
A negative result for hearing the

shape of a triangle

A computer-assisted proof

Gerard Orriols Giménez

Joint Bachelor’s thesis for the degrees of

Mathematics and Engineering Physics

Supervisor (Princeton University): Javier Gómez-Serrano

Supervisor (UPC): Xavier Cabré

Universitat Politècnica de Catalunya

May 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231704773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

We prove that there exist two distinct triangles for which the first, second and fourth eigen-

values of the Laplace operator with null Dirichlet boundary conditions coincide. This solves a

conjecture raised by Antunes and Freitas and suggested by their informal numerical evidence.

We use a novel technique for a computer-assisted proof about the spectrum of an operator,

which combines a Finite Element Method, to locate roughly the first eigenvalues keeping track

of their position in the spectrum, and the Method of Fundamental Solutions, to get a much

more precise bound of these eigenvalues. Due to the time constraints, some of the computations

still remain to be finished.

Keywords— computer-assisted proof, Laplace eigenvalues, spectral geometry, Finite Element Method,

Method of Fundamental Solutions.

1

Contents

1 Introduction 3

2 Structure of the proof of Theorem 1 4

3 Separation of the first four eigenvalues 6

4 Rigorous eigenvalue bounds for individual triangles 8

5 Extension of the bounds to a region of triangles 10

6 Implementation 13

6.1 Givens rotations . 13

6.2 Upper bound of the MFS boundary norm . 14

6.3 Lower bound of the MFS interior norm . 14

Acknowledgments 15

A Code for the separation of the smallest eigenvalues 17

B Code for validating an interval of triangles 23

C Code for optimizing the eigenvalue 37

2

1 Introduction

In this thesis, we present a computer-assisted proof of the following original theorem.

Theorem 1. The first, second and fourth eigenvalues of the Laplace operator on an Euclidean triangle with

null Dirichlet boundary conditions are not enough to determine it up to isometry.

This is a conjecture proposed by Antunes and Freitas in [AF11], suggested by numerical evidence, but

a rigorous proof was required. The Dirichlet eigenvalues of the Laplace operator for a triangle Ω are real

numbers λ such that there is a nonzero smooth function u defined on Ω and continuous on Ω such that{
−∆u = λu in Ω

u = 0 on ∂Ω.

It is a well known fact that the set of such λ forms an increasing sequence 0 < λ1 < λ2 ≤ λ3 ≤ · · · whose

only limit point is ∞, an that the corresponding eigenfunctions uj form an orthonormal basis of L2(Ω).

The eigenvalues of a domain are closely related with its geometric properties, constituting an active area of

research called spectral geometry. A classical example of this relationship is Weyl’s law, which relates the

asymptotics of the eigenvalues to the volume of the domain, and a later result by McKean and Singer states

that the perimeter is also determined by the eigenvalues [MS67]. More results of this kind can be found in

[BG90] and [vdBS88]. Other results about how the geometry of a domain determines its spectrum can be

found in Henrot’s book [Hen06].

The question of the determination of a domain given the set of its Laplace eigenvalues was posed by

Mark Kac in his famous paper “Can one hear the shape of a drum?” [Kac66]. Since then, the answer has

been found to be negative in general; in particular, for euclidean polygons, the first example of a pair of

non-isometric polygons with the same spectrum is due to Gordon, Webb and Wolpert [GWW92]. However,

there are positive results when we restrict the determination to a class of domains, the most successful

of which was found by Zelditch [Zel09], who proved spectral determination for analytic domains with two

classes of symmetries.

Less is known about domains with less regular boundaries, the simplest of which are polygons. In the

case of triangles, it has been proven that the whole spectrum of the Laplace operator determines the shape

of a triangle ([Dur88], with a recent simple proof by [GM13]), and later Chang and De Turck proved that

only a finite amount of eigenvalues, which depends on λ1 and λ2, is enough [CD89]. It is natural to try to

improve the result to only a finite and fixed amount of eigenvalues, answering the question “Can a human

hear the shape of a triangular drum?”.

Since the space of triangles up to isometries is has dimension 3, we would expect that 3 eigenvalues

should be enough, but a priori it is not clear which ones. Antunes and Freitas [AF11] conjectured that

indeed the three first eigenvalues λ1, λ2 and λ3 do determine the shape of a triangle. Instead, numerical

evidence by themselves seems to indicate that this is not the case for λ1, λ2 and λ4, and in this paper we

will prove this fact (Theorem 1). This will give an example of an obstruction to determining the shape of a

triangle from a finite portion of its spectrum.

3

2 Structure of the proof of Theorem 1

By the scaling of the problem, we reduce our search to the set of triangles with a fixed base length (together

with additional conditions that ensure that we only consider one triangle for each similarity class); instead

of looking for all three eigenvalues λ1, λ2, λ4 to be equal, we just require the quotients ξ21 = λ2/λ1 and

ξ41 = λ4/λ1 to take the same value. Since the eigenvalues scale by λr−2 when the lengths of a triangle are

scaled by r, the two conditions are equivalent.

Fixing the first two vertices of the triangle to be (0, 0) and (1, 0), we use the coordinates (cx, cy) of the

third vertex to parametrize the search space. Our approach consists in using a topological argument to

show that in each of two disjoint regions in this parameter space there is a triangle in which ξ21 and ξ41

take the same prescribed value. More precisely, we claim that there are two distinct triangles for which

ξ21 = ξ̄21 := 1.67675 and ξ41 = ξ̄41 := 2.99372.

Since rigorous calculations with the computer are done using interval arithmetic, we need a topological

technique to transform the closed condition into an open condition which can be compatible with the intervals.

For this we will use the Poincaré–Miranda theorem (see [Mir40]):

Theorem 2. Given two continuous functions f, g : [−1, 1]2 → R such that f(x, y) has the same sign as x

when x = ±1 and g(x, y) has the same sign as y when y = ±1, there exists a point (x, y) ∈ [−1, 1]2 such that

f(x, y) = g(x, y) = 0.

The regions that we will consider are two parallelograms around the points A = (0.63500, 0.27500) and

B = (0.84906, 0.31995), designed such that ξ21 and ξ41 have approximately a constant value each in a pair

of opposite edges. Using the computer we will verify that the functions ξ21 − ξ̄21 and ξ41 − ξ̄41 each have a

constant and opposite sign in opposite edges of the parallelogram, and hence by the theorem, together with

the well known continuity of eigenvalues, we will conclude that such two distinct triangles exist.

The vectors defining the parallelogram are of course obtained from the inverse of an approximation of

the differential of the R2-valued funcion (ξ21, ξ41) at the points A and B, reescaled so that the increment of

ξ21 and ξ41 along each vector is approximately 0.01. Explicitly, they are given by:

• v21,A = (0.04269082311, 0.01148489707)

• v41,A = (−0.02082984105,−0.00255790585)

• v21,B = (0.01717048015, 0.01266844996)

• v41,B = (0.03590363291, 0.01065148385)

Moreover, for the point A in the negative v21,A direction, the vector is shrinked by a factor 0.6, because

after that the behavior deviates from linear and the bound becomes worse after this displacement. Hence

the vertices of the parallelograms will be

• A+ v21,A + v41,A, A+ v21,A − v41,A, A− 0.6v21,A − v41,A, A− 0.6v21,A + v41,A.

• B + v21,B + v41,B , B + v21,B − v41,B , B − v21,B − v41,B , B − v21,B + v41,B .

4

0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94
0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

A

B

ξ21
ξ41

Figure 1: Numerical approximate plot of the quotients ξ21 (discontinuous lines) and ξ41 (continuous lines)

around the region of interest. The points A and B and the validated parallelograms are shown in red.

5

This setup is displayed in Figure 1 together with a plot of non rigorous contour lines of the eigenvalue

quotients.

The pointwise verification of the values ξ21 and ξ41, which depends on an accurate calculation of λi for

i = 1, 2, 4, consists of two steps. The first one, treated in Section 3, is about showing that the computed

eigenvalues actually correspond to the ordered ones λ1, λ2 and λ4; in order to do that, we will prove a lower

bound for λ5 combining techniques from the Finite Element Method with rigorous bounds linking the finite

dimensional problem to the infinite dimensional one. The second step consists of finding accurate values of

four eigenvalues that lie below the threshold obtained in the first part, which implies that they will indeed

have to be the four lowest ones. This is done using the Method of Fundamental Solutions and recent rigorous

bounds based on the L2 norm of the boundary error, explained in Section 4.

We emphasize the difficulty of finding the order of an eigenvalue, which is a global problem, compared

to the local easier task of refining its value. To the best knowledge of the author, this is the first computer-

assisted proof in which these two distinct, local and global methods are used to verify eigenvalues of an

operator.

In order to extend the computer-assisted pointwise verifications of the eigenvalues λ1, λ2 and λ4 to the

continuous region in which they need to be validated, we will use explicit continuity results of the spectrum

of an elliptic operator with the domain to extend the bounds to a neighborhood of the verified points. The

details of this part are explained in Section 5. Section 6 contains the details of the implementation and

execution of the proof. Finally, the Appendix contains the codes used to verify an upper bound for the 4th

eigenvalue at a point and to validate a segment of triangles.

We end this section by introducing the reader to how a computer-assisted proof works. In the recent

years, the application of calculations done by computers to mathematical proofs have become more popular

due to the increment of computational resources, but in order to make sure that their results are rigorous,

we need to control the errors that floating point arithmetic can accumulate. This is usually done by means of

interval arithmetic, in which the data that a computer stores for a real number is an interval (two endpoints,

or a midpoint and a radius) of real numbers, stored by two floating point numbers, instead of just one.

Operations between intervals are implemented to return intervals which are guaranteed to contain every

possible result when the operands belong to the input intervals. For example, if [x] = [x, x] and [y] = [y, y]

are two intervals, their sum will can be given by the interval [x] + [y] = [x + y, x + y] and their product

by [x] · [y] = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}]. The same rule applies to function implementations:

a function f evaluated on [x] should return an interval containing every f(x) for x ∈ [x]. We refer to

the book [Tuc11] for an introduction to validated numerics, in which most of the techniques used here are

explained, and to [GS18] for a more specific treatment of computer-assisted proofs in PDE.

3 Separation of the first four eigenvalues

In order to find a rigorous lower bound for the fifth eigenvalue of a triangle we will use a recent bound

found by Liu [Liu15], which is similar to the one in [CG14] but simplifies the hypotheses and improves the

constant. Both use the non-conforming Finite Element Method of Crouzeix–Raviart; other rigorous bounds

with conforming finite elements were explored, like [LO13], but the bound is worse and the method is harder

6

to implement with validated numerics because its mass matrix is not diagonal.

The Crouzeix–Raviart finite-element method uses a triangulation of the domain Ω, which in our case we

will take to be the trivial triangulation given by N2 triangles with sides equal to 1/N of the original one and

similar to it. The basis functions are indexed by interior edges of the triangulation: if E is a common edge

of triangles T1, T2, the basis function ψE is the unique function supported on T1 ∪T2 such that restricted to

each triangle is affine, takes the value 1 in the midpoint of E and the value 0 in the midpoints of the other

edges of T1 and T2.

We define the coefficients of the stiffness and mass matrices A = (aEF),B = (bEF) by the bilinear forms

aEF =

∫
Ω

∇ψE · ∇ψF bEF =

∫
Ω

ψEψF

For our choice of triangulation, B is simply a multiple of the identity 2|Ω|I/
(
3N2

)
, whereas A is a

sparse matrix. This will allow us to work with a matrix eigenvalue problem instead of a generalized one.

The main result that we will use is the following [Liu15, Theorem 2.1 and Remark 2.2]:

Theorem 3. Consider a polygonal domain Ω with a triangulation so that each triangle has diameter at

most h. Let λk be the k-th eigenvalue of Ω and λk,h the k-th eigenvalue of the Crouzeix–Raviart discretized

problem for Ω. Then
λh,k

1 + C2
hλh,k

≤ λk, (1)

where Ch ≤ 0.1893h is a constant.

In order to be able to deal with approximate eigenvalues we will need in addition the following lemma

from [Par80, Theorem 15.9.1].

Lemma 4. Let (λ̃h, ũh) be an approximated algebraic eigenpair such that λ̃h is closer to some λh than

to any other discrete eigenvalue. Suppose that the coefficient vector ũh is normalised with respect to B,

‖Bũh‖B−1 = ‖ũh‖B = 1. Then the algebraic residual r := Aũh − λ̃hBũh satisfies

|λh − λ̃h| ≤ ‖r‖B−1 .

Remark 5. We can combine Theorem 3 with Lemma 4 using the monotonicity of (1), using λh,k −‖r‖B−1

as a lower bound of λh,k instead.

It is easy to obtain estimations λ̃h with a very small residual. The hardest part here before applying

the theorem is to check that they have indeed the correct index, i.e., that they are closer to the appropriate

λh than to any other discrete eigenvalue. This is why we need to control the whole spectrum of the discrete

problem, and we will do that by applying Gershgorin’s disks theorem after performing some Givens rotations

to the matrix to get useful bounds.

More precisely, in order to get a lower bound for λ5 we need to separate the first 5 eigenvalues from

the rest so that we can control them, and in order to do that we will perform Givens rotations until the

intervals provided by Gershgorin’s theorem can be separated in two disjoint components, one containing the

5 smallest eigenvalues and the other containing the rest. If this holds, then the strong version of Gershgorin’s

7

theorem will guarantee an upper bound for λh,5. Therefore, provided that the residuals are all very small

and that all approximate eigenvalues are different (which happens in our setting), Lemma 4 will guarantee

that there are 5 distinct discrete eigenvalues below the upper bound and therefore they will be forced to

have the correct indices.

This allows us to verify λh,5 with an error only depending on its residual, and using Remark 5, get a

lower bound of λ5. Therefore, the first four eigenvalues can be separated just by checking that they are

distinct and smaller than this lower bound.

4 Rigorous eigenvalue bounds for individual triangles

Our approach to find tight bounds for the eigenvalues of triangles uses the Method of Fundamental Solutions

(MFS), introduced by Fox, Henrici and Moler in [FHM67] and more recently revived by Betcke and Trefethen

[BT05]. In this method, a function u is written as a linear combination of functions φi (1 ≤ i ≤ N) that

satisfy pointwise the equation (∆ + λ)φi = 0 for a fixed λ. The coefficients are chosen to optimize the

proximity of the function to the eigenspace for the actual eigenvalue λj , in a sense made precise in [BT05],

and this is measured by the least singular value of a certain matrix that involves the values of u at discrete

points of the boundary ∂Ω. This parameter is minimized with respect to λ by using a golden ratio search.

This provides a candidate λ ∈ R and coefficients ci for which u(x) =
∑N
i=1 ciφi(x) can be computed with

arbitrary precision.

The functions that we will use for the MFS consist of two types: the first ones are of the form φ(x) =

Y0(
√
λ|x− x0|), for x0 a point outside Ω. The second type of functions are parametrized by a vertex of the

triangle and a positive integer j, and take the form ψj(r, θ) = Jjα(
√
λr) sin(jαθ), where (r, θ) are the polar

coordinates of the point with respect to a vertex in the triangle whose total angle is π/α, and θ is measured

from an adjacent side. The first kind of functions allow us to approximate the function in the interior of the

triangle and near the sides, while the second kind gives the correct asymptotic behavior of the solution near

the vertices of the triangle.

The main tool that we will use to find rigorous bounds for eigenvalues is the L2 bound given by Barnett

and Hassell [BH11]. However, their method is optimized for high eigenvalues, so we will have to adapt some

of the steps to our case of small eigenvalues. We summarize the main results that we will use. Let Ω be a

triangle and u ∈ C2(Ω) be nonzero such that (∆ + λ)u = 0. Consider the tension

t[u] =
‖u‖L2(∂Ω)

‖u‖L2(Ω)
.

Let λj , uj be the sequence of eigenvalues and eigenfunctions of Ω, satisfying (∆ + λj)uj = 0 with Dirichlet

null boundary conditions. Let vj be the normal derivative of uj , defined on ∂Ω. We define the operator

A(λ) =
∑
λj

vj〈vj , ·〉
(λ− λj)2

,

and its decomposition as a sum of three:

Anear(λ) =
∑

|λ−λj |≤
√
λ

vj〈vj , ·〉
(λ− λj)2

,

8

Afar(λ) =
∑

λ/2≤λj≤2λ,|λ−λj |>
√
λ

vj〈vj , ·〉
(λ− λj)2

,

Atail(λ) =
∑

λj<λ/2 or λj>2λ

vj〈vj , ·〉
(λ− λj)2

where 〈·, ·〉 is the standard inner product on L2(∂Ω).

This operator is useful because its norm is controlled by the tension (see [BH11, Section 3]):

t[u]−2 ≤ ‖A(λ)‖. (2)

Moreover we have the following explicit bounds from [BH11, Lemma 4.1] and [BH11, Lemma 4.2]:

‖Afar(λ)‖ ≤ C1, (3)

‖Atail(λ)‖ ≤ C2λ
−1/2, (4)

with constants C1, C2 given below. For the near term, since we are working with very low eigenvalues,
√
λ

is actually small enough that only the summand with λj = λ appears:

‖Anear(λ)‖ =
‖vj‖2L2(∂Ω)

(λ− λj)2
.

For convex domains, like in our case, Section 6 of [BH11] offers explicit bounds for the constants. In

particular, they are based on another constant CΩ coming from a quasi-orthogonality inequality (see [BH11,

Theorem 1.3]) that we will not use directly. We will simply use the bounds C1 ≤ 7CΩ and C2 ≤ 7CΩ quoted

from the end of page 1058 of the paper.

Finally, the constant CΩ can be obtained from sup∂Ω(x · n) and inf∂Ω(x · n), as explained in pages

1058-1059 of the paper. Of course, since the problem is coordinate-invariant, we are free to chose an origin,

and the optimal choice is the incenter of the triangle. In this case, both the supremum and the infimum are

equal to the inradius ρ, so we can take CΩ = 4(1 + ρ)/ρ.

Putting this together we have

t[u]−2 ≤
‖vj‖2L2(∂Ω)

(λ− λj)2
+ 7CΩ(1 + λ−1/2). (5)

Finally, recall Rellich’s formula [Rel40]:∫
∂Ω

(∂nuj)
2x · nds = 2λj .

For our choice of origin of coordinates, this just gives us ‖vj‖2L2(∂Ω) = 2λj/ρ. Inserting this into (5) we have

proved:

Proposition 6. The distance d from λ to the spectrum of the Laplacian on Ω, can be bounded above by

t[u]−2 ≤ 2λ̃j
ρd2

+ 7CΩ(1 + λ−1/2).

where λ̃j is an upper bound for λj.

9

5 Extension of the bounds to a region of triangles

Our goal is to propagate the rigorous bounds of an eigenvalue of the Laplacian of a triangle with Dirichlet

boundary conditions to a neighborhood of triangles. The main tool that we will use is an abstract the-

orem about continuity of eigenvalues with respect to the operator norm, which can be found at [Hen06,

Theorem 2.3.1]:

Proposition 7. Given two compact, self-adjoint and positive operators T, T ′ acting on a separable Hilbert

space, the difference of their eigenvalues µn, µ
′
n can be bounded as

|µn − µ′n| ≤ ‖T − T ′‖,

where ‖ · ‖ is the L2 operator norm.

To apply this to our setting, we suppose that the triangle Ω for which we have bounds has vertices (0, 0),

(1, 0) and (cx, cy) and consider a small vector (dx, dy). The one-parameter family of affine transformations

that keeps the first two vertices fixed and moves the third along the vector is given by

(x, y) 7→ (xt, yt) =

(
x+

ty

cy
dx, y +

ty

cy
dy

)
,

with t = 0 corresponding to the identity map. Let us denote by Ωt the image of Ω by the transformation with

parameter t and λtn its Laplace eigenvalues. Our first lemma gives a bound for λtn based on the eigenvalues

of an explicit matrix.

Lemma 8. Consider the matrix

At =

 t2d2x
(cy+tdy)2 + 1 − tbdx

(cy+tdy)2

− tbdx
(cy+tdy)2

c2y
(cy+tdy)2

and suppose that its eigenvalues lie in [1− δ, 1 + δ]. Then

|λn − λtn|
λnλtn

≤ δ

(1− δ)(2π)2
.

Proof. We have the change of coordinates
∂
∂x = ∂

∂xt

∂
∂y = tdx

cy
∂
∂xt +

(
1 +

tdy
cy

)
∂
∂yt

which gives place to
∂
∂xt = ∂

∂x

∂
∂yt = 1

1+
tdy
cy

(
− tdxcy

∂
∂x + ∂

∂y

)
.

Hence, given u : Ω→ R, we can introduce ut : Ωt → R, ut(xt, yt) = u(x(xt, yt), y(xt, yt)). We have that

∆ut(xt, yt) =

(
∂

∂xt

)2

ut +

(
∂

∂yt

)2

ut

=

(
t2d2

x

(cy + tdy)2
+ 1

)
∂2u

∂x2
− 2

tbdx
(cy + tdy)2

∂2u

∂x∂y
+

c2y
(cy + tdy)2

∂2u

∂y2

=: ∆tu.

10

This is an elliptic operator with constant coefficients, and can be written as ∆tu = ∇ · (At∇u) for the

matrix At defined above. We will apply Proposition 7 to the operators T = ∆−1 and T ′ = (∆t)
−1

, so given

a function f ∈ L2(Ω) we need to bound ‖u − ut‖L2 , where ∆u = ∆tut = f and u, ut = 0 on ∂Ω. Let Γ be

the rectangle containing Ω with sides of lengths 1 and cy parallel to the X and Y axes, and write

ut(x) =
∑
k

cke
ik·x,

where the sum is over (kx, ky) with kx, kycy ∈ 2πZ. Then

f = ∆tut = −
∑
k 6=0

ck(kTAtk)eik·x

and

(∆t −∆)
(
∆t
)−1

f = (∆t −∆)ut =
∑
k 6=0

ck(k2 − kTAtk)eik·x

which implies

(∆−1 − (∆t)−1)f = ∆−1(∆t −∆)
(
∆t
)−1

f =
∑
k 6=0

ck

(
1− kTAtk

k2

)
eik·x.

By the condition on the eigenvalues of At, we have that kTAtk
k2 ∈ [1− δ, 1 + δ] too and

‖(∆−1 − (∆t)−1)f‖2L2 =
∑
k 6=0

|ck|2
(

1− kTAtk

k2

)2

≤ δ2
∑
k 6=0

|ck|2.

Now remember that, since we take the k 6= 0 in a lattice, k2 ≥ (2π)2, and moreover kTAtk ≥ (1 − δ)k2.

Putting this together,

‖(∆−1 − (∆t)−1)f‖2L2 ≤ δ2
∑
k 6=0

|ck|2 ≤
δ2

(1− δ)2(2π)4

∑
k 6=0

|ck|2(kTAtk)2 =
δ2

(1− δ)2(2π)4
‖f‖2L2 .

Hence we get the bound

‖(∆−1 − (∆t)−1)‖ ≤ δ

(1− δ)(2π)2

which implies the desired inequality
|λn − λtn|
λnλtn

≤ δ

(1− δ)(2π)2
.

The following lemma will give us an explicit upper bound for the δ above.

Lemma 9. Suppose that cy > max{3|dx|, 3|dy|}. Then the δ from Lemma 8 can be taken as

cy
dx + 2|dy|
(cy − dy)2

.

11

Proof. We will use Gershgorin’s theorem for the matrix At. In particular, if we want a uniform delta for all

t ∈ [−1, 1], we want to take δ as the maximum of both of the following expressions for all −1 ≤ t ≤ 1:

t2d2
x + |tbdx|

(cy + tdy)2
,
|tdy(2b+ tdy)|+ |tbdx|

(cy + tdy)2

Whenever dx, dy are small enough, these functions are monotonous on [−1, 0] and [0, 1], having a minimum

at zero, so the maximum is at t = ±1. Without loss of generality we will assume that dx > 0. For t > 0, the

only zero of the derivative of the first function is at t = cy/(dy − 2dx) (if it is positive), so it increases on

[0, 1]. Analogously, for t < 0 the only zero of the derivative is at −t = −cy/(dy + 2dx), so the same argument

applies. The second function can be rewritten as

|t|cydx + |t||dy|(2cy + tdy)

(cy + tdy)2
.

For positive t it is monotonic until t = cy(dx + 2|dy|)/(dxdy) and for negative t it is until −t = −cy(dx +

2|dy|)/(dxdy), which are both greater than 1 in absolute value, so the maximum is also attained at t = ±1.

In both cases, which extreme gives a larger value depends on the sign of dy, giving the optimal δ as

max

{
d2
x + cydx

(cy − |dy|)2
,
cydx + 2cy|dy| − |dy|2

(cy − |dy|)2

}
.

Finally, a simpler upper bound of this expression, which we will use for convenience, is

δ = cy
dx + 2|dy|

(cy − |dy|)2
.

Finally we need to propagate the error to the quotient ξtn1 of λtn and λt1. For this, observe that the error

obtained in Lemma 8 does not depend on the index of the eigenvalue, and call it ε.

Lemma 10. Suppose that we have the bounds

|λ1 − λt1|
λ1λt1

≤ ε, |λn − λtn|
λnλtn

≤ ε.

Then,

|ξn1 − ξtn1| ≤ λnε(1 + ξtn1).

Proof. This is just a simple computation.

|ξn1 − ξtn1| =
|λtnλ1 − λnλt1|

λt1λ1
≤ λ1|λtn − λn|

λt1λ1
+
λn|λt1 − λ1|

λt1λ1
= ε

λnλ
t
n

λt1
+ ελn = λnε(1 + ξtn1)

In our approach we will proceed in the reverse way: we will obtain verified ξn1 that will be above (or

below) ξ̄n1, and will consider the longest vector (dx, dy) = `(vx, vy) that we can move in a fixed directon

(vx, vy) preserving the condition of being above (or below) ξ̄n1. The steps that we follow are the following,

12

for example, for an upper bound: first, we compute the margin M , which is a lower bound for ξn1 − ξ̄n1.

Then we compute the ε that will guarantee that ξn1 fits in the margin, from Lemma 10:

ε =
M

λn(1 + ξn1 +M)
.

After this, we set δ so that the hypotheses of Lemma 10 hold:

δ =
(2π)2ε

1 + (2π)2ε
.

Finally, we choose the step length ` that will guarantee δ to have the at most imposed value resulting from

Lemma 9:

δ = cy`
|vx|+ 2|vy|
(cy − `|vy|)2

.

This is done by explicitly solving a quadratic equation.

6 Implementation

The validated computations are performed using the rigorous arithmetic library Arb, developed by Fredrik

Johansson [Joh17], which can be found at http://arblib.org. Other non-rigorous computations are made

using common libraries such as ALGLIB or Boost.

The key rigorous verifications are described in the following three subsections. At the time of the

publishing of this thesis not all computations were finished because of time constraints. In particular, the

verification of ξ41 in the two segments (one for A and the other one for B) in which it is greater than

ξ̄41 remains to be completed. The computation of the lower bound for λ5 has been done in many points

around the perimeter of the parallelograms, but it remains to be checked that the bound applies to the whole

perimeter.

The validation of one of the sides of a parallelogram can use approximately from 500 to 2000 points, and

the total running time can take from 4 to 14 hours in 120 parallel machines, approximately.

6.1 Givens rotations

A key rigorous computation consists of applying the Givens rotations to the Crouzeix–Raviart matrix in

order to separate the Gershgorin intervals into two components (see Section 3). The angle of the rotation is

chosen in a non rigorous way, but the rotation is done using interval arithmetic. The rotations are performed

by steps: in each step, several iterations are performed to reduce the upper bound of the lowest 5 Gershgorin

intervals below a fixed threshold and to increase the lower bound of the highest Gershgorin intervals above

another threshold. These thresholds are improved at each step progressively (the former is reduced, the

latter is increased).

The iterations consist in making a Givens rotation to set to zero each off-diagonal entry whose absolute

value exceeds the maximum Gershgorin radius allowed (i.e. the difference between the diagonal value and

the current threshold) divided by the number of off-diagonal entries. This heuristic tolerates small absolute

values in off-diagonal entries and stops when the Gershgorin radius reached is small enough.

13

http://arblib.org

The execution of this algorithm for our data requires a subdivision into N2 triangles, for N between 18

and 21, and has a running time of between 15 and 45 minutes at a precision of 1024 bits. The results for

the execution with N = 15 at triangle with vertex A are plotted to illustrate the method: Figure 2 shows

the Gershgorin intervals before performing the rotations, Figure 3 shows them after performing them, and

Figure 4 zooms into the second plot around the line of separation.

6.2 Upper bound of the MFS boundary norm

Another fundamental verified computation is the upper bound for the L2 norm of the candidate eigenfunction

at the boundary (see Section 4). This is done by dividing the sides of the triangle into many small intervals,

in positions given by Chebyshev nodes, and in each of them performing a validated computation using Taylor

series: the Taylor polynomial of the function at the center point is evaluated in the whole interval, and to

this value the remainder of Taylor’s theorem is added. A validated enclosure for this remainder consists of

the Taylor polynomial of the function at the whole interval evaluated in the whole interval.

When this computation exceeds a threshold in absolute value (in our case, 10−5), the interval is split in

half and the validating function is called recursively for the two halves. In the end, all contributions from

all intervals are added up to get the L2 bound. This calculation takes approximately 10 minutes per point

at a precision of 128 bits, using a total of 317 charge basis functions and 15 vertex basis functions.

6.3 Lower bound of the MFS interior norm

The last critical computation consists of getting a lower bound for the L2 norm of the candidate eigenfunction

in the interior (see Section 4). This is done by using a grid of 8 × 8 small triangles that occupy a smaller

triangle of side 0.8 times the original one (hence the area of each triangle is 0.01|Ω|). Figure 5 displays the

grid for the plot of the first and the fourth eigenfunction of triangle B. In each of the triangles a lower bound

of the absolute value of u is obtained using the same method as above (Taylor series bounds and splitting

recursively).

Whenever we obtain a validated estimate, say u ≥ a > 0, on ∂T , where T is one of the small triangles

in the grid, we can extend this inequality to the whole T by using the minimum principle. More precisely,

it is enough to show that −∆u ≥ 0 in T to get that the minimum of u is in ∂T and hence is at least a.

If this does not hold, it means that λu = −∆u < 0 at some point inside T . This means that the open set

U = {u < 0} ∩ T ⊂ T has λ as a Dirichlet eigenvalue, and hence by the Faber-Krahn inequality, we get a

lower bound for its area:

0.01|Ω| = |T | ≥ |U | ≥
πj2

0,1

λ
>

18.1684

λ
.

This is a contradiction by orders of magnitude for our triangles (|Ω| ≤ 0.25 and λ < 1000).

The calculation of this part also takes approximately 10 minutes per point at a precision of 128 bits,

using a total of 317 charge basis functions and 15 vertex basis functions.

14

−20,000 −10,000 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

Figure 2: Gershgorin intervals before applying the Givens rotations for triangle A.

−20,000 −10,000 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

Figure 3: Gershgorin intervals after applying the Givens rotations for triangle A. The dashed vertical line

at position 790 separates the first 5 eigenvalues from the rest.

Acknowledgments

First of all, I would like to thank my supervisor Javier Gómez-Serrano for hosting me at Princeton University,

suggesting me the problem, providing me references, giving me a lot of guidance and sharing with me many

15

−200 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

Figure 4: Zoom of the separation of the first 5 eigenvalues after the Givens rotations.

(a)

(b)

Figure 5: Grid used to validate a lower bound for ‖u‖L2(Ω) for triangle B, with (a) the first eigenfunction

and (b) the second eigenfunction plotted on top.

useful discussions. I am very grateful to the Mathematics Department of Princeton University, in particular

the Graduate Program, for funding my university fee and allowing my stay as a visitor researcher. I would

also like to thank CFIS and the administrators of the Mobility program for giving me the oportunity to

do this research in another university and funding me. I also thank the MOBINT scholarship for providing

partial financial support for my stay.

16

A Code for the separation of the smallest eigenvalues

This program reads the parameter N and the coordinates of the third vertex of the triangle and returns a

lower bound for λ5.

#include "arb.h"

#include "arb_mat.h"

#include "linalg.h"

#include "arbcc.h"

#include <cassert>

#include <cmath>

#include <iostream>

#include <map>

#include <vector>

// Compile with -DPREC=1024

using namespace std;

using namespace alglib;

int di[6] = {0, 0, 1, -1, 1, -1};

int dj[6] = {1, -1, 0, 0, -1, 1};

int side(int i, int j) {

if (i % 2 == 1) return 2;

if (j % 2 == 0) return 0;

return 1;

}

double sq(double t) { return t * t; }

/* struct ArfReal definition omitted for brevity */

int n, m;

void givens(vector<vector<ArbReal> >& A, double lowbar, double upbar,

int nsmall) {

vector<pair<ArbReal, int> > srt(m);

for (int i = 0; i < m; ++i) {

srt[i] = make_pair(A[i][i], i);

17

}

sort(srt.begin(), srt.end());

vector<bool> small(m, false);

for (int i = 0; i < nsmall; ++i) {

small[srt[i].second] = true;

}

bool done = false;

int it = 0;

while (!done and it < 10) {

++it;

done = true;

for (int p = 0; p < m; ++p) {

ArbReal rad = 0.;

for (int q = 0; q < m; ++q) {

if (q != p) {

rad = rad + A[q][p].abs();

}

}

ArbReal margin;

if (small[p]) {

margin = ArbReal(upbar) - A[p][p];

} else {

margin = A[p][p] - ArbReal(lowbar);

}

if (rad < margin) {

continue;

}

done = false;

printf("it %d: changing column %d with margin ", it, p);

margin.print();

for (int q = 0; q < m; ++q) {

if (q != p && margin / (m - 1) < A[p][q].abs()) {

ArfReal tt = (ArfReal(A[q][q]) - ArfReal(A[p][p])) /

(ArfReal(A[p][q]) * ArfReal(2));

ArfReal t = (tt).sign() / (tt.abs() + (tt.sq() + 1).sqrt());

ArbReal t_arb(t.x);

ArbReal c = 1_a / (t_arb.sq() + 1_a).sqrt();

ArbReal s = c * t_arb;

for (int i = 0; i < m; ++i) {

ArbReal u = A[p][i];

18

ArbReal v = A[q][i];

A[p][i] = c * u - s * v;

A[q][i] = c * v + s * u;

}

for (int i = 0; i < m; ++i) {

ArbReal u = A[i][p];

ArbReal v = A[i][q];

A[i][p] = c * u - s * v;

A[i][q] = c * v + s * u;

}

}

}

}

}

}

vector<pair<ArbReal, ArbReal> > gershgorin(vector<vector<ArbReal> >& A) {

vector<pair<ArbReal, ArbReal> > ret(m);

for (int i = 0; i < m; ++i) {

ret[i].first = A[i][i];

ret[i].second = 0.;

for (int j = 0; j < m; ++j) {

if (j != i) {

ret[i].second = ret[i].second + A[j][i].abs();

}

}

}

sort(ret.begin(), ret.end());

return ret;

}

int main() {

ios::sync_with_stdio(false);

cout.setf(ios::fixed);

cout.precision(10);

cin >> n;

double x_s, y_s;

cin >> x_s >> y_s;

ArbReal x(x_s), y(y_s);

19

ArbReal area = y / 2_a;

ArbReal l_a = (y * y + (x - 1_a) * (x - 1_a)).sqrt();

ArbReal l_b = (y * y + x * x).sqrt();

ArbReal l_c = 1;

ArbReal len[3];

len[0] = l_a;

len[1] = l_b;

len[2] = l_c;

ArbReal h_a = y / l_a;

ArbReal h_b = y / l_b;

ArbReal h_c = y;

ArbReal height[3];

height[0] = h_a;

height[1] = h_b;

height[2] = h_c;

ArbReal cos_a = x / l_b;

ArbReal cos_b = (1_a - x) / l_a;

ArbReal cos_c = (x * (x - 1_a) + y * y) / (l_a * l_b);

ArbReal cosine[3];

cosine[0] = cos_a;

cosine[1] = cos_b;

cosine[2] = cos_c;

map<pair<int, int>, int> encode;

for (int i = 0; i < 2 * n - 2; ++i) {

for (int j = 0; i + j < 2 * n - 2; ++j) {

if (i % 2 == 0 or j % 2 == 0) {

encode[make_pair(i, j)] = m++;

}

}

}

vector<vector<ArbReal> > mat(m, vector<ArbReal>(m));

ArbReal mass_diag = (area * 2) / (3 * n * n);

for (int i = 0; i < 2 * n - 2; ++i) {

for (int j = 0; i + j < 2 * n - 2; ++j) {

20

if (i % 2 == 1 and j % 2 == 1) continue;

int u = encode[make_pair(i, j)];

int side_u = side(i, j);

mat[u][u] = (area * 8) / height[side_u].sq();

for (int d = 0; d < 6; ++d) {

int i2 = i + di[d];

int j2 = j + dj[d];

if (i2 >= 0 and j2 >= 0 and i2 + j2 < 2 * n - 2 and

(i2 % 2 == 0 or j2 % 2 == 0)) {

int v = encode[make_pair(i2, j2)];

int side_v = side(i2, j2);

ArbReal tmp = -(cosine[3 - side_u - side_v] * area * 4) /

(height[side_u] * height[side_v]);

mat[u][v] = tmp;

mat[v][u] = tmp;

}

}

}

}

for (int i = 0; i < m; ++i) {

for (int j = 0; j < m; ++j) {

mat[i][j] = mat[i][j] / mass_diag;

}

}

real_2d_array mat_d;

mat_d.setlength(m, m);

for (int i = 0; i < m; ++i) {

for (int j = 0; j < m; ++j) {

mat_d(i, j) = mat[i][j].get_approx_double();

}

}

ae_int_t num_eigs_found;

real_1d_array eigs_d;

real_2d_array eigenvectors;

21

assert(smatrixevdr(mat_d, m, 1, 1, 0.0, 1000.0, num_eigs_found, eigs_d,

eigenvectors));

cerr << "Found " << num_eigs_found << " below 1000\n";

vector<ArbReal> discrete_eigs_lb(num_eigs_found);

for (int i = 0; i < num_eigs_found; ++i) {

cout << eigs_d(i) << endl;

ArbReal lambda(eigs_d(i));

vector<ArbReal> vec(m);

for (int j = 0; j < m; ++j) {

vec[j] = ArbReal(eigenvectors(j, i));

}

ArbReal num = 0., den = 0.;

for (int j = 0; j < m; ++j) {

ArbReal residue = -lambda * vec[j];

for (int k = 0; k < m; ++k) {

residue = residue + ArbReal(mat[j][k]) * vec[k];

}

num = num + residue.sq();

den = den + vec[j].sq();

}

ArbReal error = (num / den).sqrt();

printf("Error: ");

error.print();

discrete_eigs_lb[i] = lambda - error;

}

assert(num_eigs_found >= 6);

double barrier = (eigs_d[4] + eigs_d[5]) / 2;

// Successively apply Givens rotations to reduce the margin.

// It does not work if one tries to separate them with the

// barrier from the beginning.

givens(mat, -100000, 1000000, 10);

givens(mat, -80000, 1000000, 10);

givens(mat, -60000, 1000000, 10);

givens(mat, -50000, 1000000, 10);

givens(mat, -20000, 1000000, 10);

givens(mat, -10000, 1000000, 10);

givens(mat, -1000, 100000, 10);

22

givens(mat, 0, 100000, 10);

givens(mat, 1000, 10000, 10);

givens(mat, 1000, 2000, 10);

givens(mat, barrier, 2000, 5);

givens(mat, barrier, barrier, 5);

printf("Discrete lambda_5 successfully separated\n");

vector<pair<ArbReal, ArbReal> > ger = gershgorin(mat);

ArbReal liu_constant = 0.1893;

ArbReal lambda5lb =

discrete_eigs_lb[4] /

(1_a + discrete_eigs_lb[4] * liu_constant.sq() / ArbReal(n * n));

printf("Verified lower bound for lambda_5: ");

lambda5lb.print();

}

B Code for validating an interval of triangles

This program reads the name of the third vertex (A or B), the indexs of the eigenvalue quotient to validate

(“21” or “41”), a letter standing for the sign (’p’ for plus, ’m’ for minus) of ξ− ξ̄ that we have to validate, the

current coordinate c, and the total number of coordinates nc in which this side is divided (c ∈ {1, . . . , nc}).
This will validate a segment around the position given by 2(c− 0.5)/nc − 1 in the corresponding side of the

parallelogram (where the position is normalized so that vertices are at positions −1 and 1), and the radius

` of this segment will be the value returned by the program.

For example, if the input is “B 21 p 312 1000” and the program returns a value of 0.0013, this means

that for all the points in the segment between B + v21,B − 0.1898v41,B and B + v21,B − 0.1872v41,B the

corresponding ξ21 has been verified to be greater than ξ̄21.

The program uses the ArbTaylor class, which is not included here for brevity, but computes simulta-

neously the Taylor polynomial and its residue, and uses them to obtain an enclosure of the function in an

interval, as described in [Tuc11].

#include "arb.h"

#include "arb_hypgeom.h"

#include "arbcc.h"

#include "arbseries.h"

#include "arbtaylor.h"

23

#include <algorithm>

#include <cassert>

#include <fstream>

#include <iostream>

#include <map>

#include <vector>

// Compile with -DPREC=128

using namespace std;

// Declared here and implemented in a separate file.

void fill_in_vectors(vector<double>& r_coefs, double& r_lambda,

vector<vector<double>>& r_sources, double cx0, double cy0,

double lmin, double lmax);

namespace {

// Coordinates of the third vertex. Set as global because they are used

// everywhere.

ArbReal cx, cy;

/* GENERAL FUNCTIONS */

// Fundamental solution around an external charge point ‘(xs, ys)‘.

ArbTaylor fund_sol_charge(const ArbTaylor& x, const ArbTaylor& y,

const ArbReal& xs, const ArbReal& ys,

const ArbReal& lambda, int order) {

ArbTaylor arg = (x - ArbTaylor::constant(xs, order)).sq() +

(y - ArbTaylor::constant(ys, order)).sq();

arg = arg.sqrt();

arg *= lambda.sqrt();

return arg.bessely0();

}

// Angle between two vectors.

ArbReal ccw_angle(const ArbReal& x1, const ArbReal& y1, const ArbReal& x2,

const ArbReal& y2) {

ArbReal r = (x1.sq() + y1.sq()).sqrt();

ArbReal c = x1 / r;

24

ArbReal s = y1 / r;

ArbReal xx = c * x2 + s * y2;

ArbReal yy = -s * x2 + c * y2;

ArbReal ang;

arb_atan2(ang, yy, xx, PREC);

return ang;

}

// Angle between two vectors, ArbTaylor version.

ArbTaylor ccw_angle_taylor(const ArbReal& x1, const ArbReal& y1,

const ArbTaylor& x2, const ArbTaylor& y2,

int order) {

ArbReal r = (x1.sq() + y1.sq()).sqrt();

ArbReal c = x1 / r;

ArbReal s = y1 / r;

ArbTaylor xx = x2 * c + y2 * s;

ArbTaylor yy = x2 * (-s) + y2 * c;

ArbTaylor ang = ArbTaylor::atan2(yy, xx);

return ang;

}

// Fundamental solution around a vertex of the triangle.

ArbTaylor fund_sol_vertex(ArbTaylor x, ArbTaylor y, int v, int j,

const ArbReal& lambda, int order) {

ArbReal xvert[3] = {0_a, 1_a, cx};

ArbReal yvert[3] = {0_a, 0_a, cy};

int nxt = (v + 1) % 3;

int prv = (v + 2) % 3;

ArbReal xv = xvert[v];

ArbReal yv = yvert[v];

ArbReal vnxt[2] = {xvert[nxt] - xv, yvert[nxt] - yv};

ArbReal vprv[2] = {xvert[prv] - xv, yvert[prv] - yv};

ArbReal thmx = ccw_angle(vnxt[0], vnxt[1], vprv[0], vprv[1]);

ArbReal alpha = ArbReal::pi() * ArbReal(j + 1) / thmx;

x -= ArbTaylor::constant(xv, order);

y -= ArbTaylor::constant(yv, order);

ArbTaylor th = ccw_angle_taylor(vnxt[0], vnxt[1], x, y, order);

25

th *= alpha;

ArbTaylor arg = x.sq() + y.sq();

arg = arg.sqrt();

arg *= lambda.sqrt();

return arg.besselj(alpha) * th.sin();

}

// Evaluate the solution at a point.

ArbTaylor solution(const vector<ArbReal>& coef, const ArbReal& lambda,

const vector<vector<ArbReal>>& sources, const ArbTaylor& x,

const ArbTaylor& y, int v, int order) {

int nst = sources.size();

int n = (coef.size() - nst) / 3;

ArbTaylor sum(order);

if (v != -1) {

// Point on side (v)--(v+1).

int vv = (v + 2) % 3;

for (int j = 0; j < n; ++j) {

ArbTaylor incr = fund_sol_vertex(x, y, vv, j, lambda, order);

incr *= coef[vv * n + j];

sum += incr;

}

} else {

for (int vv = 0; vv < 3; ++vv) {

for (int j = 0; j < n; ++j) {

ArbTaylor incr = fund_sol_vertex(x, y, vv, j, lambda, order);

incr *= coef[vv * n + j];

sum += incr;

}

}

}

for (int j = 0; j < nst; ++j) {

ArbTaylor incr =

fund_sol_charge(x, y, sources[j][0], sources[j][1], lambda, order);

incr *= coef[3 * n + j];

sum += incr;

26

}

return sum;

}

/* FUNCTIONS FOR THE L2 UPPER BOUND ON THE BOUNDARY: */

// Recursively compute an upper bound for the squared L2 norm of the solution at

// the boundary of the triangle. This returns the bound between positions

// num/den and (num+1)/den of side ‘v‘.

ArbReal dfs(const vector<ArbReal>& coef, const ArbReal& lambda,

const vector<vector<ArbReal>>& sources, long long num,

long long den, arf_t goal, int v) {

ArbReal xvert[3] = {0_a, 1_a, cx};

ArbReal yvert[3] = {0_a, 0_a, cy};

int nxt = (v + 1) % 3;

// Chebyshev nodes.

ArbReal ratio0 =

0.5_a * (1_a - (ArbReal::pi() * ArbReal(num) / ArbReal(den)).cos());

ArbReal x0 = (1_a - ratio0) * xvert[v] + ratio0 * xvert[nxt];

ArbReal y0 = (1_a - ratio0) * yvert[v] + ratio0 * yvert[nxt];

ArbReal ratio1 =

0.5_a * (1_a - (ArbReal::pi() * ArbReal(num + 1) / ArbReal(den)).cos());

ArbReal x1 = (1_a - ratio1) * xvert[v] + ratio1 * xvert[nxt];

ArbReal y1 = (1_a - ratio1) * yvert[v] + ratio1 * yvert[nxt];

int order = 8;

ArbTaylor t(0_a, 1_a, order);

ArbTaylor x =

t * ((x1 - x0) / 2_a) + ArbTaylor::constant((x0 + x1) / 2_a, order);

ArbTaylor y =

t * ((y1 - y0) / 2_a) + ArbTaylor::constant((y0 + y1) / 2_a, order);

ArbTaylor sol = solution(coef, lambda, sources, x, y, v, order);

ArbReal val = sol.evaluate();

arf_t abs_val;

arf_init(abs_val);

arb_get_abs_ubound_arf(abs_val, val, PREC);

27

ArbReal ret;

ArbReal len = ((x0 - x1).sq() + (y0 - y1).sq()).sqrt();

if (arb_is_finite(val) && (arf_cmp(abs_val, goal) <= 0 || den >= 1024)) {

ret = ArbReal(abs_val).sq() * len;

} else {

// Either denominator limit not reached, or reached but still have no finite

// bound.

ArbReal inc1 = dfs(coef, lambda, sources, 2 * num, 2 * den, goal, v);

ArbReal inc2 = dfs(coef, lambda, sources, 2 * num + 1, 2 * den, goal, v);

ret = inc1 + inc2;

}

arf_clear(abs_val);

return ret;

}

// Upper bound of the L2 norm of the solution at the sides of the triangle.

// Computed recursively.

ArbReal side_l2_rec(const vector<ArbReal>& coef, const ArbReal& lambda,

const vector<vector<ArbReal>>& sources, arf_t goal) {

const int den = 128;

ArbReal sumsq = 0_a;

for (int v = 0; v < 3; ++v) {

for (int num = 0; num < den; ++num) {

ArbReal incr = dfs(coef, lambda, sources, num, den, goal, v);

sumsq += incr;

}

}

return sumsq.sqrt();

}

/* FUNCTIONS FOR THE L2 LOWER BOUND IN THE INTERIOR: */

// Gives an interval between positions num/den and (num+1)/den in the path given

// by (xx[i], yy[i]).

// Requires: den is multiple of xx.size()-1=yy.size()-1. Add xx[last] = xx[0].

pair<ArbTaylor, ArbTaylor> parametrize(const vector<ArbReal>& xx,

const vector<ArbReal>& yy, long long num,

long long den, int order) {

int nint = xx.size() - 1;

28

int div = den / nint;

int itv = num / div;

int idx = num % div;

ArbReal ratio0 =

0.5_a * (1_a - (ArbReal::pi() * ArbReal(idx) / ArbReal(div)).cos());

ArbReal x0 = (1_a - ratio0) * xx[itv] + ratio0 * xx[itv + 1];

ArbReal y0 = (1_a - ratio0) * yy[itv] + ratio0 * yy[itv + 1];

ArbReal ratio1 =

0.5_a * (1_a - (ArbReal::pi() * ArbReal(idx + 1) / ArbReal(div)).cos());

ArbReal x1 = (1_a - ratio1) * xx[itv] + ratio1 * xx[itv + 1];

ArbReal y1 = (1_a - ratio1) * yy[itv] + ratio1 * yy[itv + 1];

ArbTaylor t(0_a, 1_a, order);

ArbTaylor x =

t * ((x1 - x0) / 2_a) + ArbTaylor::constant((x0 + x1) / 2_a, order);

ArbTaylor y =

t * ((y1 - y0) / 2_a) + ArbTaylor::constant((y0 + y1) / 2_a, order);

return {x, y};

}

pair<ArbReal, ArbReal> point_from_coord(int i, int j, int n,

const ArbReal& fr) {

ArbReal u = ArbReal(i) / ArbReal(n);

ArbReal v = ArbReal(j) / ArbReal(n);

// Gives the following point, where A, B, C are the vertices and G the

// barycenter.

// u * (B + fr * (G-B)) + v * (C + fr * (G-C)) + (1-u-v) * (A + fr * (G-A))

return make_pair(

(fr * u + (1_a - fr) / 3_a) + (fr * v + (1_a - fr) / 3_a) * cx,

(fr * v + (1_a - fr) / 3_a) * cy);

}

pair<vector<ArbReal>, vector<ArbReal>> get_triangle(int count, int n,

const ArbReal& fr) {

int i = count / n;

int j = count % n;

if (i + j < n) {

pair<ArbReal, ArbReal> a = point_from_coord(i, j, n, fr),

b = point_from_coord(i + 1, j, n, fr),

29

c = point_from_coord(i, j + 1, n, fr);

return {{a.first, b.first, c.first, a.first},

{a.second, b.second, c.second, a.second}};

} else {

i = n - 1 - i;

j = n - j;

pair<ArbReal, ArbReal> a = point_from_coord(i, j, n, fr),

b = point_from_coord(i + 1, j, n, fr),

c = point_from_coord(i + 1, j - 1, n, fr);

return {{a.first, b.first, c.first, a.first},

{a.second, b.second, c.second, a.second}};

}

}

// Gives the lower bound in the piece of the path between num/den and

// (num+1)/den.

ArbReal path_dfs(const vector<ArbReal>& coef, const ArbReal& lambda,

const vector<vector<ArbReal>>& sources, long long num,

long long den, mag_t err_goal, const vector<ArbReal>& xx,

const vector<ArbReal>& yy) {

if (den > (1ll << 30)) {

printf("Recursion limit reached, function too irregular. Aborting\n");

abort();

}

int order = 8;

auto p = parametrize(xx, yy, num, den, order);

ArbTaylor x = p.first;

ArbTaylor y = p.second;

ArbReal val = solution(coef, lambda, sources, x, y, -1, order).evaluate();

val = val.abs();

mag_t err_val;

mag_init(err_val);

mag_set(err_val, arb_radref((arb_struct*)val));

ArbReal ans;

// Do not split if the value is precise enough.

if (arb_is_finite(val) && mag_cmp(err_val, err_goal) <= 0) {

arf_t aux;

arf_init(aux);

arb_get_abs_lbound_arf(aux, val, PREC);

30

ans = ArbReal(aux);

arf_clear(aux);

} else {

ArbReal val1 =

path_dfs(coef, lambda, sources, 2 * num, 2 * den, err_goal, xx, yy);

ArbReal val2 =

path_dfs(coef, lambda, sources, 2 * num + 1, 2 * den, err_goal, xx, yy);

arb_min(ans, val1, val2, PREC);

}

mag_clear(err_val);

return ans;

}

// Minimum of u^2 in the path given by (xx[i], yy[i]).

ArbReal path_minsq(const vector<ArbReal>& coef, const ArbReal& lambda,

const vector<vector<ArbReal>>& sources, double goal_d,

const vector<ArbReal>& xx, const vector<ArbReal>& yy) {

mag_t err_goal;

mag_init(err_goal);

mag_set_d(err_goal, goal_d);

int den = 18;

ArbReal lb;

arb_pos_inf(lb);

for (int num = 0; num < den; ++num) {

ArbReal val =

path_dfs(coef, lambda, sources, num, den, err_goal, xx, yy).sq();

arb_min(lb, lb, val, PREC);

}

mag_clear(err_goal);

return lb;

}

ArbReal compute_l2meanlb(const vector<ArbReal>& coef, ArbReal lambda,

const vector<vector<ArbReal>>& sources) {

double goal = 5e-2;

int nt = 8; // Bounding L2 norm using 8*8 triangles,

ArbReal l2sum = 0_a;

ArbReal fr = 0.8; // Using 0.64 of the total area to avoid the borders.

31

for (int counter = 0; counter < nt * nt; ++counter) {

auto path = get_triangle(counter, nt, fr);

ArbReal pmsq =

path_minsq(coef, lambda, sources, goal, path.first, path.second);

l2sum += pmsq * fr.sq() / ArbReal(nt).sq();

}

ArbReal l2meanlb = l2sum.sqrt();

printf("Lower bound of the L2 mean: ");

l2meanlb.print();

return l2meanlb;

}

/* COMPUTE THE EIGENVALUE WITH AN ABSOLUTE ERROR */

// Returns the pair {lambda, abs_err}, with lambda in [lbound, ubound]. ‘index‘

// specifies the position of the eigenvalue in the spectrum (1,2,...).

pair<ArbReal, ArbReal> compute_all(int index, double lbound, double ubound) {

vector<double> coef_d;

vector<vector<double>> sources_d;

double lambda_d;

fill_in_vectors(coef_d, lambda_d, sources_d, cx.get_approx_double(),

cy.get_approx_double(), lbound, ubound);

int nc = coef_d.size();

int ns = sources_d.size();

vector<ArbReal> coef(nc);

vector<vector<ArbReal>> sources(ns, vector<ArbReal>(2));

ArbReal lambda = lambda_d;

for (int i = 0; i < nc; ++i) {

coef[i] = ArbReal(coef_d[i]);

}

for (int i = 0; i < ns; ++i) {

sources[i][0] = ArbReal(sources_d[i][0]);

sources[i][1] = ArbReal(sources_d[i][1]);

}

printf("Candidate lambda: ");

lambda.print();

32

ArbReal meanl2lb = compute_l2meanlb(coef, lambda, sources);

double goal_d = 1e-5;

arf_t goal;

arf_init(goal);

arf_set_d(goal, goal_d);

ArbReal l2bdry = side_l2_rec(coef, lambda, sources, goal);

printf("Validated at goal %e\n", arf_get_d(goal, 10));

printf("L2 norm at the boundary: ");

l2bdry.print();

ArbReal area = cy / 2;

ArbReal totall2lb = meanl2lb * area.sqrt();

ArbReal tension = l2bdry / totall2lb;

ArbReal side_a = (cy.sq() + (1_a - cx).sq()).sqrt();

ArbReal side_b = (cy.sq() + cx.sq()).sqrt();

ArbReal semip = (side_a + side_b + 1_a) / 2_a;

ArbReal inrad =

((semip - side_a) * (semip - side_b) * (semip - 1_a) / semip).sqrt();

ArbReal c_omega = 4_a * (1_a + inrad) / inrad;

ArbReal ub_all_lambda = 800_a; // Rough upper bound for all lambda (1 to 4).

ArbReal a_far = 7_a * c_omega;

ArbReal a_tail = 7_a * c_omega / lambda.sqrt();

ArbReal aux = 1_a / tension.sq();

aux -= a_far + a_tail;

ArbReal abs_err = 2_a * ArbReal(ubound) / (aux * inrad);

assert(0_a < abs_err);

abs_err = abs_err.sqrt();

printf(

"Rigorous value of lambda obtained. Follows lambda, its tension and its "

"absolute error.\n");

lambda.print();

tension.print();

abs_err.print();

arf_clear(goal);

return {lambda, abs_err};

33

}

} // namespace

int main() {

char ptname, signc;

string indexs;

int coord, ncoord;

cin >> ptname >> indexs >> signc >> coord >> ncoord;

ArbReal cx0, cy0, v21x, v21y, v41x, v41y, position;

// Heuristics to find the appropritate eigenvalue.

// This will be validated later by a separate program.

vector<double> lmin, lmax;

if (ptname == ’A’) {

// Coordinates:

cx0 = 0.635;

cy0 = 0.275;

// Vectors of the parallelogram:

v21x = 4.269082311683548 / 100;

v21y = 1.148489707350921 / 100;

v41x = -2.082984105473002 / 100;

v41y = -0.255790585210996 / 100;

if (indexs == "21") {

position = (ArbReal(coord) - 0.5_a) / ArbReal(ncoord) * 2_a - 1_a;

lmin = {180, 320};

lmax = {280, 450};

} else {

// In this case, the parallelogram is shrinked from below:

// the position takes values in [-0.6, 1].

position = (ArbReal(coord) - 0.5_a) / ArbReal(ncoord) * 1.6_a - 0.6_a;

lmin = {180, 620};

lmax = {280, 727. - (2 * coord - ncoord) / ncoord * 27};

}

} else {

cx0 = 0.849057346949971;

cy0 = 0.319950941965592;

v21x = 1.717048015465781 / 100;

v21y = 1.266844996461298 / 100;

34

v41x = 3.590363291549854 / 100;

v41y = 1.065148385561495 / 100;

position = (ArbReal(coord) - 0.5_a) / ArbReal(ncoord) * 2_a - 1_a;

if (indexs == "21") {

if (signc == ’m’) {

lmin = {160, 280};

lmax = {255, 380};

} else {

lmin = {150, 280};

lmax = {190, 380};

}

} else {

if (signc == ’m’) {

double center_l1 = 214 - coord * 23.0 / ncoord;

double center_l4 = 637 - coord * 65.0 / ncoord;

lmin = {center_l1 - 20, center_l4 - 20};

lmax = {center_l1 + 20, center_l4 + 20};

} else {

double center_l1 = 197 - coord * 20.0 / ncoord;

double center_l4 = 593 - coord * 60.0 / ncoord;

lmin = {center_l1 - 20, center_l4 - 20};

lmax = {center_l1 + 20, center_l4 + 20};

}

}

}

if (indexs == "21") {

if (signc == ’m’) {

cx = cx0 - v21x + position * v41x;

cy = cy0 - v21y + position * v41y;

} else {

cx = cx0 + v21x + position * v41x;

cy = cy0 + v21y + position * v41y;

}

} else {

if (signc == ’m’) {

cx = cx0 + position * v21x - v41x;

cy = cy0 + position * v21y - v41y;

} else {

cx = cx0 + position * v21x + v41x;

35

cy = cy0 + position * v21y + v41y;

}

}

string filename = "output_";

filename += ptname;

filename += indexs;

filename += signc;

filename += to_string(coord);

filename += "of";

filename += to_string(ncoord);

filename += ".txt";

freopen(filename.c_str(), "w", stdout);

auto p1 = compute_all(1, lmin[0], lmax[0]);

auto pk = compute_all((indexs == "21" ? 2 : 4), lmin[1], lmax[1]);

ArbReal xi = pk.first / p1.first;

ArbReal errxi = (pk.second + p1.second * xi) / (p1.first - p1.second);

printf("Xi and error:\n");

xi.print();

errxi.print();

ArbReal goalxi = (indexs == "21" ? 1.67675 : 2.99372);

ArbReal margin = (signc == ’p’ ? xi - goalxi - errxi : goalxi - xi - errxi);

ArbReal eps = margin / (pk.first * (1_a + xi + margin));

ArbReal delta = ((2_a * ArbReal::pi()).sq() * eps) /

(1_a + (2_a * ArbReal::pi()).sq() * eps);

ArbReal cc, kk; // Auxilliary variables to calculate ell.

if (indexs == "21") {

cc = cy * (v41x.abs() + 2_a * v41y.abs());

kk = v41y.abs();

} else {

cc = cy * (v21x.abs() + 2_a * v21y.abs());

kk = v21y.abs();

}

// Length validated at this point through propagation of the error.

// Given as the coefficient of the vector v21 or v41 that one can move.

ArbReal ell = (2_a * delta * cy * kk + cc -

(4_a * delta * cy * kk * cc + cc.sq()).sqrt()) /

36

(2_a * delta * kk.sq());

if (ptname == ’A’ && indexs == "41") {

// Renormalize ell so it represents a length in [-1, 1]:

ell *= 1.25;

}

printf("Value of ell: ");

ell.print();

}

C Code for optimizing the eigenvalue

This code implements the function fill_in_vectors declared in the file above, which finds an approximate

eigenvalue and eigenvector in a non-rigorous fashion. It does so by optimizing the smallest nonzero singular

value of a matrix that imposes the boundary conditions, as explained above.

#include <stdio.h>

#include <sys/time.h>

#include <algorithm>

#include <utility>

#include "linalg.h"

#include "stdafx.h"

#include "optimization.h"

#include "specialfunctions.h"

#include <boost/math/special_functions/bessel.hpp>

#include <boost/math/tools/minima.hpp>

using namespace alglib;

using namespace std;

namespace {

double cx, cy;

inline double sq(double x) { return x * x; }

double norm(const real_1d_array& a) {

double s = 0;

for (int i = 0; i < a.length(); ++i) {

s += sq(a[i]);

}

37

return sqrt(s);

}

real_1d_array operator*(const real_1d_array& a, double x) {

real_1d_array c;

int n = a.length();

c.setlength(n);

for (int i = 0; i < n; ++i) {

c[i] = a[i] * x;

}

return c;

}

real_1d_array operator/(const real_1d_array& a, double x) {

real_1d_array c;

int n = a.length();

c.setlength(n);

for (int i = 0; i < n; ++i) {

c[i] = a[i] / x;

}

return c;

}

real_1d_array operator+(const real_1d_array& a, const real_1d_array& b) {

real_1d_array c;

int n = a.length();

c.setlength(n);

for (int i = 0; i < n; ++i) {

c[i] = a[i] + b[i];

}

return c;

}

real_1d_array operator-(const real_1d_array& a, const real_1d_array& b) {

real_1d_array c;

int n = a.length();

c.setlength(n);

for (int i = 0; i < n; ++i) {

c[i] = a[i] - b[i];

}

38

return c;

}

double fund_sol_charge_d(double x, double y, double x0, double y0,

double lambda) {

double r = sqrt(sq(x - x0) + sq(y - y0));

return bessely0(r * sqrt(lambda));

}

double fund_sol_vertex_d(double x, double y, int v, int j, double lambda) {

double xvert[3] = {0, 1, cx};

double yvert[3] = {0, 0, cy};

int nxt = (v + 1) % 3;

int prv = (v + 2) % 3;

double xv = xvert[v];

double yv = yvert[v];

double vnxt_[2] = {xvert[nxt] - xv, yvert[nxt] - yv};

double vprv_[2] = {xvert[prv] - xv, yvert[prv] - yv};

double vcur_[2] = {x - xv, y - yv};

real_1d_array vnxt, vprv, vcur;

vnxt.setcontent(2, vnxt_);

vprv.setcontent(2, vprv_);

vcur.setcontent(2, vcur_);

double thmx = atan2(vprv[1], vprv[0]) - atan2(vnxt[1], vnxt[0]);

if (thmx < 0) {

thmx += 2 * M_PI;

}

if (thmx > 2 * M_PI) {

thmx -= 2 * M_PI;

}

double th = atan2(vcur[1], vcur[0]) - atan2(vnxt[1], vnxt[0]);

if (th < 0) {

th += 2 * M_PI;

}

if (th > 2 * M_PI) {

th -= 2 * M_PI;

}

double r = norm(vcur);

double alpha = M_PI * (j + 1) / thmx;

double sl = sqrt(lambda);

39

return boost::math::cyl_bessel_j(alpha, sl * r) * sin(alpha * th);

}

// Generates source points: ‘ns‘ per side and an aditional ‘nextra‘

// situated around the top vertex. ‘nextra‘ should be odd.

real_2d_array gen_sources(int ns, int nextra) {

double beta = 0.01;

real_2d_array sources;

sources.setlength(3 * ns + nextra, 2);

double xvert[3] = {0, 1, cx};

double yvert[3] = {0, 0, cy};

for (int v = 0; v < 3; ++v) {

real_1d_array vcur, vnxt;

double vcur_[2] = {xvert[v], yvert[v]};

vcur.setcontent(2, vcur_);

int nxt = (v + 1) % 3;

double vnxt_[2] = {xvert[nxt], yvert[nxt]};

vnxt.setcontent(2, vnxt_);

for (int i = 0; i < ns; ++i) {

double rat = 0.5 * (1.0 - cos(double(i + 1) * M_PI / double(ns)));

real_1d_array pt = vcur * (1.0 - rat) + vnxt * rat;

real_1d_array vec = vnxt - vcur;

vec = vec / norm(vec);

double perp_[2] = {vec[1], -vec[0]};

real_1d_array perp;

perp.setcontent(2, perp_);

for (int c = 0; c < 2; ++c) {

sources(v * ns + i, c) = pt[c] + beta * perp[c];

}

}

}

for (int i = 0; i < nextra; ++i) {

sources(3 * ns + i, 0) = cx + (double(i) - (nextra - 1) / 2) * 0.02;

sources(3 * ns + i, 1) = cy + 0.1;

}

return sources;

}

// Generates ‘ni‘ interior points at random.

40

real_2d_array gen_intpts(int ni) {

real_2d_array intpts;

intpts.setlength(ni, 2);

for (int i = 0; i < ni; ++i) {

double c1 = randomreal();

double c2 = randomreal();

double c3 = randomreal();

double s = c1 + c2 + c3;

c1 /= s;

c2 /= s;

c3 /= s;

intpts(i, 0) = c1 * 0 + c2 * 1 + c3 * cx;

intpts(i, 1) = c1 * 0 + c2 * 0 + c3 * cy;

}

return intpts;

}

real_2d_array fb_matrix(double lambda, int nb, const real_2d_array& intpts,

int n, const real_2d_array& sources) {

double xvert[3] = {0, 1, cx};

double yvert[3] = {0, 0, cy};

int ni = intpts.rows();

int nst = sources.rows();

real_2d_array A;

A.setlength(3 * nb + ni, 3 * n + nst);

for (int v = 0; v < 3; ++v) {

double vcur_[2] = {xvert[v], yvert[v]};

int nxt = (v + 1) % 3;

double vnxt_[2] = {xvert[nxt], yvert[nxt]};

real_1d_array vcur, vnxt;

vcur.setcontent(2, vcur_);

vnxt.setcontent(2, vnxt_);

for (int i = 0; i < nb; ++i) {

double rat = 0.5 * (1 - cos(double(i) * M_PI / nb));

real_1d_array pt = vcur * (1 - rat) + vnxt * rat;

double x = pt[0], y = pt[1];

for (int vv = 0; vv < 3; ++vv) {

for (int j = 0; j < n; ++j) {

A(v * nb + i, vv * n + j) = fund_sol_vertex_d(x, y, vv, j, lambda);

41

}

}

}

}

for (int i = 0; i < ni; ++i) {

double x = intpts(i, 0);

double y = intpts(i, 1);

for (int vv = 0; vv < 3; ++vv) {

for (int j = 0; j < n; ++j) {

A(3 * nb + i, vv * n + j) = fund_sol_vertex_d(x, y, vv, j, lambda);

}

}

}

for (int v = 0; v < 3; ++v) {

double vcur_[2] = {xvert[v], yvert[v]};

int nxt = (v + 1) % 3;

double vnxt_[2] = {xvert[nxt], yvert[nxt]};

real_1d_array vcur, vnxt;

vcur.setcontent(2, vcur_);

vnxt.setcontent(2, vnxt_);

for (int i = 0; i < nb; ++i) {

double rat = 0.5 * (1 - cos(double(i) * M_PI / nb));

real_1d_array pt = vcur * (1 - rat) + vnxt * rat;

double x = pt[0], y = pt[1];

for (int j = 0; j < nst; ++j) {

A(v * nb + i, 3 * n + j) =

fund_sol_charge_d(x, y, sources(j, 0), sources(j, 1), lambda);

}

}

}

for (int i = 0; i < ni; ++i) {

double x = intpts(i, 0);

double y = intpts(i, 1);

for (int j = 0; j < nst; ++j) {

A(3 * nb + i, 3 * n + j) =

fund_sol_charge_d(x, y, sources(j, 0), sources(j, 1), lambda);

}

42

}

return A;

}

// Minimum nonzero singular value of the Fourier-Bessel matrix.

double fb_minsv(double lambda, int nb, const real_2d_array& intpts, int n,

const real_2d_array& sources) {

real_2d_array mat = fb_matrix(lambda, nb, intpts, n, sources);

real_1d_array tau;

int mr = mat.rows(), mc = mat.cols();

rmatrixqr(mat, mr, mc, tau);

real_2d_array Q, Qtop;

rmatrixqrunpackq(mat, mr, mc, tau, mc, Q);

Qtop.setlength(3 * nb, mc);

for (int i = 0; i < 3 * nb; ++i) {

for (int j = 0; j < mc; ++j) {

Qtop(i, j) = Q(i, j);

}

}

real_1d_array singvals;

real_2d_array unused;

rmatrixsvd(Qtop, 3 * nb, mc, 0, 0, 2, singvals, unused, unused);

return singvals[mc - 1];

}

void compute_eig_and_coefs(int n, int nb, int ni, int ns, double lmin,

double lmax, vector<double>& r_coefs,

double& r_lambda,

vector<vector<double>>& r_sources) {

real_2d_array intpts = gen_intpts(ni);

real_2d_array sources =

gen_sources(ns, /*number of sources at the vertex=*/17);

pair<double, double> opt =

boost::math::tools::brent_find_minima([&](double l) {

double val = fb_minsv(l, nb, intpts, n, sources);

return val;

43

}, lmin, lmax, /*bits of precision=*/25);

double lambda = opt.first;

double sv = opt.second;

printf("Lambda = %12.8f with singular value = %12.8f\n", lambda, sv);

real_2d_array mat = fb_matrix(lambda, nb, intpts, n, sources);

real_1d_array tau;

int mr = mat.rows(), mc = mat.cols();

rmatrixqr(mat, mr, mc, tau);

real_2d_array Q, R, RR, Qtop;

rmatrixqrunpackq(mat, mr, mc, tau, mc, Q);

rmatrixqrunpackr(mat, mr, mc, RR);

R.setlength(mc, mc);

for (int i = 0; i < mc; ++i) {

for (int j = 0; j < mc; ++j) {

R(i, j) = RR(i, j);

}

}

Qtop.setlength(3 * nb, mc);

for (int i = 0; i < 3 * nb; ++i) {

for (int j = 0; j < mc; ++j) {

Qtop(i, j) = Q(i, j);

}

}

real_1d_array singvals;

real_2d_array unused, vt;

rmatrixsvd(Qtop, 3 * nb, mc, 0, 1, 2, singvals, unused, vt);

real_2d_array v;

v.setlength(mc, 1);

for (int i = 0; i < mc; ++i) {

v(i, 0) = vt(mc - 1, i);

}

rmatrixlefttrsm(mc, 1, R, 0, 0, 1, 0, 0, v, 0, 0);

real_1d_array coef;

coef.setlength(mc);

for (int i = 0; i < mc; ++i) {

coef[i] = v(i, 0);

}

44

r_lambda = lambda;

r_coefs = vector<double>(mc);

for (int i = 0; i < mc; ++i) {

r_coefs[i] = coef[i];

}

r_sources = vector<vector<double>>(sources.rows(), vector<double>(2));

for (int i = 0; i < sources.rows(); ++i) {

r_sources[i][0] = sources(i, 0);

r_sources[i][1] = sources(i, 1);

}

}

} // namespace

void fill_in_vectors(vector<double>& r_coefs, double& r_lambda,

vector<vector<double>>& r_sources, double cx0, double cy0,

double lmin, double lmax) {

printf("cx = %.10f, cy = %.10f\n", cx0, cy0);

// Parameters for the basis:

int n, nb, ni, ns;

n = 5;

nb = 300;

ni = 40;

ns = 100;

cx = cx0;

cy = cy0;

compute_eig_and_coefs(n, nb, ni, ns, lmin, lmax, r_coefs, r_lambda,

r_sources);

}

References

[AF11] P. R. S. Antunes and P. Freitas. On the inverse spectral problem for Euclidean triangles. Pro-

ceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,

467(2130):1546–1562, 2011.

45

[BG90] T. P. Branson and P. B. Gilkey. The asymptotics of the Laplacian on a manifold with boundary.

Comm. Partial Differential Equations, 15(2):245–272, 1990.

[BH11] A. Barnett and A. Hassell. Boundary quasi-orthogonality and sharp inclusion bounds for large

Dirichlet eigenvalues. SIAM Journal on Numerical Analysis, 49(3):1046–1063, 2011.

[BT05] T. Betcke and L. N. Trefethen. Reviving the Method of Particular Solutions. SIAM Review,

47(3):469–491, 2005.

[CD89] P. Chang and D. DeTurck. On hearing the shape of a triangle. Proceedings of the American

Mathematical Society, 105(4):1033–1038, 1989.

[CG14] C. Carstensen and J. Gedicke. Guaranteed lower bounds for eigenvalues. Mathematics of Com-

putation, 83(290):2605–2629, 2014.

[Dur88] C. Durso. On the inverse spectral problem for polygonal domains. PhD thesis, Massachusetts

Institute of Technology, 1988.

[FHM67] L. Fox, P. Henrici, and C. Moler. Approximations and bounds for eigenvalues of elliptic operators.

SIAM Journal on Numerical Analysis, 4(1):89–102, 1967.

[GM13] D. Grieser and S. Maronna. Hearing the shape of a triangle. Notices of the AMS, 60(11):1440–

1447, 2013.

[GS18] J. Gómez-Serrano. Computer-assisted proofs in PDE: a survey. SeMA Journal, pages 1–26, 2018.

[GWW92] C. Gordon, D. L. Webb, and S. Wolpert. One cannot hear the shape of a drum. Bulletin of the

American Mathematical Society, 27(1):134–138, 1992.

[Hen06] A. Henrot. Extremum problems for eigenvalues of elliptic operators. Springer Science & Business

Media, 2006.

[Joh17] F. Johansson. Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans-

actions on Computers, 66:1281–1292, 2017.

[Kac66] M. Kac. Can one hear the shape of a drum? The American Mathematical Monthly, 73(4):1–23,

1966.

[Liu15] X. Liu. A framework of verified eigenvalue bounds for self-adjoint differential operators. Applied

Mathematics and Computation, 267:341–355, 2015.

[LO13] X. Liu and S. Oishi. Verified eigenvalue evaluation for the laplacian over polygonal domains of

arbitrary shape. SIAM Journal on Numerical Analysis, 51(3):1634–1654, 2013.

[Mir40] C. Miranda. Un’osservazione su un teorema di Brouwer. Boll. Unione Mat. Ital., II. Ser., 3:5–7,

1940.

[MS67] H. P. McKean, Jr. and I. M. Singer. Curvature and the eigenvalues of the Laplacian. J. Differential

Geometry, 1(1):43–69, 1967.

46

[Par80] B. N. Parlett. The Symmetric Eigenvalue Problem. Classics in Applied Mathematics. Society for

Industrial and Applied Mathematics, 1980.

[Rel40] F. Rellich. Darstellung der Eigenwerte von ∆u + λu = 0 durch ein Randintegral. Math. Z.,

46:635–636, 1940.

[Tuc11] W. Tucker. Validated numerics: a short introduction to rigorous computations. Princeton Uni-

versity Press, 2011.

[vdBS88] M. van den Berg and S. Srisatkunarajah. Heat equation for a region in R2 with a polygonal

boundary. J. London Math. Soc. (2), 37(1):119–127, 1988.

[Zel09] S. Zelditch. Inverse spectral problem for analytic domains. II. Z2-symmetric domains. Ann. of

Math. (2), 170(1):205–269, 2009.

47

	Introduction
	Structure of the proof of Theorem 1
	Separation of the first four eigenvalues
	Rigorous eigenvalue bounds for individual triangles
	Extension of the bounds to a region of triangles
	Implementation
	Givens rotations
	Upper bound of the MFS boundary norm
	Lower bound of the MFS interior norm

	Acknowledgments
	Code for the separation of the smallest eigenvalues
	Code for validating an interval of triangles
	Code for optimizing the eigenvalue

