
Efficient power, performance and thermal
aware strategies over heterogeneous platforms

A Master’s Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya by

Ignacio Penas Fernandez

Advisor: Marina Zapater
UPC Advisor:Josep Pegueroles

Barcelona, July 2019

Contents
1 Introduction 8

1.1 Motivation . 8
1.2 Objectives . 9
1.3 Previous Work . 9
1.4 Thesis organization . 9

2 The MANGO European Project 10
2.1 Overview . 10
2.2 Objectives . 11
2.3 Software stack . 11
2.4 Validation applications . 12
2.5 The MANGO prototype . 13

3 Global Resource Manager (GRM) Architecture 15
3.1 Overview & Objectives . 15
3.2 Global Resource Manager Software Architecture 16
3.3 The SLURM Resource Manager tool . 19
3.4 Docker as connectivity and deployment tool 21

3.4.1 Overlays and IP description . 22
3.4.2 Port Requirements . 22
3.4.3 Deployment . 23

4 Integration of the GRM in the MANGO prototype 24
4.1 BarbaqueRTRM-SLURM communication . 24
4.2 SLURM-BarbequeRTRM communication . 26

5 Global Resource Manager Allocator 29
5.1 Cluster Architecture Builder . 29
5.2 Cluster Availability Update . 32
5.3 Algorithms . 33
5.4 Entry Point . 34

6 Efficient power-, performance- and thermal-aware strategies 35
6.1 Greedy policy . 36
6.2 Fully distributed policy . 36
6.3 Temperature/Power aware policy . 36

7 Experiment setup and results 39
7.1 Global Resource Manager Validation . 39
7.2 Policies results and validation . 46

8 Conclusions 49

9 Future Work 50

2

Appendices 52

A File description for Dockerization and deployment 52
A.1 MANGO GRM Docker-compose deployment file 57

B Application recipe requirements 62
B.1 Generic Sample Recipe . 62
B.2 Philips sample Recipe . 62

C Extended network configuration file 64

D Extended policy graphs 66
D.1 Temperature distributed . 66
D.2 Temperature greedy . 67

3

List of Figures
1 Resource management strategy aimed by MANGO. 11
2 Example of the real cluster infrastructure in ”Le Lieu” 14
3 Global Resource Manager Overview . 18
4 Overview of SLURM basic blocks . 20
5 SLURM flow, application execution, policy and node allocation 20
6 Flow overview, from BarbaqueRTRM to SLURM 24
7 Data Parser work-flow from the Local Resource Manager to Kafka 25
8 Application execution flow from the single entry-point on GN0 to any Local

Resource Manager . 26
9 Network obtained after creating the initial network architecture given the con-

figuration file shown in Listing 3 . 31
10 Larger network automatically scaled changing the configuration file 32
11 Network architecture for the functionality tests 40
12 Docker Swarm Successful deployment of services 41
13 This figure shows the correct deployment of the docker images that subscribe

to the BBQUE data server and posts its results to the Kafka Server of the GRM 41
14 Sample of filtered BBQUE messages pushed bu the Kafka producers here kafka 6

represents GN5 and kafka 7, GN6 . 42
15 Example of SLURM completion job report in which the three different variants

are shown . 42
16 Evolution of cluster Networkx graph status throughout the first 6 allocated jobs

applying the distributed policy . 43
17 Example of SLURM completion job report in which the three different variants

are shown . 44
18 Example of SLURM completion job report in which the three different variants

are shown . 44
19 Evolution of cluster Networkx graph status throughout the first 6 allocated jobs

applying the distributed policy . 45
20 Experiment predefined occupancy trend trying to follow a distribution with two

marked peaks of demand in order to show the adaptability of the temperature
policies . 47

21 Extension of the previous architecture where we consider two more nodes with
its repective hardware . 47

22 First job scheduling applying the occupancy trend with temperature distributed
policy . 66

23 First job scheduling applying the occupancy trend with temperature greedy policy 67

Listings
1 Command for SSH remote script executions 27
2 Example sbatch execution script . 27
3 Example of initial architecture input file . 29

4

4 Example of initial architecture input file . 41
5 Entrypoint script . 44
6 Full availability cluster example . 64

List of Tables
1 Setup provided for the final validation of MANGO project 13
2 Target Architecture of the initial functionality test 39
3 This table summarized the configuration file used during the validation process 39
4 MANGO stack status during the 4 nodes test 46
5 Performance experiment results . 48

5

Abbreviations

EPFL École Polytechnique Fédérale de Lausanne

GN General purpose Node

GRM Global Resource Manager

HN Heterogeneous Node

HPC High Performance Computing

LRM Local Resource Manager

MANGO Manycore Architectures for Next-Generation HPC computing

ML Machine Learning

PoliMi Politecnico di Milano

SLURM Simple Linux Utility for Resource Management

UPV Universitat Politècnica de València

6

Abstract

Resource Management is a widely studied field in computer science and of utmost importance
for the adequate operation of data center infrastructures. Efficient resource management poli-
cies enable to improve the energy consumption of these facilities, thus reducing operational
costs. Furthermore, in High Performance Computing (HPC) environment, as is the case of the
MANGO H2020 project, allow to improve performance and execution time of applications.

The main objective of this project is the design, implementation and test of a resource manager
able to allocate incoming applications to the different servers of the data center, while providing
the necessary tools to deploy power, performance and thermal aware policies over an hetero-
geneous cluster. This cluster, will be composed by regular Intel based servers and FPGA based
accelerators. The resource manager will work as a single entry point for all the applications
involved in MANGO project.

By the end of the project, we have shown how applying simple yet effective allocation policies
without controlling fine grain accelerators and with and overview of the system it is possible
to improve performance by 10% by lowering power and temperature and reducing the above
mentioned operational costs. The resource management tool developed in this MSc thesis has
been deployed in a real prototype infrastructure composed by 8 and 128 FPGAs.

7

1 Introduction

This MSc thesis consists in the development of a resource manager for the MANGO H2020
European project and the research of the most suitable policies for the resources available.
Adequate resource management is a requirement in any type of cluster, even more important in
our particular case as we are working with heterogeneous resources. This work consists on the
development and deployment of a resource manager that allocates and the executes applications
in different nodes considering optimal policies. Also, for this project, the resource manager
works as single entry point.

Due to limitations of the project, such as data availability, for this work four policies are
tested and implemented, fully distributed, greedy, temperature aware distributed and temper-
ature aware greedy.

For our project resource management consists in a dynamic combination of a scheduler/work-
load manager and a data provider that retrieves data from the nodes. The workload manager
allocates applications considering the data retrieved from the nodes and a given policy, accepts
applications as entry point and schedules the applications for its execution or queues them de-
pending on the resource availability and the policy constraints.

The resource manager can be described as an integration among multiple different services aim-
ing to create a Global Resource Manager (GRM) able to handle and oversee an heterogeneous
data center. As main Manager tool we have implemented a dockerized version of SLURM.
SLURM is a well known open source software that works in a manager-slave manner.

1.1 Motivation

Data center energy consumption is dramatically increasing, world wide is expected to reach
20% by 2025. In addition, the next step of High Performance Computing (HPC) is about to
reach exascale. Exascale computing aims at developing computer systems capable of supply-
ing exaflops. This implies a huge increase in the energy consumption (around 20-30MW per
computer system [1]).

The Horizon 2020 MANGO project [2] aims at exploring deeply heterogeneous accelerators
for use in High-Performance Computing systems running multiple applications with different
Quality of Service (QoS) levels. The main goal of the project is to exploit customization to
adapt computing resources to reach the desired QoS” [3]

MANGO project implies a group of coordinated software, the necessary data required by the
policies we are aiming to implement is not accessible in a common way.

8

As explained in next sections, apart from the data provided by the servers (as CPU usage,
temperature, etc.) accurate information of the hardware nodes is provided by the tool called
BarbequeRTRM via subscription server.

1.2 Objectives

The objectives of this project are listed as follows:

• Design and implementation of a GRM that works as entry point of the heterogeneous data
center and facilitates the implementation of temperature, power and performance-aware
policies.

• Integration of the GRM within the MANGO components including the deployment and
testing on the MANGO prototype containing eight servers and sixteen motherboards
equiped with 4 FPGAs that will be used as accelerators.

• Development, testing and integration of four policies to the thermal behaviour and perfor-
mance of the prototype cluster and will serve to showcase the capabilities of the MANGO
final demonstrator.

1.3 Previous Work

We can find examples of previous heterogeneous clustering on High Performance Computing as
could be the combination of common servers with graphic cards for Machine Learning training
or crypto currency mining for example. Other examples could be the clusters which combine
edge devices (as Raspberry pi) with HPC servers.

There are also running data centers which combine and offers FPGA and CortexV7 processors
as an alternative to the normal servers. This offers the customer the possibility to build its own
specialized accelerators for and specific application. In this scope is located MANGO project
aiming on new technologies such us custom application accelerators.

1.4 Thesis organization

The rest of the document is organized as follows. Chapter 2 describes the main features of
MANGO project such as the project objectives, architecture and main components relevant to
this project. Subsequently, in Chapter 3 we depict the full architecture of the Global Resource
Manager. Chapter 4 explains the integration process of the GRM within the MANGO prototype
and the features that made it possible. The last part of the GRM that is detailed in chapter
6 involves both the policies applied and the developed tools to allow the execution of those
policies. Finally, chapters 8 and 9 close the project by summarizing the results of the projects
and aiming new possible work.

9

2 The MANGO European Project

MANGO is an EU founded project which main objective is the exploration of new HPC archi-
tectures always aiming the 3P standards (Power, Performance, Predictability). The project focus
on the fact that the most efficient, both power and performance, execution of an application is
adapting the hardware to its specific requirements (Image processing hardware requisites are
different than code error correction applications).

2.1 Overview

As mentioned before, due to the impulse for exascale one of the most urgent problems in HPC is
the performance-power balance. In this scenario, manufacturing a processing unit for each ap-
plication would provide the most efficient execution in terms of power and performance while in
terms of material resource would be absolutely ridiculous. MANGO will focus on exploiting the
current unstudied field of specific hardware accelerators aiming QoS and power-performance
efficiency.

The project architecture is composed by both HPC servers and hardware accelerators. In MANGO
terms, HPC servers are called as GN, General purpose Nodes, and the hardware accelerators,
HN (Heterogeneous node).

The main partners of MANGO consortium are a combination of academic institutions and com-
panies. Universidad Politécnica de Valencia, aside from being in charge of the project coordi-
nation, develops the architecture target of the hardware nodes. Those hardware nodes are im-
plemented in FPGA’s provided by ProDesign Electronics meanwhile the cluster prototype is
integrated at EATON data center in ”Le Lieu”. Software stack, which is in charge of integrat-
ing the hardware accelerators and the HPC servers (detailed in Section 2.3), is coordinated by
Politecnico di Milano. Finally, in the MANGO architecture point of view, École Polytechnique
Fédérale de Lausanne (EPFL) develops the Global Resource Manager of the cluster.

Regarding the hardware accelerators, despite the fact that the project includes three different
architectures, for this MSc thesis we have only focused efforts on the one developed by UPV
mentioned above called PEAK because it was the more stable accelerator at the time this thesis
was taking place.

The GRM provides thermal, power and performance management for both hardware and soft-
ware while also facilitates the validation and testing of the project giving a single entry point
for stress testing and policy application on the higher lever. As for MANGO project purposes,

10

the policies developed are oriented to test and improve the thermal and power behavior while
keeping in mind the performance required for a HPC cluster.

2.2 Objectives

Summarizing what we have previously mentioned, we have the following goal as main MANGO
project objective:

• Exploration of alternative architectures guided by 3P (Power, Performance and Predictabil-
ity optimization).

For the development of this MSc Thesis, we focus on the Software goals of the project:

• Adapt programming models and compiler support to the new architectures

• Develop the right resource manager to deal with the system

2.3 Software stack

Mango software architecture works in a hierarchical manner, from fine grain (hardware con-
trollers and drivers) to gross grain (cluster overview power and temperature aware allocators).

Figure 1: Resource management strategy aimed by MANGO.

Figure 1 shows the software architecture pursued by the project. In this architecture we have
two big differentiated layers, the Local Resource Manager (LRM) and the Global Resource
Manager (GRM). Moreover, another downer layer is connected to the LRM: MangoLibs.

11

MangoLibs are the libraries, functions and tools developed on the project that BarbequeRTRM,
the Local Resource Manager invokes to communicate with the hardware accelerators.

Back in the big picture, the LRM is installed in every GN and its main function is to perform
the resource allocation in each node. The Local Resource Manager makes allocation based on
the QoS required by the applications. In short, the Local Resource Manager is in charge of
assigning the available resources at node level.

The Local Resource Manager (LRM, also called BarbaqueRTRM), in charge of allocating re-
sources to incoming applications at node level, grants a QoS allocation policy. Thus, each ap-
plication, besides the binaries needs to be executed, must be parsed with a file (called recipe) in
which it specifies its requirements. The main requirements possibilities are shown in Appendix
B

Finally, at the higher level stands the Global Resource Manager. As this component and its
connection with the LRM are the main development work of this MSc thesis, are widely explain
in Section 3 and 4. As brief introduction, the GRM main objectives, which were also mentioned
above, are: providing MANGO prototype a single entry point and manage the global available
resources of the cluster in other to apply policies constraint to 3P standards.

All the data provided in this section show how the integration process of this stack is a chal-
lenging task because the components are not standardized at all. Thus, the last four months have
consisted on weekly integration meeting among the partners involving this part of the project
(Most times, EPFL, UPV and PoliMi).

2.4 Validation applications

The following adapted applications apart from being part of the MANGO project, are the key
point for the validation process. These applications have been migrated from its original com-
pilation process to run in these specific accelerators.

Besides the architecture development, MANGO lays its validation in three main applications.
These applications consistently focus its implementation on guarantee QoS and versatility to
offer the different accelators a way to test and validate its development.

• Online video transcoding

• Volume rendering for medical imaging

• Error correcting codes in communications

For this thesis porpoises the only functional application was the one performing volume ren-
dering for medical imaging. This application is generated by Philips bio-engineering section.
The main use of this application is for the processing of the images obtained by the differ-
ent equipment available as MRI (Magnetic Resonance Image), CT (Computed Tomography),
X-Ray, etc.

Before, it was mentioned the application recipe (Example in Appendix B.1) as the tool for the
LRM to understand the requirements of the each specific application. If we compare recipes

12

from other applications, as for example Appendix B we can see the different requirements.
Philips application is prepared to be executed on CPU, PEAK(HN) or Nu+(HN) while online
video transcoding is only oriented to be executed on CPU or Tesla(HN) accelerators.

2.5 The MANGO prototype

This section presents the detailed hardware available for prototyping while also describes the
hardware (not only hardware accelerators of the projects but all the components) architecture of
the system.

Although the initial project proposal included sixteen common HPC servers at the end, due
to space and budget limitations the prototype in which this project is developed and tested
contained eight servers.

The main components of the prototype are depicted in table 1u:

of component per motherboard
Setup # #Servers per setup #Motherboards #FPGA #Others
1 4 1 4 12 4
2 2 1 4 8 8
3 2 1 4 6 10
Total 8 32 26 22

Table 1: Setup provided for the final validation of MANGO project

Each ProDesign motherboard has space for four hardware components with a specific shocket,
FPGA or ARM accelerators. The motherboards are the component that interconnect the hard-
ware accelerators with the servers. The composition of the many core architecture will be 16
hardware components per server which means that every servers must be capable of executing
applications and parsing data from two different motherboards.

Figure 2 shows part of the real prototype which is located in ”Le Lieu”, Switzerland1. Figure
2a on the left represents a cluster of 4 ProFPGA motherboards each one containing 4 FPGAs.
On the right, Figure 2b is the rack of servers connected to the motherboards via PCI.

1Images from MANGO deliverable 5.4

13

(a) Cluster of 4 motherboards representing an HN
node placed on a rack

(b) Rack of servers with the corresponding PCI
connections for the motherboards, each server is a

GN node

Figure 2: Example of the real cluster infrastructure in ”Le Lieu”

14

3 Global Resource Manager (GRM) Architecture

3.1 Overview & Objectives

As the global resource manager is the higher-level software component of MANGO software
stack, its main objective is to perform the assignment of incoming workload to the different node
of the cluster. Therefore, it needs to be granted complete full access to the cluster resources
in MANGO. This means that the global resource manager will not decide in which specific
FPGA(HN) or CPU(GN) the program will be run but the node.

The first objective of the global resource manager would be to choose in which node the re-
quested application must be executed. This decision is made considering the overall image of
the total resources and their current availability. To this end, the GRM interacts with each of
the instances of the LRM (BBQ) running in one of the Intel cores (at the server-side) of each
of the clusters. Because of its hierarchical construction, as the global resource manager is the
top-level service of the cluster, it will need to have visibility and full connectivity with all the
GNs (and in particular the instances of BBQ RTRM running on the GNs) of the whole MANGO
platform. However, it does not require access to the HNs. Only knowing their availability and
load will suffice, as the LRM will be the one in charge or running the application on the HNs.
Also, attached to the application we could find the recipe of its requirements which will also be
necessary for the allocation policy.

The second objective, as stated for MANGO project, is to have a single entry-point for the
cluster which would be capable of scheduling applications. However, having a single entry-
point means facing a potential single failure point and, therefore, reliability and replicability
must be granted in order to prevent the system from fatal failures which will prevent all the
cluster for working.

Overview

Resource management at the global level is a challenging task, especially for a scenario with the
heterogeneity degree and the power/performance/predictability requirements of MANGO. The
role of the GRM in MANGO will be to act as a single-entry point for all the MANGO appli-
cations, and to decide on runtime the most appropriate node, among the 8 MANGO servers, to
execute each new incoming application. This decision is made by considering the power/ther-
mal status, performance capabilities and utilization of the overall MANGO platform, as well as
of the individual clusters. Moreover, the Global Resource Manager is in charge of interacting

15

with each of the instances of the Local Resource Manager (BarbequeRTRM), which will be
running in one of the Intel cores (at the server-side) of each of the clusters.

From a functionality-wise perspective, the GRM is be composed of the following main compo-
nents:

• The resource manager software, which is in charge of managing incoming workloads,
scheduling (i.e., queuing them) and allocating them to the nodes. In our case, this work-
load allocator is the SLURM resource manager. SLURM is complemented with the rest
of the services developed in the MANGO GRM to adapt its functionality to the hetero-
geneity of the MANGO prototype.

• Data manager and data retrieval services composing all the chain from the connection
with the local resource manager to the injection on the data base which is deeply explained
on section 4.

• The workload allocation policies (in what follows, ”GRM Allocator”), which take deci-
sions on the specific allocation of tasks to nodes. The GRM allocator contains the power/
performance/thermal- aware policies, which are in charge of improving the energy effi-
ciency and performance of the system, described in section 5.

• The 3D-ICE thermal simulator, in charge of predicting the thermal behaviour of the sys-
tem

From a purely implementation perspective, the GRM consists on a bunch of services working
together in a coordinated way. Figure 3 shows an overview of the GRM global structure. The
core functionality of the GRM is the ”GRM Allocator”, which takes decisions upon how and
where to allocate a workload (i.e., contains policies and algorihtms), and the ”Slurm Controller”
block, performs the allocation (i.e., contains the software in charge of managing the workload).

Therefore, when a new application is launched in the cluster via the entry point, the GRM
Allocator will apply one upon the various policies developed ad-hoc for the MANGO project,
which will decide the node where the application will be executed, and will finally perform the
allocation, by executing the SLURM Controller (in particular the slurmctld), which will, in its
turn, using the slurmd of the selected node, assign the task to a node and pass its control to
BBQ. This flow is depicted in Figure 5.

3.2 Global Resource Manager Software Architecture

To facilitate deployment and in order to achieve the objective of replicability and robustness
every service on the GRM will be running under docker containers2. By using Docker containers
we are also reducing the overhead of software installation in the host machines that are needed
in the Global Resource Manager. In all the Figures that follow in the present document, Docker
container will be represented as boxed with rounded corners, such as the ones depicted in Figure
3, whereas native software components are represented as squared boxes.

2https://www.docker.com/

16

We modify SLURM to equip it with a number of features specifically targeted to the MANGO
platform. As a base installation, we used an already dockerized version of SLURM, which is
available on [4]. In this base docker installation, we can find a simulated cluster prepared to be
executed in only one host. However, for the MANGO deployment we need to manage a real
cluster with multiple nodes. Therefore, the following modifications were applied in order to
adapt the base dockerized SLURM to the MANGO requirements:

• Updating SLURM to the latest available version

• Changing SLURM compilation to force it use an external allocator that will be capable
of managing the MANGO heterogeneous cluster.

• Changing the deployment file named “docker-compose.yaml” as follows:

– SLURMCTL container running on GN0

– SLURMDBD container running on GN0

– MySQL container running on GN0

– SLURMD container running on GN0-15

The “Kafka server” was taken from Apache Licensed Spotify docker repository3.

3https://hub.docker.com/r/spotify/kafka/

17

Fi
gu

re
3:

G
lo

ba
lR

es
ou

rc
e

M
an

ag
er

O
ve

rv
ie

w

18

3.3 The SLURM Resource Manager tool

As described in the previous section one of the components of the GRM is the workload sched-
uler and allocator. Indeed, this is the most important component as it will allow to achieve the
objective of having a single entry-point, and will also enable full control on the application exe-
cution status. SLURM was selected to accomplish this purpose as it is a highly scalable cluster
management tool. However, because it is a general-purpose HPC cluster management tool, it
does not provide the heterogeneity-awareness required by MANGO. However, by implement-
ing the interaction between SLURM and BBQ, we can enable the hierarchical approach and
integration between GRM and LRM. Furthermore, because of its open-source nature, SLURM
can be easily modified to suit the requirements of MANGO, without requiring any kernel modi-
fication on the host system. Moreover, it enables replication and fault-tolerance, therefore being
very suitable for single-entry point systems.

Regarding the architecture, SLURM works in a centralized way having a central manager called
“slurmctld” (SLURM controller) responsible of monitoring the status of applications and the
resource availability. On the other hand, each node will be running a SLURM daemon, or
“slurmd”, which supervises applications running on each node and reports its status. In short,
SLURM daemons work as a remote shell for the controller. Moreover, all the information gath-
ered by SLURM, can be stored in a MySQL database, managed by the “slurmdbd” daemon,
which runs in the controller and records accounting information, historical data and current
status of the nodes, among others.

An overview of how SLURM works is depicted in Figure 4, taken from the SLURM official
documentation.

Regarding allocation, SLURM comes with a very basic set of scheduling and allocation poli-
cies, which consist on round-robin and “best fit / first fit” algorithms. However, as mentioned
before, MANGO requires more sophisticated allocation policies (capable of being aware of
the heterogeneous resources) than the ones included in SLURM. Therefore, there is a need to
include new policies in SLURM.

Due to the complexity of the MANGO project the fully integrated plugin has not been possible
to develop. There are two main reasons; the first is that in order to retrieve data from the LRM
it is necessary a client permanently connected to it; and the second, the diversity of accelerators
made impossible to integrate a plugin containing all these features. In consequence, we needed
an external allocator which was capable of taking into account the diversity at the same time it
receives updates from the LRMs. Thus, SLURM will work as log parser and executioner tool as
the external allocator will order SLURM to execute an specific application in an specific node.
From a purely implementation perspective, we are going to create two different instances, one
running SLURM and other one running the external allocator daemon.

Therefore, when a new application is launched in the cluster via the entry point, the external al-
locator will call the new policy developed ad-hoc for the MANGO project, which will decide the
node where the application will be executed. Then, the external allocator will call the SLURM
Controller (slurmctld) asigning in the command the selected node where SLURM must execute
the parsed application. This flow is depicted in Figure 5.

19

Figure 4: Overview of SLURM basic blocks

Figure 5: SLURM flow, application execution, policy and node allocation

Therefore, the installation of SLURM will require the installation of the external allocator ser-
vice adapted to the MANGO architecture. The external allocator will be running in the same
container as slurmctl because they need direct access in order to exchange information.

20

SLURM Basic Commands

This subsection shows the basic commands needed to execute, cancel and monitorize SLURM
status.

• Running applications:

– srun: run a parallel job on the cluster. After running this command, SLURM calls
the custom allocator mentioned before where the optimal allocation (regarding tem-
perature, power, performance, etc) is performed. Example:

∗ Example: “srun mango-philips.app –node GN1”, would run the MANGO Philips
application on GN1

– Sbatch: subscribes a batch script to SLURM. When the allocation is granted SLURM
runs the script once.

• Management:

– scontrol: monitorizes and allows the modification of SLURM configuration as job,
nodes, partition.

– scancel: signals and stops jobs under SLURM control

• Monitorization:

– sinfo: displays the current status information of the cluster

– squeue: shows information of the scheduled jobs

3.4 Docker as connectivity and deployment tool

Docker is a tool we can compare with a virtual machine. But, unlike a virtual machine docker
shares the kernel of the host computer making the containers lighter and the deployment much
faster. Containers are packages that envelops the code and all its dependencies which can be
easily and quickly migrated among computers.

Docker Swarm is a cluster manager tool. In a Docker environment, a Swarm is a cluster com-
posed by Docker daemons which can be virtualized or in actual machines. In our case, each
General Purpose node will act as a Node(how Docker Swarm calls the components of the clus-
ter) meanwhile GN0 is the Swarm Master.

Docker Swarm is a tool provided by Docker Engine which is specifically designed for cluster
management, fast deployments, decentralized designs and scalability. Even more important for
MANGO GRM is the networking capabilities of Docker Swarm as it permits to create overlay
networks and then attach the required container to that network. Also, all the containers at-
tached to the same overlay network have full connectivity which means that the port bidding for
connections inside the network is not necessary and solves many connectivity issues. This way
we are parsing all the traffic that would go through the ports mentioned on 3.4.2 with respect

21

to SLURM and Kafka on the host machines converge over the ports opened between hosts also
described in that section.

As we can see in Figure 3 there is a color differentiation between Docker containers and the
dashed boxes. They represent two different overlay networks, one is dedicated to Slurm com-
munications and the other is dedicated to Kafka messaging.

3.4.1 Overlays and IP description

In figure 3 we have a networking overview of both networks. As far as is possible the IP ad-
dressing will be static since Kafka server container requires a notification IP which should point
its actual IP on the overlay. However, this is not supported yet by the command docker stack
deploy we are using to deploy all out services, so Kafka server is the only container which will
be manually deployed.

• slurm overlay network is represented by 20.1.0.0/16 where:

– slurmctl: 20.1.0.5

– slurmdbd: 20.1.0.6

– slurmd: 20.1.0.(7-15) nodes from 0-7 respectively

• kafka overlay network is represented by 20.2.0.0/16

– Kafka server: 20.2.0.100

– Kafka producers and consumer: auto-assigned

3.4.2 Port Requirements

In this subsection we describe the necessary port connections to establish the connections be-
tween docker containers.

• SLURM

– slurmctl: 6817, 6818, 6819, 7199

– slurmdbd: 6819

– slurmd: 6818

• Kafka

– Producer + BBQUE data client: 9092, 10001, 30100, 30200

– Consumer: 9092, 7199

Next, we can find the ports that must be opened (only from connections from the 16 nodes) in
All Hosts to create the Docker Swarm cluster:

• TCP 2377 for cluster deployment

22

• TCP/UDP 7964 for communication among nodes

• UPD 4789 for overlay network traffic

As stated before, Docker Swarm allows full visibility among containers which means that con-
tainers connected to the same overlay network can be accessed by any free port. Thus, the first
part of the section is mostly informative, while the second one shows the ports of each server
that must be accessible from the master node in order to create a Docker Swarm stack.

3.4.3 Deployment

The deployment of the GRM consists on the following steps:

1. Establish connectivity between hosts by mean of opening the ports mentioned in the sec-
tion 3.4.2 above under “All Hosts”.

2. Create Swarm stack on the node which will work as master. Remark that is possible to
have more than one master node in Swarm. For MANGO project, GN0 is the master.
Swarm network is initialized using the following command:

$: do ck e r swarm i n i t

3. After executing the previous command the following one will prompt which is the com-
mand to join the rest all the nodes to Swarm

$: do ck e r swarm j o i n −−t o k e n XXXXXXXX
1 9 2 . 1 6 8 . 9 9 . 1 2 1 : 2 3 7 7

4. Once Swarm is deployed, the next step is creating the overlay netwokrs:

$: do ck e r ne twork c r e a t e −d o v e r l a y −−a t t a c h a b l e −−
s u b n e t = 2 0 . 1 . 0 . 0 / 1 6 s l u r m o v e r l a y

$: do ck e r ne twork c r e a t e −d o v e r l a y −−a t t a c h a b l e −−
s u b n e t = 2 0 . 2 . 0 . 0 / 1 6 k a f k a o v e r l a y

5. Join al the GN’s to the Network File System folder located on the master node.

6. Run under the folder DockerizedSlurm/compose deploy the following command. This
command will deploy all the containers required by the GRM and will connect them as
specified in the configuration file docker-compose.yml to the networks created before and
will attach the corresponding containers to the volume containing the applications and the
necessary data.

$: do ck e r s t a c k d ep lo y −c docker−compose . yml
mango slurm

23

4 Integration of the GRM in the MANGO prototype

This chapter describes research and implementation performed for the integration of the Global
Resource Manager within the MANGO software stack and the prototype. There are two will
differentiated sections, one in which we treat the problem of executing the MANGO applica-
tions from the Master Node (GN0) and a second one where the data parsing from the LRM to
the allocator is depicted.

4.1 BarbaqueRTRM-SLURM communication

As SLURM is going to work as Global Resource Manager it will need the complete data of
the entire cluster including: mapping and resource usage for each application deployed in the
node, utilization and load, power and temperature of the available resources on the HN and GN.
Data need to be updated on real time(almost) so the allocator can be more precise otherwise
unnecessary queues can be created at the Local Resource Manager.

Figure 6: Flow overview, from BarbaqueRTRM to SLURM

Figure 6 illustrates all the components that performs the data gathering service from Barb-
queRTRM to SLURM allocator. In this figure, there are two clear differentiations: server and

24

daemons. Pretty similar to SLURM working architecture. In the server side, which is always
allocated in GN0 node we can find a broker and a database (Kafka and the Allocator). This two
components work as the main features to retrieve the status of the heterogeneous cluster and
present the data to SLURM which having an overview of the system will perform the appropri-
ate allocation.

As BarbequeRTRM data server is already widely explained there is no need to enter in details
of its architecture or mechanisms. Only mention that it implements a subscription type server.
This server provides the information of the node in which is installed. Due to this fact, was
not possible to have only one instance on the main node GN0 as it would need to handle 16
subscriptions at the same time completely preventing the scalability of the cluster and creating
a single point of failure. The final adopted solution was to distribute the subscription servers to
each node.

The Kafka Broker was chosen as it can handle millions of messages per second and provides a
high reliability. Kafka is defined as a real time data Streaming publish/subscribe message broker
redesigned as a distributed commit log. The main components of Kafka are messages, topics,
Publishers and Subscribers. Topics works as distributors in the broker, so it can be shared among
different applications. Messages compose the information transmitted through the broker being
the publisher the instance that sends messages into the broker and the consumer the service
that is subscribed to a specific topic. Basically, the roles were changed, so the daemons publish
messages and the servers subscribe to the topic where those messages are published. In case of
necessity Kafka offers an easy replicability.

Figure 7: Data Parser work-flow from the Local Resource Manager to Kafka

The daemonized part, illustrated on left GN0 of Figure 6, consists in a container that runs
a C program composed by a periodic subscription to BBQUE data client that retrieves the
corresponding data of that node, a Kafka Producer in charge of transmitting the information
to the server and an object serialization function which translates the object created on the
subscription to the client with the status of the node to a more suitable JSON format. The flow
is more precisely described in Figure 7

25

Regarding the Kafka Producer, every time a new message is received from the subscription(5
seconds period), a new publication is pushed by this instance to Kafka Server. As shown in
figure 6 both subscriptions are running in the same service avoiding redundancy and the need
of developing other service that connects both services.

The last step of this communication flow is the Kafka-consumer inside the external allocator.
The external allocator will update the cluster status every time it consumes a message.

4.2 SLURM-BarbequeRTRM communication

This section shows how the global resource manager can send an execution order to the LRM. In
short, we need to execute and application on GN0 (single entry-point) where the GRM controller
is running, and SLURM with the allocation decision made by the external allocator (depending
on the objective of the allocation policy) will be in charge of executing this application.

In order for this flow to work correctly, two issues had to be overcome: (i) how to execute a
program in the host computer from a docker container exporting all the libraries required by
MANGO apps, and (ii) how to share that program/script to be run among the cluster so that the
GRM controller does not need to handle sending the application to the actual node which will
run the program.

Figure 8: Application execution flow from the single entry-point on GN0 to any Local
Resource Manager

In order to accomplish the first issue the architecture illustrated on Figure 8 was developed.
Then, with the next command, we can execute an script located in the docker container in the
host machinde:

26

Listing 1: Command for SSH remote script executions
$: s s h user@172 . 1 7 . 0 . 1 ’ bash −h ’ < e x e c u t e a p p . sh

Thus, this execute app.sh script can contain any export required by the applications.

Given the previous architecture, each application will require two execution scripts which con-
tains all the library exports required by that application, its name, location on the shared folder
and some more parameters described below.

In short, the execution process requires two different scripts, one which will run the actual
application and another which specifies the SLURM parameters required by that application.
Initially, all the applications are executed under the same circumstances for testing and valida-
tion purposes.

As mentioned before, the second script, imports all the required MANGO(and external) libraries
and simply executes the application as it would be manually done in the command line and
after this step is LRM job to locally allocate the application. On the other hand, the first script
is in charge of executing the second one via SSH while fixing the execution parameters in
SLURM. For example, in Listing 2 we are defining the time limit for the execution of the
specific application (predefined to 10 min) and also the location and name of the report of the
execution.

The second issue will initially be solved with a shared folder among the cluster, so we then grant
every node access to every program avoiding any issue regarding access permissions. To this
goal SSHFS (Secure Shell File System) and docker volumes are combined, in consequence,
every host which docker daemon is attached to the swarm network and all docker containers
with the volume mounted will be able to see and execute that program.

Listing 2: Example sbatch execution script
! / b i n / bash
#SBATCH −−o u t p u t =/ o p t / mango−apps / s l u r m l o g s / s lurm−%A . o u t
#SBATCH −−t i m e =10:00

i f [” $1 ” = ” m a t r i x ”]
then

i f [−z ” $2 ”]
then

echo ”No m a t r i x s i z e p rov ided , a s s i g n i n g 200 ”
m a t r i x s i z e =200

e l s e
i f [$ (($2%2)) −eq 0]
then

m a t r i x s i z e =$2
e l s e

m a t r i x s i z e =200
f i

echo ” Running Ma t r i x M u l t i p l i c a t i o n $ m a t r i x s i z e ”
f i

27

cd / o p t / mango−apps / m a t r i x
s s h −o S t r i c t H o s t K e y C h e c k i n g =no ipenas@172 . 1 7 . 0 . 1 ’ c a t |

bash / dev / s t d i n ’ ” $ m a t r i x s i z e ” < e x e c u t e a p p . sh
f i

28

5 Global Resource Manager Allocator

As previously stated, for the GRM to accomplish the goals of the project we need to apply and
test different power/performance/temperature aware workload allocation policies. The ”GRM
Allocator” module is in charge of this. Furthermore, all policies need to take into consideration
the current usage of the cluster, which requires a close to real time synchronization between
local and global RM.

This is of utmost importance in MANGO since, given that the prototype counts with a wide
range of heterogeneous resources (regular CPUs, PEAK, Nu+ and custom accelerators such as
DCT and Tesla) a node could be unavailable for one application (e.g. that requires one PEAK
and one Tesla) but available for another with different requisites (e.g., which requests one Nu+
and a regular CPU). Thus, the global resource manager requires an underlying flexible system
that can provide a complete overview of the cluster which, at the same time, can be updated with
the current status for each application requirements. To express these dependencies, the GRM
Allocator will use a graph network which contains all the available nodes. This support will be
implemented by using the Networkx [5] Python library. Networkx provides all the necessary
tools to manipulate, study and distribute for complex networks graphs

To perform the above mentioned tasks, the GRM Allocator consists on the following modules,
which will be next explained:

• Cluster architecture builder

• Cluster architecture update

• Workload allocation algorithms

5.1 Cluster Architecture Builder

This component is composed by a JSON parser which is configured to read the following archi-
tecture configuration file (i.e Listing 3).

The main function of this component is to provide a default network architecture that can be
used by other modules. The architecture of the platform managed by the GRM should be pro-
vided following the following JSON format so that the json reader block is able to successfully
build the architecture. Then the JSON is converted to python dictionary which facilitates iterat-
ing over it.

Listing 3: Example of initial architecture input file

29

1 {
2 "name": "Mango Cluster",

3 "version": "1.0.1",

4 "master": "gn0",

5 "architecture": {
6 "gn0": {
7 "id": "gn0",

8 "master": 1,

9 "components": {
10 "peak": 0,

11 "nu+": 0,

12 "tesla": 0

13 }
14 },
15 "gn1": {
16 "id": "gn1",

17 "master": 0,

18 "components": {
19 "peak": 0,

20 "nu+": 0,

21 "tesla": 0

22 }
23 },
24 "gn2": {
25 "id": "gn2",

26 "master": 0,

27 "components": {
28 "peak": 4,

29 "nu+": 0,

30 "tesla": 0

31 }
32 }
33 }
34 }

Listing 3 is a key point of the process. With this initial configuration we provide to the allocator
the number of accelerators contained in each node. Also, providing the number of nodes and
the name by which they need to be identified. This last feature is critical as both, the name of
the GN and the name of the accelerators must match with the names by which the BBQUE-
Slurm parser codes the information injected into Kafka. The architecture defined in Listing 3 is
transformed into the network represented in Figure 9.

To ensure that the allocation is perform correctly, the Networkx object that is instantiated in
this step has to be a DiGraph, i.e., a directional graph. Networkx networks are composed by
two items: nodes and edges. As shown in Figure 9 there are paths joining together the different
nodes. These paths (called edges in the Networkx documentation) could be forced to have only

30

Figure 9: Network obtained after creating the initial network architecture given the
configuration file shown in Listing 3

one direction by declaring the NetworkX object itself as DiGraph or DiMultiGraph. NetworkX
offers four different types of Graphs depending on the edges characteristics: Graph, DiGraph,
MultiGraph and MultiDiGraph. For the GRM Allocator current design we use a DiGraph type,
strict single directional path. In the case of re-creating an edge between nodes, this new edge
will substitute the previous which makes easier the process of updating the status of the cluster.
On the other hand, to find the suitable allocation the shortest path is used as described bellow.
Thus, directional paths assure that the allocation found is correct and avoid errors such as loops.

The edges described above, are the main component that would let us apply an arbitrary policy.
Both edges and nodes can be assigned attributes. These attributes can be considered as a dic-
tionary as each attribute is assigned a name and a value. However, one of them is mandatory, a
predefined called weight, which can only be assigned a numeric value. This parameter is used
by the path finding algorithms included in the library to find the shortest path between points.
For simplification purposes, the Network architecture will be built like the one shown in Figure
9, then despite having more than one accelerator of each kind, every type will be represented by
a single node. Then, this node contains two more attributes which are #node and #node in use
representing the total number of hardware accelerators of the corresponding type node contains
and the number of those currently in use respectively.

31

As illustrated in Figure 10 we build a network where the main node is the controller of the
global resource manager (Called Master). This node is followed by the General Purpose nodes
and then, attached to them the Heterogeneous Nodes. In this last layer, unlike the previous
where the 64 cores of each node are represented by the same bubble, each accelerator core will
have its own node. By default, weights of 1 are assigned to each edge. Also mention that the
weighting system will be normalized to 1 being 1 the max possible weight and 0 the minimum.

Figure 10 represents a possible final network configuration which includes all the GN available
for the project. Moreover, only changing from the configuration file in Listing 9 to the one in
Annex C the system is able to scale without further modifications.

Figure 10: Larger network automatically scaled changing the configuration file

5.2 Cluster Availability Update

In order for the GRM Allocator to perform allocation decisions as closely to real-time as pos-
sible, it is necessary to have a real time ”cluster overview”. To accomplish this task, we use the
Kafka Server (which connects to BBQ and gathers data, as previously described) and a Kafka
Broker which consumes those messages, described in this section.

32

The ”cluster overview” contains many data: HN availability, HN accelerator type, HN temper-
ature, HN power consumption and HN errors report. Data from the GN is gathered via Docker.
Thanks to the Docker Swarm network and the fact that Docker share kernel with the host com-
puter, server usage data is accessible inside Docker containers. However, this data is only rel-
evant in case that all the CPU’s are busy (a case only achieved when exercising corner cases
about capacity computing).

Apart from consuming Kafka messages, this block is also in charge of updating the DiGraph
object. Firstly, a client which is registered as consumer in the Kafka topic bbque data waits
until a new message is received, then parses the data and calls the update function. Then, the
algorithm weights the edges depending on the node availability. For instance, a node whose
HNs are fully busy is assigned a 1, while a HN with free resources is assigned a 0. The same
technique is applied at a local scale, meaning that the path joining a GN and its HNs is set to 0
or 1 depending on their availability.

5.3 Algorithms

This final block is called whenever a new allocation request is received and it is split into two
sections. One in which the actual policy is applied and a second one where an auxiliary node is
created.

Policies implemented for this project can be selected when launching an application, thus in
run-time, which is very suitable on testing scenarios like ours. In consequence, if no policy
is specified in the input command, the allocator will use whether the default one (Greedy) or
other if it was previously modified. In order to make this situation possible the allocation is
performed with a copy of the NetworkX object made at the time the new allocation request is
received, then, depending on the algorithm selected the paths are weighted in different ways
(Section 6 describes the available policy algorithms and how they weight the different edges).

The copy of the main cluster overview object performed before, is in the second section used
to include the auxiliary node thereby we keep the occupancy cluster clean so the availability
update process is performed as fast as possible preventing thread block in the iterative daemon.
The allocation decision is made automatically after the previous described process has been
successfully executed. Afterwards we execute one of the most powerful tools of the library, the
path finding algorithms. For this purpose, we chose Dijkstra algorithm which is widely used as
it is one of the most efficient.

Dijkstra algorithm is an algorithm used for shortest path finding when the nodes (or as in our
case, the path joining the nodes) are weighted. Thus, after the weighting process, we call this
algorithm with the Master node as origin and the Auxiliary node as destination. Then, the algo-
rithm finds the shortest path which corresponds with the allocation. Also, it provides the next
two shortest paths so if after that process a problem is found, the next allocation is used.

33

5.4 Entry Point

The fact of having an external allocator which will interact independently from SLURM im-
plies the necessity of developing a custom entry point with high availability and reliability. In
order to do so, a new Kafka topic has been added to the server. This Kafka topic will have 24
hours persistence to grant reliability and a historic of the previous hours requests. Availability is
granted via multi-threading method where a new thread per request is created. Creating a new
thread per request means we are able to handle a max of 64 per second (Safety time to generate
the allocation and parsing the job to SLURM), good performance in terms of availability.

It is necessary to take into consideration the collision between the updater and the entry point.
As both threads require to access the cluster object it was necessary to establish dependencies
among them so every time an instance needs to access the main object must call the mutex
(MUTual EXclusion) [6] object related to the cluster. Thus only one thread is accessing it at a
time.

Besides of creating a new thread on demand, the entry point is located inside the cluster status
update loop thus, assuring the last allocation policy is applied with updated information already
parsed. Also adding a dependency between the entry point and the updater tool ease

34

6 Efficient power-, performance- and thermal-aware strate-
gies

In this section we describe the policies applied on the MANGO cluster, together with the spec-
ifications of the components over which the testing have been done.

The algorithms that follow this section need some prior explanation to follow the syllables:

• GNi: General Purpose node (i.e. Regular Intel-based HPC servers).

• HN j: Heterogeneous Node. Every different hardware accelerator. Any of these are con-
troller by a general porpoise node, thus HNi, j means the heterogeneous node j of the
general porpoise node i.

• ω(GNi−HNi, j)← represents the weight of the edge joining the corresponding nodes.
For example, ω(GN0−HN0,1) may represent the weight of the edge joining the PEAK
accelerators node of HN3 (which is the HN attached to GN0 in the experiments) with the
node GN0. As we have a total number of different accelerators of 3 −→ jε[1,3]

• policyω←Variable that temporally stores the weight to be assign to a certain edge. Before
assigning this weight to the edge some test are required to check that obtained value is
within the normal margins (Usually 0-1)

• temperatureimpact ← This is a predefined variable that allos us modify on run time the
relevance of the temperature in the allocation decisions.

• f ind shortest path← A function included in Networkx library that uses the path finding
algorithm Djistra seeks the fastest way to go from the Master node to the Aux node.
Aux node is an auxliary node which is added on allocation runtime to a copy of the
graph. This node is connected with zero weight edges to any accelerator in the system
to facilitate the allocation process. The returned value of this function is a list with the
complete shortest path (considering weighted edges) from Master to Aux node

One important point of the policies described bellow is that they are executed considering an
overview of the accelerators. To provide the data we do not make any difference between the
same kind of accelerator. For example, usually we would have the three different accelerators
running on each GN thus, the policies will count the number of FPGA containing each accel-
erator. In appendix C in section GN4 of the configuration file Listing 6 where it describes the
accelerator kernels available on gn4 there are 3 PEAK, 3 Nu+ and 2 Tesla. If there are 2 PEAK
busy the availability (in case that the incoming application prior request is PEAK) will be 1
PEAK

35

6.1 Greedy policy

This allocation policy is used as first step for testing purposes. This policy is based on a first in
first out system where the applications are executed in the first empty slot found. Idle consump-
tion of the nodes is significant as the only possible

Thus, this policy gives less weight to the nodes which are already executing any application,
mathematically:

Algorithm 1 Greedy algorithm
1: procedure GREEDY(GNi,HN j) . Priority to already busy nodes
2: T hresHold← 0.5
3: for GNi in i = 1,8 do . Iterate every hardware node on the given GN
4: for HNi, j in j = 1,n do
5: if available acceli, j > busy acceli, j then
6: policyω =−AvailableHW

TotalHW ∗T hresHold
7: ω(GNi−HNi, j)← T hresHold + policyω

8: else
9: ω(GNi−HNi, j)← 1

10: node← f ind d jistra shortest path(Master Node,aux node)
11: return node . The gcd is b

6.2 Fully distributed policy

Algorithm 2 Fully distributed algorithm
1: procedure DISTRIBUTED(GNi,HN j, temperatures) . Priority to free nodes
2: T hresHold← 0.5
3: for GNi in i = 1,8 do . Iterate every hardware node on the given GN
4: for HNi, j in j = 1,n do
5: if available acceli, j > busy acceli, j then
6: policyω =−AvailableHW

TotalHW ∗T hresHold
7: ω(GNi−HNi, j)← T hresHold + policyω

8: else
9: ω(GNi−HNi, j)← 1

10: node← f ind d jistra shortest path(Master Node,aux node)
11: return node . The gcd is b

6.3 Temperature/Power aware policy

As the name shows, this policy prioritizes nodes with the lower temperature. There are two
temperatures to take into consideration, the HN temperature and the GN temperature. HN tem-
perature is somehow stable considering that applications only affects in one or two degrees

36

when executed on a given HN. GNs, on the other hand, raises its temperature because the LRM
assigns a core for each application which means that the nodes can have up to 32 cores busy
handling each HN board. Thus, a single application is not important in temperature node terms
meanwhile 20 applications simultaneously executed on the same node will raise the tempera-
ture.

Considering that this policy considers both HN and GN temperature in different ways. HN tem-
peratures per node are averaged because as show in Figure 14 FPGAs on the same motherboard
temperatures are almost equal and we can extrapolate the same to motherboards per node. In
consequence and as the GRM is not choosing in which FPGA the application is going to be
executed, this policy performs a big picture temperature resource allocation.

Greedy-Temperature policy

Algorithm 3 Temperature-Greedy algorithm
1: procedure TEMP-GREEDY(GNi,HN j, temperatures) . Lowest temperature priority
2: temperature list← short(temperatures)
3: maxtemperature← max(temperaturelist)
4: T hresHold← 0.5
5: temperature impact← 0.2
6: for GNi in i = 1,8 do . Iterate every hardware node on the given GN
7: it temperature← temperature list(GNi)
8: temp weight← max temperature−it temperature

max temperature ∗ temperature impact
9: ω(Master−GNi)← T hresHold ∗ temp weight

10: for HN j in j = 1,n do
11: if available acceli, j > busy acceli, j then
12: policyω =−AvailableHW

TotalHW ∗T hresHold
13: ω(GNi−HNi, j)← T hresHold + policyω

14: else
15: ω(GNi−HNi, j)← 1

16: node← f ind d jistra shortest path(Master Node,aux node)
17: return node . The gcd is b

Distributed-Temperature policy

37

Algorithm 4 Temperature-Distributed algorithm
1: procedure TEMP-SPREAD(GNi,HN j, temperatures) . Lowest temperature priority
2: temperature list← short(temperatures)
3: maxtemperature← max(temperaturelist)
4: T hresHold← 0.5
5: temperature impact← 0.2
6: for GNi in i = 1,8 do . Iterate every hardware node on the given GN
7: it temperature← temperature list(GNi)
8: temp weight← max temperature−it temperature

max temperature ∗ temperature impact
9: ω(Master−GNi)← T hresHold ∗ temp weight

10: for HN j in j = 1,n do
11: if available acceli, j > busy acceli, j then
12: policyω = AvailableHW

TotalHW ∗T hresHold
13: ω(GNi−HNi, j)← T hresHold + policyω

14: else
15: ω(GNi−HNi, j)← 1

16: node← f ind d jistra shortest path(Master Node,aux node)
17: returnnode b . The gcd is b

38

7 Experiment setup and results

7.1 Global Resource Manager Validation

This section describes the different approaches taken into consideration in order to partially
validate MANGO project against the reviews coming on May and to test the different policies
described in section 6. To this purpose we first need to describe the different scenarios in which
we ran our tests.

Firstly, we created a reduced target system in which we tested the correct functionality of the
features described all along this document. This includes the dockerization of SLURM, the
connection with the other MANGO software, the allocator, the entry-point and the policies.
The hardware targets of this scenario are described in Table 2. Thus, Figure 11 presents the
corresponding network generated by the allocator after parsing the architecture just mentioned.
Henceforth the legend of any graph that describes the representation of cluster network status,
refer to Figure 11 legend as the same colors will be used in any representation.

GN HN SLURM Docker Version BBQUE Connector Docker Version Mango Repo Branch Mango Repo Commit
5 8 mango latest v1.2 latest mango upv 20190208 54ce1c0ad3d4
6 11 mango latest v1.2 latest mango upv 20190208 54ce1c0ad3d4

Table 2: Target Architecture of the initial functionality test

Next, we describe the steps followed to validate the complete Global Resource Manager archi-
tecture described above, considering the deploy configuration shown in Annex A.1 and summa-
rized in Table 3

GN# HN# #PEAK #Nu+ #Tesla
GN5 HN8 3 0 0
GN6 HN11 3 0 0

Table 3: This table summarized the configuration file used during the validation process

Deployment

$ do ck e r s t a c k dep lo y −c compose−mango . yml mango

39

Figure 11: Network architecture for the functionality tests

Figure12 shows how the Swarm successfully deployed all the services along the configured
server. The services reported by Docker Swarm will be marked as 0/1 if there would have been
any problem on the process. Apart from the SLURM daemon and the BBQUE-Kafka connector
services, this configuration deploys in the node marked as master the main SLURM Controller
container, the databases and the Kafka Server required by the GRM.

BBQUE connectivity

Figures 13a and 13b represent the logs of the kafka-bbque docker connectors of both nodes GN5
and GN6 where we can see successful subscription between the container and the BBQUE data
server and also the visibility between the Kafka producers and the server.

This step is validated by means of an auxiliary script which consumes messages from the Kafka
Server to which the daemons are pushing the data received from the BBQUE data client. A
common output of this testing script is represented in Figure 14. This messages contain the
summarized information provided by BBQUE which is pushed towards kafka server. In short,
the number of each accelerators currently busy in the board and its temperature which is com-
mon to the four FPGA’s placed per motherboard.

40

Figure 12: Docker Swarm Successful deployment of services

(a) Kafka-BBQUE on GN5

(b) Kafka-BBQUE on GN6

Figure 13: This figure shows the correct deployment of the docker images that subscribe to the
BBQUE data server and posts its results to the Kafka Server of the GRM

SLURM

Here, we demonstrate how an application can be executed in any node contained in the SLURM
environment (GN 5 and GN 6 in this particular case). Thus, running the following commands
inside the slurmctld container will prove the point:

Listing 4: Example of initial architecture input file
$ s b a t c h −w c6 / o p t / mango−apps / run . sh m a t r i x 200

41

Figure 14: Sample of filtered BBQUE messages pushed bu the Kafka producers here kafka 6
represents GN5 and kafka 7, GN6

$ s b a t c h −w c6 / o p t / mango−apps / run . sh m a t r i x 200
$ s b a t c h −w c7 / o p t / mango−apps / run . sh m a t r i x 200

Commands provided in Listing 4 schedule three works into SLURM, targeting GN5 the first
two and GN6 the second one. Thus, Figure 15 shows the SLURM log of the jobs completion
and Figures X and X the reports of each BBQUE instance (GN5 and GN6 instances) where we
can see that both applications were correctly executed.

Figure 15: Example of SLURM completion job report in which the three different variants are
shown

Allocator

This step aims to validate each of the policies’ functionality described in Section 6. In conse-
quence, we should support the application results with a picture of the status of the network
each time an allocation is performed to help understand how the decision is made.

Given the configuration stated above for this test, the maximum number of accelerators available
is 6, three PEAK’s on HN8 and three PEAK’s on HN11. As we want to validate the functionality
of the allocator subsystem we configured the GRM only to execute sequentially 6 applications.
With that setup we should be able to observe the evolution while it has applications running,
also how it takes into consideration the occupancy reported by BBQUE updating the graph and
lastly validate the policies.

Figure 16 shows the update network after the execution order is given by the allocator and the
application is running in both resource managers, SLURM and BBQUE. Besides, this image
shows a good point with respect to Figure 11 as the real architecture under which the validation

42

(a) Job 1 (b) Job 2 (c) Job 3

(d) Job 4 (e) Job 5 (f) Job 6

Figure 16: Evolution of cluster Networkx graph status throughout the first 6 allocated jobs
applying the distributed policy

is performed corresponds to 3 Peak accelerators per node. Then, the edges connected to different
accelerators are represented in darker colours.

In order to validate the policies concerning temperature, it is necessary to perform more complex
tests, in which more nodes are involved because the temperature policy is executed with the
relative differences of the nodes as explained in the section above. Thus, those policies will be
validated and tested at the same time in section 7.2

43

Figure 17: Example of SLURM completion job report in which the three different variants are
shown

Figure 18: Example of SLURM completion job report in which the three different variants are
shown

Entry Point

To grant correct usage of the GRM we provide an entry point system. This system is composed
by two main blocks, a script and a system signal interruption.

The script, described in Listing 5, reads the running docker containers and extracts the container
Id. Afterwards, executes the Unix signal USR2 interrupt within the docker container of the
SLURM controller. Assuming the allocator is running and listening to that signal, it reads the
file just created (Named /opt/mango-apps/next app.log) with the name and the location of the
application to run and proceeds with the allocation and execution of the scheduled application.

Listing 5: Entrypoint script
! / b i n / bash

44

(a) Job 1 (b) Job 2 (c) Job 3

(d) Job 4 (e) Job 5 (f) Job 6

Figure 19: Evolution of cluster Networkx graph status throughout the first 6 allocated jobs
applying the distributed policy

c o n t a i n e r n a m e =$ (do ck e r ps −−f o r m a t ” {{ . Names}} ” | g rep c t l d)

echo ”App name i s $1 ”
echo ” L o c a t i o n i s $2 ”
echo ” C o n t r o l e r c o n t a i n e r name : $ (echo $ c o n t a i n e r n a m e) ”
echo ” T o t a l number o f a rgumen t s i s $# ”

i f [[−z ” $ c o n t a i n e r n a m e ”]] ; then
echo ”SLURM c o n t r o l l e r d oc ke r seems no t o be r u n n i n g ”
e x i t 1

e l s e
echo ” Slurm Docker c o n t r o l l e r found : ”
echo ” $ c o n t a i n e r n a m e ”

45

f i

echo $1 > / o p t / mango−apps / n e x t a p p . l o g
echo $2 > / o p t / mango−apps / n e x t a p p . l o g

d oc ke r exec − i t $ c o n t a i n e r n a m e k i l l −USR2 python

The interruption handler of the allocator is configured to listen to the Unix User Signal 2
(USR2). When this interruption is received the daemon reads the corresponding recipe of the ap-
plication and parses the accelerator requirements to the allocation process described in previous
sections.

7.2 Policies results and validation

It has been checked during the project that the execution of matrix multiplications over PEAK
accelerators doesn’t change the temperature of the hardware at all. As in the previous section
wasn’t possible to show temperature aware policies, in the following section we will compare
the performance of the results considering the four policies in a wider experiment in order to
show the advantages of aiming lower temperature nodes trying to reduce the power consumption
related to refrigeration.

The experiment configuration for this section will follow the occupancy trend represented in
Figure 20 and the experiments wont be based on number of total applications executed but total
execution time in order to have a base to compare the results of the different policies.

.

Following the structure described in the previous experiment the cluster setup is depicted in
Table 4 and illustrated in Figure 21 as a cluster graph.

GN HN SLURM Docker Version BBQUE Kafka Docker Version Mango Stack Version GRM Commit #PEAK
0 3 mango latest v1.3 latest mango v0.3 52b6e8f8443c 3
1 4 mango latest v1.3 latest mango v0.3 52b6e8f8443c 3
5 8 mango latest v1.3 latest mango upv 20190208 54ce1c0ad3d4 3
6 9 mango latest v1.3 latest mango upv 20190208 54ce1c0ad3d4 3

Table 4: MANGO stack status during the 4 nodes test

Once again, due to the instability and lack of availability of the different accelerators, we are
focusing this experiment only in PEAK accelerators, thus the edges connected to other acceler-
ators are opened and coloured in black. Also, PEAK accelerators are the main testing hardware
design of the project as the implementation of applications over them is much faster.

As in previous graphs, Figure 21 shows the architecture of a four node heterogenous cluster
where the accelerators Nu+ and Tesla have been disabled creating a composition of GN’s and
PEAK accelerators.

46

Figure 20: Experiment predefined occupancy trend trying to follow a distribution with two
marked peaks of demand in order to show the adaptability of the temperature policies

Figure 21: Extension of the previous architecture where we consider two more nodes with its
repective hardware

47

Table 5 shows the performance experiment results. For this experiment, the allocator was pro-
grammed to execute a total of 300 matrix multiplications. The average time corresponds to
the execution time of a multiplication of a 200x200 random generated matrix by it self. The
experiment was performed once with each of the 4 four policies describe in Section 6.

This experiment confirms how the performance of the application improves around a 10% by
simply distributing the applications to the emptiest node.

Policy Application
Average execution time(s) Successful executions

(out of 300)GRM(Slurm) LRM(BBQUE)

Distributed
Matrix multiplication

(200x200) 80,366 79,212 297

Greedy
Matrix multiplication

(200x200) 89,491 89,210 265

Temperature
Distributed

Matrix multiplication
(200x200) 80,109 79,933 296

Temperature
Greedy

Matrix multiplication
(200x200) 89,391 88,863 270

Table 5: Performance experiment results

48

8 Conclusions

Despite the integration difficulties of such a large project involving so many tools, we have man-
aged to develop a Resource Manager which is able to run applications relying the execution on
the LRM while it implements efficient policies which are aware of the current cluster overview.
Relying the data transmission between clusters to a Kafka broker and the allocation execution
to Networkx high efficient algorithms have permitted us to create a reliable resource manager
that can be easily replicated or extended.

As shown in Section 7 we have managed to achieve a great performance implementing a fully
distributed policy. The performance of this policy is better due to the memory requirement of
the applications (Philips is a memory eater application as it performs image processing).

Aiming power, greedy policy outperforms the rest since, as explained in 6.1, this policy gives
priority to nodes which are already executing applications. Thus, the other nodes can enter in
idle state, which significantly reduces the power consumption.

49

9 Future Work

Thanks to the flexible and high availability graph allocation system of this projects multiple
possibilities are opened. The main proposal would be to apply ML strategies to allocation poli-
cies [7]. With this system, the allocator would not only be aware of the current status of the
cluster but also specific features such as performance for each application, temperature/power
response under stress, etc... of the nodes which are not available with plain data.

Regarding the GRM, in order to improve its performance, we propose two new features which
based on MANGO project requirements have not been developed:

1. Integrate the allocator within SLURM context

2. Further integration of the GRM into MANGO software stack

The current status of the GRM prevents it from controlling in which specific FPGA (hardware
accelerator in general) the application is executed. Thus, a huge improve on performance would
be to integrate LRM and GRM in the same instance which will also give the possibility of
parallel executions.

The effort of integrating MANGO allocator as a SLURM plugin was too high considering the
work required for such a task apart from the develop of the system it self. As next step, whether
an integration within the SLURM environment or an adaptation of the current allocator to sub-
stitute SLURM is required to prevent the system redundancy which is currently happening in
the system.

50

References

[1] Wenguang Chen. The demands and challenges of exascale computing: an interview with
Zuoning Chen. National Science Review, 3(1):64–67, 03 2016.

[2] Mango project oficial web page. http://www.mango-project.eu/.

[3] José Flich, Giovanni Agosta, Philipp Ampletzer, David Atienza Alonso, Carlo Brandolese,
Etienne Cappe, Alessandro Cilardo, Leon Dragić, Alexandre Dray, Alen Duspara, William
Fornaciari, Edoardo Fusella, Mirko Gagliardi, Gerald Guillaume, Daniel Hofman, Ynse
Hoornenborg, Arman Iranfar, Mario Kovač, Simone Libutti, Bruno Maitre, José Maria
Martı́nez, Giuseppe Massari, Koen Meinds, Hrvoje Mlinarić, Ermis Papastefanakis, Tomás
Picornell, Igor Piljić, Anna Pupykina, Federico Reghenzani, Isabelle Staub, Rafael Tornero,
Michele Zanella, Marina Zapater, and Davide Zoni. Exploring manycore architectures for
next-generation hpc systems through the mango approach. Microprocessors and Microsys-
tems, 61:154 – 170, 2018.

[4] Giovani Torres. Original dockerized version of slurm. https://github.com/giovtorres/slurm-
docker-cluster.

[5] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,
and function using networkx. 01 2008.

[6] Python documentation. Python mutual exclusion support.
https://docs.python.org/2/library/mutex.html.

[7] Arman Iranfar. Machine Learning-Based Quality-Aware Power and Thermal Management
of Multistream HEVC Encoding on Multicore Servers. JOURNAL OF IEEE TRANSAC-
TIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2018.

51

Appendices

A File description for Dockerization and deployment

SLURM DockerFile

FROM c e n t o s : 7

LABEL org . l a b e l−schema . do c ke r . cmd=” docker−compose up −d ” \
org . l a b e l−schema . name=” slurm−docker−c l u s t e r ” \
org . l a b e l−schema . d e s c r i p t i o n =” Slurm Docker c l u s t e r on

CentOS 7 ”

ARG SLURM VERSION= 1 7 . 0 2 . 1 1
ARG SLURM DOWNLOAD MD5= b32f4260a921d335a2d52950593f0a29
ARG SLURM DOWNLOAD URL= h t t p s : / / download . schedmd . com / s lurm / s lurm
−1 7 . 0 2 . 1 1 . t a r . bz2

ARG GOSU VERSION=1.10

RUN yum makecache f a s t \
&& yum u p d a t e −y \
&& yum −y i n s t a l l epe l−r e l e a s e \
&& yum −y i n s t a l l \

l i b t o o l \
g t k+−d e v e l gtk2−d e v e l \
a u t o c o n f \
wget \
b z i p 2 \
p e r l \
gcc \
gcc−c++\
vim−enhanced \
g i t \
make \
automake \
munge \
munge−d e v e l \
python−d e v e l \
python−p i p \
python34 \
python34−d e v e l \
python34−p i p \
mariadb−s e r v e r \

52

mariadb−d e v e l \
psmisc \
bash−c o m p l e t i o n \

&& yum c l e a n a l l \
&& rm − r f / v a r / cache / yum

RUN p i p i n s t a l l Cython nose \
&& pip3 i n s t a l l Cython nose

RUN s e t −x \
&& wget −O / u s r / l o c a l / b i n / gosu ” h t t p s : / / g i t h u b . com / t i a n o n /

gosu / r e l e a s e s / download / $GOSU VERSION / gosu−amd64” \
&& wget −O / u s r / l o c a l / b i n / gosu . a s c ” h t t p s : / / g i t h u b . com /

t i a n o n / gosu / r e l e a s e s / download / $GOSU VERSION / gosu−amd64” \
&& e x p o r t GNUPGHOME=” $ (mktemp −d) ” \
&& gpg −−k e y s e r v e r ha . poo l . sks−k e y s e r v e r s . n e t −−recv−keys

B42F6819007F00F88E364FD4036A9C25BF357DD4 \
&& gpg −−b a t c h −−v e r i f y / u s r / l o c a l / b i n / gosu . a s c / u s r / l o c a l

/ b i n / gosu \
&& rm − r f $GNUPGHOME / u s r / l o c a l / b i n / gosu . a s c \

&& chmod +x / u s r / l o c a l / b i n / gosu \
&& gosu nobody t r u e

COPY p l u g i n / r o o t / p l u g i n

RUN a u t o c o n f −V

RUN groupadd −r s lu rm −−g i d =995 && u s e r a d d −r −g s lu rm −−u i d
=995 s lu rm

RUN s e t −x \
&& wget −O slu rm . t a r . bz2 ”$SLURM DOWNLOAD URL” \
&& echo ”$SLURM DOWNLOAD MD5” s lu rm . t a r . bz2 | md5sum −c − \
&& mkdir / u s r / l o c a l / s r c / s lu rm \
&& t a r j x f s lu rm . t a r . bz2 −C / u s r / l o c a l / s r c / s lu rm −−s t r i p −

components =1 \
&& rm slu rm . t a r . bz2 \
&& cd / u s r / l o c a l / s r c / s lu rm \
&& cp −r / r o o t / p l u g i n / c o n s r e s e x t / u s r / l o c a l / s r c / s lu rm / s r c

/ p l u g i n s / s e l e c t / c o n s r e s e x t \
&& l s / u s r / l o c a l / s r c / s lu rm / s r c / p l u g i n s / s e l e c t / \
&& cp / r o o t / p l u g i n / M a k e f i l e . am / u s r / l o c a l / s r c / s lu rm / s r c /

p l u g i n s / s e l e c t / M a k e f i l e . am \
&& cp / r o o t / p l u g i n / c o n f i g u r e . ac / u s r / l o c a l / s r c / s lu rm /

c o n f i g u r e . ac \

53

&& sh / u s r / l o c a l / s r c / s lu rm / a u t o g e n . sh \
&& cp / r o o t / p l u g i n / s lu rm . spec / u s r / l o c a l / s r c / s lu rm / s lu rm .

spec \
&& . / c o n f i g u r e −−enab l e−debug −−p r e f i x = / u s r −−s y s c o n f d i r = /

e t c / s lu rm \
−−with−m y s q l c o n f i g = / u s r / b i n −− l i b d i r = / u s r / l i b 6 4 \

&& make i n s t a l l \
&& i n s t a l l −D −m644 e t c / cgroup . con f . example / e t c / s lu rm /

cgroup . con f . example \
&& i n s t a l l −D −m644 e t c / s lu rm . con f . example / e t c / s lu rm / s lu rm

. con f . example \
&& i n s t a l l −D −m644 e t c / s lu rm . e p i l o g . c l e a n / e t c / s lu rm / s lu rm

. e p i l o g . c l e a n \
&& i n s t a l l −D −m644 e t c / s lu rmdbd . con f . example / e t c / s lu rm /

s lu rmdbd . con f . example \
&& i n s t a l l −D −m644 c o n t r i b s / s l u r m c o m p l e t i o n h e l p /

s l u r m c o m p l e t i o n . sh / e t c / p r o f i l e . d / s l u r m c o m p l e t i o n . sh \
&& cd \
&& rm − r f / u s r / l o c a l / s r c / s lu rm \
&& mkdir / e t c / s y s c o n f i g / s lu rm \

/ v a r / s p o o l / s lu rmd \
/ v a r / run / s lu rmd \
/ v a r / run / s lu rmdbd \
/ v a r / l i b / s lu rmd \
/ v a r / l o g / s lu rm \
/ d a t a \

&& t o u c h / v a r / l i b / s lu rmd / n o d e s t a t e \
/ v a r / l i b / s lu rmd / f r o n t e n d s t a t e \
/ v a r / l i b / s lu rmd / j o b s t a t e \
/ v a r / l i b / s lu rmd / r e s v s t a t e \
/ v a r / l i b / s lu rmd / t r i g g e r s t a t e \
/ v a r / l i b / s lu rmd / a s s o c m g r s t a t e \
/ v a r / l i b / s lu rmd / a s s o c u s a g e \
/ v a r / l i b / s lu rmd / q o s u s a g e \
/ v a r / l i b / s lu rmd / f e d m g r s t a t e \

&& chown −R slu rm : s lu rm / v a r /∗ / s lu rm ∗ \
&& / s b i n / c r e a t e−munge−key

RUN mkdir / e n t r y p o i n t

T h i s s e c t i o n i s o n l y f o r graphs
RUN yum i n s t a l l −y g r a p h v i z−d e v e l
RUN p i p i n s t a l l −−upgrade p i p
RUN p y t ho n −mpip i n s t a l l −U m a t p l o t l i b
RUN p i p i n s t a l l p y g r a p h v i z

54

COPY s lurm . c o n f / e t c / s lu rm / s lurm . c o n f
COPY slurmdbd . c o n f / e t c / s lu rm / s lurmdbd . c o n f
COPY k e y s / i d r s a . pub / r o o t / . s s h / i d r s a . pub
COPY k e y s / i d r s a / r o o t / . s s h / i d r s a
COPY e x t e r n a l a l l o c a t o r / r o o t / e x t e r n a l a l l o c a t o r

R e s e t i n g p e r m i s i o n s f o r p r i v a t e key
RUN chmod 400 ˜ / . s s h / i d r s a

COPY docker−e n t r y p o i n t . sh / u s r / l o c a l / b i n / docker−e n t r y p o i n t . sh
ENTRYPOINT [” / u s r / l o c a l / b i n / docker−e n t r y p o i n t . sh ”]

CMD [” s lurmdbd ”]

Kafka DockerFile

FROM ubuntu : l a t e s t

LABEL org . l a b e l−schema . vcs−u r l =” h t t p s : / / c 4 s c i e n c e . ch / s o u r c e /
mango−grm . g i t ” \

org . l a b e l−schema . name=” bbque−s lurm−p a r s e r ” \
org . l a b e l−schema . d e s c r i p t i o n =”C++ Kafka p a r s e r f o r

b a r b a q u e ” \
m a i n t a i n e r =” I g n a c i o Penas ”

ARG RDKAFKA DOWNLOAD URL= h t t p s : / / g i t h u b . com / e d e n h i l l / l i b r d k a f k a
. g i t

ARG CPPKAFKA DOWNLOAD URL= h t t p s : / / g i t h u b . com / m f o n t a n i n i /
c p p k a f k a . g i t

ENV LD LIBRARY PATH ”$LD LIBRARY PATH : / u s r / l o c a l / l i b : / o p t / mango
/ bosp / l i b / bbque / ”

RUN apt−g e t u p d a t e \
&& apt−g e t −y i n s t a l l \

nano \
ne t− t o o l s \
wget \
b z i p 2 \
z l i b 1 g−dev \
p e r l \
gcc \
g++\
g i t \

55

make \
cmake \
z l i b 1 g−dev \
l i b p t h r e a d −s t u b s 0−dev \
py thon \
python−p i p \
psmisc \
bash−c o m p l e t i o n \
l i b b o o s t−a l l−dev \
l i b s t d c ++6 \

&& apt−g e t c l e a n
#&& rm − r f / v a r / cache / a p t

Thi s i n s t a l l a t i o n s a r e f o r t e s t i n g t h e c o m u n i c a t i o n between
k a f k a s e r v e r s and

RUN p i p i n s t a l l kafka−py thon

RUN s e t −x \
&& cd / r o o t \
&& g i t c l o n e ”$RDKAFKA DOWNLOAD URL” \
&& cd l i b r d k a f k a \
&& . / c o n f i g u r e \
&& make && make i n s t a l l \
&& l s − l a / u s r / l o c a l / i n c l u d e

RUN cd / r o o t / \
&& l s − l a \
&& g i t c l o n e ”$CPPKAFKA DOWNLOAD URL” \
&& cd c p p k a f k a / \
&& mkdir b u i l d \
&& cd b u i l d \
&& cmake . . && make && make i n s t a l l \
&& l s − l a / u s r / l o c a l / i n c l u d e

COPY s r c / b b q u e k a f k a p a r s e r . cpp / r o o t / s r c / b b q u e k a f k a p a r s e r .
cpp

COPY c o m m s t e s t i n g s c r i p t s / r o o t / c o m m s t e s t i n g s c r i p t s
COPY i n c l u d e / r o o t / i n c l u d e
COPY l i b / r o o t / l i b

COPY docker−e n t r y p o i n t . sh / u s r / l o c a l / b i n / docker−e n t r y p o i n t . sh
ENTRYPOINT [” / u s r / l o c a l / b i n / docker−e n t r y p o i n t . sh ”]

56

A.1 MANGO GRM Docker-compose deployment file

This docker compose configuration file includes the deployment architecture to execute the
GRM with both Kafka and SLURM parameters and node specification.

v e r s i o n : ” 3 . 0 ”

s e r v i c e s :
mysql :

image : mysql : 5 . 7
hos tname : mysql
c o n t a i n e r n a m e : mysql
de p l oy :

mode : r e p l i c a t e d
r e p l i c a s : 1
p l a c e m e n t :

c o n s t r a i n t s :
− node . hos tname == gn5

e n v i r o n m e n t :
MYSQL RANDOM ROOT PASSWORD: ” yes ”
MYSQL DATABASE: s l u r m a c c t d b
MYSQL USER: s lu rm
MYSQL PASSWORD: password

n e t w o r k s :
cus tomOver l ay :

i p v 4 a d d r e s s : 2 0 . 1 . 0 . 7
volumes :
− v a r l i b m y s q l : / v a r / l i b / mysql

s lu rmdbd :
image : penas / s l u r m d o c k e r i m a g e : m a n g o c l u s t e r
command : [” s lu rmdbd ”]
c o n t a i n e r n a m e : s lu rmdbd
hostname : s lu rmdbd
de p l oy :

mode : r e p l i c a t e d
r e p l i c a s : 1
p l a c e m e n t :

c o n s t r a i n t s :
− node . hos tname == gn5

volumes :
− e tc munge : / e t c / munge
− e t c s l u r m : / e t c / s lu rm
− v a r l o g s l u r m : / v a r / l o g / s lu rm

expose :
− ” 6819 ”

57

n e t w o r k s :
− cus tomOver l ay

depends on :
− mysql

s l u r m c t l d :
image : penas / s l u r m d o c k e r i m a g e : m a n g o c l u s t e r
command : [” s l u r m c t l d ”]
c o n t a i n e r n a m e : s l u r m c t l d
hos tname : s l u r m c t l d
de p l oy :

mode : r e p l i c a t e d
r e p l i c a s : 1
p l a c e m e n t :

c o n s t r a i n t s :
− node . hos tname == gn5

volumes :
− e tc munge : / e t c / munge
− e t c s l u r m : / e t c / s lu rm
− s l u r m j o b d i r : / d a t a
− v a r l o g s l u r m : / v a r / l o g / s lu rm
− / o p t / mango−apps : / o p t / mango−apps

expose :
− ” 6817 ”

n e t w o r k s :
− cus tomOver l ay
− d a t a o v e r l a y

depends on :
− ” s lurmdbd ”

k a f k a s e r v e r :
image : s p o t i f y / k a f k a : l a t e s t
c o n t a i n e r n a m e : k a f k a s e r v e r
hos tname : k a f k a s e r v e r
de p l oy :

mode : r e p l i c a t e d
r e p l i c a s : 1
p l a c e m e n t :

c o n s t r a i n t s :
− node . hos tname == gn5

e n v i r o n m e n t :
ADVERTISED HOST : k a f k a s e r v e r
ADVERTISED PORT : 9092

expose :
− 2181

58

− 9092
n e t w o r k s :
− d a t a o v e r l a y
− cus tomOver l ay

depends on :
− ” s l u r m c t l d ”

c6 :
image : penas / s l u r m d o c k e r i m a g e : m a n g o c l u s t e r
command : [” s lu rmd ”]
hos tname : c6
c o n t a i n e r n a m e : c6
de p l oy :

mode : r e p l i c a t e d
r e p l i c a s : 1
p l a c e m e n t :

c o n s t r a i n t s :
− node . hos tname == gn5

volumes :
− e tc munge : / e t c / munge
− e t c s l u r m : / e t c / s lu rm
− s l u r m j o b d i r : / d a t a
− v a r l o g s l u r m : / v a r / l o g / s lu rm
− / o p t / mango−apps : / o p t / mango−apps

expose :
− ” 6818 ”
− ” 2222 ”

n e t w o r k s :
− cus tomOver l ay

depends on :
− ” s l u r m c t l d ”

k a f k a 6 :
image : penas / kafka−bbque : l a t e s t
hos tname : k a f k a 6
c o n t a i n e r n a m e : k a f k a 6
de p l oy :

mode : r e p l i c a t e d
r e p l i c a s : 1
p l a c e m e n t :

c o n s t r a i n t s :
− node . hos tname == gn5

volumes :
− / o p t / mango : / o p t / mango

59

n e t w o r k s :
− d a t a o v e r l a y

depends on :
− ” c1 ”
− ” k a f k a s e r v e r ”

c7 :
image : penas / s l u r m d o c k e r i m a g e : m a n g o c l u s t e r
command : [” s lu rmd ”]
hos tname : c7
c o n t a i n e r n a m e : c7
de p l oy :

mode : r e p l i c a t e d
r e p l i c a s : 1
p l a c e m e n t :

c o n s t r a i n t s :
− node . hos tname == gn6

volumes :
− e tc munge : / e t c / munge
− e t c s l u r m : / e t c / s lu rm
− s l u r m j o b d i r : / d a t a
− v a r l o g s l u r m : / v a r / l o g / s lu rm
− / o p t / mango−apps : / o p t / mango−apps

expose :
− ” 6818 ”

n e t w o r k s :
− cus tomOver l ay

depends on :
− ” s l u r m c t l d ”

k a f k a 7 :
image : penas / kafka−bbque : l a t e s t
hos tname : k a f k a 7
c o n t a i n e r n a m e : k a f k a 7
de p l oy :

mode : r e p l i c a t e d
r e p l i c a s : 1
p l a c e m e n t :

c o n s t r a i n t s :
− node . hos tname == gn6

volumes :
− / o p t / mango : / o p t / mango

n e t w o r k s :
− d a t a o v e r l a y

depends on :

60

− ” k a f k a s e r v e r ”
− ” c7 ”

volumes :
e tc munge :
e t c s l u r m :
s l u r m j o b d i r :
v a r l i b m y s q l :
v a r l o g s l u r m :

n e t w o r k s :
d a t a o v e r l a y :

e x t e r n a l :
name : k a f k a o v e r l a y

cus tomOver l ay :
e x t e r n a l :

name : s l u r m o v e r l a y

61

B Application recipe requirements

B.1 Generic Sample Recipe

<?xml v e r s i o n =” 1 . 0 ”?>
<BarbequeRTRM r e c i p e v e r s i o n =” 0 . 8 ”>

<a p p l i c a t i o n p r i o r i t y =” 4 ”>
<p l a t f o r m i d =” org . l i n u x . cgroup ”>

<awms>
<awm i d =” 0 ” name=”OK” v a l u e =” 100 ”>

<r e s o u r c e s >
<cpu>

<pe q t y =” 100 ” />
</ cpu>
<mem q t y =” 20 ” u n i t s =”M”/>

</ r e s o u r c e s >
</awm>

</awms>
<tg>

<r eqs>
< t a s k name=” t 0 ” i d =” 0 ” t h r o u g h p u t c p s =” 2 ”

inbw kbps =” 2000 ” outbw kbps =” 2500 ”
h w p r e f s =” peak , gn , nup ” />

< t a s k name=” t 1 ” i d =” 1 ” c t ime ms =” 2000 ”
h w p r e f s =” peak , gn , nup ” />

< t a s k name=” t 2 ” i d =” 1 ” c t ime ms =” 2000 ”
h w p r e f s =” peak , gn , nup ” />

< t a s k name=” t 3 ” i d =” 1 ” c t ime ms =” 1000 ”
h w p r e f s =” peak , gn , nup ” />

</ r eqs>
</ tg>

</ p l a t f o r m >
</ a p p l i c a t i o n >

</BarbequeRTRM>
<!−− vim : s e t t a b s t o p =4 f i l e t y p e =xml : −−>

B.2 Philips sample Recipe

<?xml v e r s i o n =” 1 . 0 ”?>
<BarbequeRTRM r e c i p e v e r s i o n =” 0 . 8 ”>

<a p p l i c a t i o n p r i o r i t y =” 4 ”>
<p l a t f o r m i d =” org . l i n u x . cgroup ”>

<awms>
<awm i d =” 0 ” name=”OK” v a l u e =” 100 ”>

<r e s o u r c e s >

62

<cpu>
<pe q t y =” 100 ” />

</ cpu>
<mem q t y =” 20 ” u n i t s =”M”/>

</ r e s o u r c e s >
</awm>

</awms>
< t a s k s >

< t a s k name=” t a s k 1 ” i d =” 1 ” t h r o u g h p u t c p s =” 1 ”
i n b w kbps=” 2000 ” outbw kbps =” 2500 ” h w p r e f s
=” peak , gn , nup ” />

</ t a s k s >
</ p l a t f o r m >

</ a p p l i c a t i o n >
</BarbequeRTRM>
<!−− vim : s e t t a b s t o p =4 f i l e t y p e =xml : −−>

63

C Extended network configuration file

The file shown bellow is an example of NetworkX initial configuration which includes all the
GN nodes and random number of accelerators.

Listing 6: Full availability cluster example
1 {
2 "name": "Mango Cluster",

3 "version": "1.2.0",

4 "master": "gn0",

5 "architecture": {
6 "gn0": {
7 "id": "gn0",

8 "master": 1,

9 "components": {
10 "peak": 4,

11 "nu+": 4,

12 "tesla": 0

13 }
14 },
15 "gn1": {
16 "id": "gn1",

17 "master": 0,

18 "components": {
19 "peak": 2,

20 "nu+": 2,

21 "tesla": 2

22 }
23 },
24 "gn2": {
25 "id": "gn2",

26 "master": 0,

27 "components": {
28 "peak": 4,

29 "nu+": 0,

30 "tesla": 0

31 }
32 },
33 "gn3": {
34 "id": "gn3",

35 "master": 0,

36 "components": {
37 "peak": 4,

38 "nu+": 2,

39 "tesla": 2

64

40 }
41 },
42 "gn4": {
43 "id": "gn4",

44 "master": 0,

45 "components": {
46 "peak": 3,

47 "nu+": 3,

48 "tesla": 2

49 }
50 },
51 "gn5": {
52 "id": "gn5",

53 "master": 0,

54 "components": {
55 "peak": 2,

56 "nu+": 2,

57 "tesla": 0

58 }
59 },
60 "gn6": {
61 "id": "gn6",

62 "master": 0,

63 "components": {
64 "peak": 0,

65 "nu+": 4,

66 "tesla": 0

67 }
68 },
69 "gn7": {
70 "id": "gn7",

71 "master": 0,

72 "components": {
73 "peak": 6,

74 "nu+": 2,

75 "tesla": 0

76 }
77 }
78 }
79 }

65

D Extended policy graphs

D.1 Temperature distributed

(a) Job 1 (b) Job 2

(c) Job 3 (d) Job 4

(e) Job 5 (f) Job 6

Figure 22: First job scheduling applying the occupancy trend with temperature distributed
policy

66

D.2 Temperature greedy

(a) Job 1 (b) Job 2

(c) Job 3 (d) Job 4

(e) Job 5 (f) Job 6

Figure 23: First job scheduling applying the occupancy trend with temperature greedy policy

67

	Introduction
	Motivation
	Objectives
	Previous Work
	Thesis organization

	The MANGO European Project
	Overview
	Objectives
	Software stack
	Validation applications
	The MANGO prototype

	Global Resource Manager (GRM) Architecture
	Overview & Objectives
	Global Resource Manager Software Architecture
	The SLURM Resource Manager tool
	Docker as connectivity and deployment tool
	Overlays and IP description
	Port Requirements
	Deployment

	Integration of the GRM in the MANGO prototype
	BarbaqueRTRM-SLURM communication
	SLURM-BarbequeRTRM communication

	Global Resource Manager Allocator
	Cluster Architecture Builder
	Cluster Availability Update
	Algorithms
	Entry Point

	Efficient power-, performance- and thermal-aware strategies
	Greedy policy
	Fully distributed policy
	Temperature/Power aware policy

	Experiment setup and results
	Global Resource Manager Validation
	Policies results and validation

	Conclusions
	Future Work
	Appendices
	File description for Dockerization and deployment
	MANGO GRM Docker-compose deployment file

	Application recipe requirements
	Generic Sample Recipe
	Philips sample Recipe

	Extended network configuration file
	Extended policy graphs
	Temperature distributed
	Temperature greedy

