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Abstract:
Reservoir computing has been one of the most prolific research fields during the
first decade of 2000. One of the main representatives of this trend are Echo
State Networks (ESN) which are a model for supervised learning. This model
is older than the recent approaches of deep learning models but it still useful
because of its simplicity and easy training.

This project makes a theoretical analysis of Echo State Networks some of the
mos relevant aspects of ESN. It also presents some basic experiment with ESN
and the development of a package using the R programming language. The
project ends with the presentation of a possible application in finance of the
Echo State Network.

Keywords: Supervised Learning, Echo State Networks, Neural Networks, Time-
series forecasting.
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1 Introduction

A wide variety of methods for non-linear operation are available thanks to ad-
vances in the latest trends such as the backpropagation algorithm presented in
[1]. The aim of this project is exploring some technique for supervised learning
with time series. The first option, and probably the most known, can be using
Recurrent Neural Networks (RNN) which have had a significant improvement
thanks to the application of the back propagation algorithm as presented by [2]
and [3]. Nevertheless, the RNN present several disadvantages such as a huge
computation time and the need of a very big amount of data for being trained.
A viable alternative can be the Echo State Networks (ESN) that appeared a few
years ago as can be seen in [4] and [5], with some of the first results exploring
the memory capacity of the ESN [4] and [12].

The main idea of the ESN is similar to the kernel trick. This idea consists
in make a modification of the input and go to a new space of bigger dimension
where the task will be much more easy to solve, see Figure 1. This modification
of the input will be called reservoir and the trend started with Echo State Net-
works and Liquid State Machines will be lately known as Reservoir Computing
[6].

Figure 1: Basic diagram of a ESN.

Some great success of the ESN can be seen at [7], [8] and, specifically in the
case of stock price prediction, [9]. During the last decade the performance of the
RNN improved [10] despite this the ESN still useful being able to outperform
RNN in some specific tasks [11]. Moreover, the ESN is a more intuitive and
more interpretable model than the ESN [13].
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2 Theory of Echo State Networks

2.1 Basic definitions and equations

First we start with the basic definitions. ESN are a model for supervised learn-
ing then an input and output signals are required. In our case we are going to
call u(t) ∈ RK to the input signal and y(t) ∈ RL to the output and the internal
units of the ESN will be x(t) ∈ RN . Usually a unit with constant value 1 will
be added to the input u(t) as bias term. Let Win ∈ RN×(K+1) the weights
connecting the input with the internal state and W ∈ RN×N the connections
of the internal state. The output weight matrix will be the only weights trained
for the ESN, this weights connect the input and reservoir with the output of
the net, so Wout

The equation for the the internal state is:

x(t+ 1) = f(Win

[
1

u(t)

]
+ Wx(t+ 1)) (1)

where f are the internal unit’s output functions which typically will be tanh().
The equation for the output of the ESN is:

ŷ(t) = Wout

 1
u(t)
x(t)

 (2)

Let’s consider all the possible input sequences lying on an input set (u(t))t∈I ∈
U I , where I is just an index set. For all of the important results we require U to
be compact. The notation for some input sequences will be ū±∞, ū+∞, ū−∞ and
ūh to denote infinite sequences (I = Z), right-infinite sequences (I = k, k+1, . . .
for some k ∈ Z) left-infinite sequences (I = . . . , k − 1, k for some k ∈ Z) and
finite sequence of length h, (I = k, k + 1, . . . , k + h− 1 for some k ∈ Z).
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Figure 2: Diagram of an ESN for illustrating the equations mentioned above.

Let S the network state operator as a result of successively applying the equation
(1), i.e. x(t + h) = S(x(t), ūh). Let A ⊂ RN the set of all admissible internal
states. We require that A is closed under the operation of network update, that
means u ∈ U,x ∈ A implies S(x,u) ∈ A.

2.2 Echo states

Now we are going to introduce the concept of echo states but before doing that
we need some previous definitions.

Definition 1: Let’s assume that the sets U and A are compact. This situ-
ation will be called standard compactness conditions.

The standard compactness conditions will be the only conditions over the sets
U and A for all the following results.

Definition 2: Assuming standard compactness conditions, the network has
echo states if the network state x(t) is uniquely determined by any left-infinite
input ū−∞. This means that for every input sequence . . . ,u(t− 1),u(t) ∈ U−N
and for all internal state sequences . . . ,x(t − 1),x(t) ∈ A−N and . . . ,x′(t −
1),x′(t) ∈ A−N where x(i) = S(x(i − 1),u(i)) and x′(i) = S(x′(i − 1),u(i)) it
holds that x(t) = x′(t).
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And now there will be presented 3 equivalent characterizations of the echo states
but before doing that two definitions are needed.

Definition 3: A state sequence x̄−∞ = . . . ,x(t − 1),x(t) ∈ A−N is called
compatible with an input sequence ū−∞ = . . . ,u(t − 1),u(t) if ∀ i < t the
equality x(i + 1) = S(x(i),u(i + 1)) is verified. In a similar way a infinite
sequence x̄∞ is called compatible with an input sequence ū∞ if ∀ i holds
x(i+ 1) = S(x(i),u(i+ 1)).

Definition 4: A network state x ∈ A is called end-compatible with an in-
put sequence ū−∞ if there exists a state sequence . . . ,x(t − 1),x(t) such that
∀i x(i + 1) = S(x(i),u(i + 1)) and x = x(t). In a similar way a network state
x ∈ A is called end-compatible with a finite input sequence ūh if there exists a
state sequence . . . ,x(t − 1),x(t) such that ∀i x(i + 1) = S(x(i),u(i + 1)) and
x = x(t).

Definition 5: Assuming standard compactness conditions:

1. The network is called uniformly state contracting if there exists a se-
quence (δh)h≥0 with limh→∞ δh = 0 (i.e. null sequence) such that for
all right-infinite input sequences ū+∞ and for all states x,x′ ∈ A, for
all h ≥ 0 for all sequence prefixes ūh = u(t), ...,u(t + h) it holds that
d(S(x, ūh), S(x′, ūh)) < δh, where d is the euclidean distance in RN .

2. The network is called state forgetting if for all left-infinite input sequences
ū−∞ there exists a null sequence (δh)h≥0 such that for all states x,x′ ∈ A,
for all h ≥ 0 for all sequence suffixes ūh = u(t − h), ...,u(t) it holds that
d(S(x, ūh), S(x′, ūh)) < δh.

3. A network is called input forgetting if for all left-infinite input sequences
ū−∞ there exists a null sequence (δh)h≥0 such that for all h ≥ 0, for all
sequence suffixes ūh = u(t−h), ...,u(t), for all left-infinite input sequences
of the form w̄−∞ūh, v̄−∞ūh for all states x end-compatible with w̄−∞ūh
and states x′ end-compatible with v̄−∞ūh it holds that d(x,x′) < δh

Proposition 1: Assuming standard compactness conditions, assume that S is
continuous in state and input. Then being uniformly state contracting, state for-
getting and input forgetting are all equivalent to the network having echo states.

Proof:
echo states ⇒ uniformly state contracting
Let:

D = {(x,x′) ∈ A2 : ∃ū∞ ∈ UZ,∃ x̄∞, x̄′∞ ∈ AZ,∃t ∈ Z : x̄∞, x̄′
∞

compatible with ū∞ and x = x̄(t) and x′ = x̄′(t)}
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The idea of the D set is all the pairs compatibles with some input sequence. It
is trivial that having echo states implies D only containing pairs of the form
(x,x).
Let:

P+ = {(x,x′, 1/h) ∈ A×A× [0, 1] : h ∈ N,∃ūh ∈ Uh,

x and x′ are end-compatible with ūh}

And Let:

D+ = {(x,x′) ∈ A2 : (x,x′, 0) is an accumulation point of P+}

Let’s prove that: D ⊆ D+, taking (x,x′) ∈ D and taking h ∈ N then by defi-
nition of D exits ū∞, x̄∞ and x̄′∞ such that x̄∞ and x̄′∞ are compatible with
ū∞, that means ∀ i x(i) = S(x(i−1),u(i)) and ∀ i x′(i) = S(x′(i−1),u(i)) it is
clear for the sequences x(t−h), . . . , x(t) ∈ Ah+1 and x′(t−h), . . . , x′(t) ∈ Ah+1

holds x(i) = S(x(i − 1),u(i)) and x′(i) = S(x′(i − 1),u(i)) and, by definition
this sequences are end compatible with ū′h. Then for all h ∈ N the point
(x,x′, 1/h) ∈ P+ and then ∀ ε > 0 h ∈ N such that d((x,x′, 1/h), (x,x′, 0)) < ε
and this is the definition of (x,x′, 0) being an accumulation point of P+. So
D ⊆ D+ is proved.

Now let’s prove D+ ⊆ D: the firs observation is that if (x,x′) ∈ D+ and u ∈ U
then (S(x,u), S(x′,u)) ∈ D+. This is clear by the definition of P+, if exists a
sequence ūh such that x and x′ are end compatible with ūh then displacing the
ūh in one unit in time is clear that (S(x,u), S(x′,u)) ∈ P+ and for seeing that
it lies in D+ is enough to use the continuity property of S the fact of (x,x′, 0)
is an accumulation point of P+ extends to (S(x,u), S(x′,u), 0) and it is also an
accumulation point so (x,x′) ∈ D+. Now let’s prove that for every (x,x′) ∈ D+

exists u ∈ U and (z, z′) ∈ D+ such that (S(z,u), S(z′,u)) = (x,x′). For prov-
ing this let’s take a sequence (xn,x

′
n, 1/hn) such that limn→∞(xn,x

′
n, 1/hn) =

(x,x′, 0). Clearly (xn,x
′
n, 1/hn) ∈ P+ for being in P+ for each of the (xn,x

′
n)

there exists ui and (zn, z
′
n) ∈ A × A such that (S(zn,un), S(z′n,un)) =

(xn,x
′
n). Now using Bolzano-Weierstrass theorem the sequence (zn, z

′
n,un)

has a convergent subsequence (znj , z
′
nj ,unj ). As S is continuous we can make

a pas to the limit and then obtain (S(z,u), S(z′,u)) = (x,x′), moreover the set
A×A×U is compact so any convergent sequence of A×A×U will converge in-
side the space so by definition now (z, z′) ∈ D+ and using the property of being
closed under network update, this finishes the proof of for every (x,x′) ∈ D+

exists u ∈ U and (z, z′) ∈ D+ such that (S(z,u), S(z′,u)) = (x,x′).
Using this result is easy check that for every (x,x′) ∈+ exists an input sequence
ū∞ and state sequences x̄∞ and x̄′∞ compatibles with ū∞ such that x = x(t)
and x′ = x′(t).

For proving the result assume that the network does not satisfy the property
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of being uniformly state contracting, this implies that for every null sequence
(δi)i≥0 exits an h > 0 and a finite input sequence of length h, ūh and states x,
x′ ∈ A such that:

d(S(x, ūh), S(x′, ūh)) ≥ δh
Any compact set is bounded, so A is bounded, then defining the sequence:

µi := sup{d(S(x, ūi), S(x, ūi)) : x,x′ ∈ A, ūi ∈ U i}

is bounded, moreover µi can not be a null sequence because we are assuming the
network not being uniformly state contracting. µi has a convergent subsequence
and this subsequence has to converge to some ε > 0. In any compact set the
supremum is reached, then x,x′ ∈ A. Now let’s take the sequence (xij ,x

′
ij

) ∈ A2

such that:

(xij ,x
′
ij

) ∈ {S(x, ūij ), S(x, ūij ))|ūij ∈ U ij ,x,x′ ∈ A, d(S(x, ūij ), S(x, ūij )) = µij}

As we said before A is compact, so A2 is compact too, then exists a sub-
sequence (xijk ,x

′
ijk

) which converges to some (y,y′ ∈ A2. It is clear that

(xij ,x
′
ij , 1/ij) ∈ P+ then (y,y′, 0) is an accumulation point of P+ and by

definition (y,y′) ∈ D+ and also:

0 < ε = lim
k→∞

µijk = lim
k→∞

d(xij ,x
′
ij

) = d(y,y′)

That means that an element (y,y′) ∈ D+ with y 6= y′ which directly contra-
dicts the echo state property.

uniformly state contracting ⇒ state forgetting
Let’s assume not state forgetting i.e. exists an input sequence ū−∞ and a strictly
growing index sequence (Ii)i≥0, the states xi, x′i and an ε > 0 such that:

∀ id(S(xi, ū
−∞[Ii]), S(x′i, ū

−∞[Ii])) > ε

here ū−∞[Ii] is the sequence formed by the last Ii values of ū−∞. Starting with
the values ū−∞[Ii] and completing to having a right-infinite input sequence v̄i,
now calling v̄−∞[Ii] to the sequence formed by the firsts Ii values of v̄i it holds:

d(S(xi, v̄i[Ii]), S(x′i, v̄i[Ii])) > ε

which directly contradicts the uniform state contraction property, this ends the
proof of this result.

state forgetting ⇒ input forgetting
Let’s take a left-infinite input sequence ū−∞ and Let (δh)h≥0 it’s associated null
sequence of the state forgetting property. Let ūh the finite sequence formed for
the first h values of ū−∞. Take two states y and y′ from A. By the state forget-
ting property it holds that d(S(y, ūh), S(y′, ūh)) < δh. Let’s consider now any
left infinite sequences w̄−∞ and v̄−∞. Then the states x and x′ end compatible
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with w̄−∞ūh and v̄−∞ūh and it holds d(x,x′) < δh which, by definition, is the
property of being input forgetting.

input forgetting ⇒ echo states
Let’s assume that the net does not verify the echo state property, then by def-
inition exists a left-infinite input sequence ū−∞ and two states x, x′ such that
d(x,x′) > 0. Then the result is direct taking w̄−∞ūh and v̄−∞ūh equal to ū−∞

directly contradicts the definition of input forgetting because the states x, x′

are end compatible with w̄−∞ūh and v̄−∞ūh and d(x,x′) > 0.

Proposition 2: Assume a network with tanh functions in the network update
operator.

1. Let W the weight matrix satisfy σ < 1, where σ is its largest singular
value, then d(S(x,u), S(x′,u)) < σd(x,x′), for all inputs u, for all states
x,x′ ∈ [−1, 1]N

2. Let W the weight matrix with spectral radius ρ(W)) > 1. Then the
network has no echo states for any input set U containing 0 and admissible
set A.

Proof:

1.

d(S(x,u), S(x′,u)) = d(tanh(Winu + Wx), tanh(Winu + Wx′)) ≤

d(Winu + Wx,Winu + Wx′) = d(Wx,Wx′)

For seeing this result we can use the mean value theorem which applied to
the element wise tanh function holds tanh(b)−tanh(a) = tanh′(ξ)(b−a) =
(1− tanh2(ξ))(b− a) ≤ b− a for each element.

d(Wx,Wx′) = ||W(x− x′) ≤ σd(x,x′)

And now is easy to check that this shrinkage of the internal state by a
factor σ < 1 implies echo state by using the definition of echo states.

2. Assume now ū−∞ = 0 it is clear that x̄−∞ = 0 is a compatible state.
Checking at the reference [18] section 3 if ρ(W ) > 1 the null state is not
asymptotically stable, then exits another internal state x′ 6= 0 compatible
with the input sequence and this violates the echo state property.

2.3 Output feedback

The output feedback for an ESN consists in connecting the output signal to the
internal state of the net using a weight matrix Wfb ∈ RN×L. The form of the
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main equation for the reservoir of the ESN in this case is:

x(t+ 1) = f(Win

[
1

u(t)

]
+ Wx(t+ 1) + Wfbŷ(t)) (3)

This makes the ESN a much more powerful tool because the dynamics of the
system can be much more rich now, but this power has a price because some
stability issues can appear when output feedback is used.

For solving the possible stability problems created because of the output feed-
back one possible strategy is the teacher forcing. It consists in breaking the
feedback loop in the training phase doing:

xtrain(t+ 1) = f(Win

[
1

u(t)

]
+ Wx(t+ 1) + Wfby(t)) (4)

Also a common strategy for making the net output robust is adding noise only
during the training phase so the final equation for the training internal reservoir
is:

xtrain(t+ 1) = f(Win

[
1

u(t)

]
+ Wx(t+ 1) + Wfb(y(t) + ν(t)) (5)

Figure 3: Diagram of an ESN with all the concepts mentioned until now.

For the testing it’s not allowed using the real values y(t) and then testing the
performance but it can be used a similar strategy used with the RNN for the
testing which is compute the first values of the testing reservoir using the real
values of the target function y(t) and then leave the ESN continue computing
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the values of the reservoir in the test phase in a free run with the predicted
values ŷ(t). All the values computed using the true values of the output should
be discarded. An example of this technique will be provide in the section 3.2.

2.4 ESN with leaky integrator neurons

The performance of the ESN computed with the equation (1) or (3) perform
well for discrete tasks, nevertheless this way of computation is not the most
suitable for learning slowly changing systems. For this case the most adequate
equation will be a continuous one, in our case we will use a discretized version
of an continuous equation. The continuous equation is:

ẋ = C(−αx + f(Win

[
1
u

]
+ Wx + Wfbŷ) (6)

Where C is a time constant and a is the leaking decay rate. Dicretizing with
time step δ we obtain:

x(t+ 1) = (1− Cαδ)x + Cδ

(
f(Win

[
1

u(t+ 1)

]
+ Wx(t) + Wfbŷ(t)

)
(7)

The first observation in equation (7) is that the product Cδ can be substituted
by a single parameter Cδ = γ. A more interesting observation here is that γ is
an irrelevant parameter, because for every ESN generated according to:

x(t+ 1) = (1− αγ)x + γ

(
f(Win

[
1

u(t+ 1)

]
+ Wx(t) + Wfbŷ(t)

)
(8)

exists other ESN with γ = 1 and exactly the same output. For proving this
lets assume a ESN with weight some weight matrix Win, W and Wfb and some
value of the parameters α and γ, now we introduce a = αγ and divide the
equation (??) by γ

x(t+ 1)

γ
= (1− a)

x(t)

γ
+

(
f(Win

[
1

u(t+ 1)

]
+ Wx(t) + Wfbŷ(t)

)
(9)

rewriting in a equivalent form:

x(t+ 1)

γ
= (1− a)

x(t)

γ
+

(
f(Win

[
1

u(t+ 1)

]
+ γW

x(t)

γ
+ Wfbŷ(t))

)
(10)

From (10) we can deduce that a new ESN with the same Win and Wfb and a
new internal weights W′ = γW using (8) with γ = 1 will produce the internal

state x(t)
γ . Then the ouput produced by the new ESN will be:

ŷ(t) = Wout

 1
u(t)
x(t)
γ

 (11)
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So if the new ESN has a output weight matrix W′out with a scale of γ to the

components corresponding to the internal state x(t)
γ the output of the original

ESN an the new ESN will be exactly the same, and the new ESN has γ = 1.
With this result we can conclude that the equation for the internal state with
leaky integrator neurons is:

x(t+ 1) = (1− α)x + f(Win

[
1

u(t+ 1)

]
+ Wx(t) + Wfbŷ(t)) (12)

2.5 Generating the reservoir

As we have said before in a ESN the only weight trained are the weights in the
last layer, Wout. The other matrices Win, W and Wfb are randomly generated.
W is usually generated sparse, the performance of ESN with sparse reservoirs is
usually better and the computations are much faster. The distribution used for
generating W has to be with zero mean, the most common options are discrete
distribution with two values, Gaussian or uniform. Win is also randomly gen-
erated but it has to be dense, otherwise useful information from the input can
get lost. The distributions for generating Win can also be diverse. The weights
Wfb can be generated dense or sparse depending on the task again with a zero
mean distribution.

One of the most important hyperparameters of the ESN is the spectral radius
of the internal state weight matrix ρ(W)). As we have seen before ρ(W)) < 1
does not guarantees having echo states but in most of the situations satisfy-
ing ρ(W)) < 1 the ESN will present echo states. The spectral radius of W is
directly related with the memory capacity of the ESN and it has to bigger in
tasks which require more memory span, for seeing an example of this behavior
go to section 3. Other hyperparameter of the ESN is the scaling factor of the
input matrix, bigger scaling of this weights usually works better for strongly
non-linear tasks. The most common technique for selecting the hyperparame-
ters is trying different values of the hyperparameters with small reservoirs which
allows make the training in a very short amount of time, select the hyperparam-
eters that give the best performance and use this values for the bigger reservoirs.

Usually in the dynamics of the neurons of the internal state appears an ini-
tial transient state which creates an unnatural behavior of the net. This tran-
sient is the result of setting to an arbitrary value the initial state x(0) (usually
x(0) = 0). For avoiding these modified dynamics the initial values of X are
discarded, this implies also discarding the same amount of values from U and
Y . For some tasks (specially classification or working with multiple sequences
at the same time) this behavior can result useful and in this case no discard will
be applied.

For For training the weights Wout the most common strategy is minimize the
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MSE between ŷ and y. This is solving:

Y = Wout

 1
U
X


This problem has a closed form solution so solving it is very fast, moreover
this problem is convex this this guarantees reaching the global optimum as
opposed to other techniques such as the RNN which are solving a non-convex
problem using gradient descend. If T > 1 + L + N the system of equations
will be overdetermined. A common s solution to this problem is the Tikhonov
regularization, which in this case is:

Wout = Y ×
[
1 U X

]
×

1
U
X

 [1 U X
]

+ βI

−1 (13)

this adds a new hyperparameter to the ESN which is β the regularization pa-
rameter for the training of Wout.
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3 Basic experiments

This section corresponds to replicated experiments of different papers. The
experiments range from simple toy examples to illustrate basic concepts to some
more complex experiment using different approaches and real data. In some of
the cases the experiments had some little modification to check the performance
in a similar but not exactly the same situation. The ideas for experiments from
1 to 3 are obtained from [4] and the idea for the fourth one from [8].

3.1 Sinusoidal wave

The idea of this experiment is checking the capacity of an ESN of learning a non-
linear function, in this case f(x) = 1

2x
7. The input signal for this experiment

will be a sinusoidal wave u(t) = sin(t/5) and output will be the non-linear
modification of this wave y(t) = 1

2 sin7(t/5) = 1
2u

7(t). The size of the internal
state for this experiment is fixed to N = 100. The training size is 300 we
discard the first 100, the matrix W is generated only with values −0.4, 0.4, 0
with probability 0.025, 0.025, 0.95 respectively (the value 0.4 is just a scaling
factor to obtain ρ(W) < 1). The matrix Win is created with random values −1
and 1 with equal probability.

−1.0

−0.5

0.0

0.5

1.0

0 100 200 300
index

va
lu

e  
Input
Output

Figure 4: Input and output of the training data of the first experiment. In the
y-axis of the plot we can see the value of each signal and in the x-axis the index
of the samples.

The obtained results where MSEtrain ≈ 10−14 and MSEtrain ≈ 10−14, which is
a similar performance than in the original experiment. As we have mentioned
before working with ESN is important discard the first samples to remove the
original transient mode of the neurons of the internal state. The transient state
can be seen for some neurons in the following plot:
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An interesting observation is that without discarding the results are MSEtrain ≈
10−13 and MSEtrain ≈ 10−13 but discarding only in the training phase MSEtrain ≈
10−14 but MSEtest ≈ 0.018. So in general the best results are obtained discard-
ing some samples but the most important thing is treat in a similar way training
and testing data.

3.2 Zero input and output feedback

The main idea of this experiment is illustrate that the output feedback can
work in a similar way than the input. The input for this task will be the
zero signal u = 0 and the output will be the same than the last experiment
y(t) = 1

2 sin7(t/5), we discard the first 100 samples and train with the follow-
ing 200. And we use the same W with values −0.4, 0.4, 0 with probability
0.025, 0.025, 0.95 and Wfb with values −1, 1 with equal probability. The ob-
tained results are MSEtrain ≈ 10−9 but testing after with 300 values we have
MSEtest > 100.

The error occurs because small disturbances in the prediction result accumulate
because the equation designed for the intermediate state with output feedback
uses the real value y(t):

xtest(t+ 1) = tanh(Wx(t) + Wfbŷ(t))
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Small errors in the prediction y(t) accumulate until the error blows up.
The idea for solving this is make the system output robust. One way of doing
this is adding feedback noise during the training phase:

xtrain(t+ 1) = tanh(Wx(t) + Wfb (y(t) + ν(t)))

For this problem ν was noise between −10−4 and 10−4 sampled using a uniform
distribution. It is important adding this noise only in the training because the
test is always noisy by how is constructed. The noise ν(t) is random noise sam-
pled between −10−4 and 10−4.

In combination with the strategy of adding noise is important using teacher
forcing steps to stabilize the network. For the testing phase the internal state
was calculated using 1000 teacher forcing steps, using the equation:

xtest(t+ 1) = tanh(Wx(t) + Wfby(t))

After 1000 steps the teacher forcing is removed and the net goes in an free
run for the remaining test samples, now for computing the internal state the
equation is:

xtest(t+ 1) = tanh(Wx(t) + Wfbŷ(t))

For checking the performance of the net all the values of ŷ(t) corresponding
to the teacher forcing phase were discarded. The performance with this new
strategy is a training and testing MSE of approximately 10−7. The performance
for testing now is much better but the error of the training raises a bit.
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3.3 Periodic sequence learning

For this task the signal is the melody of the song ”The House of the Rising
Sun”, the musical notes of this melody are represented by numbers between -1
and 14 assigning -1 to the g note and going up in the scale order.
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Figure 5: Melody for the task of this experiment before the squashing in [-1, 1].

The target signal for this task consist in concatenation of the values showed in
Figure 5. And like in the previous experiment there is no input signal.

The complexity of this task is higher than in the two previous ones, for this
reason the internal size of the network is fixed to N = 400. The values of
the weight matrix W are randomly generated to 0, -1 and 1 with probabilities
0.9875, 0.0065 and 0.0065 respectively. And then rescaling this weight matrix
to obtain ρ(W) = 0.9. This network also has output feedback sampled using
a uniform distribution in [-2, 2]. For this task is needed that the network has
enough short term memory capacity because the target signal contains eight
consecutive 0’s and if the net has not a memory of at least 9 values the ESN
will get lost and return always a wrong value.

As we have output feedback also using noise for making the output robust
training and output feedback is needed. So the equation here for the training
internal state will be:

xtrain(t+ 1) = tanh(Wx(t) + Wfb (y(t) + ν(t)))

And for this experiments the net will run using 1500 teacher forcing steps. And
free run until complete all the testing values. The performance in this experi-
ment was a test MSE of 10−7.
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An interesting observation is that the choice of the parameters is robust. In
the case of W the performance is similar for any W with ρ(W)) > 0.7 how-
ever for values ρ(W)) < 0.7 the memory span of the ESN is not enough and
the network gets lost returning always the mean of all the values. The scaling
parameters of the matrix Wfb can be chosen from [-0.1, 0.1] to [-10, 10] the
performance is similar in all the cases. The same happens to the noise that can
be sampled from [−0.01, 0.01] to [−10−6, 10−6] also with a similar performance
in testing, in this case bigger noise leads to a slightly worse performance but
the difference is about one order of magnitude so is not relevant for this case.

3.4 Japanese vowel dataset

The ”Japanese Vowels” is a dataset used for time series classification. This
dataset consist in the speech of nine Japanese male speakers. Each utterance
is represented by 12 LPC cepstrum coefficients, there is a total of 270 samples
used for the training phase and 370 samples for the testing phase. For this
problem different configurations of ESN were used:

The first one and the most simple one consists in using 9 output units (ym)m=1,...,9,
observe that in this case the output of the ESN is not a time series. For comput-
ing the internal state X is used the equation (1) and the output is normalized
in the interval [0, 1]. The advantage of this approach are that it is simple and
intuitive and the results are good with a misclassification test error of 1%. The
disadvantage of this method is that large ESN are required for solving the task,
N ≈ 103. For this setup was no clear difference between using leaky integrator
neurons or not.

The idea of the second approach airses from the fact that not every speech has
the same length. The idea es choosing a small integer D and take one sample of
internal state and input each li/D where li is the length of each sequence. That
means taking the values corresponding to the index li/D, 2li/D, . . . , li using in-
terpolation if li is not multiple of D. The advantage of this setup is that the
training error are as lower as the first approach but with an ESN much smaller
than the ESN used in the first case, here with a dimension of the internal state
about 20. One of the most important disadvantages is that this setup trends to
overfitting and the results in the testing phase are similar (and in some cases
worse) than in the last setup.

The last approach presented here is the called combined classifiers. The ar-
chitecture consist in create several ESN with an small reservoir, for this case
with N = 4, with only 4 neurons the dynamics of the reservoir are quite different
for different realizations (this usually does not happen when we are working with
bigger reservoirs). The key idea is that with different dynamics the probability
of several ESN getting wrong in the same way is very low. So using several ESN
each of them with one vote for the predicted output we can exploit this fact.
The performance for this experiment is te best one obtaining a 100% of testing
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accuracy and only 1 misclassification in training, the performance can be seen
in Figure 6 where is plot the number of misclasifications vs the number of ESN
used in paralel for generating the output.
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Figure 6: Diagram of the performance of ESN vs the number of ESN used
in the classification task. These values are calculated averaging 10 different
realizations

Taking a close look on the data the train sample misclassified is always the
same, so this sample can be suspect of being corrupted.
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4 R package

4.1 Motivation for creating an R package

The use of ESN for the different tasks is tedious in many cases since it requires
generating all the weight matrices with the desired conditions, calculating the
intermediate state for the train and the test, training the last layer of weights
and checking the performance of the net.

All these reasons make using ESN a long code and normally difficult to mod-
ify to test new configurations since an echo state network can be modified in
many ways, generating the weight matrices with different distributions, changing
rescaled values, different spectral radio, number of samples discarded, different
values of noise among others.

For all of this reasons one of the main objectives of this project was the im-
plementation of an official R package that will be soon uploaded to CRAN. The
aim of the package is to allow, on the one hand, to use the ESN model in a
simple way and, on the other hand, to allow a great freedom and number of
options when creating an ESN. In the following sections the structure of the
package and the methods and classes will be explained in more detail, however
I would like to illustrate with an example the simplicity that allows to quickly
test an ESN.

Figure 7: Example of an easy use of ESN by using the R. As can be seen with
three lines of code a simple model of an ESN can be trained.
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Figure 8: Screenshot of the GitHub repository containing all the code files of
the R package. In this image we can see that the structure of the code is the
same that in the official CRAN packages.

4.2 General Structure of the package

R allows a wide variety of options for implementing object oriented program-
ming such as S3, S4 or R6. For the implementation of this package the option
chosen was S3 objects.

S3 implements a style of object oriented programming called generic-function
object oriented. This is different from most programming languages, like Java,
C++, and C#, which implement message-passing object oriented programming.
While computations are still carried out via methods, a special type of func-
tion called a generic function decides which method to call. S3 is a very casual
system, it has no formal definition of classes, but for our purpose is the most
simple way of coding the class structure of the ESN and the most convenient.

Other important aspect of the package is the usage of C code to speed up the
calculations. As we said before training the last layer of weights of an ESN is
fast because the problem which is solved has closed form solution. Nevertheless,
computing the internal state X can be slow especially if the amount of samples
is big. A solution for this problem was using the package ”Rcpp” to include C
code for making this calculations, thanks to the C code we reduce the time of
computation in approximately a factor of 10.
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4.3 Methods

In this subsection we will explain the most important methods of the R package
giving a short description, an explanation of the arguments and the return of
each method.

4.3.1 ESN()

This is the core package method of the package, it allows to create an ESN. The
return of this method is an object from the class ”ESN” to which the methods
that we will see later can be applied to it. The usage of this method is:

ESN(u, y, num_neurons, density, spectral_radius,

fb_density = NULL, alpha = 1, pre_proc = "none",

scale_in = 1, scale_fb = 1, scale_noise_in = 0,

scale_noise_gen = 0, scale_noise_fb = 0,

type_Win = "uniform", user_define_Win = NULL,

type_W = "uniform", user_define_W = NULL,

type_Wfb = "uniform", user_define_Wfb = NULL,

bias = TRUE, output_feedback = FALSE,

initial_state = "zero", user_define_initial_state = NULL)

This method has a wide variety of arguments, here we will give a short expla-
nation about them. The arguments u and y are the input and output matrices
respectively. num_neurons refers to the size of the internal reservoir of the
ESN, throughout this project we have called to this argument N but the name
num_neurons is more intuitive and this is good for an user who is not familiar-
ized with the notation and spectral_radius is the value for the spectral radius
of the internal state weight matrix W. The previous arguments are the only
ones which don not have a default value. alpha is the value of α the leaking
rate parameter described at section 2.4, the default value is α = 1 i.e. ESN with
no leaky integrator neurons. The pre_proc argument is an option for making
a preprocessed of the output data, the options for this parameter are "none"

which will make no preprocessed, "linear" that will substract the mean and
the divide by the standard deviation and "tanh" that will made the same pre-
processed than in the last option and then apply a tanh function to each value.
scale_in and scale_fb refer to the scaling factor of the input weight matrix
Win and the feedback weight matrix Wfb. The argument type_Win is used for
selecting the distribution used for generating the weights Win, the options are
"discrete" (for a bi-valued discrete distribution with values -1 or 1), "uniform"
(for a uniform distribution in [-1, 1]), "gaussian" (for a Gaussian distribution
with σ = 1) and "user_define", an important observation is that the values
of the discrete, the boundaries of the uniform and the variance of the Gaussian
are fixed to 1 because this parameter can be changed using the scaling factor
for the input scale_in. The argument user_define_Win is only important if
type_Win = "user_define", in this case the argument user_define_Win has
to be a matrix provided by the user, with the correct dimension, that will be
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used as input weight matrix. This allows to the user a total control over the
weights if desired. And the same discussion can be extended to the arguments
type_W, user_define_W, type_Wfb and user_define_Wfb but here the discrete
option is called "discreteZero" to emphasize the fact that the matrix will also
contain null value elements. The bias is a boolean parameter that chooses if
a bias term is added to the input u or not. The output feedback is also a
boolean parameter selecting if the net will have output feedback or not. The
initial_state refers to the value that will be fixed for x(0) with a default
option "zero" for x(0) = 0 also the option "gaussian" for being generated
according to a Gaussian distribution with µ = 0 and σ = 1 and the option
"user_define that allows to the user to set the desired value for the initial
state with the argument user_define_initial_state.

4.3.2 train()

This method us used for training an object from the class ”ESN”. The strategy
for training is the one described at section 2.5 which is minimizing the MSE
between y and ŷ with a Tikhonov regularization. The return of this method is
the same trained ESN that is given as input. An example of usage:

train(net, discard = NULL, discard_pct = 0.2,

beta = 1e-12, tol = 1e-30)

The argument net is the most important one, it refers to the ESN that will be
trained. The net given has to be from the class ESN otherwise the train() will
raise an error. discard refers to the number of samples that will be discarded
during the training phase and the discard_pct refers to the fraction of samples
(over the total amount of training samples) that will be discarded, this argument
has to be between 0 and 1. The argument beta is the regularization coefficient
β of the Tikhonov regularization and the tol is the tolerance of the R function
solve() for solving this minimization problem.

4.3.3 predict()

This method is useful for seeing the performance and making predictions with a
trained ESN, before using this method the train method must have been used,
otherwise the code will raise an error. The return of this method is a list with
two elements, the first element of the list is test MSE and the second is the
predicted values for the given test input. The usage of this method:

predict(net, u, y, discard = NULL, discard_pct = 0.1,

teacher_forcing_steps = NULL, teacher_forcing_pct = 0.1,

reset_state = TRUE)

As in the train method the argument net refers to the ESN that will be tested.
The net has to be from the class ESN otherwise the predict() will raise an
error. The arguments u and y are the matrices with the test data for input and
ouput respectively, the format of this matrices is the same that in the ESN()
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method. discard refers to the number of samples that will be discarded dur-
ing the testing phase and the discard_pct refers to the fraction of samples
(over the total amount of testing samples) that will be discarded, this argu-
ment has to be between 0 and 1. In a similar way teacher_forcing_steps

refers to the number of samples that will be computed using teacher forcing
and teacher_forcing_pct is the fraction of samples (over the total amount
of testing samples) that will be computed with teacher forced, once again this
argument has to be between 0 and 1. reset_state is a useful argument when
the train and test data come from the same sequence, if reset_state is fixed to
FALSE then the initial testing state test(0) will be the last value from the training
internal state. If reset_state = TRUE, which is the default option, the value
of test(0) will be fixed arbitrarily.

Figure 9: Example from the package vignette of using the 3 methods mentioned
above.
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4.3.4 print()

This method gives a summary of the properties of a ESN.

print(net)

It has only one argument which is net it has to be an object from the class ESN
and refers to the network that will be printed.

Figure 10: Example from the package vignette of the print() method.
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5 Finance applications

5.1 VAR Models

The first part of this chapter consists in the definition of the VAR model which
are a simple and useful model in the finance field. Let pt be the price of an asset
at (discrete) time index t, we define the returns as:

Rt :=
pt − pt−1
pt−1

=
pt−1
pt
− 1 (14)

Working with assets is more common working with the log-returns, its definition
is:

rt = log(1 +Rt) = yt − yt−1 (15)

The VAR model is one of the simplest models which has memory of the past
to predict the future. The notation of a VAR model is VAR(p) where p is the
order of the model. A Var(p) is define in the following way:

rt = φ0 +

p∑
i=1

Φirt−i + wt (16)

where Φ0 and Φi with i = 1, 2, . . . , p are the coefficients of the VAR model. As
can be seen from the definition the value of a VAR(p) model rt at time t directly
depends on the values rt−1, rt−2, . . . , rt−p but each of the rt−kvalues depends
also on the last p values so the value rt is correlated with all the past values ri
with i = 1, 2, . . . , t− 1.

For the experiments in this chapter generating synthetic data using a VAR
model will be needed, but a VAR model can be unstable so for checking the
stability the following result can be useful.
A VAR(p) model given by (??) is stationary if

det(Ik −
p∑
i=1

Φiz
i) 6= 0 ∀ |z| ≤ 1 (17)

And (17) is verified if and only if the modulus of the eigenvalues of F lie at the
unit circle, where F is:

F =


Φ1 Φ2 . . . Φp−1 Φp

Ik 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ik 0

 (18)
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5.2 Comparison of the ESN with VAR models

In this section we have generate synthetic data using different VAR models,
specifically a VAR(1) a VAR(3) and a VAR(5). The parameters of this models
where randomly generated but always checking the stability condition using
(17) and (18). Also a Gaussian noise was added with σ2 = 10−4 The idea was
predict the time series generated by the VAR model using different models. The
naive model is simply a mean with a small rolling window. The clairvoyant is
the true model for each case with the true parameters. Also a VAR(1), VAR(3)
and VAR(5) where used for predicting each time series. An ESN was used for
each time series too, this are the obtained results:

MSE (×10−3) VAR(1) VAR(3) VAR(5)
Naive 2.4 2.2 2.8

Clairvoyant 0.093 0.094 0.094
Estimated VAR(1) 0.093 0.12 0.16
Estimated VAR(3) 0.093 0.094 0.12
Estimated VAR(5) 0.093 0.094 0.095

ESN 0.10 0.11 0.13

Table 1: Table showing the results of the comparison of the VAR models with
the ESN

We have tried different configurations of ESN for each model and the value
that appears at Table 1 is always the one which give the best performance. For
training each model 1000 samples were used and 200 different samples were used
for testing. For the VAR of the small order the ESN chosen had a small reservoir
N = 30. And for the bigger VAR models usually a reservoir of N = 100. As can
be seen the performance of the ESN is not the best on this synthetic datasets
but this is not a strange result because usually a VAR model with the same or
higher order of the estimated one will perform better than the ESN because this
model has capacity of predicting well the VAR model and has a much smaller
amount of parameters. The interesting result here is that the performance of
the ESN is slightly better than the one obtained predicting with a VAR model
of smaller order than the original one.
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6 Conclusions and future work

As conclusions we can said that the characterization of echo states showed in
section 2.2 is hard to check when we are using the ESN in a practical way. The
result of Proposition 2 can be easily checked but it is not a if and only if result,
so in most of the cases the technique used is trial and error. ESN can perform
well a wide variety of tasks from regression to classification in very different
fields. Also the R package created in this project is such an useful tool that
can speed up future research on this topic. The performance of the ESN in the
finance application is not as good as we expected but more comparisons using
different data should be done.

As future work related with the R package a significant improvement will be
add the option of different metrics for the training phase, now the strategy is
always minimize the MSE between y and ŷ but in some cases different metrics
can be more suitable like binary crossentropy for classification tasks. Also the
case of weights generated with a bi-valued binary distribution can be speed up
due to the simplicity of this distribution.

An new interesting application will be using the ESN for predicting the volatil-
ity clustering of the time series formed by the price of an asset. Usually the
models used for this task are the GARCH and its performance is good but they
need a lot of data for training and also for prediction and maybe the ESN can
obtain a similar performance with less test data. The last task for future work
presented here is using ESN for classification of financial time series, throughout
this project we have focused in using ESN for forecasting of time series but as
we have seen in section 3 the performance of the ESN can be really good also
in classification task so this path should be explored in the finance field.
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