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Abstract

Specialists have used confocal microscopy in the ex-vivo modality to identify tumors with
an overall sensitivity of 96.6% and specificity of 89.2%. However, this technology hasn’t
established yet in the standard clinical practice because most pathologists lack the knowl-
edge to interpret its output. In this paper we propose a combination of deep learning and
computer vision techniques to digitally stain confocal microscopy images into H&E-like
slides, enabling pathologists to interpret these images without specific training. We use a
fully convolutional neural network with a multiplicative residual connection to denoise the
confocal microscopy images, and then stain them using a Cycle Consistency Generative
Adversarial Network.

Keywords: Deep learning, Neural Networks, Digital Staining, Confocal Microscopy, Speckle
Noise, CycleGAN

1. Introduction

Histopathology with hematoxylin and eosin (H&E) staining is widely used as a diagnostic
tool for a large variety of tissue lesions. However, it requires skilled technicians to process
and stain the tissue samples, and it is very costly and time-consuming, requiring from hours
to days before a pathologist can analyze the samples. These long delays often impede rapid
evaluation of lesions during a surgical operation.

Confocal microscopy (CM) is a novel technique for tissue examination where a laser is
focused on a microscopic target and the scattering of the light through its various structures
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is captured to form a two-dimensional grayscale image (Calzavara-Pinton et al., 2008).
These microscopes can operate in two different modes (reflectance (RCM) and fluorescence
(FCM)) which highlight different microscopic structures in the tissue. The combination
of the two modes can improve the diagnostic accuracy of the pathologist in the ex-vivo
evaluation of tumour margins (Gareau, 2009). In the last years, this new technology has
enabled the rapid evaluation of tissue samples directly in the surgery room significantly
reducing the time of complex surgical operations in skin cancer.

CMs can obtain images with an optical resolution comparable to pathology, but their
output largely differs from the standard H&E slides that pathologist use to evaluate in their
clinical practise. Some researchers have focused on creating digitally stained (H&E)-like im-
ages from the output of the CMs to facilitate their interpretation by untrained pathologists
and surgeons. (Gareau, 2009) has proposed a digital staining technique which linearly
combines the FCM and RCM images to form an RGB output slide which resembles H&E
stained pathology giving a blue color to FCM and pink to purple color to RCM. This is,
in fact, the algorithm used in the last generation of the Vivascope 2500 clinical ex vivo
CM device (Vivascope, 2018). This simple staining technique is good at enhancing cellular
details allowing the mitosis visualization, but its colors and structures greatly vary from
the ones found in the original H&E slides.

In this work, we propose a deep learning technique to combine the two modes of the
CM into a (H&E)-like image. First, a fully convolutional neural network is used to remove
the speckle noise present in the RCM images, and then a Cycle Consistency Generative
Adversarial Network (CycleGAN) (Zhu et al., 2017) is used to combine the FCM and RCM
modes into a digitally stained (H&E) slide.

2. Materials and Methods

In this section, we describe the architecture of the Despeckling Neural Network used in
the RCM image of the CM and the Generative Adversarial Network used to create the
(H&E)-like digitally stained image. Figure 1 shows the complete pipeline for CM image
staining.

FCM Image

Despeckling
RCM Image Meural Network

Figure 1: Diagram of the proposed architecture to transform the output of the CM to
digitally stained (H&E)-like slides.
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2.1. Reflectance Image Despeckling

RCM images are corrupted with a kind of multiplicative noise known as speckle (Sarode
and Deshmukh, 2011). Speckle noise is due to a combination of constructive and destructive
fluctuations at the input of the CM sensor which interfere with the nominal tissue structure
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reflectance. The presence of speckle noise limits the application of further post-processing
and computer vision techniques and makes diagnosing less reliable for physicians. Hence,
before digitally staining the CM images, their noise must be reduced. Figure 2 shows some
RCM images extracted from the CM dataset presented in section 2.3.1.

Figure 2: Reflectance images with speckle noise at the output of the CM.

In this work, similarly to (Wang et al., 2017), we use a fully convolutional neural network
together with a residual connection to reduce the intensity of the noise present in the RCM
images. The observed image at the output of the CM is related to real tissue reflectance by
the following equation:

Y=Xx(1+F)

Where Y € RW*H ig the observed RCM image, X € RW"*H is the noise-free reflectance
of the tissue, and F € RW*H is the speckle noise random variable. We include the afore-
mentioned formulation inside the architecture of the neural network so that it is trained to
estimate the inverse of the speckle noise 1/ F' at the last convolutional layer.
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Figure 3: Architecture of the despeckling neural network used in our experiments.

The fully convolutional neural network is composed of 7 convolutional layers (PreLu
activations) with 64 filters each and 1 final convolutional layer (TanH activation) with a
single filter. Batch normalization is added to the intermediate layers of the neural network.
We use a multiplicative residual connection between the last convolutional layer and the
input image to incorporate the speckle noise formulation in the the neural network. The
architecture is trained to minimize the squared error between the clean images and its
output. After training, some noise may still be present in some isolated pixels (figure 6).
Authors in (Wang et al., 2017) add total variation loss to the training process to remove
these spurious pixel activations. Instead, we filter out the remaining noise using a 3x3
median filter. We train the neural network on a dataset of skin histology images which have
been artificially contaminated, which have a similar appearance to noisy RCM images.
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2.2. Confocal Microscopy Staining

Due to the impossibility to obtain paired data between the CM domain (A) and the stained
H&E histology domain (B) (tissue blocks scanned with the CM need to undergo slicing
before staining with H&E), we use Cycle Consistency Generative Adversarial Networks
(CycleGAN) (Zhu et al., 2017) to transfer the H&E stain appearance to CM images. The
CycleGAN architecture consists of two generator and discriminator pairs. The first pair tries
to map images from domain A to domain B, while the second pair undergoes the contrary
operation. The generators’ task is to create images that the discriminators can’t distinguish
from real samples. We use a ResNet (He et al., 2016) architecture in the generators and a
PatchNet (Isola et al., 2016) in the discriminators. Figure 4 shows all the components and
loss functions involved in the translation from A to B.
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Figure 4: Components and loss functions involved in the domain translation from A to B.
The same process is carried out on the contrary direction when translating from
B to A.

It is known that CycleGANs are sensitive to their initialization, so to pose an easier
task, we use the digital staining method proposed in (Gareau, 2009) as source images for
domain A. Figure 5 shows this transformation.

2.3. Data
2.3.1. CONFOCAL MICROSCOPY

Our CM dataset consists of 11 microscopy skin slides obtained with the Vivascope 2500
4th Generation CM (Vivascope, 2018), which captures the tissues at a resolution of 0.75
wm/px. Tts output consists of two large grayscale images (more than 10000 x 10000 pixels),
one for each capture mode (RCM and FCM). Both modes are normalized to cover a range
from 0 to 1, and OTSU thresholding is used to determine the regions of the slides which
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Figure 5: (a) FCM image, (b) RCM image, (c) Digital staining as proposed by (Gareau,
2009)

contain tissue. Non-overlapping patches of size 1024 x 1024 pixels are extracted summing a
total of 949 1024x1024 images for each mode (80 % for the training split and 20 % for the
validation split).

2.3.2. H&E HIsTOLOGY

Our H&E Histology dataset consists of 29 skin tissue samples obtained with a Ventana
Whole Slide Image scanner captured with a resolution of 0.47 um/pz. OTSU thresholding
is used to determine the tissue containing regions in each whole slide image and multiple
patches of size 1630 x 1630 pixels are extracted and then resized to 1024x1024 pixels.
The final resolution of each patch is the same as the CM resolution (0.75 pm/pzx). The
processed dataset consists of a total of 8789 images (80 % for the training split and 20 %
for the validation split).

3. Experiments and Results

In this section, we describe the results obtained for the Despeckling Neural Network used in
the RCM of the CM and the Generative Adversarial Network used to create the (H&E)-like
digitally stained image.

3.1. Reflectance Despeckling

We trained the Desplecking Neural network on 7031 histology images which had been pre-
viously transformed to the grayscale color space. We inverted the images to make them
closer in appearance to the ones found in the RCM of the CM, where high-intensity pixels
correspond to the tissue containing regions. We augmented the training dataset through the
use of random flips and random crops of size of 256 x 256 pixels. We updated the weights
of the neural network using Adam optimization with a learning rate of 5e — 4. Finally, we
evaluated the results on 1748 histology images contaminated with artificial speckle noise
and 949 RCM images extracted from the CM. In Table 1 we present the quantitative results
obtained on the artificial dataset, and figures 6 and 7 show some images before and after
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going through the despeckling neural network for the artificial histology dataset and RCM

dataset respectively.

Table 1: PSNR and SSIM before and after applying the proposed Despeckling Neural Net-
work.

| Error Measure || Noisy | Despeckled |

PSNR (dB) 16.19 23.97
SSIM 0.438 0.727

Figure 6: (a) Original clean image from the artificial despeckling dataset, (b) Original image
with artificial speckle noise, (c) Despeckled image at the output of the neural
network, before the 3x3 median filter, (d) Despeckled image after the 3x3 median

filter.

Original images

Figure 7: RCM images before and after the proposed despeckling neural network.
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3.2. Confocal Image Staining

We trained the Staining CycleGAN on 759 CM images and 282 histology images extracted
from a single slide (the one with the best proportion of hematoxylin and eosin stains). The
CycleGAN was trained with Adam optimization and a learning rate of 2e — 4. We trained
the neural network first on patches of size 256 x 256 pixels. After 50 epochs, we augmented
the patch size to 512 x 512 so that the architecture could learn features seen at a higher
scale and then trained it for another 50 epochs with learning rate decay. Figure 8 shows
some results of a CycleGAN trained on images which have been previously denoised with
the method described in section 2.1, as well as some images from domain B. Figure 9 shows
some results of a CycleGAN trained with noisy RCM images.

b o

Figure 8: Results of the proposed architecture (Despeckling neural network and Cycle-
GAN). The top row represents the input images of the CycleGAN, which have
been digitally stained with the method proposed by (Gareau, 2009). Middle row
is the output of the staining CycleGAN. The images in the bottom row are real
H&E stained histology images extracted from the training dataset. All images
are 512x512 pixels.

4. Discussion

We argue that the combination of the proposed despeckling neural network with the Cy-
cleGAN architecture for stain transfer is capable of producing realistic (H&E)-like images.



DiGITALLY STAINED CONFOCAL MICROSCOPY THROUGH DEEP LEARNING

Figure 9: Results from the CycleGAN trained with RCM noisy images. Top row represents
the input images of the CycleGAN, which have been digitally stained with the
method proposed by (Gareau, 2009). Bottom row is the output of the staining
CycleGAN. All images are 512x512 pixels.

Output images from the proposed algorithm were evaluated by two expert pathologists in
our department (LL.A/A.G) and they confirmed that the images were similar to those in
routine.

The despeckling neural network was able to successfully remove the noise from the
RCM images at the output of the CM. From the results on figure 9 we conclude that
the Despeckling Neural Network is crucial to obtain realistic images at the output of the
CycleGAN. The architecture trained with noisy RCM images had a harder time learning
to map the confocal output to the (H&E)-like appearance and produced non-desirable
artifacts, as well as eliminated some nuclei present in the CM images. However, we argue
that the Despeckling Neural Network could benefit from including an adversarial loss in the
optimization process to produce sharper results.

5. Conclusions and Future Work

We have proposed an architecture which successfully addresses the problems involved in
CM image staining. On the one hand, we reduce the noise present in the RCM images
through the use of a denoising convolutional neural network with a multiplicative residual
connection. Then, the denoised RCM image and FCM image are combined in a generative
adversarial network to produce a realistic (H&E)-like output image. The methods described
in this paper will undergo clinical validation in the near future.
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