

CORE

Universitat Autònoma de Barcelona

ANEMIA, DIABETES AND LOW FUNCTIONAL CONDITION AS INDEPENDENT FACTORS FOR POOR CLINICAL OUTCOME IN TOTAL KNEE ARTRHOPLASTY

Germans Trias i Pujol Hospital

Yañez Siller F, Nescolarde-Selva L, Garcia Oltra E, Martinez PastorJ Hernandez Hermoso J

Orthopaedic Surgery Departament. Hospital Germans Trias i Pujol

Background

Health status in general and in particular before and after Total Knee Arthroplasty (TKA) depends on multiple factors. Several have been associated with reduced functional outcomes following TKA.

Preoperative anemia has been associated with high morbidity and complications after TKA, nevertheless, controversy exists on if it has an influence in clinical outcomes and influence on mid or long-term outcome following TKA is unknown.

Results

KSS Excellent-Good (\geq 160) and Poor-Bad (<160)

n=503		Median	P
Age	Excellent-Good	74.6 (49.3-91.4)	0 6/6
	Poor-Bad	74.2 (45.2-91.5)	0.040
BMI	Excellent-Good	30.9 (18.2-47.1)	0 554
	Poor-Bad	31.2 (22-46-4)	0.554
Hb pre	Excellent-Good	13.5 (10-17)	
	Poor-Bad	13.2 (10.2-16.8)	0.039*
Hb24h post	Excellent-Good	9.8 (5.4-14.3)	0 081
	Poor-Bad	9.5 (6.8-14.3)	0.001
Glypre	Excellent-Good	99.0 (21-272)	0 0/2*
	Poor-Bad	103.0 (74-245)	0.040
Gly24h post	Excellent-Good	126.5 (81-345)	0 872
	Poor-Bad	126.0 (85-383)	0.072
KSS pre	Excellent-Good	84.0 (8-127)	0_060
	Poor-Bad	75.0 (7-149)	0.009
WOMAC pre	Excellent-Good	52.0 (7-95)	
	Poor-Bad	57.0 (8-91)	
WOMAC post	Excellent-Good	9.0 (0-70)	
	Poor-Bad	13.0 (0-89)	0.000
Follow-up	Excellent-Good	3.0 (1-6)	0 076
	Poor-Bad	3.0 (1-6)	0.370

following TKA is unknown.

Diabetes has a high incidence in patients undergoing TKA. Several studies show that quality of life in diabetic patients is decreased compared to non-diabetic.

Patient related outcome scales are highly predictive of patient reports treatment success following joint arthroplasty, but there are no gold standards in terms of TKA outcomes tools

Controversy exists over which and how the different factors may influence health status after TKA in short-term follow-up; but so far, there are no mid or long-term studies on how these factors may affect TKA result

Material & Methods

This is a follow-up retrospective, observational study on the impact that factors as: age, gender, body mass index (BMI), American Society of Anesthesiologist score (ASA), Charlson score, hemoglobin (Hb) and glycaemia (Gly) blood levels before and after TKA and WOMAC and KSS scores before TKA; may have on the mid-term WOMAC and KSS follow-up.

Low preoperative Hb levels (P <0.039), High preoperative Gly levels (P <0.048) and a preoperative KSS with low score (P <0.0049) are associated with poorer results of postoperative KSS.

WOMAC Excellent-Good (\geq 22) and Poor-Bad (<22)

	n=503	Median	Ρ
Age	Excellent-Good	74.6 (45.2-91.5)	0 342
	Poor-Bad	75.8 (62-87.5)	0.072

We studied 595 records of TKA for primary. Second TKA procedure and patients with severe poly articular or psychiatric disease or major illness (i.e. advanced cancer) were excluded. A total of 503 patients and TKA were studied.

Demographics			
Gender			
Females	73.2%		
Males	26.8%		
Age	73.3+-1		
BMI	31.2+-0.6		
ASA	1		
Normal-Mild	68.8%		
Severe	31.2%		
Charlson			
<= 2	80.8%		
> 2	19.2%		
Anemia (WHO)			
Normal	85%		
Mild	12.6%		
Moderate	2.4%		
Gly pre (ADA)	·		
Normal	83.8%		
Bad control	16.2%		
Infection	1.4%		
Complications	4.2%		

We utilized the World Health Organization (WHO)'s gender based definition for anemia severity. The same written protocol with subcutaneous insulin under demand was used for preoperative and postoperative glycemic control in all patients with high blood glycemic levels or diabetes.

Independent variables were WOMAC-FF and KSS-FF stratified in good or bad result; and the dependent variables were the Hbbefore, Hb-24h, Gly-before, Gly-24h, KSS before and WOMAC before.

BMI	Excellent-Good	31.1 (18.2-47.1)	0 160
	Poor-Bad	30.1 (24.3-39.1)	0.100
Hb pre	Excellent-Good	13.4 (10-17)	0 422
	Poor-Bad	13.4 (11.2-15.3)	0.432
Hb24h post	Excellent-Good	9.7 (5.4-14.3)	0.256
	Poor-Bad	9.4 (7.4 -11.7)	0.250
Gly pre	Excellent-Good	99 (21-272)	0 017*
	Poor-Bad	110.0 (84-245)	0.017
Gly24h post	Excellent-Good	126.5 (81-383)	0 1 5 0
	Poor-Bad	125.0 (93-345)	
KSS pre	Excellent-Good	83.5 (8-164)	0 000*
	Poor-Bad	69.5 (7-111)	0.000
KSS Post	Excellent-Good	173.0 (90-200)	0 000**
	Poor-Bad	152.0 (14-190)	0.000
WOMAC pre	Excellent-Good	54.0 (7-95)	0.005*
	Poor-Bad	60.0 (45-91)	0.005
Follow-up	Excellent-Good	3.0 (1-6)	0 271
	Poor-Bad	3.0 (2-6)	0.371

High levels of preoperative glycemia (P < 0.017), low values of preoperative KSS (P < 0.008), and high preoperative WOMAC score (P < 0.005) are related to worse postoperative WOMAC results.

Conclusion

REFERENCES

- 1. Hairil Rizal Abdullah et al. Association between preoperative anaemia and blood transfusión with longterm functional and quality of life outcomes amongst patients undergoing primary total knee arthroplasty in Singapore: a single-centre retrospective study. *Quality of Life Research* <u>https://doi.org/10.1007/s11136-018-1996-z</u>
- 2. Jourdan M et al. Is There an Association Between Hemoglobin A1C and Deep Postoperative Infection After TKA? Clin Orthop Relat Res (2017)
- 3. Sunil K et al. Effects of preoperative walking ability and patient's surgical education on quality of life and functional outcomes after total knee arthroplasty. *Rev Bras Ortop*. 2017; 5 2(4): 435–441.
- 4. Johannes Met al. WOMAC, EQ-5D and Knee Society Score Thresholds for Treatment Success After Total Knee Arthroplasty. *Journal of Arthroplasty* 30 (2015) 2154–2158.
- 5. Hilal Maradit et al. Diabetes Mellitus and Hyperglycemia and the Risk of Aseptic Loosening in Total Joint Arthroplasty. *Journal of Arthroplasty* 32 (2017) S251eS253
- Maria A. Martínez-Huedoet al. Effect of Type 2 Diabetes on In-Hospital Postoperative Complications and Mortality After Primary Total Hip and Knee Arthroplasty. *Journal of Arthroplasty* 32 (2017) 3729e3734

Preoperative low hemoglobin levels, preoperative and postoperative higher glycaemia levels and preoperative lower KSS and higher WOMAC scores are independently associated with poor-bad short-term KSS and WOMAC outcomes after TKA.

We believe that this information is important when it comes to providing an initial prognosis to patients and taking corrective measures prior to surgery.

Good assessment and optimization of these variables may help in improving results in TKA.