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In this work we study linear systems whose coefficient matrix is irreducible and
has the following block structure

A =

(
L −C

−CT D

)
where D is a diagonal matrix with positive diagonal entries, C ≥ 0 and L is a
symmetric Z-matrix. This class of linear systems appears in relation to self-adjoint
Dirichlet-Robin boundary value problems associated with a Schrödinger operator
on a finite network. Hence, we take advantage of this relation and then we can
analyze the linear systems by using the common tools in the context of boundary
value problems. Specifically, we first define the discrete version of the trace func-
tion between Sobolev spaces. The trace allows us to consider null Robin boundary
conditions and to reduce the dimension of the problem by incorporating the bound-
ary conditions to the Schrödinger operator. Therefore, we can characterize when
the Energy is positive semi-definite on the subspace of functions that vanish the
boundary conditions. For that the description of admissible potentials throughout
Doob potentials that also verify a discrete Poincaré type inequality is essential.

1. Discrete trace function and admissible potentials

In this work we study mixed boundary value problems for Schrödinger operators.
Specifically, we are interested in obtaining necessary and sufficient conditions for
the existence and uniqueness of solution of such a problems.

Throughout the paper, we consider F ⊂ V a proper subset, ∅ 6= F
N
⊂ δ(F ) and

F
D

= δ(F ) \ F
N
; that is, δ(F ) = F

D
∪ F

N
is a partition of δ(F ), where F

D
can be the

empty set. In addition, we always assume that F ∪F
N

is a connected subset on the
network Γ(F ); that is, it is connected with respect to the conductance c

F
. Then,

we define the outer degree of F , with respect to F
D
, as the function p

F
∈ C(F ) given

by

(1) p
F

(x) =
∑
y∈F

D

c(x, y) =
∑
y∈F

D

c
F

(x, y) for any x ∈ F .

Therefore, p
F
∈ C+(F ) and moreover p

F
= 0 when F

D
= ∅, whereas ∅ 6= supp(p

F
) ⊆

δ(V \ F ) when F
D
6= ∅.

Our aim is to study self-adjoint boundary value problems associated with the
Schrödinger operator with potential q ∈ C(F ∪ F

N
). Specifically, for any f ∈ C(F ),
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g ∈ C(F
N

) and h ∈ C(F
D

) the boundary value problem on F with data f, g, h, BVP
in the sequel, consists on finding u ∈ C(F̄ ) such that

(2) Lq(u) = f on F,
∂u

∂n
F

+ qu = g on F
N

and u = h on F
D
.

Any u ∈ C(F̄ ) satisfying the above identities is called solution of the BVP. When
g = 0 and h = 0, then Problem (2) becomes

(3) Lq(u) = f on F,
∂u

∂n
F

+ qu = 0 on F
N

and u = 0 on F
D

and it is called semi-homogeneous boundary value problem with data f . The asso-
ciated homogeneous boundary value problem consists in finding u ∈ C(F̄ ) such that

Lq(u) = 0 on F ,
∂u

∂n
F

+ qu = 0 on F
N

and u = 0 on F
D
. The space of solutions of

the homogeneous boundary value problem is denoted by VH
q , whereas the subspace

of C(F̄ ) formed by the functions vanishing the boundary conditions is denoted by
Vq. Therefore,

Vq =
{
u ∈ C(F̄ ) :

∂u

∂n
F

+ qu = 0 on F
N

and u = 0 on F
D

}
and clearly, we have VH

q ⊂ Vq ⊂ C(F ∪ FN ). The boundary value problem is called
regular when VH

q = {0}. Observe that for any u ∈ C(F ∪ F
N

), we have that

(4) EFq (u, u) =
1

2

∫
F∪F

N

∫
F∪F

N

c
F

(x, y)
(
u(x)− u(y)

)2
dx dy +

∫
F∪F

N

(q + p
F

)u2.

Moreover, if P
F

= min
x∈supp(p

F
)
{p

F
(x)}, then for any q ≥ −P

F
χ

supp(p
F

)
, it is satisfied

that
EFq (u, u) ≥ 0

and hence the energy is positive semi-definite. We can interpret the value P
F
as a

discrete version of the Poincaré constant.

Lemma 1.1 (Self-adjointness). The boundary value problem (2) is self-adjoint;
that is, ∫

F

vLq(u) =

∫
F

uLq(v) = EFq (u, v), for all u, v ∈ Vq.

Problem (2) is generically known as a Mixed Dirichlet-Robin problem and, in
particular, includes the following boundary value problems:

(i) Neumann problem: q = 0 on F
N
, F

N
= δ(F ) and hence F

D
= ∅.

(ii) Robin problem: q 6= 0 on F
N
, F

N
= δ(F ) and hence F

D
= ∅.

(iii) Mixed Dirichlet-Neumann problem: F
N
, F

D
6= ∅ and q = 0 on F

N
.

The boundary value problem (2) when q ∈ C+(F̄ ) has been extensively treated
in the literature, see for instance [2, 4, 7, 13, 18] where the existence and uniqueness
of solutions was established. It corresponds to linear systems with d.d. M -matrices
as coefficient matrix, see [5]. The analysis for Dirichlet Problem (F

N
= ∅) and

Poisson equation (F = V ) for more general potentials has been analyzed in [3, 4]
and correspond to linear systems with a general symmetric M -matrix as coefficient
matrix. As we are assuming that F

N
6= ∅, we are not considering here neither

Dirichlet nor Poisson problems.
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1.1. The trace map. We first establish that under a simple condition, for any
data the BVP (2) can be transformed into a semi-homogeneous one; that is, a
BVP in which the data is supported by F , or equivalently in which the boundary
conditions are null. Recall that we are assuming F

N
6= ∅ and F ∪ F

N
is connected

in Γ(F ).

Lemma 1.2. Suppose that q(x)+κ
F

(x) 6= 0 for any x ∈ F
N
. If given f ∈ C(F ), g ∈

C(F
N

) and h ∈ C(F
D

), we consider ug ∈ C
(
F
N

)
and fg,h ∈ C(F ) defined respectively

as
ug =

g

q + κ
F

and fg,h = L(ug + h) · χ
F
,

then u is a solution of BVP (2) with data f, g, h iff u = v + ug + h where v is a
solution of the semi-homogeneous BVP (3) with data f − fg,h.

Observe that for any x ∈ F we have

L(ug)(x) = −
∑
y∈F

N

c(x, y)g(y)

q(y) + κ
F

(y)
and L(h)(x) = −

∑
y∈F

D

c(x, y)h(y),

and hence fg,h depends only on the values of the data g and h.
Next we prove that under the same hypothesis than before, the values on F

N
of

any solution of BVP (2), depend only on its values on F .

Proposition 1.3. Suppose that q(x) + κ
F

(x) 6= 0 for any x ∈ F
N
. Then, for any

u ∈ C(F ) there exists a unique extension of u to F ∪F
N
, γ(u), such that γ(u) ∈ Vq.

Moreover, γ : C(F ) −→ C(F ∪ F
N

) is given by

γ(u)(x) =
1

q(x) + κ
F

(x)

∑
y∈F

c(x, y)u(y), x ∈ F
N
,

and establishes an isomorphism onto Vq. Therefore, dimVq = |F | and when κ
F

+
q > 0 on F

N
, then ω ∈ Ω(F ) iff γ(ω) ∈ Ω(F ∪ F

N
).

According with its continuous analogue, the map γ defined in the above propo-
sition, will be named trace map for F ∪ F

N
.

Notice that if q(x) ≤ −κ
F

(x) for some x ∈ F
N
, then Ω(F ∪ F

N
) ∩ Vq = ∅ and

hence, no weight on F can be extend to a weight on F ∪F
N
satisfying the boundary

conditions of the BVP (2).
On the other hand, for any g ∈ C(F

N
) and for any u ∈ C(F ), the function

v = γ(u) +ug is the unique extension of u to F ∪F
N
such that

∂v

∂n
F

+ qv = g on F
N
.

Next, we use the trace function to transform the mixed BVP into a Poisson
Equation on a network without boundary. Thus, we reduce the dimension of the
problem and moreover, this new formulation will allow us to tackle the spectral
analysis in the next section.

Suppose that q + κ
F
> 0 on F

N
and consider the network Γ̂(F ) = (F, ĉ) and the

potential q̂ ∈ C(F ), where

ĉ(x, y) = c(x, y) +
∑
z∈F

N

c(x, z)c(z, y)

q(z) + κ
F

(z)
, q̂(x) = q(x) +

∑
z∈F

N

c(x, z)q(z)

q(z) + κ
F

(z)
,

for any x, y ∈ F , see Figure 1.
Compare the conductance of the above network with the expressions considered

in [16, pg. 581] and [22, pg. 2169].
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Figure 1. Example of a network Γ(F ) and its associated Γ̂(F ).

Proposition 1.4. The network Γ̂(F ) is connected and for any u ∈ C(F )

L̂q̂(u) = Lq

(
γ(u)

)
on F .

Moreover, Lq is positive semi-definite (definite) on Vq iff L̂q̂ is positive semi-definite
(definite) on C(F ) and given v ∈ Vq, it is satisfied Lq(v) = 0 on F iff L̂q̂(v ·χ

F
) = 0

on F .

We remark that the above proposition transforms a mixed boundary value prob-
lem on F ∪ F

N
into a Poisson equation on F with respect to a new Schrödinger

operator. This is due to the fact that the values of a function verifying the bound-
ary condition on F

N
are uniquely determined by the values of the function on F .

A particular version of this technique was use in [16, 22] in the context of Neu-
mann boundary value problems for the combinatorial Laplacian. Therefore, given
f ∈ C(F ), then L̂q̂(u) = f iff γ(u) is a solution of the semihomogeneus BVP (3)
with data f . Moreover, for any semi-homogeneous mixed boundary value problem
the Fredholm Alternative is in force: Given f ∈ C(F ), Problem (3) has a solution
iff 〈v, f〉

F
= 0, for any v ∈ VH

q . In particular, Problem (3) has a unique solution iff
VH
q is the trivial subspace.
Observe that the procedure we have just described is the operational version of

the Schur complement method to solve linear systems. In this case,

L̂q̂ = Lq
/
D = Lq(F ;F )− C(F ;F

N
)D−1C(F

N
;F ),

where D is the diagonal matrix whose diagonal elements are k
F

(x) + q(x), x ∈ F
N
.

Moreover, the matrix associated with γ is[
I

−D−1C(F
N

;F )

]
.
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