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ABSTRACT
Machine Learning applications now span across multiple domains
due to the increase in computational power of modern systems.
There has been a recent surge in Machine Learning applications
in High Performance Computing (HPC) in an attempt to speed
up training. However, besides training, hyperparameters optimisa-
tion(HPO) is one of the most time consuming and resource intensive
parts in a Machine Learning Workflow. Numerous algorithms and
tools exist to accelerate the process of finding the right parameters
for a model. Most of these tools do not utilize the parallelism pro-
vided by modern systems and are serial or limited to a single node.
The few ones that are offer distributed execution require a serious
amount of programming effort.

There is, therefore, a need for a tool/scheme that can scale and
leverage HPC infrastructures such as supercomputers, with mini-
mum programmers effort and little or no overhead in performance.
We present a HPO scheme built on top of PyCOMPSs, a program-
ming model and runtime which aims to ease the development of
parallel applications for distributed infrastructures. We show that
PyCOMPSs is a powerful framework that can accelerate the pro-
cess of Hyperparameter Optimisation across multiple devices and
computing units. We also show that PyCOMPSs provides easy pro-
grammability, seamless distribution and scalability, key features
missing in existing tools. Furthermore, we perform a detailed per-
formance analysis showing different configurations to demonstrate
the effectiveness our approach.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies; Machine learning.

KEYWORDS
Machine Learning, Hyperparameter Optimisation, Distributed Com-
puting, HPC, PyCOMPSs

1 INTRODUCTION
In the last decade or so, Machine Learning(ML), especially Deep
Learning (DL), has provided impressive results in different applica-
tions and tasks such as image classification [11], speech recognition
[20] and autonomous driving [6]. This can be attributed to extensive
research in algorithms, model architectures and advancements in
hardware which provides massive parallelism such as Graphic Pro-
cessing Units (GPUs) and dedicated hardware for neural networks
such as Tensor Processing Units (TPUs), that allow us to train very
large and complex models in a reasonable amount of time. As a
result, Deep Learning [12] has now become the go to method for
applications with big datasets. Interestingly, the spectrum of these
applications continues to grow.

To facilitate and accelerate both research and application of ML,
numerous tools and libraries have been developed. ML frameworks
such as Tensorflow [2], PyTorch [17] and Caffe [8] enable develop-
ers to train and deploy complex models. Most of these advanced
frameworks focus on training and deployment. However, before
training, two important things have to be decided. The architecture
of the model and the configuration of the model. Arriving at the
right model for a specific dataset is a complex process, that does
not only require skilled engineers but is also time consuming and
compute intensive. Interestingly though, the time consumed to
train the model as well as the effectiveness (accuracy) of the model
heavily depends on a set of parameters selected prior the training
procedure. This set of parameters is called hyperparameters.

The process of finding the correct combination of parameters
for a certain model is called Hyperparameter Optimisation (HPO),
sometimes refereed to as Hyperparameter Tuning (HPT). It is one
of the key parts in a machine learning workflow. The most common
hyperparameters include number of epochs, batch size, learning
rate, optimiser, and sometimes specific model parameters such as
number of layers. Finding the correct combination of these parame-
ters is non trivial and manual tuning is both difficult and sometimes
impossible as the best solution is not always obvious. Furthermore,
in most cases HPO takes the longest time as it is not only compu-
tationally intensive but also involves multiple trainings. As such,
there has been significant research interest in HPO. Research in
this domain has generally taken two paths, 1) Algorithms for HPO
2) Tools to implement and execute these algorithms. Further details
of both are discussed in section 2, but our focus is on the latter.

Numerous tools for HPO have been developed as is evident in
section 2. An in-depth look into most of these tools reveals 3 major
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issues that this paper will address. First, most existing HPO tools
are sequential. Those that are parallel constrain the user to a single
node and those that span multiple nodes involve complex cluster
configuration. Considering that most, if not all, HPO algorithms
are embarrassingly parallel, these processes can be significantly
accelerated by exploiting both parallelism and distributed execu-
tion. Second, recent trends in DL show an increase in the size of
models. This not only translates to an increase in the number of hy-
perparameters(to magnitudes of hundreds) but also requires skillful
partitioning and usage of available computing resources as one
model can span across several devices and take training time in
magnitude of days. Long execution times also raises the important
question of fault tolerance.

Third, there has been a proliferation of Machine Learning ap-
plications in High Performance Computing (HPC). However, not
much has changed in ML workflows, especially for HPO. Since
HPO is an integral part of the ML workflow, there is a need for a
HPO scheme and tool that can leverage the full power of HPC such
as very high inter-node communication, HPC file systems, hetero-
geneous computing and scalability. However such a tool should
not come with a steep learning curve or increased overhead in
programmability. A study of current trends and existing literature
reveals that an ideal HPO tool should therefore have the following
characteristics.

• Parallel : Intra-node task parallelization
• Distributed : Distribute tasks across multiple nodes
• Scalable : Speed up as the number of nodes increases
• Robust : Guarantee a certain degree of fault tolerance
• Framework agnostic: It should not be constrained to a spe-
cific framework

• It should also provide essential features such as early stop-
ping and visualisation dashboards to enable researchers
make sense of the output.

Taking into consideration the above mentioned, this paper presents
a robust HPO scheme, built on top of PyCOMPSs, to accelerate HPO.
PyCOMPSs [21] is the Python binding of COMPSs, a programming
model and runtime which aims to ease the development of parallel
applications for distributed infrastructures, such as Clusters and
Clouds. A detailed description of PyCOMPSs is provided in section
3. The contributions of this paper can be listed as follows.

• We present a robust scheme for HPO in HPC clusters and
grid with minimum changes to the code.

• We implement grid search and random search using Py-
COMPSs to demonstrate the usage.

• We present an alternative tool for both HPO and other ML
workloads that are embarrassingly parallel.

The remainder of this paper is divided as follows, section 2 gives
a look into existing tools and previous work on HPO, section 3
introduces the PyCOMPSs framework, in section 4, we explain how
to implement HPO using PyCOMPSs, then we provide details of
the experiments performed in section 5 and discuss the results in
section 6 . Finally section 7 gives a conclusion and future work.

2 BACKGROUND AND EXISTING TOOLS
In this section, we give a brief background of ML and HPO. We
then review and discuss existing tools for HPO. The list covered is

by no means exhaustive but every attempt has been made to cover
the most popular tools.

2.1 Background
Even though the idea of a machine capable of learning and mimick-
ing human intelligence was proposed in the early 1950s, its only
recently that we have seen significant progress and commendable
results. One factor for this is the invention or Artificial Neural Net-
works (ANNs) and back-propagation, the algorithm used to train
these ANNs. The other factor is a major surge in the amount of data
available. These combined with increased computing power have
made Deep Learning a major research research topic in Computer
Science. A subset of this research has been tools and algorithms for
HPO.

In algorithms for HPO, the most popular ones are Exhaustive
Grid Search and Random Search. Exhaustive Grid search involves
trying out all possible combinations and comparing the result using
a metric such as loss or accuracy. This approach is feasible when
there is a small set of hyperparameters. However, it becomes im-
possible and unrealistic with a larger search space. Random search
[5] was proposed by Bergestra et al and has become more common.
Rather than search through the entire search space, combinations
of parameters are picked randomly. Empirical results show that
random research is more efficient than grid search and arrives at
parameters that are good or better at a fraction of the time required
by grid search.

Though random search is a superior algorithm in many cases,
several other approaches have been proposed. Gaussian Process
and Tree-structured Parzen Estimator were proposed by Bergstra
et al [4] for Deep Belief Networks. Bayseian optimisation is another
approach that essentially builds a surrogate model to approximate
the ideal trained model by using different hyperparameters. It’s
practical usage and implementation is presented by Snoek et al
[19] .The tools discussed below implement one or several of these
algorithms.

2.2 Existing Tools
Madrigal et al [15] did a review of existing tools HPO using a
computer vision application. They analysed and compared 4 tools
for multiple object tracking applications: MCMC, SMAC, TPE and
Spearmint. These tools were analysed in terms of stability, per-
formance and usability with the goal of helping making informed
decisions when choosing a tool and method for HPO. We discuss
other tools not mentioned in that work.

Scikit-learn [18] is perhaps one of the most popular machine
learning tools. It combines many of the state of the art algorithms in
an easy to useway. Scikit-learn provides both exhaustive grid search
and randomized parameter optimisation and uses cross validation
to evaluate the best performing parameters. Furthermore scikit-
learn computations can can also be run in parallel by setting the
number of jobs. However, scikit-learn does not provide multi-node
support and is not efficient for complex tasks such as deep learning.

Sherpa [7] is a hyper-parameter optimisation tool geared to-
wards HPO for computationally expensive tasks such as deep learn-
ing. It includes several HPO algorithms such as random search, grid
search, Bayesian optimisation and local search. Even though Sherpa
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is intended to run in a multi node environment, doing so requires
scheduler and mongoDB. Besides the extra overhead introduced by
MongoDB, scheduler configuration is a complex task in HPC.

Shadho [9] developed by Kinnison et al is a general purpose
massively scalable hardware-aware distributed hyperparameter
optimisation tool. It ranks models using two heuristics, complex-
ity and priority. Models are then ranked and assigned resources
accordingly.

Hyperopt [3] by Bergstra et al is another tool for serial and paral-
lel HPO over awkward search spaces. It includes random search and
Tree of Parzen Estimators (TPE) algorithms. Like Sherpa, HyperOpt
also requires mongoDB for parallel execution.

Kopt and Tolos are HPO tools specifically built for Keras. Kopt is
based on Hyperopt and requires mongoDB to parallelise onmultiple
workers. Both are constrained to specific frameworks.

Tune [14] is a unified framework for model selection that allows
straightforward scaling in large clusters. Each training is referred
to as a trial and an experiment is a collection of trials. Tune is built
on top of Ray [16] framework

Google Cloud Machine Learning Engine is part of the larger
family of Google products for machine learning. However, the
product is heavily dependent onGoogle infrastructure and is neither
open source nor free.

As we shall show in the following sections, PyCOMPSs not
only enables the design of more complex workflows with little
programming effort, it also handles job management, data transfers
dependencies and reuse of memory objects from one task to the
next if they use the same object. These key features are not only
missing from existing tools, but implementing them in existing
job schedulers such as slurm requires multiple reservations and a
serious developers effort.

3 PYCOMPSS
PyCOMPSs [21] is a task based programming model that enables
the parallel execution of existing Python sequential applications,
with minimal impact on the development effort, in distributed en-
vironments. To do this it offers an interface for parallelizing that
uses Python decorators to identify the methods to be considered as
tasks, and a small API for synchronization. Formally, PyCOMPSs
is the Python binding of COMPSs 1 (Figure 1), which relies on the
COMPSs runtime and communicates with it whenever a task is
detected or its execution requested.

In order to enable the parallelization, the runtime builds a data
dependency graph of the tasks that make up the application at
execution time. To this end, the task parameters and its direction
are taken into account to determine the dependencies among tasks.
The runtime is responsible of keeping track of the tasks and respect
the dependencies in order to guarantee the validity of the execution,
that is, to produce the same result as if is executed sequentially.
Consequently, the runtime that can exploit the inherent parallelism
of the application at task level and can execute the application
in a distributed environment, such as grids, clusters, clouds, and
container managed clusters. To achieve this, the runtime is able
to schedule the tasks in the available computational resources,
acting as an interface with the different computing resources, and

1compss.bsc.es

Figure 1: COMPSs Architecture

transferring the data when needed. COMPSs also supports Java and
C++ applications.

The mechanism that PyCOMPSs provides to declare a method
as a task is the @task decorator, which can be used over any func-
tion, instance method or class method. In this decorator, hints to
specify characteristics of the function parameters or hints for the
scheduler can be included. For example, the returns keyword into
the @task decorator can be used to specify the type/number of
return elements, the name of a parameter with its type (e.g., FILE)
or their directionality (e.g., IN, OUT, INOUT), and priority=True
for the scheduler so that it tries to schedule that task as soon as
possible, among others.

Moreover, PyCOMPSs also provides a set of decorators which
can be placed on top of@task in order to: define task constraints
@constraint, define the task as an external binary, MPI or OmpSs
executable@binary, @mpi, @ompss respectively, declare multiple
implementations for the same task @implement (this decorator
allows the runtime to choose the most appropriate task considering
the resources), nesting tasks @compss, or even multi node tasks
@multinode.

Listing 2 shows an example of the experiment task, which receives
an IN parameter (config - since its direction is not explicitly defined,
default is taken) and returns a single integer value. In addition, a
constraint has been defined, declaring that the task requires one
core and one GPU.In a nutshell, key strengths of PyCOMPSs that
empower its usage for HPO, include the following:

Programmability: PyCOMPSs follows the natural Python way
of programming and all a user has to do is add decorators to exist-
ing code. Furthermore, in the absence of PyCOMPSs, the program
executes sequentially as it would and all PyCOMPSs directions are
ignored. This is particularly important because new users can get
up and running within no time hence encouraging adaptability.

Seamlessly Distributed: Cluster management and distributed
computing can be a complex task that adds a significant overhead
to machine learning researchers. PyCOMPSs takes the burden of
cluster configuration from the researcher. For instance, if the user
wants to use multiple nodes for HPO, they only need to set the
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number of nodes for the entire job and PyCOMPSs seamlessly man-
ages this resources and allocates tasks based on the requirements
of each task.

Resource Management: PyCOMPSs manages all available re-
sources accordingly. The user can exclusively determine the type
and number of computing resources for a particular task. Further-
more and very important for machine learning, PyCOMPSs sup-
ports heterogeneous resources. As such, for compute intensive deep
learning applications, each task can will be assigned a number of
CPUs and a GPU. If further, a task has built-in parallelism, Py-
COMPSs will not interfere with this. PyCOMPSs also enforces CPU
and GPU affinity and therefore prevents tasks from competing for
same resources.

Fault Tolerance: A sequential application has a single point
of failure. Depending on where the failure happens, this could be
a wastage of both time and resources. For long running applica-
tions such as HPO, its important to ensure continuity in case of
failure. Fault tolerance in PyCOMPSs is supported in two ways. If
a task fails for whatever reason, an attempt is made to start the
task again. Secondly if a computing unit fails or becomes unavail-
able for whatever reason, PyCOMPSs restarts this task in another
computing unit. This is especially important in machine learning
where some tasks are bound to fail during execution due to long
execution times.

4 APPROACH
In this section present our approach to implement HPO using Py-
COMPSs. First we explain how to structure the application, then
give programming details and finally we explain what PyCOMPSs
does behind the scenes to distribute the application.

Figure 2: Application Structure

As mentioned earlier, HPO is essentially running multiple train-
ings with different configurations to determine the one that gener-
alizes best. Training doesn’t have to run all the way to the end as
one can tell how a model is training after several epochs/iterations.
This multiple runs are generally independent of each other. Tra-
ditionally, one would just launch one training after the other and
make observations. If they have several computers available, one
could launch multiple trainings on different computers. We build
our HPO tool based on these principles.

On the general structure, at the very topwe have an application,
which is the entire HPO process. A JSON file containing all the
hyperparameters and their values is passed to this application at
start. Training and observing a model is an experiment and can
be defined as a task in PyCOMPSs terms. The application will
therefore be made up of multiple tasks that will be executed either
on the same node or across multiple nodes. Each task requires a
unique set of hyperparameters, we call this config, that is passed to
the task as a parameter. This configs are generated, depending on
the algorithm selected, from the list of hyperparameters contained
in the JSON file that was passed to the application. A sample config
file is shown in Listing 1. A high level overview of the structure
and flow is shown in figure 2.

1 {
2 "optimizer": ["Adam" ,"SGD", "RMSprop"]

,
3 "num_epochs": [20, 50, 100],
4 "batch_size": [32, 64, 128]
5 }

Listing 1: A simple config file

From the structure show in Figure 2 programming entails very
few changes to existing sequential code. To make each experiment
a task, executable in parallel with other tasks, we simply add the
@task decorator from the PyCOMPSs API before the method/func-
tion. We also use the @constraint decorator to assign the type
and number of computing resources to each task, e.g CPU or GPU.
We then launch the tasks in a loop passing a different config to each
task. The code in Listing 2 summarises how to implement HPO in
PyCOMPSs.

1

2

d1v2

sync

d1v2

3

4

d3v2 d3v2

5

6

d5v2 d5v2
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8
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17
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d17v2d17v2

19

20

d19v2d19v2

21

d21v1

graph.experiment
graph.visualisation

graph.plot

Figure 3: Tasks graph

When we launch this application using using PyCOMPSs (to
launch we use runcompss application.py json_file), a dynamic
graph is created and all dependencies are established. A sample
graph for one of the experiments is shown in Figure 3. PyCOMPSs
then assigns computational resources based on the requirements
for each task. When not using a Parallel File System (PFS) such
as IBM’s General Parallel File System (IBM GPFS) then the data
required by the task is copied to the specif node that the task will
be executed. Otherwise all tasks can read and write to the PFS. Its
important to note that most HPC clusters are equipped with PFS.If
no further resources are available, tasks wait for the resources.

Tasks are then executed in workers independently and in par-
allel to completion. A task can utilise its own internal parallelism
if its designed to do so, for instance, Tensorflow executes tensor
operations in parallel.In case a task fails for whatever reason (such
as node failure), the runtime tries to start the same task in the same
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node, if it fails again, its restarted in another node. This way, Py-
COMPSs ensures fault tolerance. The failure of task does not affect
the other tasks unless there are some dependencies.

1

2 # PyCOMPSs modu l e s l s
3 from pycompss . a p i . t a s k impor t t a s k
4 from pycompss . a p i . a p i impor t compss_wait_on
5 from pycompss . a p i . c o n s t r a i n t impor t c o n s t r a i n t
6

7 de f c r e a t e_mode l ( c o n f i g ) :
8 # New model c r e a t e d every t ime with d i f f e r e n t

pa rame te r s
9 # Model pa r ame te r s can be s e t here from the c on f i g

f i l e ( i . e o p t im i s e r s )
10 . . .
11 . . .
12 r e t u r n model
13

14 @cons t r a in t ( p r o c e s s o r s = [ { ' Proce s so rType ' : 'CPU ' , '
ComputingUnits ' : 1 } , { ' Proce s so rType ' : 'GPU ' , '
ComputingUnits ' : 1 } ] )

15 @task ( r e t u r n s = i n t )
16 de f exper iment ( c o n f i g ) :
17 # T r a i n i gn pa rame te r s can be s e t here ( i e No o f

Epochs )
18 model = c r e a t e_mode l ( c o n f i g )
19 model . t r a i n ( c o n f i g )
20 r e t u r n v a l _ a c c
21

22 de f main ( ) :
23 a rg s = g e t _ a r g s ( )
24 c o n f i g u r a t i o n s = p r o c e s s _ c o n f i g ( a r g s . c o n f i g )
25

26 f o r c on f i g in c o n f i g u r a t i o n s :
27 e x p e r im en t _ r e s u l t = exper iment ( c o n f i g )
28 r e s u l t s . append ( e x p e r im en t _ r e s u l t )
29 r e s u l t s = compss_wait_on ( r e s u l t s )
30

31 i f __name__ == ' __main__ ' :
32 main ( )

Listing 2: Implementing HPO with PyCOMPSs

On completion, each task returns the result which can be a per-
formance measure such as validation loss or accuracy and training
history. For immediate and interactive action, the performance mea-
sure returned can be visualised using another task. When all tasks
are completed, we plot the graphs showing the performance of each
experiment. To do this, we use the comps_wait_on over the list
of results of all the experiments that synchronizes and ensures all
results are available for plotting.

5 EXPERIMENTS
To demonstrate the usage and effectiveness of our scheme, we de-
signed and performed several experiments using popular machine
learning benchmarks , MNIST [13] and CIFAR 10 [10]. The experi-
ments are performed at the MareNostrum 4 supercomputer. Each
node has two Intel Xeon Platinum chips, each with 24 processors, a
total of 48 per node. For GPU implementations, we perform experi-
ments on both MinoTauro cluster, which has 2 K80 NVIDIA GPU
Cards and 2 Intel Xeon E52630 v3 (Haswell) 8-core processors and
CTE IBM POWER9 cluster which has 2 x IBM Power9 8335-GTH
@ 2.4GHz (3.0GHz on turbo, 20 cores and 4 threads/core, total 160

threads per node and 4 x GPU NVIDIA V100 (Volta) with 16GB
HBM2.

Figure 4: Running a single task on a single core

When tracing is set (this is done using a simple flag), PyCOMPSs
generates a set of traces that help in application analysis. This is be-
cause PyCOMPSs is instrumented with Extrae, an instrumentation
package that captures information during the program execution
and generates paraver traces. Paraver [1] is a powerful tool that
provides detailed quantitative analysis of program performance.
We run the first set of experiments with tracing set. From the traces
generated, X axis is the time while Y axis is the resource (i.e cores
and nodes).

Figure 5: Multiple tasks on a single Node

The first experiment is to make sure and show that each task
respects the resources given and CPU affinity is enforced. For this,
we launch just one task and assign one core in a node with 48 cores.
This is done using the MNIST data set as it is not a very compute
intensive task. The traces are shown in the Figure 4. The task takes
around 29 mins to run to completion and its constrained to a single
core. Even though tensorflow’s default behavior is to span across
all available resources, PyCOMPSs is able to enforce CPU affinity
and the application has access to only the resources allocated.

The next experiment is to see how tasks are distributed across
cores in a single node. For this we launch the full MNIST HPO ex-
periment using grid search. From the configuration file, 27 different
experiments are created. The search space is number of epochs,
batch size the optimiser, 3 parameters for each. Since the worker
takes half of the cores in a node, 24 cores are left for the tasks. As
such, not all tasks will run in parallel. However, the next task is
assigned a computational unit as soon as one is available as shown
by the event flags. The traces are shown in Figure 5.
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(a) 28 Nodes (b) 14 Nodes

Figure 6: Multiple tasks on multiple nodes

The final experiment is to demonstrate HPO across multiple
nodes. For this we choose a much bigger dataset, CIFAR10. A total
of 27 experiments are created to be distributed across 27 nodes.
However, during job submission, we request an extra node for the
worker to make sure that all the tasks run in parallel. We assign
48 cores to each task (the total number of cores in a node) and let
Tensorflow take care of internal parallelism. We also repeat this
experiment with half the number of nodes. The traces are shown
in the Figure 6.

Both tracing and graph generation create a performance over-
head. These two features can easily be turned off by a simple flag
when launching the application. Ideally we do not need the traces
in HPO, but they are important to show deeper details of the ap-
plication. As such, we repeat the second and last experiment with
traces turned off. We also execute the same experiment on the GPU
cluster, as ideally, training is done on GPU. We also repeat the ex-
periments with different GPU and CPU configurations. In these
experiments we only measure the execution time. Results for those
executions are presented in Section 6.

6 RESULTS AND DISCUSSION
In this section we provide detailed analysis of our tool and the
results of the experiments. We first do a performance analysis and
resource utilisation by looking at the traces generated. The objec-
tive is to show the effectiveness of PyCOMPSs in task parallelism
and resource management. The first experiment tested that Py-
Compss can properly manage the hardware resources available in
the supercomputer.

6.1 Application Analysis
From Figure 5, several observations can bemade. First, the tasks take
different times to complete with some taking almost half the time.
This is due to the different number of epochs from the configuration
file. Second, from the event flags, 24 tasks were started at the same
time. The remaining tasks are started as soon as a new resource
is available, in this case cores 4, 10 and 16 from node 2. The entire
application takes 207 minutes. However, as will be shown later, this

is not entirely necessary and the process can be stopped as soon as
one task achieves a specified accuracy.

In Figure 6(a), each task runs on its own node as specified and
all tasks run in parallel. The first node seems empty as it is used by
the worker. Like in the previous case, some tasks finish earlier than
others. This means that it is possible to run the same application
with half the number of nodes for almost the same amount of
time as the nodes remain idle for the tasks that complete. This is
shown in Figure 6(b). Clearly, this is a better utilisation of resources.
It is important to note that no code changes are required to run
across multiple nodes, the user just has to request more nodes when
submitting the job. Scaling from a single node to multiple nodes is
seamless.

Figure 7: MNIST Hyperparameter optimisation using Grid
Search

Figure 9 shows the time taken to complete the MNIST (CPU
nodes) and CIFAR (GPU node) experiment using different config-
urations. By increasing the number of cores for each task, there
is a continuous decrease in the time taken. However in the case
of a single node, the time starts to increase after 4 cores. This is
because assigning more cores than the total available means that
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some tasks will be waiting for resources. If the total number of cores
available is the same or close to the number of cores requested by
the application, the execution becomes sequential and therefore
takes a longer time. One should therefore increase the number of
nodes as they increase the number of cores per task to create a
bigger pool of resources. This is evident when using two nodes as
the time taken by the application continues to decrease.

There is a very significant time difference in the GPU Node. The
GPU node has 4 GPUs and 160 cores. We assign each task a single
GPU (therefore only 4 parallel tasks) and continuously increase the
number of CPU cores. When using a single core, the time taken is
even higher than that of CPU node. The explanation for this is that
even though deep learning is significantly accelerated by GPUs, in
our set up data preprocessing takes place in the CPU. Therefore a
powerful GPU with just a single core is irrelevant as it will be idle
more of the time. Increasing the number of cores brings down the
time for the entire HPO process to less than an hour even though
only 4 tasks run in parallel. Also important to note is that for the
GPU node, we run the CIFAR10 dataset, which is much bigger in
size. This is to create a noticable difference as the MNIST dataset is
too small.

6.2 HPO Results
When all the tasks are done, we plot the results the same figure for
easier comparison. Figure 7 shows the result of HPO for MNIST
dataset after the entire application has completed. MNIST is a rel-
atively simple application that generalises well after just a few
epochs. Most of the combinations of hyperparameters are able to
attain above 90% accuracy. For such task, early stopping is of para-
mount significance as it makes no sense to continue with other
tasks after one has achieved the desired accuracy.

Figure 8: CIFAR10Hyperparameter optimisation using Grid
Search

CIFAR 10 is a slightly bigger and more complex benchmark in
comparison with MNIST. Figure 8 shows the results of HPO for
CIFAR 10 dataset. Most of the experiments perform well on the
given hyperparameters. As mentioned earlier, random search would
be a better alternative in this case as its possible to determine a
good set of hyperparameters with just a few experiments.

6.3 Discussion
In this paper, our main focus was to provide a scheme and tool
for HPO in HPC clusters. Though we have demonstrated the us-
age using primarily one algorithm, this scheme provides the user
with the flexibility to choose and implement any HPO algorithm.
Furthermore, even though all the experiments are implemented
with Tensorflow, our scheme does not constrain the user to any
framework. We focus on structuring the application rather than
the inner details of the application.

Figure 9: Time Vs Cores

Besides easy programmability as evident in listing 2, our scheme
scales with an increase in the number of both cores and nodes. We
tested scalability up to 27 nodes as shown in the traces. The time
taken for the entire HPO even when using an algorithm such as
grid is drastically brought down with an increase in the number of
resources. Furthermore, our tool provides the much needed flexibil-
ity in resources management. By specifying the number of GPUs
and CPUs for a task, one can come up with an optimal number and
type of resources depending on the task.

7 CONCLUSION
In this paper we have presented a HPO scheme based on PyCOMPSs
as an alternative tool for Hyperparameter Optimisation. We have
shown that we can span multiple trainings across multiple nodes
in a supercomputer and reduce the entire HPO process to days or
hours instead of weeks. We have shown that our scheme is not only
simple and easy to implement but provides all the features for a
HPO tool discusses in section 1.

We hope to provide researchers with an alternative tool to accel-
erate HPO in complex infrastructures such as supercomputers and
cloud. Furthermore, we provide a framework agnostic tool with a
easy implementation. Even though we intend to support exhaustive
grid search and random search, different algorithms can easily be
implemented. We further present PyCOMPSs as a framework that
enables seamless distributed computing to the machine learning
community to facilitate further discussions and innovation around
the subject. For future work, we are developing a library that puts
together all key algorthms in HPO in an easy to use way. This
library will enable the user to perform HPO over any search space
by simply calling a function and specifying the algorithm.
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