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Summary

Bathymetric inversion using video images is a new and promising technique in order to

monitor beach morphology. In this TFG, a Boussinesq model called FUNWAVE and a

linear wave propagation routine will be used to create synthetic wave propagation over dif-

ferent bathymetries. Two bathymetric inversion methodologies, cBathy and uBathy, will

be subsequently applied to retrieve the bathymetry, comparing their results and analysing

their sensitivity to different aspects, in order to understand and improve their perfor-

mance.

Keywords Bathymetry, bathymetric inversion, cBathy, uBathy, FUNWAVE.
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1 . Introduction

The coast is one of the most important areas of the planet, due to its environmental, touris-

tic, commercial, logistic and demographic importance. The beaches and the nearshore

waters that form it are quite dynamical, undergoing multiple and complex changes. The

states that characterize the phenomena of those systems are related to their distribution

of depth, which is called the bathymetry (Wright and Short [1984]). In fact, their evolu-

tion and their behaviour are dependent depend on it (Coco et al. [2007]). Therefore, the

bathymetry is a required input for predictions, coastal management decisions and scientific

investigations upon those systems.

The usual method to measure the bathymetry involves in place surveying using direct

contact or a ship-mounted sonar (echo sounding). More recently, other types of vehicles

and technologies, such as jet-skis (Dugan et al. [2001], echo sounding), amphibious buggies

(Birkemeier and Mason [1984], direct contact) and aircraft (Irish and Lillycrop [1999],

LIDAR), have been used. There have been also attempts to use air-born or space-born

colorimetry to obtain the bathymetry (Lyzenga et al. [2006]) (works only in very clear

waters). However, all these methods are expensive and time-consuming, resulting in low

spatiotemporal resolutions: it is usual to perform just one survey per year, and only

measuring some transects out of the actual nearshore area.

To overcome this, a series of alternative methods have been proposed, using remote

observations to provide spatially denser and more frequent bathymetries, with a lower

cost. There was an initial attempt during WW1 and WW2 (Williams [1947]), using im-

ages of beaches (obtained from aircraft) to guess the bathymetry of enemy-held coasts.

They were based on the evolution of the water-line with the tides, and the dependence

of the wavelength and the phase speed of waves with depth for near waters, given by the

Airy dispersion equation in the small amplitude limit.

h =
1

k
arctanh

(
w2

gk

)
(1.1)

Here, h is the water depth, k is the wavenumber of the waves, ω stands for the waves

angular frequency and g symbolizes the gravity acceleration. This method has been called

bathymetry inversion, The performance of these initial attempts was very very limited.

However, new sensing apparatus, mainly video cameras (Lippmann and Holman [1989])

and X-band radar (Grilli [1998]), have provided a huge advancement in the remote sensing

techniques for bathymetry inversion in the recent decades. This instruments, placed in
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the land near to beach shores, are used to monitor the wave characteristics in an almost

continuous operation. The main characteristics used to obtain the bathymetry from wave

recordings are the wave breaking and dissipation patterns (van Dongeren et al. [2008])

and the already mentioned bathymetry inversion. A lot of different algorithms have been

created based on this approach. Some of them have tried to extend the method using

nonlinear extensions of the dispersion equation (Catálan and Haller [2008], Flampouris

et al. [2011]), but the main approach consists in using the Airy dispersion relation. In

order to obtain frequency and wavenumber from images, there are also different methods:

3D-FFT (Trizna [2001]), Fourier and dispersion relation fittings (Senet et al. [2008]), and

spectral cross-correlations (Holman et al. [2013]). There is a more exhaustive description

in Holman and Haller [2013]. However, the errors from all this methods are too big to

be useful. Therefore, the measurement of bathymetry by means of remote sensing is still

an open field. One of the most recent and popular bathymetry inversion algorithms is

cBathy (Holman et al. [2013], Rutten et al. [2017]). Nowadays, the progress in the field

seems oriented to either improving cBathy or finding new inversion algorithms. However,

to test such inversion algorithms, it is important to use a set of videos with different wave

and bathymetry conditions. In order to study the performance of bathymetry inversion

algorithms, they must be performed over cases with known depth. The only way to

decide freely which conditions to test is to generate synthetic bathymetries and obtain

the propagation of waves over them by means of a numerical simulation. Using different

bathymetries may manifest the problems these algorithms can encounter so that they and

the proposed solutions can be subsequently analyzed.

The goal of this work is double. On one hand, to use two models of wave propa-

gation and adapt them to generate videos that can be used to study and test dispersion

equation based bathymetric inversion algorithms. To simulate the wave propagation over

the desired bathymetries, both linear and nonlinear Boussinesq-type equations are used.

On the other hand, to analyze and improve a well-known algorithm, cBathy, and com-

pare it to a new algorithm developed by the directors of this project, uBathy (Simarro

et al., manuscript in review), by means of the synthetic wave videos generated. Also,

the videos and subsequent inversions conducted are used to find which is the best video

spatiotemporal resolution.
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2 . Wave propagation modelling

2.1 Linear model: Airy waves

The first model used to simulate the propagation of waves over the given bathymetries is

based on the linear water wave propagation equations, i.e., assuming waves whose ampli-

tude is infinitesimal (or very small compared to the depths over which they propagate).

In this case the superposition principle holds, meaning that all possible scenarios can be

written exactly as a linear combination of monochromatic waves. The mathematical form

of a monochromatic wave is

η = A cos
(
ωt+ φ (x, y)

)
, (2.1)

where η stands for water free surface elevation, A is the amplitude of the wave, ω refers to

its angular frequency (constant), x and y represent the cross-shore and alongshore positions

respectively, and φ (x, y) is the spatial phase of the wave. To completely determine the

wave, the values for φ (x, y) need to be computed.

The wave-vector, ~k, is defined as the opposite of the gradient of the spatial phase. Its

modulus, the wavenumber k, is related to water depth h through the angular frequency

ω, as stated by the dispersion equation (Equation 1.1). The wavenumber changes from

point to point, but since frequency is constant, it depends directly upon the local depth.

Therefore, as the frequency and the bathymetry are known (test inputs), the wavenumber

can be computed from the transcendental dispersion equation with a standard root-finding

Newton routine. Then, if the orientation of the wave-vector through the domain is also

determined, the spatial phase can be obtained by means of integration. This can be

solved assuming an alongshore-uniform bathymetry, i. e., that depth does not change in

the alongshore direction. In that case, the alongshore component of the wave-vector is

constant, and since it is determined at the offshore boundary, where waves are forced, the

whole wave-vector and therefore the spatial phase can be obtained (Derivation 2.1).
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~k = −~∇φ (x, y) → ~∇× ~k = ~0 → ∂ky
∂x

=
∂kx
∂y

alongshore uniform →
{

0 = ∂kx/∂y = ∂ky/∂x, 0 = ∂ky/∂y
}
→ ky = cte.

kx (x) =
√
k2 (h)− k2y =

√
k2 (x)− k2y

φ (x, y) = −φ0 −
∫ y

0

kydy −
∫ x

0

kx (x) dx = −φ0 − kyy −
∫ x

0

kx (x) dx,

Here, kx and ky correspond to the cross-shore and the alongshore components of the

wave-vector, and φ0 is the reference of phase (the one present in the wave at the origin

of coordinates at time zero). The alongshore component of the wave-vector ky can be

obtained at the offshore boundary of the domain, using the angle of incidence of the

input wave and the wavenumber derived from the local depth.

Derivation 2.1: Determination of the spatial phase for the linear wave model, under the

assumption of alongshore uniform bathymetry.

2.2 Nonlinear model: FUNWAVE

The other model used to simulate wave propagation over the given bathymetries is FUNWAVE-

TVD 3.0, one of the versions of FUNWAVE, a Boussinesq model written in FORTRAN.

2.2.1 Equations

The Boussinesq equations are useful to model the evolution of waves from deep to shallow

water over coasts. The mass and momentum conservation equations are reduced from

a 3D problem to a 2D one by truncating the Taylor expansion of the vertical profile

of velocity. Then, this expansion is averaged over depth (z-derivatives are substituted

by horizontal ones, under the assumption of incompressible fluid and vertical or zero

vorticity). Originally, the expansion used both a dispersion parameter and a nonlinearity
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parameter, but there are also recent versions that only consider the dispersion parameter

(these are referred to as “fully-nonlinear” since there is no limitation on the non-linearity

of the waves). Once the average has been performed, the equations can be rewritten to

use either the mean magnitude over the water column (Peregrine [1972]) or its value at

a specific intermediate point of the column (Nwogu [1993]), which is the option chosen

by FUNWAVE. In the case of FUNWAVE-TVD, the equations implemented are those

presented by Chen [2006], adding the use of a time and space locally depending reference

level, presented by Kennedy et al. [2001]. The equations compute the evolution of the free

surface and the horizontal velocity (at a given fraction of local depth). This fraction is a

free parameter of the equations, which is usually set by comparing the phase speed versus

depth and the amplitude versus depth relations of the equations with those predicted by

the Airy theory, and then tuning the parameter to minimize the error to both relations

simultaneously (Simarro et al. [2013]).

Regarding the numerical scheme, FUNWAVE-TVD 3.0 uses an adaptive time step

based on a third order Runge-Kutta method and the Courant–Friedrichs–Lewy (CFL)

condition. Spatial derivatives are discretized using a combination of finite volume and

finite difference methods. Wave breaking is modelled by either using a modification in

the eddy viscosity term or by changing from Boussinesq to another set of equations that

capture this effect, when conditions for the breaking are met (the second option is the

used by default).

2.2.2 Domain, boundary conditions and wavemaker

FUNWAVE-TVD uses a rectangular domain with a variable amount of equispaced points

that build up a rectangular mesh. Attenuation sponge layers can be added at the four

boundaries, having an exponential attenuation profile and a selectable thickness s. The

recommended thickness for attenuation sponges is of the order of the wavelengths present in

the domain (around one or two of them). There are also other types of sponges available,

but they are not used in this work for they are meant to mitigate the noise that the

attenuation sponges introduce in long term simulations, and the videos generated for

inversion only span a few minutes (including warm up). Additionally, periodic boundary

conditions can be applied to lateral boundaries. Emerging earth barriers can be used to

provide boundary conditions too (this can be set by specifying negative depths).

To propagate waves into the domain, FUNWAVE-TVD uses a forcing based on the

Wei et al. [1999] two-way internal wavemaker. According to Wei et al. [1999], provided

that the domain incorporates sponges to avoid reflections over the domain limits, the

wavemaker has to be placed inside the domain itself. The way to force the wave movement
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is to add a source term over the equations. The authors of FUNWAVE chose a thick-line

source, that allows to introduce monochromatic waves of a given period, amplitude and

angle of incidence to the domain. Different monochromatic terms can also be combined

to mimic more complex conditions, as components of the desired spectrum of the input.

The wavemaker needs to be configured to be effective in generating the desired waves.

Specifically, its thickness has to be at least of the order of a wavelength fraction (around

one quarter of it).

2.2.3 Modifications introduced on FUNWAVE

There were a couple of issues regarding FUNWAVE that required a modification of the

source code. The first one involved the output times: FUNWAVE allows the user to define

the time interval desired between outputs of the variables. However, it does not adjust the

time step in order to obtain a solution at exactly those times. Instead, it sets the time step

fulfilling the CFL condition over the domain and, when the time of an output has been

surpassed, it prints the new state of the variables. However, the present study requires the

outputs to be recorded at specific times, because they are used to compute discrete Fourier

transforms (DFT) inside the cBathy inversion routine. For this reason, FUNWAVE code

has been altered, forcing the time step to end in the times when outputs are requested, if

the required time step is smaller than the specified by the CFL condition.

The other modification is related to the waves introduced in the domain. FUNWAVE

provides an option that allows to specify the components of the input waves, as a list of

monochromatic terms amplitudes and angles of incidence. However, it sets their phase

to a random value internally. The source term generation routine was changed to accept

also a list of user-defined phases. In this way, the cases where there is a superposition of

monochromatic waves can be simulated with repeatability, in order to study the influence

of some parameters.

2.2.4 Shoaling tests

To test if the FUNWAVE solver is working properly, a case with known solution has been

simulated and the results have been compared to it. For shoaling waves, the easiest case

is the small amplitude limit, that results in Airy waves, for which amplitude and phase

speed can be directly written as functions of depth.

However, the FUNWAVE equations do not exactly produce Airy waves, even in the

small amplitude limit. As explained in Subsection 2.2.1, they are tuned to produce am-
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plitude and phase versus depth relations that resemble the most those of Airy waves,

but the match is not perfect, and the results worsen in deeper waters. However, if the

bathymetry used prevents waves from distorting (e.g. alongshore-uniform case), the re-

sults of Simarro [2013] can be used to compute exactly the relations that FUNWAVE

equations produce.

Therefore, to check the performance of the model, small amplitude waves are prop-

agated over an alongshore-uniform bathymetry. Then the amplitudes and phase speeds

of the results are extracted and compared to the theoretical relations computed using the

method of Simarro [2013]. The case simulated is quasi 1D, using four points in the along-

shore dimension and an alongshore-uniform bathymetry. Waves of 6 s of period are used.

The depths of interest are those between deep waters and shallow waters. To measure

shallowness, the most common parameter is kh (k the wavenumber and h the local water

depth). Shallow waters correspond to kh 6 0.5, and deep water to kh > 3.0. Usually the

intermediate case is considered as the interval 0.5 < kh < 3.0. For waves of 6 s, that kh

interval corresponds to 25 m - 5 m. Considering a maximum amplitude over depth ratio

of 1/1000, the amplitude for the wave is set to 5 mm. The cross-shore profile is built using

a limiting mild-slope condition, to ensure the mild-slope assumption behind Boussinesq

equations. ∣∣∣∣1h dhdx
∣∣∣∣ 6 C

The values considered for C are: 0.02 m−1, 0.005 m−1 and 0.002 m−1. They define the

bathymetry (Figure 2.1).

Figure 2.1: Bathymetries used for the shoaling tests, generated using C = 0.02 m−1,

0.005 m−1 and 0.002 m−1, respectively. The horizontal axis depicts cross-shore position in

meters, and the vertical axis the bed elevation in meters. Notice that there are constant

depth regions at the borders, which are used to place the wavemaker and the attenuation

sponges.

To ensure that the results are correct, every case is simulated with diminishing grid

size (2.0 m, 1.0 m, 0.5 m, 0.25 m). The numerical results of big grid sizes are not expected

to resemble FUNWAVE theoretical relations, due to the lack of resolution in the grid size
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used. For finer grids, the results should converge to the theoretical values.

However, the results of these simulations present a strong noise presence, caused by

reflections in the domain limits. In order to extract the phase speed and amplitude versus

depth from this noisy data, the output of the simulations must be processed.

The processing consists in the following steps: i) tracking the crests of the wave

(finding local maxima) to get their amplitudes, positions and depths beneath for each

sampling time; ii) subtract successive crest positions to get the phase speed of crests;

iii) perform a time average of these magnitudes (amplitude, phase speed, depth) using

a sliding window; iv) divide the range of depths into small intervals, and classify data

depending on which interval falls the crest averaged depth (this is, assign each amplitude

and phase speed to the interval that contains the associated depth); v) average through

depth intervals using a sliding window: for each interval, take all the data that is within

it and the nth nearest intervals, then compute the mean and the standard deviation of

the data they contain (thus each interval gets a mean amplitude and a mean phase speed,

and a confidence interval for each value); vi) use the central depth of each interval as

the corresponding to its mean amplitude and phase speed. In this way, an experimental

amplitude versus depth and phase speed versus depth are obtained. This processing allows

to obtain results clear enough to be compared to the theoretical relations (Figures 2.2 and

2.3).

According to the figures, phase speeds stabilize for grid sizes smaller 1 m and ampli-

tudes converge to the theoretical value for grid sizes equal or smaller than 0.5 m. Therefore,

the recommended grid size is 0.5 m or below. However, this might result in too large sim-

ulation times. Considering that the amplitude is not needed for the bathymetric inversion

(only the phase speed is required), grid sizes of 1 m are preferred.

2.3 Study cases and Model setup

A summary of the characteristics of the study cases can be found in Tables 2.1 and 2.2

(here ppm stands for pixels per metre). These characteristics are described in the following

subsections.

2.3.1 Bathymetries

The depths of interest are of the order of meters, ranging from about 0.25 m - 0.5 m up

to 8 m - 12 m. To consider a realistic case, the cross-shore bathymetry from Yu and Slinn
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Linear simulated cases

- Bathymetry: baseline

- Wave conditions: monochromatic, polychromatic

- Spatial resolution: 0.10 ppm, 0.25 ppm, 0.50 ppm, 1.00 ppm

- Temporal resolution: 4.00 Hz, 2.00 Hz, 1.00 Hz, 0.50 Hz

- Amplitude multiplier: (does not apply)

Table 2.1: Characteristics of the linear simulated cases, where ppm means pixels per metre.

FUNWAVE simulated cases

- Bathymetry: baseline, structures

- Wave conditions: monochromatic, polychromatic

- Spatial resolution: 0.25 ppm

- Temporal resolution: 2.00 Hz

- Amplitude multiplier: x1.0, x0.4, x0.1

Table 2.2: Characteristics of the FUNWAVE simulated cases, where ppm means pixels

per metre.

[2003] is used as an alongshore-uniform baseline.

h0 (x) =

(
a1 −

a1
γ1

)
tanh

(
b1x

a1

)
+
b1x

γ1
− a2 exp

(
−5

(
x− xc
xc

)2
)
. (2.2)

The values for the parameters are chosen as: a1 = 3.0 m, γ1 = 5.55, b1 = 0.09, a2 = 1.5 m,

xc = 80.0 m. The resulting profile can be seen in Figure 2.4.

An interval with constant depth needs to be placed before the seamost edge to allocate

the wavemaker for the FUNWAVE model, so the depth is clamped at 8 m, fixing the cross-

shore range for inversion tests between 300 m and 400 m. To simulate the presence of a

crescentic bar, alongshore-wise undulations (Equation 2.4) and a bump (Equation 2.5) are

added to the baseline bathymetry.

h (x, y) = m (x, y)h0 (x) + h1 (x, y) (2.3)

m (x, y) = 1 + Ayw exp

(
−5

(x− xc,yw)2

x2wid,yw

)−1 + cos

(
2πy

Ly,yw

) (2.4)

h1 (x, y) = −Abump exp

(
−(x− xbump)2 + (y − ybump)2

W 2
bump

)
(2.5)

The values for the parameters needed by those equations are chosen as Ayw = 0.15,
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Figure 2.4: Bed elevation of the baseline considered for the test bathymetries (clipping

not shown).

Ly,yw = 100.0 m, xc,yw = 60.0 m, xwid,yw = 40.0 m, Abump = 0.5 m, xbump = 40.0 m,

ybump = 125.0 m, Wbump = 15.0 m.

In order to contain these depth variations, the alongshore size is set to 200 m. The

bathymetries considered can be either the alongshore-uniform baseline (hereinafter base-

line case) or that same baseline combined with the undulations and the bump as described

above (hereinafter structures case). The linear simulations used require an alongshore-

uniform bathymetry so that for linear simulated cases only the baseline bathymetry case

is used. The bathymetries used are depicted in Figure 2.5.

2.3.2 Wave conditions

Regarding the offshore wave conditions, three cases that span the range of usual frequen-

cies, amplitudes and orientations are selected (Table 2.3). Their phase at time zero is also

set (this is, the phase of their spectral representation), in order to make them repeatable

and reproducible.

It is interesting to consider also another wave condition consisting in the sum of these

three monochromatic components, because natural sea conditions are typically of this kind.

This combined case will be referred to as “polychromatic”. In order to restrict the number

of test cases, only one of the monochromatic waves listed will be presented here, the one

with ID 1 in Table 2.3. This wave condition will be referred to as “monochromatic”.
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Figure 2.5: Bathymetry for the baseline case (left) and the structures case (right). The

colour code corresponds to bed elevation, in meters.

ID T [s] f [Hz] A [m] θ [o] φ0 [o]

1 7.945 0.125 0.250 -16.6 39.0

2 12.000 0.083 0.150 +0.0 0.0

3 5.022 0.199 0.050 +26.1 108.7

Table 2.3: Characteristic of the monochromatic waves used. T stands for wave period, f is

its frequency, A symbolizes its amplitude, θ represents its orientation and φ0 its phase at

time zero. The values shown correspond to the properties of the waves where they enter

the domain (for the linear model, the offshore boundary, for the FUNWAVE model, the

wavemaker).
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The real wave conditions one can observe in a beach span multiple amplitudes. To

test the limit of small amplitude and to study the dependence of nonlinear effects with

amplitude, FUNWAVE simulations are also conducted with smaller amplitudes, specifi-

cally, with the amplitudes described in Table 2.3 multiplied by ×0.4 and ×0.1, together

with the ×1.0 case. This only affects FUNWAVE simulations, since linear equations are

based on infinitesimal amplitude waves (in this case, the amplitudes from Table 2.3 define

only the relative amplitudes for the polychromatic cases).

It is important to note that the characteristics of the waves are referred to their value

at the seamost side of the domain. This is, waves are meant to come from open sea, and

in the simulations their state is defined at the point they enter the domain.

2.3.3 Numerical implementation

Simulation results are obtained with a grid size of 1 m both in cross-shore and along-

shore (spatial resolution of 1.0 ppm), and their output is printed each 0.25 s ( sampling

frequency of 4.00 Hz). However, it is important to see how the inversion performance

changes with the spatial and temporal resolutions considered. To do so, the resulting

images are decimated to consider also cases with 0.5 ppm, 0.25 ppm and 0.1 ppm (where

ppm stants for pixels per metre, so they corresponding to 2 m, 4 m and 10 m distances be-

tween consecutive pixel centres), and sampling frequencies of 2.00 Hz, 1.00 Hz and 0.50 Hz

(corresponding to sampling periods of 0.5 s, 1.00 s and 2.00 s, respectively). To decou-

ple the dependence of results with spatiotemporal resolution from their dependence with

amplitude, the spatiotemporal variations are only studied in the linear model simulations.

For FUNWAVE simulated cases, the spatial resolution is set to 0.25 ppm and the sampling

frequency is fixed at 2 Hz.

Finally, the video temporal span is set to 150 s, at the request of uBathy developers.

To check this does not affect cBathy, consider that the windowing produced by 150 s of

observation transforms the spectra of the monochromatic components, which are Dirac

deltas, into the Fourier transform of a square pulse (hereinafter, a sinc). The bandwidth

of a sinc can be regarded as the bandwidth of its main lobe, which is about 1/Tobs, in this

case, about 1/150 = 0.0067 Hz. According to Rayleigh criterion, to resolve them, they

need to be spaced more than this width. The spacing between components with ID 1 and

ID 2 is 0.125 Hz - 0.083 Hz = 0.042 Hz > 0.0067 Hz, the spacing between components

with ID 1 and ID 3 is 0.199 Hz - 0.125 Hz = 0.074 Hz > 0.0067 Hz, and the spacing

between components with ID 2 and ID 3 is 0.199 Hz - 0.083 Hz = 0.116 Hz > 0.0067 Hz.

Therefore, a video duration of 150 s is enough for cBathy.
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2.3.4 FUNWAVE model setup

The FUNWAVE simulation domain used consists in a rectangle of 672 m in cross-shore and

480 m in alongshore (Figure 2.6). The area used for bathymetry extraction (hereinafter

called the video zone) measures 300 m in cross-shore and 200 m in alongshore. However,

some extra space is needed for the seawards boundary (where the wavemaker is placed),

the lateral boundaries (which should emulate the continuity of the coast) and the coastal

boundary (where most of the dissipation or reflection of waves occur).

Figure 2.6: Diagram showing the regions of the domain and their size.

1. Seaward boundary. At least one wavelength width sponge is needed. The wave-

maker needs to span another quarter of wavelength. At 8 m of depth, the wavelengths

corresponding to the frequencies used are around 100 m, 65 m and 35 m. The worst

case is 100 m, which means extra 125 m, although 150 m are used to left some

space between the sponge and the wavemeker. However, in order to ensure that

the wavemaker influence does not show in the video zone, 100 m are added between

them, resulting in a total width of 250 m. Since the wavemaker needs to operate

at a constant depth, the baseline bathymetry was clamped at the level it presents

during the 100 m between the video zone limit and the wavemaker start (8 m, as

described in Subsection 2.3.1).
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2. Lateral boundaries. In order to avoid the effects from the lateral borders, some

space at the sides of the video zone is left. Two options have been tested for the

lateral boundary conditions: attenuation sponges with a reflective wall, and periodic

boundary conditions. Since the attenuation sponges require at least one wavelength

width (100 m) to ensure enough attenuation is provided, 140 m are added to each

side. To apply the periodic boundary conditions, the alongshore wavelength must

be a submultiple of the alongshore domain size. Thereby, the orientation of the

incoming offshore waves has been computed to match the 480 m alongshore length.

Attenuation sponges have been proved inadequate for this case, because the later-

als attenuation distorts wavefronts, just as diffraction through a hole (Figure 2.7).

On the contrary, periodic boundary conditions with no attenuation seem to work

properly.

3. Coastal boundary. The first option that has been used to define boundary con-

ditions in this side of the domain consists in keeping the natural evolution of the

bathymetry described, resulting in a planar beach emerged from water. However,

this setup produces a strong reflection (Figure 2.8). In order to mitigate it, a sponge

is added after the video zone, with a thickness, s, of 100 m or 200 m. The bathymetry

is changed near the coast, by bringing it to a constant value before the depth becomes

negative. A logarithmic splice of the form “A log
(
10Ax + 10C

)
−C +L” (modelling

a two slope joint) is used to this effect. The splice starts 15 m before the video

zone ends, and gradually changes its elevation gradient until the constant value of

depth desired, L, is reached. The tested values for the clipping depths are 0.3 m and

0.03 m. Results are pretty similar in the four cases (i. e. changing s and L) (see

Figure 2.9), and therefore the computationally cheapest case (L = 0.3 m, s = 100 m)

is implemented for the inversion tests. However, reflections are not completely re-

moved, though they become smaller. This has motivated the development of new

strategies to cope with reflections over the coastline in the inversion algorithms.

The bathymetry inversion algorithms need 150 s of video, but 200 s of simulation are

added for the simulated system to warm up. Therefore, the total simulation time is 350 s.

All the simulations used to test the boundaries have been conducted using 1 m of grid

size, both in cross-shore and alongshore directions. This has kept computation times into

a reasonable order of magnitude. To check that this is enough, a couple of simulations

using 0.5 m of grid size have been conducted. Visual inspection confirms that the results

are similar enough for the purposes of this work.

To speed up simulation times, the model is parallelized. The way FUNWAVE incor-

porates it is by subdividing the computation domain into smaller ones. To do so, it needs

the number of points in the subdivided direction to be a multiple of the number of cores
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Figure 2.7: Free surface maps showing the effect of sponges and reflective walls as lateral

boundary conditions. The left image shows some circular waves that appear due to the

attenuation of the main plane wave wavefronts at the lateral boundaries. The right image

shows a snap for a later time instant. Notice how the wavefronts are not straight lines as

expected, due to the interaction with the circular waves. The images are build as explained

in Section 2.4. The lateral and the offshore margins of the domain are depicted too, beside

the video zone.

Figure 2.8: Free surface maps showing the reflections caused by the emerged land coastal

boundary conditions. The contrast between crests and valleys is quite small due to reflec-

tions. The form of the reflected wave is barely visible, but it may be observed if the image

is looked from some distance. The lateral margins are depicted too, beside the video zone.
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Figure 2.9: Temporal evolution of the RMS difference in free surface height among the

domain, compared to the 0.3 m clipped 100 m thickness sponge case. The horizontal axis

corresponds to simulation time in seconds, and the vertical axis is the RMS difference

between pixel’s free surface elevation. The case of emerging coast is also displayed.

used. Since systems used have up to 24 cores, it was ensured that both sides of the domain

have a number of points multiple of 24 (this leads to a slightly longer coastal zone after

the video zone, as can be seen in Figure 2.6).

To implement all the conditions for each simulation while allowing to change these

parameters in a fast way, a routine combining Bash scripting and Python have been devel-

oped. It gets the information from the input file (where the positions of the wavemaker,

the size of domain parts, the thickness of the sponges, the input wave spectrum and the

clipping depth are described), computes the inputs necessary (changing limits to match a

number of grid points suitable for parallellization and computing the bathymetry according

to the analytic expressions and the clippings), and feeds them to FUNWAVE.

2.4 Results

Finally, free surface height resulting from simulations are used to build images, by means of

a linear transformation to 128 grayscale levels. The following pages contain some examples

of the images built. Figure 2.10 shows the three monochromatic waves used in this work,

alone and combined. Notice how the crests of the waves get closer near the coast, as

the depth becomes smaller. In some pictures it is also possible to see how the crests

become more intense, indicating a bigger amplitude due to shoaling. The cases that use
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the bathymetry with structures show the refraction of the incoming waves when they pass

over the undulations and the bump, resulting in bent wavefronts. The different amplitude

cases considered are depicted in Figure 2.11. The difference between crests and valleys

is more definite for bigger amplitudes. Finally, Figure 2.12 depicts the different spatial

resolutions used for inversion.

21



F
ig

u
re

2.
10

:
Im

ag
es

re
su

lt
in

g
fr

om
th

e
si

m
u
la

ti
on

s.
T

h
e

to
p

ro
w

co
rr

es
p

on
d
s

to
ca

se
s

w
it

h
th

e
b
as

el
in

e
b
at

h
y
m

et
ry

,
an

d
th

e
b

ot
to

m

ro
w

to
ca

se
s

w
it

h
a

b
at

h
y
m

et
ry

w
it

h
st

ru
ct

u
re

s.
T

h
e

w
av

e
of

ea
ch

co
lu

m
n

co
rr

es
p

on
d

to
ID

1,
2,

3,
an

d
th

e
co

m
b
in

at
io

n
of

th
em

th
re

e.

A
ll

th
e

si
m

u
la

ti
on

s
h
av

e
b

ee
n

d
on

e
w

it
h

F
U

N
W

A
V

E
.

T
h
e

re
so

lu
ti

on
is

1.
00

p
p
m

,
an

d
th

e
am

p
li
tu

d
e

fa
ct

or
is

x
1.

0.
T

h
e

co
as

t
is

u
p
.

22



F
ig

u
re

2.
11

:
R

es
u
lt

in
g

im
ag

es
fo

r
w

av
es

w
it

h
ID

1,
fo

r
d
iff

er
en

t
am

p
li
tu

d
e

fa
ct

or
s.

F
ro

m
le

ft
to

ri
gh

t,
li
n
ea

r
m

o
d
el

si
m

u
la

te
d
,
F

U
N

W
A

V
E

si
m

u
la

te
d

w
it

h
am

p
li
tu

d
e

x
0.

1,
F

U
N

W
A

V
E

si
m

u
la

te
d

w
it

h
am

p
li
tu

d
e

x
0.

4
an

d
F

U
N

W
A

V
E

si
m

u
la

te
d

w
it

h
am

p
li
tu

d
e

x
1.

0.
T

h
e

sp
at

ia
l

re
so

lu
ti

on
is

1.
00

p
p
m

.
B

as
el

in
e

b
at

h
y
m

et
ry

h
as

b
ee

n
u
se

d
.

T
h
e

co
as

t
is

u
p
.

23



F
ig

u
re

2.
12

:
R

es
u
lt

in
g

im
ag

es
fo

r
w

av
es

w
it

h
ID

1,
w

it
h

d
iff

er
en

t
sp

at
ia

l
re

so
lu

ti
on

s.
R

es
p

ec
ti

ve
ly

,
th

es
e

ar
e

1.
0

p
p
m

,
0.

5
p
p
m

,
0.

25
p
p
m

an
d

0.
10

p
p
m

.
T

h
ey

h
av

e
b

ee
n

si
m

u
la

te
d

w
it

h
th

e
F

U
N

W
A

V
E

m
o
d
el

(a
m

p
li
tu

d
e

x
1.

0,
b
as

el
in

e
b
at

h
y
m

et
ry

).
T

h
e

co
as

t
is

u
p
.

24



3 . Inversion Algorithms

3.1 cBathy

CBathy is a popular bathymetric inversion algorithm that uses Airy dispersion equation

(Equation 1.1) to guess the local depth of water. According to its authors (Holman et al.

[2013]), cBathy consists in a three stage routine that i) guesses waves frequencies and

estimates wavenumbers for each frequency; ii) combines different frequency information

to return a batch estimate of depth; iii) fuses batch estimates of depth along time using a

Kalman filter to provide better estimates. This work focus in the first two stages of the

algorithm.

For the moment, the algorithms are only officially implemented in Matlab. The

version 1.2 of the code provided in the Coastal Imaging Research Network repository has

been modified and used.

3.1.1 Methodology

In order to apply the dispersion equation, cBathy first needs to estimate wave frequencies

and the spatial distribution of the wavenumbers through the domain of inversion.

The input for the inversion is a video of wave amplitude evolution over time in a

2D domain. The wave amplitude can be modelled as a sum of monochromatic terms

(described in Equation 2.1).

s(~r, t) =
∑
c

sc(~r, t) = Ac(~r) cos
(
2πfct+ φc(~r)

)
(3.1)

where s(~r, t) is the measured signal, c is an index that lists the monochromatic com-

ponents present in the signal, sc(~r, t) are the monochromatic components, and fc are the

linear frequencies of each component. CBathy takes each pixel temporal series and applies

a Fourier transform to get its data in the frequential domain. In time, all the waves that

are passing through a point are mixed, but in frequency they become decoupled.

F
{
s(~r, t)

}
(f) =

∑
c

T

2
Ac(~r)

(
ejφc(~r) sinc(f − fc) + e−jφc(~r) sinc(f + fc)

)

where F represents the Fourier transform, j is the imaginary unit, and “sinc(πTf) =

T sin(πTf)/πTf” represents the Fourier transform of a square pulse of duration T . If the
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sampling frequency is high enough to avoid aliasing, the terms that contain a sinc(f + fc)

can be neglected.

F
{
s(~r, t)

}
(f) '

∑
c

T

2
Ac(~r) e

jφc(~r) sinc(f − fc)

Also, if the monochromatic terms frequencies are far enough from each other (see last

part of Subsection 2.3.3), the different terms do not mask each other, i. e., the value of

the pixel spectrum around the frequency of a specific monochromatic term fc1 is T
2
Ac(~r) ·

ejφc1 (~r).

Therefore, if the frequencies of the monochromatic components can be identified, their

spatial phases can be retrieved just by reading the phase of the corresponding coefficients

of the pixels spectra. Actually, cBathy uses directly the normalized Fourier transform of

each pixel signal, to work only with the spectral phase.

Gm(f) =
F
{
s(~rm, t)

}
(f)∣∣∣F {s(~rm, t)} (f)
∣∣∣

where m is an index that lists the pixels, ~rm are the positions of the pixels, and Gm

are the phases of their spectra.

However, in nature data is highly corrupted with noise, so that it is difficult to

distinguish the presence of different waves directly over a pixel spectrum, and to extract

clean spatial phases from it. In order to overcome this problem, cBathy uses two different

techniques. The first one is to use spectral correlation. Specifically, since the amplitudes of

all spectra have been neglected, it performs a phase correlation. It consists in computing

the complex phase lags between two pixels spectra (Gm(f)Gn(f)). For each frequency,

this defines a matrix of spectral correlation.

Cm,n(f) = Gm(f)Gn(f)

If the signal to noise ratio (SNR) of the videos is high enough, the eigenvector with

the biggest eigenvalue of Cm,n can be assumed to be a better approximation to the spatial

phase than the raw coefficients of Gm(f), since it gets rid of part of the noise (the part

that is orthogonal to it). However cBathy does not compute the eigenvectors of Cm,n(f)

directly, but uses a second technique to get even a better approximation. It averages

Cm,n(f) along frequency, using a set of user defined bands. For each band, it takes all

the Cm,n(f) that correspond to frequencies inside that band, and computes their mean

frequential value. CBathy authors call it cross-spectral matrix (CSM).
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CSMm,n,b =
1

L

∑
fl∈bandb

Cm,n(fl) (3.2)

where l is an index that lists all the frequencies inside a band b (the fl’s), and L is

the number of frequencies inside that band. If a band contains only noise, the elements

of Cm,n will oscillate quite fast with frequency. In contrast, if the band contains a clear

signal (i. e., there is a wave with that frequency), the elements of Cm,n will present an

almost constant behaviour, since the corresponding sinc has a constant phase. If the band

contains a signal but the level of noise is comparable to the wave signal or stronger than

it (this is, the SNR is not that good), the phase will no longer present an almost constant

behaviour, but it will be a sum of these two terms, one constant and one oscillating

fast. Therefore, when summing the values of different frequencies to compute the average,

the noise terms will add up in an incoherent way (provided that they oscillate rapidly

with frequency) while the signal terms will add coherently (due to its constant behaviour

with frequency). Then, CSMm,n,b will present a greater SNR than the different Cl,m(f)

used to compute it. However, this introduces two problems: the resolution to determine

monochromatic components is deteriorated (by a factor L), and it adds the requirement

to define the set of averaging bands to the user (the cBathy authors recommend to use

about 20 - 40 of them). But, since CSMm,n,b presents lowers levels of noise in relation

to the levels of signal, using the eigenvector associated to its greatest eigenvalue provides

even a better estimate to the spatial phase for waves with a frequency inside the band b,

and this is the procedure that cBathy follows. This eigenvector is hereafter called phase

array (v[m]).

Moreover, the computation of CSMm,n,b provides also a way to find which bands are

more likely to contain a monochromatic wave. As described above, the bands containing

only noise will hold elements of CSMm,n,b of smaller amplitude than those bands that

contain a signal 1. In order to get rid of outliers and capture the general tendency for that

band, the mean amplitude over the whole set of CSMm,n, b for band b is computed. The

authors of cBathy call it squared coherence coh2 (hereinafter, coherence) 2.

coh2[b] =
1

M

M∑
m

M∑
n

∣∣CSMm,n,b

∣∣ (3.3)

1The sum of L coherent complex exponentials is ∼ L, while the sum of L incoherent complex expo-

nentials is ∼
√
L. Therefore, the average will present an amplitude close to one for bands containing a

wave, and an amplitude of the order of 1 /
√
L for bands containing only noise.

2However, the classical definition of magnitude squared coherence is defined taking the square of the

spectral correlation (normalized by the correlated power spectra). That is why it is called “squared”.
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CBathy sorts the values of the coherence, and assumes that the bands with the biggest

coherence contain a wave. Then it assumes that that each of these waves has a frequency

that corresponds to the one of the center of the band, and a spatial phase that corresponds

to the values of the associated phase array.

However, there is another trick involved, to find the spatial distribution of wave-

vectors that correspond to that spatial phase. Instead of computing the Cm,n, the CSMm,n,b

and the v[m] of the whole domain, it does it for a small neighbourhood around each pixel

(hereafter, a tile). In this way, the memory required to the computations can be easily

allocated, the matrices are small enough to be easily manipulated, and the wave-vector of

each monochromatic term can be assumed constant over the whole tile. The phase array

presents the following mathematical form.

v[m] = exp(j(−~k · ~rm + φ0)) + εm (3.4)

where φ0 is the phase at the origin, and the εm symbolize the errors between the exact

spatial phase and the phase array. cBathy tries to fit the phase array to this model (Equa-

tion 3.4), and returns the norm of the fitted wave-vector as the wavenumber corresponding

to that monochromatic component, over that pixel.

Once it has gathered frequency-wavenumber pairs for all the pixels, cBathy loops

again through them. For each point, it takes all the pairs estimated inside its tile and fits

the dispersion equation to them, using depth as the free parameter.

3.1.2 Modifications implemented on cBathy

The cBathy code has been modified in different ways, in order to improve its performance

and to adapt it to the necessities of this work 3.

1. Fourier Transform. The possibility to apply a window to the data before Fourier

transforming it has been added to the code, to try to improve the identification

of peaks in the frequency spectrum for some cases. However, after trying different

windows, the rectangular one (no windowing) appears to work better than the others,

at least for the cases tested. This may be related to the amount of noise present

3Additionally, the cBathy code was translated into Python, incorporating all these changes. At first

it was observed that this version ran quite slowly. The reason was that the version of NumPy used had

not optimized DFT routines. This problem was solved by adding a wrapper to the C version of FFTW.

However, the results of the inversion were not as good as the Matlab ones. This issue has not been solved

yet. Maybe the optimization libraries that perform the fitting in Matlab are more robust that those of

SciPy in Python.
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in the data (the rectangular window is the one with the smallest equivalent noise

bandwidth). The option to return and use more samples of the spectrum was also

implemented. Usually, when a DFT is performed, the result has as many samples

as the original signal, equispaced in the frequency domain between zero and the

sampling frequency. However, it is possible to evaluate the Fourier transform at other

frequencies (this is normally done by zero padding the data before applying the DFT

routine). Adding more samples seems beneficial for the inversion. This may happen

because having more samples per band increases the averaging effect that allows

the correlation and coherence to distinguish between bands containing signal or just

noise. It also makes results more stable, as described in the next section. Finally,

the moment when Fourier transforms are computed inside the cBathy algorithm has

been changed. Originally, they are obtained at the very beginning of the routine.

However, since inversion domains used are larger (they contain more points) than

those of the authors, and since more samples are demanded to the spectrum of each

pixel, too much memory is required. To solve this, DFTs are now computed after

selecting the tile. In this way, only the the spectra of the points that are inside it

needs to be stored. This means that if a point appears in more than one tile its

DFT computation is repeated, but this is not a problem because computing a DFT

is done in a relatively fast and cheap way.

2. Band preselection. Since the frequency of waves is constant over the whole do-

main, the bands containing a signal can be searched and found before looping over

all the tiles. Thus, cBathy has been modified to give the option to compute the

correlation only over the preselected bands. The main benefit obtained is that the

amount of computations is reduced, not only by computing less CSM slices (from

around 40 to 2 or 3 of them) but also by skipping the coherence calculation and

its sorting for each tile. Band preselection results in using the same bands over

the whole domain. On the one hand, this makes wave guessing more consistent,

since all tiles search wavenumbers for the same frequencies (thus one can study how

wavenumber estimation performance depends on tile position), and it also prevents

tiles that generate poorly band estimated from searching at incorrect frequencies.

On the other hand, it may make the algorithm less robust, cause if the preselected

bands are not estimated correctly, or if the wave frequency lays between two bands,

results worsen. This feature can be selected using a boolean variable.

3. Band averaging. The option of performing a weighted average in coherence compu-

tation, instead of a regular one has been included to cBathy. Weights are computed

using a symmetric window that has a maximum at its centre. This feature is not very

useful by itself (if bands are used to find coherence, the best results are obtaining
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using equal weights), but in combination with a coherence computed continuously

(explained in Subsection 3.1.4), the weighted average provides a better coherence.

4. Wave-vector fitting weights. CBathy uses weighted residuals for the fitting of

the phase array to a monochromatic wave spatial term (Equation 3.4). This means

that not all the errors between the modelled and measured phase array will be given

the same importance. The weights used in this case are a product between phase

array amplitudes and a function that decreases with the distance to the tile centre.

Specifically they use an anisotropic normalized distance.

r =

√√√√(x− xc
Lx

)2

+

(
y − yc
Ly

)2

(3.5)

where (xc, yc) represent the coordinates of the tile centre, Lx the cross-shore radius of

the tile, and Ly the alongshore radius of the tile. Also, they set to zero all the points

that present a distance bigger than one, which implies that the points at the corners

(the tile is rectangular) are not used. That means that their spectra, the correlations,

and the eigenvectors of bigger matrices are computed for no reason. Alternatively,

a normalization after the computation of this distance has been introduced to keep

them all below one, thus using all the points of the tile to estimate the wave-vector.

5. Wave-vector pre-estimate. In order to feed the spatial phase fitting (Equation

3.4) a wave-vector pre-estimate is needed. CBathy guesses the cross-shore and the

alongshore components of the wave-vector as follows. First, it orders the pixels

using the other coordinate (when estimating kx, it orders by y, when estimating ky,

it orders by x). It classifies the points into groups of the same size, and assumes

they represent transects over the tile. Then, it computes the wavenumber component

using differences in phase array angle along consecutive points, and takes its median

as the wave-vector component that is present in that transect.

kx = median

(
∠v[m+ 1]− ∠v[m]

xm+1 − xm

)
(3.6)

where m indicates the index of a point in a transect, ∠v[m] represents the angle of

the phase at that point ( atan2(Im(v[m]),Re(v[m])) ), and the points are ordered by

growing x. Finally, it takes the median of transects estimates as the initial guess to

feed the optimization routine. Since the authors data come from different cameras

oriented in different directions, their points do not form a rectangular grid over the

domain. Therefore, they do not represent real transects, and then the grouping is

arbitrary. In contrast, the videos generated in this project form a rectangular grid in
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cross-shore and alongshore (simulations come from a rectangular grid, and real data

would come from a single camera, too). Therefore, the wavenumber pre-estimation

routine has been modified to take real transects, in order to have better estimates.

To toggle between the two algorithms for transect making, a boolean variable has

been added, that indicates if the data comes from a rectangular grid.

Also, notice that some extra outliers can appear due to phase wrapping: the angle

of a complex number is multivalued, it may result in the same complex phase if 2π

is added several times to it. Depending on the absolute phases of the eigenvector,

the jumps of the angles can appear at any place. To solve this, the phase array has

been normalized by the phase of the closest data point to the tile centre. In this

way, angle jumps are displaced away from the tile centre. If the tile is smaller than a

wavelength, angle jumps will not appear. The normalization is completely harmless,

since the phase array contains the values for spatial phase differences between pixels,

and these can be referred to any origin (there is one degree of freedom, in the form of

a global phase). Also, remember that the phase array is an eigenvector (multiplying

it by any complex number still makes it an eigenvector).

Another change to the pre-estimation routine has been to clip the return values.

In the original code, when the pre-estimated wavenumber is out of the limit of

deep and shallow water (in this case, defined by the minimum depth allowed in the

bathymetry), cBathy returns an arbitrary value (the wavenumber corresponding to

a frequency of 0.3 Hz and 3 m of depth). When the main routine receives a value out

of the shallow and deep water bounds, it surrenders and skips the estimation of a

wavenumber for that band at that tile. The return value for the out-of-bounds cases

has been changed, now its value is clipped to the shallow and deep water limit (plus

a small epsilon to ensure that they still remain inside the interval at comparison

time). Thus, the wavenumber pre-estimate is moved to the nearest plausible value,

and the fitting is attempted.

6. Bound for wave-vector direction. In the original cBathy code, there was a filter

to the angle of the estimated wave-vector. If the estimated wave-vector represented

a wave coming from the coast, the result was neglected and it did not provide

an estimate for the wavenumber. That condition has been removed, because in

the fitting routine one can not control if the resulting wave-vector will be pointing

towards or from the coast (they both may be the best result for the optimization),

and the resulting wavenumber, which is the interesting parameter, would be the

same.

7. Depth fitting weights. CBathy also uses weighted residuals when fitting the
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estimated pairs of frequency-wavenumber to the dispersion equation. The weights

used are a combination of a function decaying with distance to tile centre (the same

used in the wavenumber estimation), the coefficient of determination of the wave-

vector fit (indicating how good was that estimate), the relative eigenvalue of the

phase array (eigenvalue divided to the mean of the CSM eigenvalues, indicating

how representative is that phase array), the inverse of depth sensitivity to errors in

wavenumber, and the inverse of the wavenumber.

The depth sensitivity to errors in wavenumber can be computed as described in

Derivation 3.1.

∆h ' dh

dk
∆k →

∣∣∣∣∆hh
∣∣∣∣ ' ∣∣∣∣kh dhdk

∣∣∣∣∣∣∣∣∆kk
∣∣∣∣→ sens ≡

∣∣∣∣kh dhdk
∣∣∣∣

dh

dk
= − 1

k2
arctanh

(
w2

gk

)
− 1

k2

w2

gk

1−
(
w2

gk

)2
sens =

∣∣∣∣kh dhdk
∣∣∣∣ = 1 +

w2

gk

1−
(
w2

gk

)2 1

arctanh
(
w2

gk

)
γ ≡ w2

gk
→ sens =

1

arctanh (γ)

(
arctanh (γ) +

γ

1− γ2

)
(

arctanh (γ) +
γ

1− γ2

)
=

d

dγ

(
γ arctanh (γ)

)
sens =

1

arctanh (γ)

d

dγ

(
γ arctanh (γ)

)

Derivation 3.1: Depth sensitivity to wavenumber errors, expressed as cBathy

routines use it.

The original cBathy code uses this alternative expression, but it divides by tanh(γ)

instead of arctanh (γ). However, the resulting weights are similar (in fact the one

using tanh(γ) is more restrictive), as can be seen in Figure 3.1. Unfortunately,

the authors do not left an explanation about this decision, and so the theoretical

arctanh (γ) is the one used.
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Figure 3.1: Comparison of resulting sensitivity weights (1/sens).

3.1.3 Parameter tuning

In order to run cBathy and obtain useful results, it is crucial to tune a series of parameters.

The most important ones are: i) the resolution of the frequency bands used in the CSM

averaging (hereafter dfB) because it determines the resolution obtained in wave frequency

estimation and also because it defines the scale of the interval over which the spectrum is

averaged; ii) the resolution of the spectrum returned by the DFT (hereafter df) since once

the width of bands have been defined it determines how many samples will be averaged,

that need to be high enough to ensure that statistics of the averaging work properly; iii)

the scaling of the tile size, because it determines how many pixels are used to compute

the CSM, and therefore controls directly the quality of the phase vector obtained; iv)

the level of noise relative to the signal level (hereinafter nra), because the synthetic data

generated is too clean to allow a characterization of the wave frequencies by averaging the

spectrum.

Instead of relying on default parameters, or to try to guess a good value for them

manually, a set of routines are designed to find proper values for the important parameters

automatically. However, an algorithm to tune the scaling of the tile size could not be

developed, and thus this parameter is still set manually. Therefore, the proposed algorithm

finds correct values for dfB, df and nra. In order to study their effects in the determination

of waves, a small tile around the centre of the domain is selected, and its associated

coherence computed. Then, the effects of these three parameters on the coherence are

analyzed. To do so, a proper value for each parameter is found manually, and then two of

them are kept constant while the third is changed.
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If dfB and df are set to proper values, and nra is set to 0, a noisy function that

touches 1 almost at each band can be observed. The problem happens to be having data

which is too clean: the lack of noise produces an always coherent spectrum. If noise is

added to this data, the coherence plot starts to bend towards zero. The bands containing

frequencies of waves present in the video keep a higher value. Adding even more noise

makes the peak narrower, while it descends until all the coherence ends lying in the same

level, at the noise floor (Figure 3.2). On the contrary, data coming from a real beach (the

demo that cBathy authors attach to the code), presents a well defined peak even when

nra is set at 0, and goes to noise floor for higher values. This reinforces the idea that data

coming from real sources has an inherent amount of noise within. The question is if all

the natural videos present enough levels of noise, or if their data needs to be contaminated

with more noise in order to be used for bathymetric inversion.
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Figure 3.2: Coherence dependence with noise nra (warmer colour: less noise, colder colour:

more noise).

If nra and df are kept constant within a proper value, and dfB is changed (i. e.,

modifying in how many bands we divide the zone of interest of the spectrum), for small

dfB the coherence presents fast and strong variations with frequency. As dfB becomes

bigger, the oscillations become smaller in size, and curl around a noise level that becomes

smaller with wider bands. Finally, the peak starts to decrease, too (Figure 3.3). in Figure

3.3.

If dfB and nra are kept fixed, and df changes from a high resolution (small df)

towards a low one, the coherence function remains the same at first, but eventually it starts

to tremble, and then it changes its shape completely, widening the peak and eventually

ending in the case of almost constant line at coherence equal to 1 (Figure 3.4). This

behaviour suggests that a high resolution value of df can be kept while dfB and nra are

tuned to provide the best coherence possible, and then adjust it in order use the smallest

amount of samples that keeps the coherence function almost unchanged compared to that

resulting from using higher resolutions (the limit is found using a threshold on the norm
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Figure 3.3: Coherence dependence with band width dfB (warmer colour: narrower bands,

colder colour: wider bands).

of coherence changes).
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Figure 3.4: Coherence dependence with DFT resolution df (warmer colour: more resolu-

tion, colder colour: less resolution).

The tests of dfB and nra are based on characterize the suitability of the coherence

obtained. To do so a combination of three different metrics is used. One is the maximum

value of the coherence (the higher the coherence, the best the results of the inversion). The

second is the difference between the maximum and a reference value, intended to charac-

terize the noise level, and it is computed as a certain quantile of data (something between

the median and the 95% percentile). The third one is the ratio between a magnitude char-

acterizing the neighbourhood of the maximum (the minimum of its nearest neighbours,

to characterize if the maximum corresponds only a spark or if it really has a peak shape)

and another magnitude representing the rest of points (coherence average). These three

metrics must be combined so that if one one of them is bad, then that parameter value

will not be chosen. The way to combine them is to normalize them between zero and one

and multiply them together to get the combined metric. Since they three change rapidly,

they are first low-pass filtered. This procedure results in coherence functions that seem

reliable in order to identify wave presence. The resulting well-shaped coherence is also

used to preselect bands, for the case cBathy is told to use them.
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Figure 3.5: Comparison of the bathymetric inversion errors for the cBathy demo case.

coast is to the left of the images, the colorbar is in relative error [%].

Since the effect of dfB and nra overt the coherence are coupled, their tests are iterated

alternatively. This is, the test starts with some predefined values (with a high value for

df so it does not affect the other tests), and changes dfB to find the value that maximizes

the combined metric. Then dfB is fixed, and nra is tuned to generate also a maximum

of the combined metric. This process is repeated some times (between 5 and 10) to allow

both parameters to converge to their proper values. Finally, once these two parameters are

selected, df is changed until the coherence starts to change more than a given threshold.

In this way, proper values for the three frequential parameters are obtained.

The demo case that cBathy authors provide with the code has been inverted using the

original routines and also using the routines that incorporate the internal modifications

implemented on cBathy and also the external parameter tuning. Results, shown in Figure

3.5, clearly prove that the modified code improves the performance significantly.

3.1.4 Proposals for further changes on cBathy

The most important modification that could be implemented on cBathy if more time was

available are the following:

1. Continuous coherence. The essential problem about using bands is that although

they reduce the noise present in the spectra, they also worsen the resolution in the

frequency domain, so that the frequencies estimated may differ from the real ones.

However, other methods can be applied to reduce the noise present in the coherence.
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For example:

2. Correlations with amplitude. cBathy uses phase correlation to find coherent

bands and to extract the phase vector. However, the usual spectral correlation

involving amplitudes might be used instead. In order to average it through the

band, all spectrum amplitudes should be considered to produce a coherence that is

between zero and one. The usual way would be to normalize the spectra individually

(as when one computes the angle between two vectors).

Gm(f) = F
{
sm(t)

}
(f) =

∣∣Gm(f)
∣∣ · ej∠Gm(f)

CSMm,n,b =

∑
fl∈bandb Gm(fl)Gn(fl)√∑

fl∈bandb

∣∣Gm(fb)
∣∣2√∑

fl∈bandb

∣∣Gn(fb)
∣∣2

A couple of tests have been run using it. The resulting coherence is a bit more

noisy but also presents peaks that protrude more over the noise floor. However, the

inversion itself fails. More tests need to be run, and their results studied.

(a) Welch’s method. The temporal signal would be split in smaller pieces and the

DFT of each fragment would be computed separately. Then an average using

the different realizations would be performed. This could be done for phase

correlation

CSMphase
m,n,b =

1

L

L∑
l=1

Gl
m(f)Gl

n(f)

or for the spectral correlation involving amplitudes.

CSMm,n,b =

∑L
l=1G

l
m(f)Gl

n(f)√∑L
l=1

∣∣Gl
m(f)

∣∣2√∑L
f=1

∣∣Gl
n(f)

∣∣2
where CSMphase

m,n,b represents a cross-spectral matrix using phase correlation,

CSMm,n,b symbolizes a cross-spectral matrix using correlations that include

amplitude, L is the number of fragments in which the temporal signals are

split, and l is the index that lists fragments. Notice that using fragments that

span smaller time intervals would result in a rectangular windowing that would

provoke wider sincs. Therefore, wave peaks could mask smaller signals that

lie near. However, the frequencies could be determined with more precision

because the resolution of the spectrum would be that of the pixel DFT.
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(b) Coherence filtering. Instead of filtering the CSM by averaging along bands, it

could be smoothed by means of a sliding window (convolution). Due to the

width of the filter response, the effects of one frequency might affect other ones,

but since the resolution would be that of the pixel DFT, the precision would

be improved.

These new ways of computing coherence would present a new problem. Selecting

the most coherent frequencies would not be as easy as picking those with the biggest

value of the coherence, since in this way only frequencies around biggest peak in

the coherence would be selected. Therefore, a new algorithm peak finding algorithm

would be needed.

3. Wave-vector fitting improvement. The global phase of the phase array is set

so that the data point closest to the centre of the tile has a phase term of 1 (see

Subsection 3.1.2). Thereby the expression of the wave spatial phase term can be

rewritten as;

exp

(
−j
(
~k · ~r + φ0

))
→ exp

(
j
(
−~k · (~r − ~rcc)

))
(3.7)

Where ~rcc are the coordinates of closest point to the tile center (whose phase is

set to one). In this way, the fitting could be performed using two parameters, i.

e., without φ0. Another interesting change that could be done is to consider the

possibility of wave reflection. Then, instead of fitting one exponential, two of them

should be used, with different amplitudes, and different angles of the wave-vector

(but the same wavenumber).

θi[m] = −k cos(αi)(xm − xcc)− k sin(αi)(ym − ycc) + φcc,i (3.8)

θr[m] = −k cos(αr)(xm − xcc)− k sin(αr)(ym − ycc) + φcc,r (3.9)

This means an optimization with six parameters, with a constraint arising from the

condition that the global phase is a free parameter.

v[m] =
1

1 + ρ2 + 2ρ cos (θr − θi)

(
ejθi[m] + ρejθr[m]

)
(3.10)

1

1 + ρ2 + 2ρ cos
(
φcc,r − φcc,i

) (ejφcc,i + ρejφcc,r
)

= 1 (3.11)

Where m represents the index of the pixel inside the tile, θi and θr are the angles

of the modelled incident and reflected waves’ spatial phases, xcc and ycc are the
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coordinates of the point whose phase is set to one (constraint), and k, αi, φcc,i, ρ, αr

and φcc,r the parameters to optimize in order to fit the modelled phase.

3.1.5 Kalman filtering

All the explanation presented regarding cBathy has only regarded the single inversion

process, this is, obtaining a bathymetry using just one video. However, cBathy consists

in a three steps process, where the last part is fusing data from different single inversions

to get a better estimate. It achieves that by using a Kalman filter over successive depth

estimates. In fact, the authors of cBathy point out that this is the most important point

to the performance and success of cBathy. The single video inversion process has been

improved, but it is mandatory to wrap this single video inversion process with Kalman

filtering routine in the future. However, in order to implement a Kalman filter, a model

to describe the degradation of estimates is needed (it is beach dependent), and there are

few directives in the literature on how to build such an estimate.

3.2 uBathy

UBathy is a bathymetric inversion method which is being developed by the directors of

this project. It also uses Airy dispersion equation to find local depth using frequencies

and wavenumbers of the monochromatic components present in a video of the coastal

waves. In order to decouple the wave signal into its components, uBathy uses empirical

orthogonal functions (EOFs).

The signal under study is modelled as shown by Equation 3.1. The form of the spatial

phase φ(~r) is

φc(~r) = −φ0 −
∫ ~r

~0

~kc · ~dr (3.12)

The objective of the decoupling process is to obtain the each component phase sepa-

rately, in order to have information to estimate all the frequencies and wavenumbers. To

do so, uBathy relies on the orthogonality between sinusoids of different repetition periods,

using EOFs. EOF decomposition allows to obtain a set of orthogonal temporal functions

wc(t) and a set of orthogonal spatial functions vc(~r) which can be used to rewrite the

spatiotemporal decoupled signal q(~r, t) as shown in Equation 3.13.
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q(~r, t) =
∑
c

uc(t)vc(~r) (3.13)

The signal under study can present the same functional form if the cosine of each

monochromatic component is split. EOF uses.

sc(~r, t) = Ac(~r) cos
(
φc(~r)

)
cos (2πfct)− Ac(~r) sin

(
φc(~r)

)
sin (2πfct)

However, this equation presents two inconveniences. The first one is that each

monochromatic wave present in the inversion domain is retrieved twice, and the com-

putations for each of them are repeated. The second inconvenience is that the phase

variations from the spatial term can not be retrieved, since in the data is not possible

to distinguish between the amplitude and the cosine. To avoid this situation, the signal

is represented in the complex plane, using phasors. To this effect, the temporal Hilbert

transform of the signal (ŝc(~r, t) is computed, and used to build the corresponding analytic

signal (asc).

ŝc(~r, t) = Ac(~r) cos
(
φc(~r)

)
sin (2πfct) + sin

(
φc(~r)

)
cos (2πfct) (3.14)

asc(~r, t) ≡ sc(~r, t) + j ŝc(~r, t) = Ac(~r) exp (j2πfct) exp
(
jφc(~r)

)
(3.15)

The analytic signal still preserves the form needed by EOF decomposition, but

presents only one spatiotemporal function pair for each monochromatic tone. It also

allows to obtain spatial phases, by computing the angle of the spatial function obtained

by EOF decomposition.

3.2.1 Orthogonality check

However, in order to ensure that the results of the decomposition are the wave terms

expected by Equation 3.15, the different temporal functions and spatial functions need to

be orthogonal. The lack of orthogonality can arise by the fact that spatial terms are not

monochromatic, but changing wavelength locally. It can also be caused by the windowing

of the signal (finite observation time and spatial scope) or by its discretization (sampling).

It is even possible that the signal contains two monochromatic components with the same

frequency, but for the moment this case will not be considered.
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The orthogonality of the temporal terms is checked in Derivation 3.2) and the or-

thogonality of the spatial terms in Derivation 3.3. The checking consists in computing

the scalar product between functions of different monochromatic components. The inner

product is denoted by 〈a(xq), b(xq)〉 =
∑

q a(xq)b(xq).

Temporal terms orthogonality

The temporal signals are sampled, i. e., its values are only known for times tn =

n · Ts = n / fs , (n ∈ N, between 0 and N).

wc[n] =
1√
N

exp (j 2πfctn) (3.16)

where wc[n] stands for the discrete temporal signal associated with the monochromatic

component of index c, properly normalized.

〈wc1 , wc2〉 =
1

N

N−1∑
n=0

exp
(
j 2π (fc2 − fc1) tn

)

1

N

N−1∑
n=0

exp
(
j 2π (fc2 − fc1) tn

)
=

1

N

exp
(
j 2πN (fc2 − fc1) /fs

)
− 1

exp
(
j 2π (fc2 − fc1) /fs

)
− 1

1

N

exp
(
j 2πN (fc2 − fc1) /fs

)
− 1

exp
(
j 2π (fc2 − fc1) /fs

)
− 1

=
1

N

sin
(
Nπ (fc2 − fc1) /fs

)
sin
(
π (fc2 − fc1) /fs

) ej π(N−1)(fc2−fc1)/fs

∣∣∣∣∣ 1

N

sin
(
Nπ (fc2 − fc1) /fs

)
sin
(
π (fc2 − fc1) /fs

) ∣∣∣∣∣ ≤
 1 , fc2 − fc1 < fs

Nπ
fs

Nπ(fc2−fc1)
+ fs

Nπ
(
1−(fc2−fc1)

) , fc2 − fc1 > fs
Nπ

fs
Nπ (fc2 − fc1)

+
fs

Nπ
(
1− (fc2 − fc1)

) ∼ fs
Nπ (fc2 − fc1)

This piecewise function can be rewritten considering that in its interval, the

current expression is smaller than the other one. Then:
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∣∣〈wc1 , wc2〉∣∣ = min

(
1 ,

fs
Nπ (fc2 − fc1)

)
(3.17)

The ratio of the inner product between temporal functions of different monochro-

matic component and the square of their norm can be used as a measure of orthog-

onality. The wc arrays are normalized, and therefore this ratio is exactly the value

shown in Equation 3.17.

This ratio is directly proportional to the sampling frequency, and inversely propor-

tional to the number of temporal samples of our signals. Therefore, the orthogonality

between temporal phase terms can be improved by sampling faster, or by recording

longer videos.

Derivation 3.2: Monochromatic components temporal phase orthogonality check.

Spatial terms orthogonality

The input signals are measured in a discrete set of spatial positions, corresponding

to each of the pixels.

v
′

c[m] = Ac(~rm) exp
(
j φc(~rm)

)
Here, v

′
c[m] are the discrete spatial signal associated with the monochromatic

component of index c, and m is the index that lists the pixels. First of all, they need

to be normalized. Since the phase term has amplitude one, the norm will only depend

on the amplitude. Therefore, the RMS amplitude can be used to normalize the spatial

array.

Arms
c =

√
1

M

∑
m

(
Ac(~rm)

)2
=

1√
M

√(
Ac(~r0)

)2
+
(
Ac(~r1)

)2
+ . . .+

(
Ac(~rM−1)

)2
(3.18)
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‖v′

c[m]‖ =

√∑
m

(
Ac(~rm)

)2
=
√
MArms

c

Thus, the properly normalized spatial signal vc[m] can be written as:

vc[m] =
1√

MArms
c

Ac(~rm) exp
(
j φc(~rm)

)
(3.19)

And then the inner product between two of this signals can be computed.

〈vc1 , vc2〉 =
1

MArms
c1
Arms
c2

∑
m

Ac1(~rm)Ac2(~rm) exp
(
−j
(
φc2(~rm)− φc1(~rm)

))

Since dependence of amplitudes and spatial phases on position is unknown, the

exact value of this inner product can not be obtained. However, its magnitude can

still be estimated somehow. In order to do this, the square of its absolute value is

computed (the square is easier to manipulate, cause it is directly a sum of terms,

without a square root).

Define θc1,c2(~rm) = φc2(~rm)− φc1(~rm), to ease writing.

∣∣〈vc1 , vc2〉∣∣2 =
1(

MArms
c1
Arms
c2

)2 ∑
m1

∑
m2

Ac1(~rm1)Ac1(~rm2)Ac2(~rm1)Ac2(~rm2)

e−jθc1,c2(~rm2 ) ejθc1,c2(~rm1 )

Then, if all the amplitudes that a monochromatic wave presents in the inversion

domain are of the same order of magnitude (the may vary about a factor two), the

inner product can be computed as an incoherent sum of complex exponentials. To

support this assumption, one can refer to the theoretical amplitudes predicted for

FUNWAVE by the method described in Simarro [2013] (Figure 3.6), or also to the

amplitudes observed in videos of purely monochromatic cases (Figure 3.7).

Therefore, it is assumed that the position dependent amplitudes can be replaced

by their rms equivalent without altering the order of magnitude of the inner product.
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∣∣〈vc1 , vc2〉∣∣2 ∼ 1(
MArms

c1
Arms
c2

)2 ∑
m1

∑
m2

(
Arms
c1
Arms
c2

)2
e−jθc1,c2(~rm2 ) ejθc1,c2(~rm1 ) =

=
1

M2

∑
m1

∑
m2

e−j(θc1,c2(~rm2 )−θc1,c2(~rm1 ))

The difference “θc1,c2(~rm2) − θc1,c2(~rm1)” becomes exactly one when m1 = m2,

and its angle presents all the possible values with the same empirical frequency (it

is uniformly distributed). Then, the double sum can be split in a coherent sum of

ones (case m1 = m2, with result M) and an incoherent sum of (M2 −M) complex

exponentials (case m1 6= m2, with a result of
√
M2 −M).

1

M2

∑
m1

∑
m2

e−j(θc1,c2(~rm2 )−θc1,c2(~rm1 )) ' 1

M2

(
M +

√
M2 −M

)
'

' 1

M2
(M +M) =

2

M

∣∣〈vc1 , vc2〉∣∣2 ∼ 2

M
∼ 1

M

Since the vc[m] arrays are normalized, it is easy to see that the ratio between

different waves inner product and same waves inner product is:

∣∣〈vc1vc2〉∣∣∣∣〈vc1vc1〉∣∣ ∼ 1√
M

(3.20)

Again, this ratio can be used as a measure of orthogonality. It becomes smaller

with bigger meshes, but not as fast as the temporal phase term case.

The inner product between the analytic signal spatial terms of the different purely

monochromatic wave cases studied has been computed, having amplitudes whose order

of magnitude corresponds to the estimation presented (1/
√
M).

Derivation 3.3: Monochromatic components spatial phase orthogonality check.

Therefore, by using enough points in time and space, and using a resolutive enough

grid (to improve the temporal terms orthogonality, but also to avoid aliasing), the temporal

terms of different monochromatic waves are orthogonal, as well as the spatial terms. Then,
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Figure 3.6: Predicted amplitude vs. depth relationship for FUNWAVE equations.

Figure 3.7: Histogram of amplitudes for one of the decoupled monochromatic waves.
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the results of EOF decomposition can be assimilated to those monochromatic temporal and

spatial terms (EOF decomposition results are orthogonal up to the machine epsilon, but if

data was able to present orthogonal enough components, those and the EOF decomposition

results are expect to differ only in a small amount).

3.2.2 EOF decomposition process

The EOF decomposition works by computing the covariance matrix between pixel inten-

sities. This is, each pixel is understood as a random variable, and each image corresponds

to a realization. The covariance matrix can also be interpreted as the Gramian that form

the demeaned temporal series of each pixel. Then, the first step is to extract the temporal

means from the measured signal x(~rm, tn).

s(~rm, tn) = x(~rm, tn)−
N−1∑
n=0

x(~rm, tn)

Assuming that the demeaned signal has the modelled structure shown in Equation

3.1, and applying Equations 3.16, 3.17, 3.19, 3.20, the covariance matrix can be computed

as:

sc(~rm, tn) =
∑
c

Ac(~rm) exp
(
j φc(~rm)

)
exp (j 2πfctn) =

=
√
MN Armsc vc[m] wc[n]

Cm1,m2 =
N−1∑
n=0

as(~rm1 , tn) as(~rm2 , tn) =

=
N−1∑
n=0

∑
c1

sc1(~rm1 , tn)

 ∑
c2

sc2(~rm2 , tn)

 =

= MN
N−1∑
n=0

∑
c1

Armsc1
vc1 [m1]wc1 [n]

∑
c2

Armsc2
vc2 [m2]wc2 [n]

 =

= MN
∑
c1,c2

Armsc1
Armsc2

vc1 [m1]vc2 [m2]

N−1∑
n=0

wc1 [n]wc2 [n]


 =

=
∑
c1,c2

MN Armsc1
Armsc2

vc1 [m1]vc2 [m2] 〈wc1 , wc2〉
〈wc1 , wc2 〉=δc1,c2 (Der. 3.2)
−−−−−−−−−−−−−−−−→

〈wc1 , wc2 〉=δc1,c2 (Der. 3.2)
−−−−−−−−−−−−−−−−→

∑
c

(
MN (Armsc )2

)
vc[m1]vc[m2]

(3.21)
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Then, the eigenvectors of this matrix are extracted. Following Derivation 3.3, it can

be assumed that the vc[m] are orthonormal. Therefore, the last line of Equation 3.21

shows directly the eigendecomposition of the covariance matrix (Equations 3.22 and 3.23

rewrite it to show it more visually).

λc = MN (Armsc )2 (3.22)

C =
∑
c

λc vc vc
H (3.23)

The eigenvectors (called empirical orthogonal functions or modes) can be interpreted

as a set of linear transformations over the pixels’ temporal series, in such a way that

the resulting temporal series (principal components) have a covariance matrix which is

diagonal (it is equivalent to say that each pixel temporal series is a linear combination

of the principal components defined by the eigenvectors). The variances of that matrix

correspond to the eigenvalues of the extracted eigenvectors. They can be interpreted as

the variance that each of the eigenvectors contributes with to the total variance. The

principal components can be obtained by applying these linear combinations to the set

of original temporal series. This is equivalent to compute the inner product of the total

spatiotemporal signal over each mode.

wc[n] =
1

λc
〈vc , s(~rm, t)〉 =

∑
m

vc[m] s(~rm, t) =

=
1

λc

∑
m

∑
γ

vc[m]
√
MN Armsγ vγ[m] wγ[n] =

=
1

λc

∑
γ

√
MN Armsγ wγ[n]

(∑
m

vc[m]vγ[m]

)
〈vc1 , vc2 〉=δc1,c2 (Der. 3.3)
−−−−−−−−−−−−−−−→

〈vc1 , vc2 〉=δc1,c2 (Der. 3.3)
−−−−−−−−−−−−−−−→ 1

λc

√
MN A0

c wc[n] = wc[n]

(3.24)

Once the EOF decomposition process has been presented, it is mandatory to state

that the covariance matrix and the inner products described by Equation 3.24 do not need

to be computed. There is an specific matrix decomposition, the singular value decomposi-

tion (SVD), that directly decouples the demeaned data matrix into three matrices W, Λ

and V that contain, respectively, the temporal phase terms by columns, the eigenvalues

in the diagonal, and the spatial terms by columns. This factorization is of the form:

Ym,n = s(~rm, n)
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Y = V ΛWH

There are algorithms that compute it quite fast, saving time and memory and ob-

taining more accuracy, compared to the covariance matrix direct computation. As a final

remark about decoupling, it is interesting to note that the EOF decomposition also pro-

vides some rejection to noise and interference, cause it may extract them as another pair

of spatial and temporal vectors. The results conducted over real coastal data seem to

support this hypothesis.

3.2.3 Wavenumber extraction

Once the measured signal has been decoupled, the monochromatic temporal and spatial

phases are used to extract frequencies and wavenumbers. The temporal phase terms are

just constant frequency 1D oscillations. The literature is full with estimators for that type

of functions, and thus the frequency extraction does not present any problem. On the

contrary, the spatial phase term is a 2D oscillation with a varying wave-vector. A local

estimation for the wavenumber is needed, and this requires a subtler approach. From

now on vc[m] redefined to contain only phase information (by dividing each sample by its

amplitude).

The original approach to wavenumber estimation consists in a linear fitting over the

phase angle. For each sample of the spatial phase, a neighbourhood of a certain user-

defined radius is selected. Then, all the samples inside the neighbourhood are referred

to the phase of the central sample, to avoid angle jumps inside the neighbourhood (see

Figure 3.8).

v̂[q] = angle
(
v[q] v[m]

)
, q ∈ neighbourhood of ~rm

Using the angles of the normalized phases inside the neighbourhood, a polynomial

can be fitted, in order to mimic the Taylor expansion of the spatial phase around the

neighbourhood centre. The wave-number is formed by taking the coefficients of the linear

terms.

vc[m] = θc −
∫ ~r

~0

~kc · ~dr ' θc − kx[m]xm − ky[m]ym + o
(
x2m, xmym, y

2
m

)
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Figure 3.8: Result of the phase normalization.

where coordinates are referred to the neighbourhood centre. The wavenumber ob-

tained is used to find a characteristic wavelength, which in turn is used to redefine the size

of the neighbourhood, repeating the process to get a better estimate (the first neighbour-

hood may be too big and contain angle jumps).

However, this method of wavenumber extraction fails if consider reflection is con-

sidered. Until this point, is has been assumed that all the monochromatic waves which

build up the signal under study have different frequencies. But if a reflected wave appears,

this is no longer true. In this case, the EOF decomposition cannot distinguish between

the incident and the reflected waves, since they are not orthogonal. Then, the returned

spatial phase will be a superposition of them. Therefore, its angle will no longer provide

wave phase information directly, preventing the use of linear fittings. However, a nonlinear

fitting can be conducted over the sum of the two complex exponentials, as follows:

θc,i[m] = −kc cos(αc,i)xm − kc sin(αc,i)ym + θc,i (3.25)

θc,r[m] = −kc cos(αc,r)xm − kc sin(αc,r)ym + θc,r (3.26)

v[m] =
1

1 + ρ2 + 2ρ cos (θr − θi)

(
ejθi[m] + ρejθr[m]

)
(3.27)

1

1 + ρ2 + 2ρ cos
(
φcc,r − φcc,i

) (ejφcc,i + ρejφcc,r
)

= 1 (3.28)

This alternative method has been implemented successfully, allowing to retrieve the

wavenumber even in presence of strong reflections.
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4 . Results

4.1 Methodology

The videos of waves corresponding to cases described in section 2.3 have been inverted

using cBathy and uBathy. Since the exact bathymetries are known, the absolute value of

the difference between the inverted and the exact bathymetry can be defined (hereinafter

absolute error), and also its value relative to the local exact depth (hereinafter relative

error).

εabs = |hinv − hex|

εrel =
εabs
hex

Here, εabs is the absolute error, εrel is the relative error, hinv is the inverted depth and hex

is the exact depth. The inversion relative errors can be computed and displayed using a

colour code. An example of the inversion results is shown in Figure 4.1.

All the inversion relative errors have been computed and depicted, saturated to 10%

of pixel depth error in order to present a common scale that allows to compare different

images and presenting an easier characterization of the results. They are presented in the

Section 4.2.

Also, for each of the inversions performed, the obtained errors can be sorted by

magnitude, defining percentiles (the n-th error percentile is the value that separates the

n% smallest errors and the remaining (100 − n)%), and quartiles (the first quartile, Q1,

corresponds to the percentile 25, the second quartile, Q2, also known as the median,

corresponds to the percentile 50, and the third quartile, Q3, corresponds to the percentile

75). The percentiles can be used to characterize how the errors of each inversion are

distributed, and also can be used to clip the data in order to neglect outliers. The root

mean square error clipped to the percentile 95 has been defined as

RMS95 =

√
1

M

∑
m

εabs

where RMS95 is the root mean square error clipped to the percentile 95, m is an index

listing the points of pixels of each image (points where the bathymetry has been inverted),

and M is the number of pixels. For each inversion performed, the quartiles of the absolute
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Figure 4.1: Results of one of the inversions. The bathymetry used is the one with struc-

tures, the wave case is the polychromatic one, with amplitude factor of x0.1. The video

used for the inversion has a sampling frequency of 2.0 Hz and a spatial resolution of

0.25 ppm. The inversion was performed using cBathy. The figure shows, from left to

right, the original bed elevation in metres, the inverted bed elevation in metres and the

resulting relative error in % (bed elevation is defined as the opposite of depth). The hori-

zontal axis is alongshore in metres, and the vertical one represents cross-shore in metres.

The coast is up.

error and its RMS95 error have been computed. These quantities are presented in Section

4.3.

4.2 Results

The results of the inversions have been ordered according to the evolution of the parameters

studied.

The evolution with spatial resolution is quite clear for cBathy. The results are similar

for bigger resolutions, (0.50 ppm and 0.25 ppm), although they seem a bit better for the

case of 0.25 ppm. Using a low resolution video (0.1 ppm) causes greater errors in the

inversion, specially onshore (Table 4.1). Regarding the sampling frequency used in the

videos, cBathy presents two different behaviours (Table 4.1). For the monochromatic

cases, and near the coast for the polychromatic cases, results worsen with lower sampling

frequency, specially under 1 Hz. However, offshore errors seem to diminish with smaller

sampling frequency. Therefore, the optimum resolutions for cBathy are near 0.25 ppm

and 2.0 Hz, although this inversion method can work with a reduced performance with

other resolutions. These values reassure the resolutions suggested by Holman and Haller

[2013].
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The same evolution with spatial resolution is observed in the uBathy results (Table

4.2). However, when using high resolution and low sampling frequency video, uBathy

fitting routines are unable to find wavenumber for most or any of the points, resulting in

a generalized failure of the inversion. UBathy results are quite robust to changes in the

sampling frequency, with the exception the cases where it fails (Table 4.2). Then, the

optimum resolutions for uBathy are also 0.25 ppm and 2.0 Hz. However, uBathy can work

with almost the same performance with other resolutions.

The dependence with the bathymetry type is also clear. Errors are quite noticeable

over the bumps and undulations of the cases with structures (Table 4.3). UBathy presents

some small error undulations offshore, probably caused by reflections and the associated

fitting. CBathy presents two extra zones of error next to the bumps, the cause for which

is unknown.

Both cBathy and uBathy get worse results with bigger amplitudes (Table 4.3). There

is a big change between the linear modelled case and the FUNWAVE modelled one. Then,

between FUNWAVE modelled cases, the effect seems to worsen faster for bigger ampli-

tudes (this is, the change is subtler between x0.1 and x0.4 than between x0.4 and x1.0).

The more affected areas are those closer to the coast. For the biggest wave amplitudes

tested (x1.0), cBathy gets better results offshore, while uBathy is capable to get also some

good results near the coast (Table 4.3, cases with structures in the bathymetry). Then,

these inversion algorithms are capable to obtain acceptable results with waves whose am-

plitude is at most near 15 cm for a polychromatic wave field (the sum of the composing

monochromatic waves amplitudes in the x0.4 cases) and at least 25 cm for a monochro-

matic wave field. The complexity of the wave field is indeed a determining factor for the

amplitudes involved.
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case\sampling frequency 4.00 Hz 2.00 Hz 1.00 Hz 0.50 Hz

linear, baseline, monochro-

matic, 0.10 ppm

linear, baseline, monochro-

matic, 0.25 ppm

linear, baseline, monochro-

matic, 0.50 ppm

linear, baseline, polychro-

matic, 0.10 ppm

linear, baseline, polychro-

matic, 0.25 ppm

linear, baseline, polychro-

matic, 0.50 ppm

relative error colorbar [%]

Table 4.1: Effects of the temporal resolution over depth error [%]. cBathy results. Legend:

m - monochromatic, p - polychromatic, b - baseline, s - structures, l - linear, f - FUNWAVE.
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case\sampling frequency 4.00 Hz 2.00 Hz 1.00 Hz 0.50 Hz

linear, baseline, monochro-

matic, 0.10 ppm

linear, baseline, monochro-

matic, 0.25 ppm

linear, baseline, monochro-

matic, 0.50 ppm

x

linear, baseline, polychro-

matic, 0.10 ppm

linear, baseline, polychro-

matic, 0.25 ppm

linear, baseline, polychro-

matic, 0.50 ppm

x

relative error colorbar [%]

Table 4.2: Effects of the temporal resolution over depth error [%]. uBathy results. Legend:

m - monochromatic, p - polychromatic, b - baseline, s - structures, l - linear, f - FUNWAVE.
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cBathy relative error [%] uBathy relative error [%]

case\bathymetry baseline structures baseline structures

funwave, monochromatic,

0.5 Hz, 0.25 ppm, x0.1

funwave, polychromatic, 0.5

Hz, 0.25 ppm, x0.1

funwave, monochromatic,

0.5 Hz, 0.25 ppm, x0.4

funwave, polychromatic, 0.5

Hz, 0.25 ppm, x0.4

funwave, monochromatic,

0.5 Hz, 0.25 ppm, x1.0

funwave, polychromatic, 0.5

Hz, 0.25 ppm, x1.0

relative error colorbar [%]

Table 4.3: Effects of the bathymetry type over depth error [%]. cBathy results. Legend: m

- monochromatic, p - polychromatic, b - baseline, s - structures, l - linear, f - FUNWAVE.
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4.3 Discussion

In general, uBathy presents better results than cBathy, specially for the linear cases (it

is quite noticeable for the linear polychromatic ones). CBathy seems to get stronger but

more localized error zones, while uBathy results present milder but more outspread errors.

Another interesting fact is that the errors they present use to mimic the shape of the

waves used for the inversion, specially for the polychromatic cases (see the bottom rows

of Tables 4.1 and 4.2, corresponding to polychromatic waves).

If uBathy and the modified cBathy were to be used in real conditions, the complexity

of the incoming waves (this is, if the inversion case is monochromatic or polychromatic)

and the amplitude of those waves will limit the cases where they can be used. The inversion

can be skipped if the case is a monochromatic wave of great amplitude, or if the case is

a polychromatic wave with composing amplitudes bigger than 15 cm (if the waves are

monochromatic or not is easy to check using the video images, and the amplitude can be

obtained from a buoy placed near the inversion domain). A great improvement would be

to always perform the inversions, but adding a Kalman filter to mix their results. The

information about the waves type and amplitude can be used in the weights used by the

filter. Moreover, uBathy can be used in the cases of smaller amplitude, and cBathy in the

cases of bigger ones, in order to obtain the best results.

Finally, in order to quantify the general distribution of errors present in the inversions,

the quartiles and the mean of pixels depth absolute error have been computed and plotted

(Table 4.4 and Figure 4.3). The plots for the case of relative errors are also shown (Figure

4.2). The RMS95 can be used to compare the results obtained in this work with those from

previous studies. The RMS95 obtained by uBathy in the linear cases is almost 10 cm. The

RMS95 obtained by cBathy in the linear cases is between 10 cm and 20 cm approximately.

For the cases with non-infinitesimal amplitude, the RMS95 errors depend strongly on

the amplitude and the complexity of the incoming waves and on the bathymetry type,

presenting a great variability. For both cBathy and uBathy, the RMS95 is somewhere

between 10 cm and 40 cm. These errors are of the same order than those obtained by

Holman et al. [2013] (RMS of 51 cm and 56 cm, original cBathy) and Rutten et al. [2017]

(RMS between 34 cm and 1 m depending on depth, original cBathy), generally somehow

smaller. It has to be noted that their studies used real data, but they applied a Kalman

filter to the single bathymetry estimates. The errors stated correspond to those present

in the filtered bathymetries. Taking into account the degree of improvement that the

modified cBathy single video inversions present over the original cBathy (Figure 3.5), and

also that the Kalman filter produces bathymetries whose errors are quite smaller than

those coming from a single video, seems plausible to think that since our RMS errors
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and those presented in Holman et al. [2013] and Rutten et al. [2017] are quite similar,

the methods presented in this work (modified cBathy and uBathy) provide a significant

improvement to the previous existing methods.

Figure 4.2: Comparison of the quartiles and RMS of pixels relative depth error [%] between

the two inversion methods.
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No. Case description

cBathy uBathy

Q1 Q2 Q3 RMS Q1 Q2 Q3 RMS95

[cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

01 lbm, 4.0 Hz, 0.10 ppm 01.8 04.9 13.3 10.9 00.5 02.1 07.4 07.5

02 lbm, 2.0 Hz, 0.10 ppm 01.5 04.8 12.1 10.4 00.5 02.1 07.4 07.5

03 lbm, 1.0 Hz, 0.10 ppm 05.0 09.0 11.3 10.1 00.5 02.1 07.4 07.5

04 lbm, 0.5 Hz, 0.10 ppm 17.1 25.0 33.7 27.6 00.7 02.2 07.3 07.5

05 lbm, 4.0 Hz, 0.25 ppm 01.6 03.1 06.2 05.2 00.4 01.0 01.7 01.6

06 lbm, 2.0 Hz, 0.25 ppm 00.7 02.6 07.2 05.4 00.5 01.1 01.8 01.7

07 lbm, 1.0 Hz, 0.25 ppm 01.3 03.0 06.8 05.5 00.6 01.3 02.3 02.0

08 lbm, 0.5 Hz, 0.25 ppm 08.6 13.2 18.0 13.6 00.7 01.5 03.2 02.9

09 lbm, 4.0 Hz, 0.50 ppm 01.8 03.1 06.3 05.0 00.8 01.9 04.7 03.7

10 lbm, 2.0 Hz, 0.50 ppm 00.8 03.4 07.3 05.5 00.9 02.2 05.2 03.9

11 lbm, 1.0 Hz, 0.50 ppm 02.2 04.2 06.8 05.4 00.9 02.2 05.5 04.6

12 lbm, 0.5 Hz, 0.50 ppm 10.2 13.5 17.4 14.0 xx.x xx.x xx.x xx.x

13 lbp, 4.0 Hz, 0.10 ppm 06.8 12.0 21.6 20.3 04.7 10.0 15.5 11.6

14 lbp, 2.0 Hz, 0.10 ppm 05.4 10.8 23.4 20.1 04.8 09.8 15.5 11.5

15 lbp, 1.0 Hz, 0.10 ppm 07.2 13.4 19.0 14.1 04.7 09.8 15.2 11.5

16 lbp, 0.5 Hz, 0.10 ppm 14.1 20.3 27.3 23.1 05.0 09.7 15.0 11.5

17 lbp, 4.0 Hz, 0.25 ppm 08.5 14.3 24.1 18.9 03.0 06.3 11.4 08.4

18 lbp, 2.0 Hz, 0.25 ppm 07.6 12.8 20.7 16.9 02.9 06.3 11.4 08.4

19 lbp, 1.0 Hz, 0.25 ppm 08.0 13.4 21.4 17.7 02.9 06.1 11.4 08.5

20 lbp, 0.5 Hz, 0.25 ppm 05.9 11.4 20.0 16.7 02.8 06.2 11.3 08.6

21 lbp, 4.0 Hz, 0.50 ppm 08.4 14.3 23.8 20.0 02.7 05.8 11.9 09.2

22 lbp, 2.0 Hz, 0.50 ppm 08.1 14.0 23.3 19.3 02.8 06.1 12.7 10.1

23 lbp, 1.0 Hz, 0.50 ppm 05.8 11.6 22.0 18.4 02.5 05.4 12.6 10.8

24 lbp, 0.5 Hz, 0.50 ppm 05.9 11.8 22.0 18.4 xx.x xx.x xx.x xx.x

25 fbm, 2.0 Hz, 0.25 ppm, x0.1 01.7 03.9 08.1 06.8 01.0 02.0 03.4 02.5

26 fbm, 2.0 Hz, 0.25 ppm, x0.4 04.7 07.6 12.0 09.9 06.3 07.8 09.4 08.0

27 fbm, 2.0 Hz, 0.25 ppm, x1.0 12.9 17.6 26.4 24.0 15.9 19.4 25.0 21.4

28 fsm, 2.0 Hz, 0.25 ppm, x0.1 02.2 04.7 11.6 12.0 02.5 05.3 10.3 10.9

29 fsm, 2.0 Hz, 0.25 ppm, x0.4 04.0 07.3 12.5 12.2 04.2 07.3 11.2 10.1

30 fsm, 2.0 Hz, 0.25 ppm, x1.0 12.2 17.2 26.1 26.4 12.3 16.5 22.4 21.0

31 fbp, 2.0 Hz, 0.25 ppm, x0.1 04.3 09.0 21.4 19.2 06.8 14.4 26.6 19.6

32 fbp, 2.0 Hz, 0.25 ppm, x0.4 06.4 14.9 33.8 25.0 08.5 18.5 29.2 21.8

33 fbp, 2.0 Hz, 0.25 ppm, x1.0 38.3 42.8 53.1 45.5 16.7 34.8 52.9 39.9

34 fsp, 2.0 Hz, 0.25 ppm, x0.1 11.5 26.7 46.2 35.8 10.2 22.9 40.1 29.1

35 fsp, 2.0 Hz, 0.25 ppm, x0.4 10.5 22.4 38.7 29.5 12.1 25.4 42.2 31.7

36 fsp, 2.0 Hz, 0.25 ppm, x1.0 16.6 31.6 53.8 41.9 18.7 38.8 61.1 46.3

Table 4.4: Metrics for the absolute error distribution, in cm. Legend: m - monochromatic,

p - polychromatic, b - baseline, s - structures, l - linear, f - FUNWAVE, No. - case number

used to plot each case in the graphs shown below.
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Figure 4.3: Comparison of the quartiles and RMS of pixels absolute depth error [cm]

between the two inversion methods.
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5 . Conclusions, Outcomes and

Future Work

Simulating the propagation of waves over artificial bathymetries has proven to be effective

for studying inversion algorithms in a controlled way. It has been specially useful for deter-

mining how they respond to the variation of the input video parameters. An environment

for obtaining videos of synthetic waves simulating of the desired characteristics has been

developed, based on FUNWAVE and linear wave solvers.

The popular inversion algorithm cBathy has been analyzed and adapted. In the

process, it has been found that the selection of frequential and spatial parameters it uses

has critical effect on the results obtained. The dependence with the frequential parameters

has been outlined. Accordingly, a routine to select the best frequential set of parameters

has been developed, and another one has been proposed for the spatial parameters.

A new inversion algorithm called uBathy has been presented and compared with

cBathy, using a reduced set of study cases. It has been observed that uBathy tends to

perform better and to provide more stable results than cBathy, at least for the cases

studied.

The best temporal and spatial resolutions for the input videos have been determined

(about 2 Hz and 0.25 ppm), supporting the values suggested by previous studies. Also, the

range of amplitudes useful for inversion has been found (up to 15 cm for a polychromatic

case, and up to 10 cm in a monochromatic case). The spatial distribution of errors has

shown that the errors associated with cBathy inversions are stronger but more localized,

while the uBathy ones are feebler but also more spread.

However, there is still work to be done. Regarding the video generation process, to

extend the colouring algorithm to mimic the images obtained by a camera, by modelling

how the light interacts with the waves. About cBathy modifications, to improve the tuning

of parameters in cBathy, by implementing a continuous coherence, finding better metrics

and adding a peak detection algorithm. Once each inversion algorithms are perfected, to

develop a Kalman filter in order to fuse the results of different inversions. Finally, to use

the video generation process and the inversion algorithms to study how the morphological

features of bathymetries affect the inversion process.
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