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1. Introduction

Green's functions on a connected network are closely related with self-adjoint
boundary value problems for positive semide�nite Schrödinger operators (BVP
in the sequel). Since the matrices associated with these class of operators are
symmetricM -matrices, each Green function can be interpreted as the group inverse
of such a matrices. There exists a very interesting variety of self-adjoint boundary
value problems on a network, see for instance [2], that leads to interesting results in
many areas including the properties of random walks, chip-�ring games, analysis of
online communities, machine learning, algorithms and load balancing in networks.
In addition, we also can interpret these BVP as the discrete analogue of the
corresponding problems for elliptic di�erential operators or even as the discretization
of such a boundary value problems.

For sake of simplicity, we restrict ourselves here to analyze either the Dirichlet

Problem or the Poisson equation. For product networks, these kind of boundary
value problems have been studied by F. Chung, R. Ellis and S.T. Yau, see [6, 8, 9],
considering the normalized Laplacian. However, since in general the normalized
Laplacian of a product network is not expressible in separated variables involving
the normalized Laplacian of the factor networks, in the above referred works the
authors must consider only cartesian product of regular networks, that is also a
regular network. We remark that in this case, the problem is reduced to the analysis
of the combinatorial Laplacian, since that for regular networks the normalized
Laplacian is a multiple of the combinatorial one.

As a motivation of our work, we consider A ∈ Mn×n(R) and B∈ Mm×m(R)
two irreducibles and symmetric M -matrices. If In ∈Mn×n(R) denotes the identity
matrix and B = (bij), we can consider the M�matrix M ∈Mnm×nm(R) de�ned as

M =


A + b11In b12In · · · b1mIn

b21In A + b22Im · · · b2mIn
...

...
. . .

...
bm1In bm2I · · · A + bmmIn


and then we raised the following questions:

(i) Is the spectrum of M related with the spectra of A and B?
(ii) Is M# related with (A + zI)# and (B +wI)# for some (or many) z, w ∈ C?

Key words and phrases. Discrete Schrödinger operators, M -matrices, Boundary value
problems, Product Networks.
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Here, K# denotes the group inverse of K.
We will take advantage by considering A and B as operators on Finite Networks

and M as an operator on the Product Network. Our treatment appears as the
discrete version of the Separation of Variables Method for BVP for PDE.

2. Finite Networks and Schrödinger Operators

A �nite network Γ = (V, c), consists of a �nite set V , called vertex set and
a symmetric function c : V × V −→ [0,+∞), called conductance, satisfying that
c(x, x) = 0 for any x ∈ V . Two vertices x, y ∈ V are adjacent i� c(x, y) > 0 and we
always assume that Γ is connected.

In what follows C(V ) = C(V ;R) and C(V ;C) stand respectively for the spaces
of real and complex functions de�ned on the vertex set V . Given v ∈ C(V ;C), v̄
denotes its conjugate and then, 〈u, v〉 =

∑
x∈V

u(x)v̄(x) determines an inner product

on C(V ;C), whose associated norm is denoted by || · ||. Given u ∈ C(V,C), u⊥

denotes the subespace of C(V,C) orthogonal to u. For any x ∈ V , εx is the Dirac

function at x. Moreover, κ denotes the (generalized) degree of Γ; that is, the funcion
de�ned as κ(x) =

∑
y∈V

c(x, y), for any x ∈ V .

A real-valued function ω ∈ C(V ) is called weight if ω(x) > 0 for any x ∈ V and
in addition ||ω|| = 1. The sets of weights on V is denoted by Ω(V ) or simply by Ω
when it does not lead to confusion.

Given F ⊂ V a nonempty subset, F c denotes its complementary and C(F ) and
C(F ;C) are the subspaces of real and complex functions vanishing on F c. It is
clear that C(F ) and C(F ;C) can be identi�ed respectively with the space of real or
complex functions de�ned on F . Moreover, the set

δ(F ) =
{
z ∈ F c : c(z, y) > 0 for some y ∈ F

}
is called the boundary of F and then, F̄ = F ∪ δ(F ) is the closure F , see Figure 1.
Clearly, δ(F ) = ∅, or equivalently F = F̄ , i� F = V .

F

δ(F )

Figure 1. A vertex set F and its boundary δ(F )

The combinatorial Laplacian of Γ, or simply the Laplacian of Γ, is the linear
operator L : C(V ;C) −→ C(V ;C) that assigns to any u ∈ C(V ;C) the function L(u)
de�ned as

L(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
, x ∈ V.
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More generally, given q ∈ C(V ;C), the Schrödinger operator with potential q is
Lq : C(V ;C) −→ C(V ;C) de�ned as Lq(u) = L(u) + qu for any u ∈ C(V ;C). The
Schrödinger operator whose potential is the conjugate of q; that is, Lq̄, is called the

adjoint of Lq since it satis�es that 〈Lq(u), v〉 = 〈u,Lq̄(v)〉 for any u, v ∈ C(V ;C).
For a given nonempty subset F ⊂ V and a given potential q ∈ C(V ;C) we

consider the following Boundary Value Problem:
Given f ∈ C(F ;C) and g ∈ C(δ(F );C), �nd u ∈ C(F̄ ;C) such that

(1) Lq(u) = f on F , u = g, on δ(F ).

When F 6= V , this problem is known as Dirichlet Problem on F , whereas when
F = V it is called Poisson equation on V . In this last case the data g has no sense,
since then δ(F ) = ∅.

When F 6= V , each Dirichlet problem on F is equivalent to a semihomogenoeus
Dirichlet problem. Speci�cally, u ∈ C(F̄ ;C) is a solution of Problem (1) i� v = u−g
is a solution of the Dirichlet problem

(2) Lq(u) = f − L(g) on F , u = 0, on δ(F ).

Therefore, to analyze the existence and uniqueness of solution of the boundary
value problem for any f ∈ C(F ;C) is equivalent to analyze the same topics for the
following problem:

(3) Given f ∈ C(F ;C), �nd u ∈ C(F ;C) such that Lq(u) = f on F .

This formulation encompasses both, Dirichlet problems and Poisson equations; the
last ones appear when F = V .

For any weight ω ∈ Ω, we call the function qω = −ω−1L(ω) the Doob potential

asociated with ω. Therefore,

qω(x) = −κ(x) + ω(x)−1
∑
y∈V

c(x, y)ω(y) > −κ(x), for any x ∈ V .

Although in a �rst glance, Doob transforms could seem a bit strange and Doob
potentials a very speci�c kind of potentials, they play a main role among real-
valued potentials. In fact, as a consequence of the Perron-Frobenius Theory, given
a real-valued potential q ∈ C(V ) there exist an unique unitary weight ω ∈ Ω and a
unique real value λ ∈ R such that q = qω + λ, see [1].

The variational characterization of the solutions for the boundary value problems
(3) is described in the following result, see [3, Proposition 3.5] for its proof.

Proposition 2.1 (Dirichlet Principle). Let F ⊂ V be a non empty subset, ω ∈ Ω,

λ ≥ 0 and the potential q = qω + λ. Given f ∈ C(F ) consider the quadratic

functional : C(V ) −→ R given by

(u) = Eq(u)− 2〈f, u〉.

Then u ∈ C(F ) satis�es that Lq(u) = f on F i� it minimizes on C(F ). Moreover

has a unique minimum except when F = V and λ = 0 simultaneously. In this case,

has a minimum i� f ∈ ω⊥ and moreover there exists a unique minimum belonging

to ω⊥.
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3. Green functions, eigenvalues and eigenfuctions

In this section we consider �xed the �nite and connected network Γ = (V, c), a
weight ω ∈ Ω, a non-negative value λ ≥ 0, the real-valued potential q = qω +λ and
its corresponding Schrödinger operator Lq. Under these hypotheses, for any proper
subset F ⊂ V and any f ∈ C(F ) the Dirichlet Problem (3) has a unique solution;
that is there exists a unique u ∈ C(F ) such that Lq(u) = f on F . Moreover, when
λ > 0 for any f ∈ C(V ) the Poisson equation (3) has a unique solution; that is
there exists a unique u ∈ C(V ) such that Lq(u) = f on V .

When either F ⊂ V is a proper subset or λ > 0, the Green Function of F for

the potential q is GF
q : F × F −→ R such that for any y ∈ F , GF

q (·, y) is the unique
solution of the Dirichlet Problem Lq(u) = εy on F , u = 0 en δ(F ), when F is
proper, or the Poisson equation Lq(u) = εy on V when F = V but λ > 0.

The Green operator of F for the potential q is GFq : C(F ) −→ C(F ) de�ned for

any f ∈ C(F ) as GFq (f)(x) =
∑
y∈F

GF
q (x, y)f(y), x ∈ F . Then GFq is self-adjoint

and for any f ∈ C(F ), the function u = GFq (f) ∈ C(F ) satis�es that Lq(u) = f

on F . The self�adjointness of GFq implies that GF
q is a symmetric function, see for

instance [3].
When λ = 0, then q = qω and the Poisson equation Lq(u) = f on V is solvable

only if f ∈ ω⊥ and in this case, there exists a unique solution belonging to ω⊥.
The Green Function of V for the potential q is GV

q : V × V −→ R such that for any

y ∈ V , GV
q (·, y) is the unique solution of the Poisson equation Lq(u) = εy − ω(y)ω

belonging to ω⊥.
The Green operator of V for the potential q is GVq : C(V ) −→ C(V ) de�ned for

any f ∈ C(V ) as Gω(f)(x) =
∑
y∈V

GV
q (x, y)f(y), x ∈ V . Then for any f ∈ C(V ),

GVq (f) = GVq (f − 〈ω, f〉ω), GVq is self-adjoint and the function u = GVq (f) ∈ C(V )

is the unique function in ω⊥ satisfying that Lq(u) = f − 〈ω, f〉ω. Newly, the
self�adjointness of GVq implies that GV

q is a symmetric function.
On the other hand, if we label the vertices of Γ, say V = {x1, . . . , xn} where

n = |V |, then each endomorphism of C(F ) can be interpreted as a matrix of order
|F |. So Lq is identi�ed with the matrix LVq whose diagonal entries are κ(xj)+q(xj)
and whose o�-diagonal entries are −c(xi, xj), i, j = 1, . . . , n. Moreover if for a
proper subset F ⊂ V , we interpret Lq as an endomorphism of C(F ), then it can
be identi�ed with the matrix LFq obtained from LVq by eliminating the rows and
the columns corresponding to the vertices in F c. Notice that, as the potential are
real-valued, all the above matrices are real-valued and symmetric.

We also denoted by GF
q the matrix identi�ed with the Green operator GFq de�ned

above. With these identi�cations, GF
q =

(
LFq
)−1

when either F is a proper subset

of V or λ > 0. Moreover, when λ = 0, then GV
q =

(
LVq
)#

, the Group Inverse of LVq .
Since the group inverse coincides with the inverse when the matrix is invertible, we

have that GF
q =

(
LFq
)#

for any non-empty subset F ⊂ V and any λ ≥ 0

Given a non-empty subset F ⊂ V , an eigenvalue of the boundary problem (3) is
z ∈ C such that the Schrödinder operator Lq−z is singular on C(F ;C). Equivalently,
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z ∈ C is an eigenvalue of the boundary problem (3) if there exists u ∈ C(F ;C) non-
null and such that Lq(u) = z u on F . Each u ∈ C(F ;C) satisfying the above identity
is called eigenfunction of the boundary problem (3) associated with z.

Since q is a real-valued potential, any eigenvalue must be real, the eigenfunctions
are real functions and eigenfunctions corresponding to di�erent eigenvalues must
be orthogonal each other.

If z ∈ C is not an eigenvalue of the boundary value problem (3), then Lq−z is
an automorphism of C(F ;C) and then we denote by its inverse by GFq−z. Moreover,

if GF
q−z : F × F −→ R is given for any y ∈ V as GF

q−z(·, y), the unique solution

of the equation Lq(u) = εy on F , then GFq−z(f)(x) =
∑
y∈F

GF
q−z(x, y)f(y), for any

f ∈ C(F,C) and any x ∈ F .
The following result is the discrete version of the well-known Spectral Theorem,

see [1].

Theorem 3.1 (Spectral Theorem). For any non-empty subset F ⊂ V , there exist

real values µF
1 ≤ · · · ≤ µF

|F | and an orthonormal basis {vFj }
|F |
j=1 ⊂ C(F ) satisfying

the following properties:

(i) Lq(vFj ) = µF
j v

F
j on F , j = 1, . . . , |F |. Moreover, if z ∈ R is an eigenvalue

of the boundary value problem (3), then z = µF
j for some j = 1, . . . , |F |.

(ii) λ ≤ µF
1 < µF

2 and vF1 (x) > 0 for any x ∈ F . Moreover, µF
1 = λ i� F = V

and then vF1 = ω. In particular, µF
1 > 0, except when F = V and λ = 0,

simultaneously.

(iii) For any u ∈ C(F ;C) then Lq(u)(x) =

|F |∑
j=1

µF
j 〈u, vFj 〉vFj (x) for any x ∈ F .

The Spectral Theorem has as a very nice consequence, that we can also obtain
the expression for the Green function of F for the potential q in terms of the
eigenvalues and eigenfunctions. Prior to do this, for any a ∈ C we de�ne a# as a−1

when a 6= 0 or a# = 0 when a = 0.

Theorem 3.2 (Mercer Theorem). Given a non-empty subset F ⊂ V , then

GF
q (x, y) =

n∑
j=1

(µF
j )#vFj (x)vFj (y), x, y ∈ V.

Moreover, if z ∈ C \
{
µF

1 ≤ · · · ≤ µF
|F |
}
, then

GF
q−z(x, y) =

n∑
j=1

(µF
j − z)−1vFj (x)vFj (y), x, y ∈ V.

4. Product Networks

Obtaining eigenvalues and eigenfunctions and hence the corresponding Green
functions in a given network is, in general, a very di�cult task. In fact, there exist
explicit expressions for these issues, only in a few cases corresponding to highly
structured networks. Let us consider two di�erent connected networks (Γ1, c1) and
(Γ2, c2) with vertex sets V1 and V2.
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We de�ne the Product network as the network Γ = Γ1 × Γ2 = (V, c) where
V = V1 × V2 and the conductance is given by

(4) c
(
(x1, y1), (x2, y2)

)
=


c1(x1, x2), if x2 = y2,

c2(y1, y2), if x1 = y1,

0, otherwise

Clearly Γ1 × Γ2 is also connected.
Given u ∈ C(V1 × V2) for any (x, y) ∈ V1 × V2, uy ∈ C(V1), ux ∈ C(V2) denote

the functions de�ned as uy(z) = u(z, y) for any z ∈ V1 and by ux(z) = u(x, z) for
any z ∈ V2.

Given u ∈ C(V1) and v ∈ C(V2) the tensor product of u and v is u⊗v ∈ C(V1×V2)
de�ned as (u⊗ v)(x, y) = u(x)v(y) for any (x, y) ∈ V1 × V2. Notice that given two
weights ωi ∈ Ω(Vi), i = 1, 2, then ω1 ⊗ ω2 ∈ Ω(V1 × V2). Moreover, given x ∈ V1

and y ∈ V2 we have ε(x,y) = εx ⊗ εy.
We denote by Li the combinatorial Laplacian of the network Γi, i = 1, 2 and

by L the combinatorial Laplacian of the product network Γ1 × Γ2. The following
result establishes that the combinatorial Laplacian of a product network is expressed
in separable variables when applies on a tensor product function. This property
justi�es the name of separable variables for the solution technique of boundary value
problems on product networks.

Proposition 4.1. Given ui ∈ C(Vi), i = 1, 2 then

L(u1 ⊗ u2) = L1(u1)⊗ u2 + u1 ⊗ L2(u2).

In particular, if ωi ∈ Ω(Vi), i = 1, 2, then qω1⊗ω2
= qω1

+ qω2
and hence, for any

u ∈ C(V1 × V2) we have

Lqω1⊗ω2
(u)(x, y) = L1

qω1
(uy)(x) + L2

qω2
(ux)(y), (x, y) ∈ V1 × V2.

Proof. Given u ∈ C(V1 × V2) for any (x, y) ∈ V1 × V2 we have that

L(u)(x, y) =
∑
z∈V1
w∈V2

c
(
(x, y), (z, w)

)(
u(x, y)− u(z, w)

)
=
∑
z∈V1

c1(x, z)
(
u(x, y)− u(z, y)

)
+
∑
w∈V2

c2(y, w)
(
u(x, y)− u(x,w)

)
= L1(uy)(x) + L2(ux)(y).

On the other hand, since (u1⊗u2)y = u1u2(y) and (u1⊗u2)x = u1(x)u2 we obtain
that

L(u1 ⊗ u2)(x, y) = u2(y)L1(u1)(x) + u1(x)L2(u2)(y).

In particular L(ω1 ⊗ ω2) = L1(ω1)⊗ ω2 + ω1 ⊗ L2(ω2) and hence,

qω1⊗ω2
= −(ω1 ⊗ ω2)−1L(ω1 ⊗ ω2) = −ω1L1(ω1)− ω2L2(ω2) = qω1

+ qω2
.

From all above identities we �nally obtain that

Lqω1⊗ω2
(u)(x, y) = L(u)(x, y) + qω1⊗ω2

(x, y)u(x, y)

= L1(uy)(x) + L2(ux)(y) +
(
qω1

(x) + qω2
(y)
)
u(x, y)

= L1(uy)(x) + L2(ux)(y) + qω1
(x)uy(x) + qω2

(y)ux(y)

= L1
qω1

(uy)(x) + L2
qω2 (y)(u

x)(y). �
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The boundary value problems we analyze in Γ1 × Γ2, refers to subsets that are
also expressed as cartesian products. So, given non empty subsets Fi ⊂ Vi, i = 1, 2
we consider F = F1 × F2 ⊂ V1 × V2. Then, it is satis�ed that

(5) δ(F1 × F2) =
(
F1 × δ(F2)

)
∪
(
δ(F1)× F2),

where we allow that Fi = Vi in which case δ(Fi) = ∅, i = 1, 2.

Given ωi ∈ Ω(Vi), i = 1, 2 and λ ≥ 0, we consider the real-valued potential
q = qω1⊗ω2

+ λ. We are interested in study the boundary value problem (3) on
F = F1 × F2 and also in compute the corresponding Green function GFq . To do
this, we �rst split λ as λ1 + λ2 where λ1, λ2 ≥ 0 and then apply the Spectral
Theorem to each boundary value problems Lqi(ui) = fi on Fi, where qi = qωi + λi
and fi, ui ∈ C(Fi), i = 1, 2. Speci�cally, let µFi

1 ≤ · · · ≤ µFi

|Fi| the eigenvalues of

the boundary value problem Lqi(ui) = fi on Fi, i = 1, 2 and {vFi
j }
|Fi|
j=1 ⊂ C(Fi) a

corresponding orthonormal system of eigenfunctions.
Remember that always µFi

1 is simple and moreover vFi
1 > 0 on Fi, i = 1, 2. In

addition, µFi
1 = λi i� Fi = Vi and then vFi

1 = ωi. Therefore, µ
Fi
1 > 0, except when

Fi = Vi and λi = 0, simultaneously.
The main result in product networks is that the eigenvalues and the eigenfunctions

for the boundary value problem (3) in product subsets, is completely characterized
in terms of the eigenvalues and eigenfunctions of each factor.

Theorem 4.2. For any j = 1, . . . , |F1| and any k = 1, . . . , |F2| we have that

Lq(vF1
j ⊗ v

F2

k ) = (µF1
j + µF2

k )vF1
j ⊗ v

F2

k on F1 × F2.

Moreover
{
µF1
j + µF2

k

}
1≤j≤|F1|
1≤k≤|F2|

determines all eigenvalues and
{
vF1
j ⊗ v

F2

k

}
1≤j≤|F1|
1≤k≤|F2|

is an orthonormal basis in C(F1 × F2).

The fundamental consequence of Theorem 4.2 is that we can compute the Green
function for product networks in terms of the eigenvalues and the eigenfunctions of
each factor by applying the Mercer Theorem.

Corollary 4.3. In the above conditions for any (x1, y1), (x2, y2) ∈ V1×V2, we have

that

GF1×F2
q

(
(x1, y1), (x2, y2)

)
=

|F1|∑
j=1

|F2|∑
k=1

(µF1
j + µF2

k )#vF1
j (x1)vF1

j (x2)vF2

k (y1)vF2

k (y2).

The above formula requires the knowledge of eigenvalues and eigenfunctions
for the two factors. Therefore, except for structured networks, the application of
the above method is very restricted. We �nish this paper showing a technique
that only requires the computation of eigenvalues and eigenfunctions for one of
the factor networks and also the computation of a �nite family of Green functions
corresponding to the other product network. In fact this method is nothing else
but the discrete version of the well-known Separation of Variables Method to solve
boundary value problems in PDE.

The key issue to apply the Separation of Variables Method lies on use an adequate
expression for functions in C(F1 × F2). With the above notations, for any Given
h ∈ C(F1 × F2), for any j = 1, . . . , |F1| and any k = 1, . . . , |F2| we consider the
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functions αj(h) ∈ C(F2) and βk(h) ∈ C(F1) de�ned as

αj(h)(y) = 〈hy, v|F1|
j 〉 =

∑
z∈V1

h(z, y)v
|F1|
j (z) =

∑
z∈F1

h(z, y)v
|F1|
j (z), x ∈ V1,

βk(h)(x) = 〈hx, v|F2|
k 〉 =

∑
z∈V2

h(x, z)v
|F2|
k (z) =

∑
z∈F2

h(x, z)v
|F2|
k (z), y ∈ V2.

Theorem 4.4. Under the conditions and notations in this section, for i = 1, 2

consider the real-valued potentials p1
k = q1 + µ

|F2|
k = qω1 + λ1 + µ

|F2|
k ∈ C(F1),

k = 1, . . . , |F2| and p2
j = q2 +µ

|F1|
j = qω2 +λ2 +µ

|1|
j ∈ C(F2), j = 1, . . . , |F2|. Then,

GF1×F2
q

(
(x1, y1), (x2, y2)

)
=

|F2|∑
k=1

G
|F1|
p1
k

(x1, x2)vF2

k (y1)vF2

k (y2)

=

|F1|∑
j=1

G
|F2|
p2
j

(y1, y2)vF1
j (x1)vF1

j (x2).
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