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Universitat Politècnica de Catalunya.

Abstract

Given the Laplacian matrix associated to a weighted graph and given x a single vertex of it, the
bottleneck matrix (related to x) is the inverse matrix of the sub matrix of the Laplacian obtained by
eliminating the row and the column corresponding to x. The bottleneck matrix is used to calculate the
group inverse of the initial Laplacian matrix, for instance.

In this work we have managed to generalize this situation twofold: in the sense of considering symmet-
ric M–matrices related to Schrödinger operators acting on networks (doubly weighted graphs, where not
only edges but also vertices are discriminated) and also by using sub-matrices of the initial one in which
two, three or more rows and columns are erased, those corresponding to two, three or more vertices.

We conceive that every symmetric M–matrix corresponds to a network where both a conductance on
the edges and a weight on the vertices are introduced. Solving boundary value problems for Schrödinger’s
operators throughout the whole network or just a part of it, we find the relation between the corresponding
group inverse and inverse matrices respectively. Since the part of the network to be considered is arbitrary,
the reduction in the order of the matrices is also arbitrary.

The work is finished by exposing the application of our result to the calculation of the Green function
of a path.

Keywords: Bottleneck matrix, Schrodinger operator, Green’s function, M-matrix, Group–inverse
matrix.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231704766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Generalizing the bottleneck matrix 2

1 Preliminaries

The triple Γ = (V,E, c) denotes a finite network; that is, a finite connected graph without loops nor multiple
edges. V is its vertex set, whose cardinality equals n, and E is the edge set in which each edge {x, y} has
been assigned a conductance c(x, y) > 0. So the conductance can be considered as a symmetric function
c : V × V −→ [0,+∞) satisfying c(x, x) = 0 for any x ∈ V and moreover, vertex x is adjacent to vertex y,
x ∼ y, iff c(x, y) > 0. Whenever c(x, y) > 0, then the value r(x, y) = c(x, y)−1 is called resistance between x
and y.

The set of real functions on V is denoted by C(V ). Once a labelling of V is given, then every u ∈
C(V ) can be thought as a n−component real vector hence C(V ) can be identified with Rn. Moreover, for

u, v ∈ C(V ), the values ||u||2 =
(∑
x∈V

u(x)2
)1/2

and 〈u, v〉 =
∑
x∈V

u(x)v(x), are conceived as a norm and its

associated inner product, respectively.

Given u ∈ C(V ) the set of functions that are orthogonal to u is denoted by u⊥ and is a subspace of
C(V ). Also the support of u ∈ C(V ) is supp(u) = {x ∈ V : u(x) 6= 0} and hence, supp(u) = ∅ iff u = 0. A
function ω ∈ C(V ) is a weight if ω(x) > 0 for all x ∈ V and moreover 〈ω, ω〉 = n. The set of weight functions
is denoted by Ω(V ).

Given F ⊂ V , its boundary and its closure are the sets δ(F ) = {x ∈ V : c(x, y) > 0 for some y ∈ F}
and F = F ∪δ(F ), respectively. Clearly δ(F ) ⊂ V \F and F is a proper subset iff δ(F ) 6= ∅. If u ∈ C(V ) and
F ⊂ V , the notation u ≥ 0 on F or u > 0 on F means that u(x) ≥ 0 or u(x) > 0 respectively, for any x ∈ F .
Also, C(F ) is the subspace of real functions vanishing on F c = V \ F the complementary set of F . In the
sequel we identify C(F ) with the set of functions u : F −→ R. Analogously, each function h : F × F −→ R
is identified with h : V × V −→ R satisfying h(x, y) = 0 when (x, y) /∈ F × F.

The combinatorial Laplacian, or simply the Laplacian, of the network Γ is the endomorphism of C(V )

that assigns to each u ∈ C(V ) the function L(u)(x) =
∑
y∈V

c(x, y)
(
u(x)−u(y)

)
, x ∈ V. It is well-known, that

the Laplacian is a self-adjoint and positive semidefinite operator. Moreover, since Γ is connected, L(u) = 0
iff u is a constant function.

Given a weight function ω ∈ Ω(V ) the potential determinated by ω is a function in C(V ) defined such

that qω(x) = − 1

ω(x)
L(ω)(x), x ∈ V. Since it is 〈ω, qω〉 = 0, the potential determinated by ω must take

positive and negative values unless ω is a constant function in which case qω = 0. Also if ω1, ω2 ∈ Ω(V ) then
qω1

= qω2
iff ω2 = aω1, a > 0.

The Schrödinger operator on Γ with potential q is the self–adjoint endomorphism Lq : C(V ) → C(V )
that assigns to each u ∈ C(V ) the function

Lq(u)(x) = L(u)(x) + q(x)u(x),

where L(u)(x) is the Laplacian of the network Γ and q ∈ C(V ). Every potential q ∈ C(V ) is closely related
with a potential determinated by a weight qω as for every q ∈ C(V ) there exist unique ω ∈ Ω(V ) and
λ ∈ R such that q = qω + λ. Moreover, λ is the lowest eigenvalue of Lq and ω is its correspondant positive
eigenvector that satisfies 〈ω, ω〉 = n.

The Doob Transform (with respect to ω) consists in the identity

Lqωu(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
, x ∈ V, u ∈ C(V ). (1)

Then 〈u,Lqω (u)〉 ≥ 0 so Lqω is positive semidefinite and 〈Lqω (u), ω〉 = 0 so a property that generalizes
the corresponding one for the combinatorial Laplacian is obtained: Lqω (u) = 0 iff u = aω, a ∈ R.
In particular, we conclude that qσ = qω iff σ = aω for some a > 0, and each potential of the form qω
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characterizes its corresponding weight ω. Finally a Schrödinger operator Lq is positive definite iff λ > 0 and
positive semidefinite iff λ ≥ 0. Moreover, when λ = 0 then 〈Lqω (v), v〉 = 0 iff v = aω, a ∈ R.

For a non empty set F ⊆ V and given a potential q = qω+λ, λ ≥ 0, and its corresponding Schrödinger
operator Lq, the boundary value problem consisting in

Given f ∈ C(F ), then find u ∈ C(F ) such that Lq(u) = f on F (2)

is known as a Poisson Equation on V when F = V , and as a Dirichlet Problem on F when F is a proper
subset of V. In this second case, as C(F ) =

{
u ∈ C(F̄ ) : u = 0 on δ(F )

}
, the Dirichlet problem can be

rewritten in its most commonly used form as

Given f ∈ C(F ), then find u ∈ C(F̄ ) such that Lq(u) = f on F and u = 0 on δ(F ). (3)

We remark that also in this latter case the linear operator is self–adjoint as 〈Lq(u), v〉
F

= 〈u,Lq(v)〉
F

for
any u, v ∈ C(F ).

Dirichlet problems as (3) are always compatible, as Lq establishes an automorphism on C(F ). So are
Poisson equations when F = V and λ > 0. On the contrary, a problem (2) defined when F = V and λ = 0
(i.e. q = qω for some ω ∈ Ω(V )) is compatible iff f ∈ ω⊥. In this case, there exists a unique solution u ∈ ω⊥
and {u+ aω : a ∈ R} describes the set of all solutions to it.

The inverse of Lq on C(F ) is called Green’s operator for F and denoted by GFq . The associated function

GFq : F × F −→ R defined for any y ∈ F as GFq (·, y) = GFq (εy)1, the unique solution of (3) corresponding to
f = εy, is called the Green function for F . It turns out that the Green function for F is symmetrical and
that, given f ∈ C(F ), then GFq (f)(x) =

∑
y∈F

GFq (x, y)f(y), x ∈ V, is the unique solution of (3).

In the case of a positive semidefinite Poisson problem, as in (2), that is when F = V and λ = 0,
the Schrödinger operator Lqω establishes an automorphism on ω⊥. The inverse of Lqω on ω⊥ is called
orthogonal Green operator and denoted by Gqω . We can extend Gqω to a self-adjoint and positive semidefinite
endomorphism on C(V ) by defining Gqω (f) = Gqω (f − 〈ω, ω〉−1〈f, ω〉ω) for any f ∈ C(V ). The function
Gqω : V × V −→ R defined for any y ∈ V as Gqω (·, y) = Gqω (εy) = Gqω (εy − 〈ω, ω〉−1ω(y)ω), the unique
solution of Problem (2) corresponding to f = εy − 〈ω, ω〉−1ω(y)ω is called the orthogonal Green function.
Analogously to the preceeding paragraph, the orthogonal Green function is symmetrical and, given f ∈ ω⊥,
the function defined as Gqω (f)(x) =

∑
y∈V

Gqω (x, y)f(y), x ∈ V, is the unique solution of Problem (2)

belonging to ω⊥. In particular, Gqω (f) = 0 iff f = aω, a ∈ R.

2 Contractions, null–extensions and bordered operators

From now on, we consider a fixed weight ω ∈ Ω(V ) and its correspondant Doob potential q = qω assuming
λ = 0 so as the Schrödinger operator turns to be positive semidefinite. For any proper subset F ⊂ V, the
inverse operator of Lqω on C(F ) will be called Green’s operator of F for the weight ω, and will be denoted as
GFqω . Then, the Green function of F for ω is the kernel associated with the Green operator of F for ω; that

is, GFqω : F × F −→ R such that GFqω (x, y) = GFqω (εy)(x), for any x, y ∈ F. Therefore, GFqω is also symmetric

and given y ∈ F , the function u = GFqω (·, y) is the unique solution of the Dirichlet problem Lqω (u) = εy on

F, u = 0 on δ(F ). In addition, GFqω (f)(x) =
∑
y∈F

GFqω (x, y)f(y) for any f ∈ C(F ) and any x ∈ F .

2.1 Contractions and null–extensions

Let x̂ /∈ V be a new vertex and suppose that both ω and Gqω , are extended by 0 to V̂ = V ∪{x̂} and V̂ × V̂
respectively; that is, let us assume that ω(x̂) = 0 and Gqω (x̂, x) = Gqω (x, x̂) = Gqω (x̂, x̂) = 0 for any x ∈ V .

1definir εy



Generalizing the bottleneck matrix 4

We then take into account Gqω,V̂ , the null–extension of Gqω to C(V̂ ) defined as Gqω,V̂ : C(V̂ )→ C(V̂ )

Gqω,V̂ (u)(x) =
∑
y∈V̂

Gqω (x, y)u(y)

Evidently Gqω,V̂ (u)(x) = Gqω (u)(x) =
∑
y∈V

Gqω (x, y)u(y), whenever x ∈ V, u ∈ C(V ). We also notice

that Gqω,V̂ (u)(x̂) = 0 for any u ∈ C(V̂ ) and, in particular, that Gqω,V̂ (εx̂) ≡ 0.

Analogously for a proper F ⊂ V, let us consider F̂ = F ∪{x̂} and let us define not only the contraction
to F of the Green operator Gqω , denoted Gqω,F : C(F )→ C(F ) and such that

Gqω,F (u)(x) =
∑
y∈F

Gqω (x, y)u(y), x ∈ F, u ∈ C(F ),

but also the null–extension to F̂ of Gqω,F , noted as Gqω,F̂ : C(F̂ ) → C(F̂ ), and such that for any u ∈ C(F̂ )

is Gqω,F̂ (u)(x) =
∑
y∈F̂ Gqω (x, y)u(y), while x ∈ F and such that Gqω,F̂ (u)(x̂) = 0. Also it is Gqω,F̂ (u)(x) =∑

y∈F Gqω (x, y)u(y) = Gqω,F (u)(x) when x ∈ F.

2.2 Bordered and Host operators

2 A critical role in our main result is devoted to two more operators (and their respective kernels) that are
related to the operators we just come to define.

The Bordered operator for F̂ is the linear operator BF̂ : C(F̂ ) −→ C(F̂ ) defined for any u ∈ C(F̂ ) as{
BF̂ (u)(x) = Gqω,F̂ (u)(x) + u(x̂)ω(x) x ∈ F,
BF̂ (u)(x̂) = 〈u, ω〉

F̂

As ω(x̂) = 0, it turns out that BF̂ (u)(x̂) = 〈u, ω〉
F
.

Its corresponding kernel is called bordered kernel for F̂ , is denoted by BF̂ and is strongly related with
the Green function defined on the initial whole vertex set V.

Proposition 2.1 Given F ⊂ V , a proper subset, the bordered operator for F̂ is a non–singular and self–
adjoint operator. In addition, the bordered kernel for F̂ is given by BF̂ (x, y) = Gqω (x, y), for any x, y ∈ F ,
BF̂ (x, x̂) = ω(x), for any x ∈ F and BF̂ (x̂, x̂) = 0.

Keeping in mind Proposition 2.1, for any proper subset F ⊂ V we can define the so called host operator
for F̂ as the linear endomorphism on C(F̂ ) that is the inverse of the previous bordered operator for F̂ . Thus

HF̂ =
(
BF̂
)−1

and its associated kernel HF̂ will be referred as the host kernel for F̂ . Therefore, HF̂ is also
symmetric and it is characterized by the identities∑

y∈F
Gqω (x, y)HF̂ (y, z) + ω(x)HF̂ (x̂, z) = εx(z), x ∈ F, z ∈ F̂∑

y∈F
ω(y)HF̂ (y, z) = εx̂(z), z ∈ F̂ .

(4)

after applying Gqω (x, y) = Gqω,F̂ (x, y) for x, y ∈ F once again.

2He tret l’adjectiu Green
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3 A Poisson problem in connection with a Dirichlet problem

In this section we present our main result, that relates the solution of a Poisson equation as (2) on the
whole V, with the solution of a related homogeneous Dirichlet problem as (3), on a proper F ⊂ V. Applying
this idea to suitable Poisson equations and their related Dirichlet problems we are capable to relate their
respective orthogonal Green kernel and Green kernel respectively.

Theorem 3.1 Let Γ = (V,E, c) be a network, let ω ∈ Ω(V ) be a weight, qω the potential determinated by
ω and let F ⊂ V be a proper subset. Consider the singular Schrödinger operator Lqω on V and also LFqω its

nonsingular restriction to F. Then GFqω the Green function on F for ω is related with Gqω the orthogonal
Green kernel on V for ω as follows: for every x, y ∈ F, it is

GFqω (x, y) = Gqω (x, y)−
∑
z,t∈F c

Gqω (x, z)H
F̂ c(z, t)Gqω (t, y)

− ω(y)
∑
z∈F c

H
F̂ c(x̂, z)Gqω (z, x)− ω(x)

∑
z∈F c

H
F̂ c(x̂, z)Gqωv(z, y)− ω(x)ω(y)H

F̂ c(x̂, x̂).

3.1 The bottleneck, when F c = {z}

GFq (x, y) = Gq(x, y)− 1

ω(z)

[
ω(y)Gq(x, z) + ω(x)Gq(y, z)

]
+
Gq(z, z)

ω(z)2
ω(x)ω(y)

= Gq(x, y)−
[ Gq(x, z)
ω(x)ω(z)

+
Gq(y, z)

ω(y)ω(z)
− Gq(z, z)

ω(z)2

]
ω(x)ω(y), for every x, y ∈ F.

3.2 Case F c = {z1, z2}
GFq (x, y) = Gq(x, y)

− Gq(x, z1)Gq(y, z1)

R(z1, z2)ω(z1)2
+
Gq(x, z1)Gq(y, z2) +Gq(x, z2)Gq(y, z1)

R(z1, z2)ω(z1)ω(z2)
− Gq(x, z2)Gq(y, z2)

R(z1, z2)ω(z2)2

−
[
ω(z1)Gq(z2, z2)− ω(z2)Gq(z1, z2)

R(z1, z2)ω(z1)2ω(z2)2

][
ω(y)Gq(x, z1) + ω(x)Gq(y, z1)

]
−
[
ω(z2)Gq(z1, z1)− ω(z1)Gq(z1, z2)

R(z1, z2)ω(z1)2ω(z2)2

][
ω(y)Gq(x, z2) + ω(x)Gq(y, z2)

]
−
[
Gq(z1, z2)2 −Gq(z1, z1)Gq(z2, z2)

R(z1, z2)ω(z1)2ω(z2)2

]
ω(x)ω(y), for every x, y ∈ F.

4 Green function of a n–path

In the particular very important case of considering a path, when taking into account some propierties of
the Green function of the path, then the next expressions are also fulfilled

Applying the very well known

Corollary 4.1 If Γ is a weighted n–vertices path, then for any ω ∈ Ω(V ) the orthogonal Green kernel of
Lqω is given by

G(xi, xj) = ω(xi)ω(xj)

min{i,j}−1∑
k=1

W 2
k

Ck
+

n−1∑
k=max{i,j}

(1−Wk)2

Ck
−

max{i,j}−1∑
k=min{i,j}

Wk(1−Wk)

Ck

 ,
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for any i, j = 1, . . . , n, where Wk =
k∑̀
=1

ω2(x`) and Ck = c(xk, xk+1)ω(xk)ω(xk+1), k = 1, . . . , n− 1.

It tunrs out that

GFq (xi, xj)

ω(xi)ω(xj)
=

Gq(xi, xj
ω(xi)ω(xj)

− R(xi, xn)R(xj , xn)

R(x1, xn)
+

n−1∑
k=i

Wk

Ck
+

n−1∑
k=j

Wk

Ck
−
n−1∑
k=1

W 2
k

Ck

=
R(xj , xn)R(x1, xi)

R(x1, xn)
=
R(x1, xmin{i,j})R(xmax{i,j}, xn)

R(x1, xn)
.


