 128

contact models and 6 to predict the subject-exoskeleton move- 129

ments. To become familiar with the exoskeleton, the subject 130

performed three sit-to-stand movements with the exoskeleton 131

before we recorded data. In this line, we used the last move- 132

ment of the three latest trials. The study was approved by the 133

ethical committee of KU Leuven and the subject signed a prior 134

consent form. 135

B. Description of the Model 136

The human and exoskeleton were represented as a two- 137

legged planar torque-driven model (foot, shank, thigh, and 138

pelvis). The dominant dynamic moments and interaction forces 139

in sit-to-stand movements are in the sagittal plane, therefore 140

a planar model was used. First, a simplified version was 141

used to compute the joint moments, and then a model with 142

two kinematic chains (human and exoskeleton) was used to 143

simulate the collaborative movement. 144

Because we initially had no information about human joint 145

torques and contact forces dynamically consistent with the 146

kinematics, first, we used a six–degree–of–freedom (DOF) 147

model with the exoskeleton rigidly attached to the human 148

and perfectly aligned (three DOFs between the foot and the 149

ground, and one DOF at each of the ankle, knee, and hip 150

joints) (Fig. 1 left). No markers were attached to the human 151

pelvis, so we considered the pelvis to be aligned with the 152

trunk, and markers on the trunk were used to capture the 153

orientation of those bodies. Inverse kinematics analysis from 154

marker data was carried out using this model in OpenSim [17] 155

to obtain joint angles of the human and then inverse dynamics 156

was performed to obtain the resultant (subject + exoskeleton) 157

joint moments. To obtain the human joint moments, the experi- 158

mentally measured exoskeleton joint moments were subtracted 159

from the resultant ones calculated using OpenSim. 160

Second, a model with two kinematic chains was used 161

to simulate the collaborative movement between the subject 162
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Fig. 2. Ground reaction forces from the calibration trials in Phase A. GRFx and GRFy are the horizontal and vertical components respectively, and
CoPx is the location of the center of pressure with respect to the lab reference. T1, T2 and T3 are the data for all three calibration trials. sim stands
for simulated data and exp for experimental.

TABLE I
DESIGN VARIABLES AND COST FUNCTION TERMS

and the exoskeleton (Phases A to C, see Optimization For-163

mulations section). The human system consisted of a foot,164

shank, thigh, and pelvis, and had six DOFs (three DOFs165

between the foot and the ground, and one DOF at each166

of the ankle, knee, and hip joints). The exoskeleton system167

consisted of a foot-plate (rigidly attached to the human foot),168

shank, thigh, and pelvis segments. The exoskeleton ankle,169

knee, and hip joints were modeled as hinge joints (one170

DOF at each of the ankle, knee, and hip exoskeleton joints)171

(Fig. 1 right).172

A smooth foot-ground Hunt-Crossley contact model was173

used to simulate the force between the exoskeleton and the174

ground. The contact was modeled between two spheres (one175

at the heel and one at the toes) and the ground plane.176

The original Hunt-Crossley contact model in Simbody [18]177

was smoothed (see Appendix 1). The subject–exoskeleton178

contact model consisted of three linear and rotational spring-179

and-damper systems, one in between each pair of bodies180

(bushing forces in OpenSim). This model represented the181

TABLE II
RMSD BETWEEN MODEL AND EXPERIMENTAL VARIABLES

main stiffness and damping components of the interaction 182

forces. 183

C. Optimization Formulations 184

Contact model parameters need to be calibrated in order 185

to obtain realistic movement and force predictions. In this 186

case, we calibrated both contact models first, and then we 187

predicted the collaborative movement. The calibration process 188

was split into two phases due to computational time and 189

convergence reasons. The whole process consisted of three 190

main phases: the calibration of the foot–ground contact 191

parameter values (Phase A), the calibration of the human– 192

exoskeleton contact parameter values (Phase B), and the 193

prediction of the movement and its forces using the calibrated 194
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Fig. 3. Kinematics of the calibration trials in Phase A. Angles and angular velocities for ankle, knee and hip joint angles of the human (H) and
exoskeleton (E) side. T1, T2 and T3 are the data for all three calibration trials. sim stands for simulated data and exp for experimental.

Fig. 4. Resultant subject-exoskeleton contact forces at the pelvis (left), thigh (middle) and shank (right) in Phase B. T1, T2 and T3 are the data for
all three calibration trials. sim stands for simulated data and exp for experimental.

models (Phase C1). We also repeated Phase C1, perturbing195

the subject-exoskeleton parameter values (Phase C2). In all196

phases, an optimal control problem was formulated and solved197

using a direct collocation method to obtain the optimal198

state (coordinates, velocities, and accelerations in all phases),199

control and parameter values.200

The time line was discretized with 200 nodes per second201

and 4 collocation points per interval and states were parame-202

terized with 3rd order Lagrange polynomials (pseudospectral203

approach). An implicit dynamic formulation was used, which204

implies that the equations of motion were enforced as alge-205

braic constraints rather than as differential constraints at each206

time interval [19], and the jerks (derivative of accelerations)207

were included as controls. We calculated the residuals of the208

equations of motion using the API of OpenSim and Simbody.209

We also included constraints to ensure continuity of state210

variables between intervals and continuity of state derivatives 211

(defect constraints) within each interval. The optimal con- 212

trol problems were solved using CasADi [20], a symbolic 213

framework for algorithmic differentiation, from MATLAB, 214

which relies on IPOPT [21] to solve the NLP (code in SimTK 215

webpage: https://simtk.org/projects/predicsubjexosk). 216

Phase A: 217

In Phase A, the foot–ground contact parameter values 218

were optimized so that they could reproduce experimental 219

contact forces. The main parameters of the foot–ground 220

contact model are the stiffness and damping properties, the 221

location of the spheres with respect to the foot (local coor- 222

dinates horizontal and vertical) and the radius of the spheres. 223

We performed a parameter identification analysis to choose 224

which parameters had the greatest influence on the contact 225

forces (following the method of Van den Hof et al. [22]). 226
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Fig. 5. Human (H) and exoskeleton (E) joint moments in Phase B. T1, T2 and T3 are the data for all three calibration trials. sim stands for simulated
data and exp for experimental. Note that the scale of the plots for the human and exoskeleton joint moments is not the same.

We concluded that the radius of the spheres and the vertical227

coordinate of the location of the spheres were coupled. There-228

fore, we excluded the radius of the sphere from the group of229

optimization design variables.230

In this phase, the optimal control problem consisted of231

estimating the foot–ground contact parameter values listed232

above, as well as the states and controls (joint torques, jerks233

and ground reaction forces) between an initial and a final234

state. One set of contact parameters was calibrated through235

the simultaneous use of three sit-to-stand movements with the236

exoskeleton in passive mode (calibration trials), to avoid trial-237

specific parameter values. Pelvis contact force was available238

in two of those three calibration trials, and thigh and shank239

contact forces were available for the third calibration trial.240

The cost functional included terms to track experimental241

joint angular coordinates and velocities, as well as ground242

reaction forces and the horizontal location of the center of243

pressure (CoP) (Table I), and terms to minimize joint torques.244

Subject–exoskeleton interaction forces were considered null,245

assuming no contact between the subject and the exoskeleton246

at the shank, thigh, and pelvis. In this phase, we assumed that247

the joint torques will have the values needed to support the248

system. It is in phase B where we obtained a contact model249

able to reproduce experimental contact forces.250

Phase B251

In Phase B, we calibrated the parameter values of the252

spring and damper systems that model the contact between253

the subject and exoskeleton. In order to reduce the number of254

design variables, we excluded the damping parameters from255

the set of design variables. We assumed that for movements256

with small relative translations and velocities, the damping257

term could perform a similar effect as the stiffness term258

(due to the non-varying forces) and introduce redundancy in259

the optimization. Therefore, we set them to constant values260

(10 Ns/m for the translational damping and 0.1 Nms/rad for261

the rotational damping, similar to the contact parameters of262

a grip contact model [23]). Therefore, we selected as design 263

variables the origin locations of the three spring and damper 264

systems (with respect to the human body), and linear (different 265

for tangential and normal directions of the human segments) 266

and rotational stiffness. 267

The optimal control problem consisted of estimating the 268

subject–exoskeleton contact parameters listed above, and the 269

same state and control variables between the same given states 270

as in the previous phase (calibration trials). The only difference 271

was the addition of subject–exoskeleton contact forces as 272

controls so that the optimizer had more flexibility. Foot-ground 273

contact parameter values were set to the ones obtained in 274

Phase A. We tracked the experimental angular coordinates 275

and velocities, ground reaction forces, and the location of 276

the CoP, as in Phase A. In addition, in Phase B we also 277

tracked the experimental joint moments, and the component 278

perpendicular to the interface surface of the resultant contact 279

forces at the shank and thigh for one trial, and at the pelvis for 280

two trials. As pressure sensors only measure normal force, not 281

all components of the contact wrench are available. Therefore, 282

we minimized the squared value of the contact energy of 283

the contact wrench components, for which we did not have 284

experimental data. See Table I for the summary of the design 285

variables and cost function terms. 286

Phase C 287

In Phase C1, we used the calibrated foot–ground and 288

subject–exoskeleton contact parameter values to predict sit- 289

to-stand movements (both kinematics and subject–exoskeleton 290

contact forces) of six different trials with the exoskeleton 291

providing assistance (prediction trials, three with information 292

of experimental pressure data at the pelvis and three at the 293

shank and thigh). In this case, we optimized states and controls 294

(the same as in Phase B), but joint kinematics were not tracked, 295

only the initial and final states were given. We tracked experi- 296

mental ground reaction forces and the location of the CoP, and 297

joint torques (Table I). We also minimized the squared value of 298
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the human–exoskeleton interaction energy for all components299

of the contact wrench to avoid redundancy in the optimization.300

In Phase C2, we solved the same optimal control problem301

as in Phase C1, but multiplying the parameters of the subject–302

exoskeleton interaction forces by a factor of 1.4 (equivalent303

to the variability observed in the peak interaction forces for304

9 subjects), to identify the influence of those parameters on305

the prediction of the collaborative movement and interaction306

forces.307

Root mean squared differences (RMSD) between model308

and experimental variables were calculated in both calibration309

trials (Phase A and B) and prediction trials (Phase C1 and310

Phase C2). The computational time for solving each optimiza-311

tion problem was about 3 hours for Phases A and B, and312

30 minutes for Phases C1 and C2.313

III. RESULTS314

A. Phase A. Calibration of Foot-Ground Contact Model315

The results of Phase A show that the calibrated foot-316

ground contact parameter values could accurately reproduce317

the experimental ground reaction forces (horizontal and ver-318

tical), and the distance to the CoP for all three calibration319

trials (Fig. 2). The root mean square differences (RMSD) were320

lower than 10 N for all forces and below 1.0 mm for the CoP321

(Table II). Joint angles and velocities were also tracked well322

(Fig. 3). The highest mean and standard deviations of RMSD323

(poorest estimation) across all calibration trials were 0.8 ±324

0.2 degrees for joint angles, and 6.5 ± 1.8 degrees/s for joint325

angular velocities (Table II).326

B. Phase B. Calibration of Subject-Exoskeleton327

Contact Model328

The optimized subject-exoskeleton contact model accu-329

rately reproduced the magnitude of subject-exoskeleton con-330

tact forces (Fig. 4), with RMSD values comparable to the331

tracking of ground reaction forces. In this phase, the highest332

RMSD were for tangential ground reaction forces with 22.9 N,333

and with a mean RMSD for vertical and horizontal GRF over334

all calibration trials of 8.4 N, whereas the highest RMSD for335

contact forces were at the pelvis with 5.4 N, 2.3 N for the336

thigh, and 2.2 N for the shank (Table II). The joint moments337

obtained in this phase were also accurate (mean RMSD <338

10 Nm) (Fig. 5).339

The tracking of kinematics was slightly worse than in340

Phase A. The highest mean and standard deviations of RMSD341

for joint angles were 1.1 ± 0.4 degrees, and for joint angular342

velocities 6.8 ± 1.9 degrees/s (Table II). RMSD for kine-343

matics, GRF and subject-exoskeleton contact forces are lower344

than the maximum values of one standard deviation for six345

experimental trials.346

C. Phase C. Prediction of Collaborative Movement347

and Interaction Contact Forces348

The goal of this phase is to validate that the calibrated model349

is able to predict the kinematics and contact forces close to the350

experimental values. Calibrated contact models from Phases351

A and B were able to predict joint kinematics of prediction352

TABLE III
RMSD BETWEEN MODEL AND EXPERIMENTAL VARIABLES

trials accurately. Mean RMSD values for joint coordinates 353

ranged between 1.0 and 3.3 degrees, and between 6.1 and 354

14.3 degrees/s for joint angular velocities. When perturbing 355

the values of the subject-exoskeleton contact model by 40 % 356

(Phase C2), those RMSD values were quite similar (Table III, 357

see one example in Fig. 6). The tracking of ground reaction 358

forces and joint moments was slightly better in two of the 359

three calibration trials in Phase C2 compared to Phase C1. 360
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Fig. 6. Kinematics prediction of one prediction trial in Phases C1 and C2. Angles and angular velocities for ankle, knee and joint angles of the
human (H) and exoskeleton (E) side. In blue, prediction with contact model values from Phases A and B; in red with perturbed contact model values;
in black, experimental data.

Fig. 7. Resultant subject-exoskeleton contact force predictions for two prediction trials in Phases C1 and C2. One trial was used to predict pelvis
contact force and the other trial was used to predict thigh and shank contact forces. In blue, prediction with contact model values from Phases A and B;
in red with perturbed contact model values; in black, experimental data.

In terms of RMSD values, the prediction of interaction361

forces was between 2 and 5 times better in Phase C1 than in362

Phase C2 at the pelvis and thigh, and 4.5 times better for one363

trial at the shank (Table III, see two examples in Fig. 7), which364

suggests that the calibration of subject-exoskeleton contact365

parameters had more influence on the contact force prediction366

than on the predicted movement.367

IV. DISCUSSION368

This study aimed to calibrate foot-ground and subject-369

exoskeleton contact models to predict the collaborative370

movement and interaction forces between a subject and371

exoskeleton during sit-to-stand movements. We used exper-372

imental contact forces measured from pressure sensors and373

force plates from three sit-to-stand trials with the exoskeleton374

in passive mode to calibrate the models, and then we predicted375

the collaborative movement and their forces in three sit-to- 376

stand trials with the exoskeleton in assistance mode. The 377

estimated contact parameter values allowed us to reproduce 378

the experimental forces with the exoskeleton in passive mode 379

(calibration trials) quite well, as well as the subject and 380

exoskeleton kinematics. 381

Once the contact models were calibrated, the predicted 382

movement with the exoskeleton in assistive mode (pre- 383

diction trials) followed the experimental values (RMSD 384

of angles <3.5 degrees, and RMSD of velocities < 385

15.0 degrees/s). In this case, the predicted subject-exoskeleton 386

forces overall had the same magnitude as the experimental 387

forces. We also predicted the movement and forces per- 388

turbing the subject-exoskeleton parameter values by 40%. 389

We observed that interaction force predictions diverged from 390

experimental values, especially at the pelvis (the RMSD was 391
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Fig. 8. Normal Hunt Crossley force as a function of the indentation. The zoom shows the non-zero slope of the curve at the shadowed area.

greater than 30 N) and the thigh (RMSD of contact forces >392

10 N) (Fig. 7). Therefore, once the parameter values of an393

initial prototype have been calibrated, the proposed method394

will be useful to predict optimal movements (e.g. with the395

criterion to minimize contact forces to improve comfort),396

or to analyze how the contact forces would change when397

modifying the control of the exoskeleton or when modifying398

the stiffness of one part, with no need to reproduce all399

movements experimentally.400

Some limitations were identified in this study. First, we used401

a torque-driven planar model. Although the model accounted402

for the dominant forces and moments (produced in the sagit-403

tal plane during sit-to stand movements), it would also be404

valuable to explore the effect in the other planes, such as405

hip adduction and rotation. A muscle-driven model may also406

lead to more realistic kinematic and dynamic results than a407

torque-driven model [24], [25]. Second, we had experimental408

limitations, since we could not have information of shear409

forces, which may give important interaction information.410

Another sensor system to measure shear forces should be411

used since the forces in this direction are also considered to412

produce discomfort [26], [27]. Third, we only predicted sit-to-413

stand movements in one subject and those movements were414

similar to the ones used for calibrating the contact models. The415

method could also be applied to other types of movements and416

subjects to assess the validity of the calibrated models for other417

movements.418

In conclusion, our simulation framework can predict real-419

istic kinematics and forces with proper calibration of con-420

tact models; we observed that, without calibration, contact421

forces may not be realistic. These results reinforce the impor-422

tance of validating the results obtained with musculoskele-423

tal models [7]. Future directions include predicting three424

dimensional movements and other types of movements, such425

as walking.426

APPENDIX 1: SMOOTH FOOT-GROUND427

CONTACT MODEL428

We used a smooth foot-ground (spheres-plane) contact429

model based on the original version of the Hunt Crossley430

contact model in Simbody [18] to avoid the optimizer (based431

on gradient based methods) to fall in a region with discontinu-432

ities. The main two expressions that we modified were related433

to the normal force and the Stribeck function that computes434

the friction coefficient. To compute the normal force, Simbody 435

uses the following expressions: 436

f p = x
3
2 (1) 437

fv = 1 + 1.5cẋ (2) 438

fn = 4

3
k

3
2
√

r f p fv (3) 439

where x is the indentation, ẋ is the indentation velocity, c is 440

the damping coefficient, k is the stiffness, r is the radius of the 441

sphere, f p and fv are terms dependent on indentation and its 442

velocity, respectively, and fn is the normal force. We multi- 443

plied f p and fv by terms to avoid negative contact force values 444

and ensure the functions are continuously differentiable: 445

f p nonneg = f p

(
1

2
+ 1

2
tanh (bcx)

)
(4) 446

fv nonneg = fv

(
1

2
+ 1

2
tanh

(
bc

(
ẋ + 2

3c

)))
(5) 447

Then, following Equation 3, we obtained a new expression 448

for the normal force. We also included a term to avoid a zero 449

slope in the contact force when there is no actual contact: 450

fslope = e
x−0.01

0.1 bn

(
1

2
+ 1

2
tanh (bd x)

)
451

×
(

1

2
+ 1

2
tanh

(
bv

(
ẋ + 2

3c

)))
(6) 452

where bc, bd ,bn and bv were constant parameters. Since we 453

are using gradient-based methods to solve the optimization 454

problem, the use of this term allows a non-zero gradient value 455

even when the foot does not penetrate the ground. The added 456

force when out of contact is negligible (lower than 1 N). 457

Then, we combined all terms to avoid discontinuities and 458

ensure smoothness in the stick-to-slip transition (see Fig. 8 for 459

an example of the smoothness and non-zero slope). 460

Regarding the friction coefficient, the original curve of the 461

Stribeck function, which is not smooth, can be divided into 462

terms that depend on viscous friction (µ1) and into terms that 463

do not (µ2): µ (vrel ) = µ1 (vrel ) + µ2 (vrel ). 464

We approximated µ2 with a three-part function: 465

µ2 (vrel ) 466

=

⎧⎪⎪⎨
⎪⎪⎩

ud vrel > 3

us − (us − ud) step5
(

vrel −1
2

)
1 <= vrel < 3

usstep5 (vrel ) vrel > 1

(7) 467
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Fig. 9. Friction coefficient curve as a function of vrel.

where vrel = vslip
/
vt , vslip is the module of the tangential468

velocity of the contact point with respect to ground, us and469

ud are the static and dynamic friction coefficients, vt is the470

transition velocity, and step5 is the approximation of the471

step function with a 5th order polynomial. We used a single472

expression to represent µ(vrel ), smoothing the transitions473

between regions (see Fig. 9).474
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