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Abstract 
This thesis presents a part of the implementation of the perception system in an autonomous 

Formula Student vehicle. More precisely, it develops two different pipelines to process the 
data from the two main sensors of the vehicle: a LiDAR and a stereo camera.  

The first, a stereo camera system which is based on two monocular cameras, provides traffic 

cone position estimations based on the detections made by a convolutional neural network. 

These positions are obtained by using a self-designed stereo processing algorithm, based on 

2D-3D position estimates and keypoint extraction and matching. 

The second is a sensor fusion system that first registers both sensors based on an extrinsic 

calibration system that has been implemented. Then, it exploits the neural network detection 

from the stereo system to project the LiDAR point cloud onto the image, obtaining a balance 

between accurate detection and position estimation.  

These two systems are evaluated, compared and integrated into “Xaloc” – The Formula 
Student vehicle developed by the Driverless UPC team.  
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Resum 
      

Aquesta tesi presenta una part de la implementació del sistema de percepció en un vehicle 
autònom de Formula Student. En concret, es desenvolupen dos sistemes diferents per 
processar les dades dels dos principals sensors del vehicle: un LiDAR i una càmera estèreo. 

El sistema de càmera estèreo es basa en dues càmeres monoculars, i proporciona estimacions 
de les posicions dels cons de trànsit que delimiten la pista basades en les deteccions fetes amb 
una xarxa neuronal convolucional. Aquestes posicions s'obtenen mitjançant un algoritme de 
processament d’estèreo propi, basat en estimacions de posició 2D-3D i en extracció i 
correspondència de “keypoints”. 

El segon és un sistema de fusió de sensors que registra els dos sensors en base a un sistema 
de calibratge extrínsec que s'ha implementat. A continuació, fa servir les deteccions de la xarxa 
neuronal del sistema estèreo per projectar el núvol de punts LiDAR a la imatge, obtenint un 
equilibri entre una bona detecció en imatge i la precisió del núvol de punts LiDAR. 

Aquests dos sistemes són avaluats, comparats i integrats al “Xaloc” – el vehicle sense 
conductor de l’equip de Formula Student Driverless UPC “.  
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Resumen 
Esta tesis presenta una parte de la implementación del sistema de percepción en un vehículo 
autónomo de Formula Student. Concretamente, se desarrollan dos sistemas diferentes para el 
procesado de datos de los dos sensores principales del vehículo: un LiDAR y una cámara 
estéreo. 

El sistema de cámara estéreo se basa en dos cámaras monoculares y proporciona estimaciones 
de la posición de los conos de tráfico que delimitan la pista en base a las detecciones realizadas 
por una red neuronal convolucional. Estas posiciones se obtienen mediante el uso de un 
algoritmo de procesamiento estéreo de diseño propio, basado en estimaciones de posición 2D-
3D y en extracción y correspondencia de “keypoints”. 

El segundo es un sistema de fusión de sensores que primero registra ambos sensores 
basándose en un sistema de calibración extrínseco que se ha implementado. Luego, usa la 
detección hecha con la red neuronal del sistema estéreo para proyectar la nube de puntos 
LiDAR en la imagen, obteniendo lo mejor de cada sensor: una detección robusta y una 
estimación de posición muy precisa. 

Estos dos sistemas se evalúan, comparan e integran en “Xaloc” – el vehículo sin conductor del 
equipo de Formula Student Driverless UPC.  
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1 INTRODUCTION 

1.1. FORMULA STUDENT: DRIVERLESS UPC 

1.1.1. The competition 
The purpose of this project emerges from the Formula Student Driverless challenge [1], an 

engineering competition that gathers teams of students from all around the world to compete 

in a series of events or tests. The overall goal of the teams is to design and build an autonomous 

race car that is able to overcome all the challenges that this competition entails.  

The events that this competition include are divided into two groups: the static and the 

dynamic events. The three static events consist on Business Plan, Cost and Manufacturing and 

Engineering Design, which are documents and presentations related to marketing, finances 

and the overall design choices of the vehicle. These events represent roughly half of the 

competition points. The dynamic events, however, focus on testing and putting to the limit the 

abilities of the car itself. Each event is designed to take into account different features of the 

vehicle, such as the acceleration, the behaviour in closed curves, the endurance, etc. However, 

the most demanding dynamic events are the Trackdrive, which consists in completing 10 laps 

in a closed circuit, from which the car doesn’t have any previous knowledge, within the 

shortest time possible, and the Autocross, which consists in completing a single lap in the same 

circuit with the same rules. 

The combination of these two types of events grant that, as the FSG says, “The competition is 

not won solely by the team with the fastest car, but rather by the team with the best overall 

package of construction, performance, and financial and sales planning”.  

The driverless dynamic events are based on a controlled environment. This means that the 

track that the car needs to follow is marked with differently coloured cones, blue on the left 

and yellow on the right. This helps the cars to determine the trajectory that needs to be 

followed, as can be seen in Figure 2. 

 

Figure 1. Dynamic and static events 
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Figure 2.Using the cone colour to plan the trajectory 

 

1.1.2. The team 
The Driverless UPC team was born as a part of ETSEIB Motorsport, a team that has been 

competing in the Formula Student Electric competition for 8 years. Driverless UPC is 

participating for the first time in the Formula Student Driverless with its new prototype: the 

CAT12d. This vehicle was built using the body and dynamics of the CAT10e and the electronics 

and power train of the CAT11e, which were the former electric prototypes developed by 

ETSEIB Motorsport, while designing and implementing the autonomous system and all the 

needed adaptations and modifications to the already existing parts.  

The team is organized in sections, which are Perception (PER), Estimation and Control (E&C) 

and Hardware (HW). These are organised to build the autonomous system of the car and also 

its adaptation. 

 

Figure 3. 2019 Driverless UPC race car: CAT12d - "Xaloc". The cameras can be seen mounted under the main hoop 
and the LiDAR sensor on the front wing 

The autonomous system of the vehicle is based on the diagram from Figure 4. The perception 

of the vehicle relies on two main sensors, the stereo camera and the LiDAR. These sensors 
perceive and locate the cones on the track. Then, the detections are fused to create a virtual 

map of the environment, fusing the data from perception, the localization and the speed 

information. The following step is the trajectory planning, which defines the path that the car 

needs to follow. Once this path is defined, the control algorithms generate and send the 

commands to the motors so that they can move according to the planned trajectory. 



        

13 
 

 

Figure 4. Autonomous design of the CAT12d 

1.2. OBJECTIVES 
The objectives of this project emerge from the Driverless UPC team objectives. Being a first-

year team, these objectives are mainly focused on reliability and robustness, leaving 

performance and optimization as secondary objectives. For that, the main objectives of the 

team are getting good results in the static events, and to build a reliable and robust car so that 

it is able to finish all the dynamic events.  

Regarding the Perception section, the main objective is to provide accurate positions to the 

Estimation and Control department. The developed systems must be able to overcome a 

sensor failure, having reliable alternatives to grant that the car will be able to run under such 

circumstances.  

The aim of this work is to develop a stereo camera system that is able to estimate the 3D 

position of the detected cones. Also, in parallel, implement an extrinsic calibration algorithm 

for the stereo camera and the LiDAR sensor, so that their data can be compared and/or fused. 

These systems need to be carefully designed so that the car can complete the most demanding 

challenges of the FSD competition: the Trackdrive and the Autocross events. These events are 

based on the same layout, a closed loop with the following guidelines: 

 Straights: no longer than 80m 

 Constant turns: up to 50m diameter 

 Hairpin turns: minimum of 9m of outside diameter 

 Minimum track width: 3m 

 Maximum longitudinal distance between cones: 5m 

 Miscellaneous: chicanes, multiple turns, decreasing radius turns, etc.  
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1.3. REQUIREMENTS AND SPECIFICATIONS 

1.3.1. Requirements 
The requirements for the stereo and the sensor fusion systems are the following: 

 The pipelines need to be able to run in real-time, allowing the same thing for all the 
algorithms and processes that come after them: from the path planning to the control 

of the motors. 

 There is a need for a good colour and distance estimation, to provide a good base for 
the Estimation and Control department.  

 All the developed algorithms need to be in consonance with the requirements of the 

HW and the E&C department. This includes the characteristics of the data that is being 

transmitted, the transmission of the data itself, the operating characteristics of the 

sensors, etc. 

 The setup needs to be resilient to vibrations, to withstand the conditions in which the 
vehicle needs to operate and not sacrifice accuracy for that. 

1.3.2. Specifications 
The specifications of the systems are described in this section.  

 The range of the detections is specified by the E&C department. The algorithm that 
finds the track limits and the trajectory planning need, at least, three pairs of cones to 

obtain a good enough estimation of the track layout. This distance will vary depending 

on the track but, in the worst case, three cones with a separation of 5m results in a 

range of 15m. 

 The horizontal field of view of the system should allow the vehicle to see enough cones 
in a closed curve.  

 The error in the positions of the cones should be comparable to the error in depth of a 
commercial stereo camera, which can be modelled with an exponential curve 

depending on the depth. 

 The maximum processing time of the perception pipeline, besides from working “in 
real-time”, is specified by the frequencies from the other devices and systems on the 

vehicle. The most limiting ones are the frequency of the LiDAR (10Hz) and the working 

frequency of the kinematic control of the vehicle, which can operate at 10Hz but 

lowering the frequency significantly lowers the maximum speed of the car. That means 

that the output frequency of the perception systems needs to be equal or higher than 

10Hz.  

 In fulfilment of the requirement of accuracy, the calibration phases of both sensors 

needs to be as accurate as possible. That means, at least, sub-pixel accuracy. That is 

because small errors in pixels can have great impact at long distances. 

 The supports for the sensors need to be resilient to vibrations as they are the most 
susceptible to be affected by them, as the extrinsic calibrations highly depend on that.  

 

1.4. METHODS AND PROCEDURES 
This project, as stated before, is a part of the development of a greater project in the context 

of the Driverless UPC competing in the Formula Student Driverless competition. All the 
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contributions made by other team members and, to a bigger extent, by the members of the 

Perception department will be clearly stated in this section. Moreover, some parts of this 

project were developed by the Author in the context of the PAE subject, and are also clearly 

stated in the next paragraphs. 

The CAD design of the cameras’ casing, appearing in section 4.1.3 was conceived in 

collaboration with the Hardware department.  

The convolutional neural network briefly explained in section 4.3.5 was developed by R. 

Aylagas, member of the Perception department as a part of his Final Degree Thesis.  

The point cloud projection explained in the section 4.4.3 of the sensor fusion pipeline was 

developed by A. Roche, member of the Perception department as a part of his Final Degree 
Thesis, along with the whole LiDAR pipeline. 

Finally, the first steps with the stereo calibration in MATLAB, and a simple and undeveloped 

stereo matching algorithm were part of the PAE project of the Author, along with a preliminary 

cone detection algorithm that went unused and substituted by the CNN in 4.3.5. 

1.5. WORK PLAN 
The final work plan for this project can be seen in Figure 5. This work plan does not present 

any major changes in relation to the original work plan presented in the Proposal & Work Plan 

document of this thesis.  

WP Short title Milestone Date 
2 Full pipeline test Visualization tool and LiDAR + Stereo 

algorithms 
28/02/2019 

3 Data acquisition Camera driver ready 11/03/2019 
4 Sensor fusion  Calibration software ready 16/04/2019 
4 Car fully mounted All the software systems ready 01/05/2019 

Table 1. Milestones 

Regarding the milestones, the first one was not accomplished, as it might have been too 

ambitious. Due to delays in the E&C and PER departments, the full pipeline test was delayed 

until May. However, internally in the perception department, the visualization of the LiDAR 

detections could be tested. The second and third milestones were indeed accomplished, in 

contrast to the fourth, which was delayed until June. 

The biggest deviation from the work plan, besides the delays, was that the first one included 

the development of a neural network or a deep learning approach for the stereo matching 

algorithm, which didn’t end up being developed. This is further detailed in section 4.3.6. 
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Figure 5. Final work plan 
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2 STATE OF THE ART 

2.1. FORMULA STUDENT 

2.1.1. Introduction to FSD 
The Formula Student Driverless challenge started in 2017 and, since then, many teams have 

taken the autonomous driving challenge.  

Each team can have very different approaches to design and implement their autonomous 

system. To start with, teams may choose from a wide variety of sensors. Most teams include 

some type of camera; either mono or stereo, many of the teams use LiDAR sensors and some 

of them even rely on RADAR. More importantly, the second part is to develop data processing 

algorithms that can reliably and accurately provide the positions of the cones that delimit the 

track, while also taking into account that these algorithms must be able to run in real time, be 

robust to failures, etc. 

Two interesting approaches are the ones from Zurich ETH (AMZ Racing) and from Munich TU 

(Tufast Racing). These will be explained in the following sections. 

2.1.2. AMZ Racing 
AMZ Racing has been the winning team of the past two editions. Their car features a sensor 

layout formed by three cameras (two of them working as a stereo pair and one of them as a 

mono) and a LiDAR. The data that these sensors provide is processed in three different 

pipelines, mono, stereo and LiDAR, providing a lot of redundancy but also the same amount of 

robustness in the case that one of these pipelines were to fail.  

 

Figure 6. Vision from the perspective of “gotthard” 2018 AMZ Racing car [2] 

The LiDAR pipeline is processed in three different steps. These are the pre-processing, the 

cone detection and the colour estimation. In the first step, the LiDAR scans are accumulated 

by using their velocity estimation of the vehicle. This process removes the artefacts that can 

occur in the point cloud when the vehicle is moving fast. Then the FOV is filtered to roughly 

180 degrees and the ground is removed. This step leaves a filtered point cloud that allows the 

use of a simple clustering algorithm to detect the cones in the second step. Finally, each cluster 
is classified according to the cone colour using a colour estimation based on the infrared 

intensity perceived by the LiDAR.  

The Stereo pipeline uses the state-of-the-art YOLOv2 [3] CNN to detect the cones in the images. 

This neural network can detect objects with a very good localization accuracy and a low 

misclassification rate, while running in real time. Then, with the knowledge of some cone 
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priors (size, width of the strip in the middle, etc.), the 3D pose of each detection is estimated 

by using a 2D-3D correspondence algorithm. This 3D pose is used to extrapolate the detection 

from one image to the other and then use keypoint extraction and matching to obtain the final 

position estimations for the cones. 

Finally, the Mono pipeline uses the same structure as the Stereo pipeline, but uses the 3D pose 

estimation as the final position for the cone. This would cause no improvement in relation to 

the Stereo pipeline if it weren’t for the mono camera optics that allows the mono pipeline to 

see much further than the stereo pipeline, as can be seen in Figure 7. 

 

Figure 7. Viewpoint from the left stereo camera (left) compared to the central mono camera (right) 

 

2.1.3. TUfast Racing 
The team from Munich has achieved considerably good results in the last competitions (top 6) 

and they are distinguished by their simple yet effective approach. 

The perception of their vehicle is based on a single monocular camera. The first step of their 

pipeline is the CNN cone detection, for which they also use the YOLOv2 convolutional neural 

network. Once the detections are done, the distance at which the cone is in relation to the car 

can be estimated by using the cones’ height, as can be seen in Figure 8.  

 

Figure 8. Triangulation of the distance based on the cone height 

The simplicity of this approach is translated into a very low computational load, allowing the 

system to be running at a high frame rate. This fact is exploit by the data association 

algorithm, which fuses the multiple instances of each cone provided by the perception 

system based on a GMM or Gaussian Mixture Model for each cone.   
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Figure 9. Data association based on GMM 
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3 METHODOLOGY 

3.1. SOFTWARE ARCHITECTURE 

3.1.1. Introduction to ROS: basic architecture 
Robot Operating System [4], or ROS for short, is a set of software libraries and tools that are 

aimed to build robot applications. It is widely used in research and in the robotics industry, 

mainly because it integrates many state of the art algorithms and very powerful developer 

tools. Also, it is open source.  

ROS bases its distributed architecture in different programs or nodes that normally 

communicate to each other using TCP/IP protocol. The information transmitted is organised 

in topics, which define the type of message that the nodes send or receive when they publish 

or subscribe to a certain topic. For example, the node for a camera driver publishes the 

obtained images at the topic /camera/image_raw and another node can subscribe to this topic 

and then publish some extracted features about the images.  

These nodes can communicate thanks to the ROS Master node, which provides naming and 

registration services to the rest of the nodes in the ROS system. Following with the previous 

example, the camera driver advertises that it wants to publish to the topic. Then, the other 

node communicates with the Master to subscribe to that same topic. Then, a peer to peer 

connection is established between these two nodes to send and receive the messages. 

 

Figure 10. ROS structure example 

This manner of working provides a lot of versatility, as the nodes can be physically running in 

different computers. This allows to split the computational charge between multiple 

computing units, providing they are connected through Ethernet or a wireless connection.  

3.1.2. Rosbag: record and playback 
Rosbag is a developing tool that allows the user to record all the messages that are sent during 

a certain duration. All the recorded messages are saved into a .bag file and can later be 

replayed, in the same chronological order that they were recorded. 

This tool is very useful because the recorded data can be used to test different 

implementations and algorithms far away from the full setup, although the timing might not 

be the most precise because, as stated above, the messages are played back on the timestamp 

that they were recorded, not the timestamp they were sent. 
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Also, the rqt_bag tool can be used to play the messages with a user-friendly GUI that shows a 

time line with the messages, thumbnails for the image topics and also can be used to visualize 

raw data, along with a series of buttons to control the time. 

 

Figure 11.Timeline of rosbag shown on rqt_bag 

 

3.1.3. Rviz: powerful visualization 
Rviz is the ROS visualizer. It can visualize the most important ROS topics in real time, which 

can be especially useful when dealing with data types such as images or point clouds. 

Moreover, customized 3D markers can be added in order to visualize the computed 

trajectories of a trajectory planner or the detected objects in a point cloud, for example.  

Rviz integrates a main screen that represents the 3D space and can display topics such as point 

clouds, positions, markers, etc. Moreover, if these topics have different systems of coordinates, 

Rviz can display them in the same system if the user provides a TF that relates each system of 

coordinates. This helps preserve the modularity of each node, while providing a fundamental 

tool for integration and visualization. 

Also, image topics can be added in separate secondary displays. 

 

Figure 12. 3D model of a car and its environment acquired by sensors in rviz 
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3.1.4. Nodelets: zero-copy transport 
The same characteristics that give ROS a lot of versatility cause an important drawback when 

transmitting large amounts of data. The fact that all the data is transmitted using TCP sockets 

can cause the network to saturate, even using only one computer. For small packets of data 

that don’t represent a big amount of traffic, such as the torque and rpm that need to be applied 

to a motor, this doesn’t present a big issue. However, when working with images and point 

clouds, major delays can occur and finally cause the application to crash.  

There exist two different approaches to tackle this problem.  

The first one is the Image Transport. In the case of images, this class can be used to compress 

the image stream in two ways, either compressing each individual image (using JPEG or PNG) 

or turning the images into a video stream with the Theora codec. The first causes less delay 

but achieves a worse compression ratio, whereas the second one provides better compression 

but a lot more delay. 

The other option are Nodelets. These are a generalization of the typical ROS nodes. They are 

designed to provide a way to run multiple algorithms in the same process with zero-copy 

transport between them in the same computer. These nodelets need to be contained in one 

single process - the nodelet manager - that will run them in a shared memory environment, in 

order to communicate through boost shared pointers.  

To do this, nodelets allow dynamic loading of classes into the same nodelet manager, while 

providing simple separate namespaces such that the nodelet acts like a separate node, despite 

being in the same process. Moreover, these are dynamically loaded at runtime by using the 

pluginlib library that can open other libraries containing exported classes at any point without 

the application having any prior awareness of the library or the header file containing the class 

definition. 

This represents two clear advantages in comparison to the regular nodes: using zero-copy 

transport does not contribute to the saturation of the network and also there is no need to 

serialize, pack and send the data, eliminating the delay that these processes cause.  

3.1.5. Message filters: synchronization between topics 
Usually, when working with different sensors or many different topics, a synchronization 

point needs to exist. For example, a node that computes the disparity between two images 

from two different cameras will need to start when both images arrive, possibly with two 

slightly different timestamps.  

The ROS Message Filters library provides a system of buffers that store a number of messages 

of a specified topic in a queue. Then, given a type of filter, the messages are forwarded or 

discarded.  

The most used filters are the Synchronization Filters. These type of filters need a sync policy 

that determines how the messages need to be synchronized, which can be either exact or 

approximate. The ExactTime policy waits for messages that have exactly the same timestamp, 

down to the nanoseconds, while the ApproximateTime policy uses an iterative algorithm to 

synchronize the messages, assuming they can have different timestamps. This last policy can 

be used, for example, to synchronize topics with delays, jitters, different frequencies, etc.  
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Figure 13. ApproximateTime sync with jitter [5] 

 

Figure 14. ApproximateTime sync with different frequencies [5] 

3.1.6. OpenCV: optimized computer vision 
OpenCV is an open source computer vision and machine learning software library. It includes 

more than 2500 optimized algorithms, ranging from classical computer vision to state of the 

art machine learning algorithms. It is written in C/C++ and it is supported and used by some 

ROS libraries. All these characteristics make it a fundamental tool for the project, specially for 

the camera calibration and 3D reconstruction [6] algorithms that it provides. 

3.1.7. PCL: cutting edge point cloud processing 
The Point Cloud Library [7] is an open source point cloud processing library. It is the 

equivalent to OpenCV when talking about point clouds. Even though it is not as developed as 

OpenCV, it shows great potential and it is already being used in research and in the industry. 

Moreover, ROS uses PCL for most of the visualization that rviz provides, and also in many of 

its libraries. 
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4 DEVELOPMENT 

4.1. PHYSICAL SETUP 

4.1.1. Sensors used 
The perception of the vehicle is built upon two main sensors, a LiDAR and a stereo camera. 

These sensors have some weaknesses and strengths and their combination offers a good 

trade-off. 

 

Figure 15. Trade-off between the characteristics of the used sensors 

The main strengths to exploit of the camera sensors are their resolution, affordable cost, 

colour and contrast. Also, the strongest point is the already existing literature on image 

processing, detection and classification in comparison to the LiDAR point cloud processing, 

which is still not as developed. In contrast, LiDAR sensors have great distance estimation, low 

sensitivity to light conditions and range, making them very good and robust choices for the 

sensor layout of the autonomous vehicle.  

The used LiDAR is a Velodyne VLP-32C. It is widely used due to its excellent specifications. It 

has a range of 200 meters and an excellent field of view of 360º horizontally and 40º vertically, 

which is the angle that the sensor is able to perceive. This is significantly useful in closed 

curves, in which the system is able to detect most of the cones in the curve to obtain a proper 

mapping and trajectory. The LiDAR allows spinning frequencies from 5 to 20 Hz. Also, the 

point cloud is divided in 32 layers that, in this case, correspond to the number of rotating lasers 

that scan the environment. The working frequency affects the resolution these layers provide, 

for example, at 10 Hz a point cloud has around 30.000 points and at 20Hz it can be ten times 

this size. This is a relevant constraint because the processing unit must be able to process all 

the data, which is transmitted via 100Mbps Ethernet using UDP packages.  

The stereo vision system incorporates two independent colour cameras that are used as a 

stereo pair. The chosen cameras are two DFK33UX252 from The Imaging Source. They have a 

global shutter, meaning that the sensor is exposed to light all at once, avoiding the rolling 

shutter effect that appears in high speed applications. This model also allows the hardware 

trigger, meaning that the images taken from the camera are shot by using an external electrical 

signal, allowing a master device to control all the cameras to shoot at once. The resolution goes 
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from 640x480 to 2048x1536 pixels, and the framerate is limited by the available bandwidth 

of the USB 3.0 interface that the cameras use.  

 
Figure 16. Velodyne VLP-32C (left) and 2x DFK33UX252 (right) 

The lenses used are two 5MP low distortion board lenses with a format of 1/2 inches and a 

focal length of 3.4 mm. The parameters of these lenses are designed to acquire field of view of 

96° vertically and 113° horizontally. This FOV, however, is then reduced because of the stereo 

configuration, depending on the baseline of the cameras and the resolution used. At a 

resolution of 640x480, for example, the vertical and horizontal FOVs are 76.5° and 89.2° 

respectively. 

Finally the maximum range of the sensors, taking into account the size of the targets to detect 

and the stereo parameters of the developed setup is summed up by the following figure. 

 

Figure 17. Range and FOV of the developed perception systems 

4.1.2. Processing units 
It is important that the processing units are powerful enough to process the data from the 

sensors and run all the algorithms involving the perception and control of the vehicle at a high 

computing speed. For some computer vision algorithms, such as neural networks, GPU 

processing is much faster than CPU. For that reason, a NVIDIA Jetson TX2 is used to carry out 

these calculations, as it has a 256 core graphical processing unit and 8GB of RAM memory. 

With that, it can run the inference of a neural network at around 30 fps (depending on the size 

and architecture).  
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For other perception algorithms, such as the LiDAR pipeline, as well as all the Estimation and 

Control algorithms, a rugged device with an Intel i7 processor and 16GB of RAM (Cincoze DX-

1000) is used. These two computing units are interconnected via Ethernet through a switch 

and enclosed in a box that is resistant to dust and water. 

 

 
Figure 18. NVIDIA Jetson TX2 (left) Cincoze DX-1000 (right) 

 

4.1.3. Support and casing 
The cameras should have a good perspective of the cones, that’s why they are placed on the 

main hoop of the vehicle. In this part of the vehicle, the FSG rules highly regulate the 

positioning of sensors. All sensors have to be mounted within the rollover envelope, and in a 

maximum distance of 500 mm above the ground and less than 700 mm forward of the front of 

the front tires, as can be seen in Figure 19. 

The support for the cameras consists of an aluminium plate that contributes to the cooling of 

the cameras, that is supported by two 3D printed braces that are held onto the main hoop. 

Also, two 3D printed covers for the cameras with a methacrylate front part that allows proper 

visibility. 

Regarding the LiDAR support, it is mounted on the front wing with an aluminium support, 

fabricated with laser cut and welded together. 

 
Figure 19. Envelope to mount sensors 

 

 
 

Figure 20. Stereo camera and LiDAR supports 



        

27 
 

All The processing units are enclosed in a box that is mounted behind the main hoop. These 

are interconnected by an Ethernet switch. The Ethernet connection between the two 

computers is mandatory for the ROS distributed architecture, so that both can share topics 

and services. The switch is useful because it can either be connected directly to a third PC for 

configuration or can be plugged into a wireless router to do it at longer distances. The 

connection diagram can be seen in Figure 21. 

 

 
Figure 21. Connection diagram inside the PU box 
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4.2. PERCEPTION SYSTEMS 
The perception of the vehicle consists on the following diagram. This system processes the 

data from the two types of sensors in three different streams, the LiDAR pipeline, the Stereo 

pipeline and the Sensor Fusion pipeline. This is done in this way due the requirement of 

robustness, as different approaches can tackle the weaknesses of the others.  

In the best case scenario, the Sensor fusion pipeline can be the most accurate of the three, but 

in the case of a sensor failure, harsh weather conditions or other complicated scenarios, it may 

be better to run different approaches.  

Moreover, these pipelines are designed to be able to be run in parallel, so that the detections 

provided can be compared between each other. 

      

 

Figure 22. Perception block diagram 

4.3. STEREO PIPELINE 

4.3.1. Introduction 
In this section, an in-depth exploration on the Stereo pipeline will be made. All the nodelets, 

their connections and the internal steps will be explained, in addition to their purpose and 

why many of the design choices were made. But first, a brief overview of the system will be 

done. 
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Figure 23. Stereo pipeline diagram 

To start with, both cameras need to be calibrated. Knowing well their intrinsic and extrinsic 

parameters is a fundamental step for many of the following algorithms. That’s why there is a 

first offline phase in which these parameters are carefully obtained.  

To begin with the online phase, a self-developed ROS camera driver is used to capture the 

images and introduce them in the ROS environment. Each camera has its own instance of this 

driver and they publish images asynchronously. To obtain synchronous image pairs, an 

ApproximateTime synchronizer is used. This program also cancels out the distortion caused 

by the lens and rectifies the images, meaning that they are projected onto the same plane. 

Then, a convolutional neural network is applied on the rectified images from the left camera, 

resulting in the detection of cones and its colour. Then, the intrinsic and extrinsic parameters 

of the stereo camera, as well as the previous knowledge about the cones' size, are used in order 

to obtain an estimated detection on the right camera image. 

As the neural network is the bottleneck of this pipeline, this approach is less time consuming 

than running the neural network cone detection on both left and right camera images. 

Moreover, the bounding box propagation to the right image provides a coarse estimation of 

the 3D position of the cones, which is later used as a backup if the stereo distance calculation 

could not be obtained.  

Once the same detection on the two images is obtained, a local feature matching algorithm is 

applied, along with a triangulation. This final step estimates the final position of the cones. In 

case no successful matches were to be found, the previous coarse position estimation is used. 

      

4.3.2. Camera calibration 
The camera calibration stage is fundamental for all the stereo computations, and also to 

correct the lens distortion and to allow a better detection for the neural network. This stage is 

performed offline, and the information obtained is stored to be used in the online phase. 

The objective is to characterise the camera using a pinhole model. This model uses the focal 

length 𝑓, the spatial sampling frequencies [𝑠𝑥 , 𝑠𝑦 ]and the principal point of the camera (the 

image centre) [𝑐𝑥 , 𝑐𝑦 ]. These parameters in the configuration of the intrinsic matrix, usually 

referred as 𝐾, are an approximation of how the points in 3D space are projected onto the 
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image. So, being [𝑥, 𝑦] the pixel coordinates, 𝜆 a scaling parameter and [𝑋, 𝑌, 𝑍] the 3D world 

coordinates, the following formula is obtained.  

  

Equation 1. Intrinsic camera matrix formula 

More complexity can be added to the model, by using the distortion coefficients 𝑘𝑐 that model 

the distortion that is added by the lens. This model takes into account the two most common 

types of circular distortion, barrel or pincushion.  

 

Figure 24. Barrel distortion (left) and pincushion distortion (right) 

These kinds of distortion can be distinguished by using a checkerboard pattern as shown in 

the image above. Also, the alternating colour of the squares is used to detect corners and, 

therefore, they can be used to estimate the intrinsic parameters of the camera, as their real 

size is known.  

Once the intrinsic parameters of both cameras have been obtained, some more parameters 

have to be computed for the stereo camera setup. These are the relationships between their 

optical centres and their relative rotation, modelled by the 𝑇 and 𝑅 vectors.  

 

Figure 25. Extrinsic transform between left and right imagers 

For the calibration process, the MATLAB stereo calibration tool is used. Based on around 20 

pairs of synchronized images of a checkerboard pattern, this tool computes the intrinsic and 

extrinsic parameters of the stereo camera that optimize the reprojection error, which is the 

error between the actual detected corner points of the checkerboard pattern and the ones that 
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are projected again after the 3D estimation, by using the parameters and the Equation 1. The 

reprojection error is depicted in Figure 26. 

      

 

Figure 26. Reprojection error as the distance between the detected and reprojected points 

Finally, these parameters are now used for the image rectification. The goal is to apply a 

projective transform to both images so that they are onto the same plane. This means that the 

epipolar lines are horizontal, and the projections of any point in space share the same y-

coordinate on both images. This fact is widely exploit among many stereo processing 

algorithms to reduce searching areas, make calculations simpler, etc.  

 

Figure 27. Image rectification. Epipolar lines are horizontal on the rectified plane [8] 

 

4.3.3. Image acquisition and trigger 
The first step of the pipeline is the image acquisition. The aim of this stage is to get the images 

from the camera and then introduce them into the ROS framework. Also, an important 

requirement for the stereo image processing is that the cameras need to be synchronized. In 

consonance with these requirements, a self-made driver was developed in order to ensure 
their fulfilment, as the already available tools didn’t.  

The driver uses the well-known GStreamer library [9] to obtain the images and the open 

source tiscamera SDK [10], developed by the manufacturer of the cameras, to communicate 

with their devices and set their properties or adjust their parameters.  

First, the GStreamer pipeline is started, along with the ROS publishers to provide the images 

to the other nodelets. Then, a time rectification is applied between the ROS and the GStreamer 

timestamps. For the synchronization, it is a better option to use the GStreamer timestamps as 
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they come from a lower level and are less subject to possible delays, but these timestamps are 

relative, as they start when the GStreamer pipeline is opened. After the time rectification, the 

images have the more precise GStreamer timestamp but in relation to the Unix Time [11], that 

is used by ROS.  

Then, for the triggering of the cameras there are two possible approaches: a hardware trigger 

that makes the two cameras shoot at once or a more passive approach that lets the cameras 

send their frames independently at a constant rate.  

The first approach is better in terms of synchronization because it is guaranteed that the two 

frames that are closest in timestamp are shot at the same moment, whereas the second one is 

subject to an error in time of half the period of acquisition in the worst case, which can lead to 

significant effects depending on the speed of the vehicle. For example, at 15 m/s and 30 fps, 

the error is 𝑒𝑝 =
1

2∗30
𝑠 ∗ 15𝑚/𝑠 = 0.25 𝑚 which is unacceptable, but can work in steady 

conditions for testing.  

The hardware trigger normally requires an external source to give a signal to both cameras at 

the same time at a determined rate. However, in this case, both cameras have GPIO pins that 

can be configured in a master-slave configuration. One camera will trigger at a constant frame 

rate, for example at 15fps (master), while the other (slave) will trigger when it receives the 

trigger signal from the master. In this way, the delay between both cameras’ triggers is 

minimized, allowing a better synchronization.  

 

Figure 28. Free-running cameras timestamps 

 

Figure 29. Hardware triggered cameras timestamps 

4.3.4. Synchronization and rectification 
Once both camera drivers are publishing the images, there is a need for synchronism as the 

following nodelets require a pair of images as input topic and they may have slightly different 

timestamps. For this purpose, the synchronization and rectification nodelet uses an 

ApproximateTime synchronizer. Then, the timestamp of both images is set to the mean value 
between them. This is done because all the following nodelets will use an ExactTime 

synchronizer. The use of ExactTime instead of ApproximateTime is preferred because the 

exact produces less delay than the approximate, as it doesn’t have to use an iterative algorithm 

to find the image pairs. Moreover, setting the same timestamp to both images will grant that 

the same pair of images is chosen at the input of the following nodelets. 

The next step is the rectification and lens correction. As these operations involve many matrix 

products, they are computationally expensive. A common practice is to use precomputed look 

up tables. These tables are transformations that map the pixels in the original image and the 

rectified and undistorted image. The use of this method substitutes floating point operations 

for individual pixel mappings that make the computations way faster. Moreover, an 

implementation of this inverse mapping is available in the OpenCV 3D Geometry and Stereo 

Vision chapter [12]. 
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Figure 30. Inverse mapping to obtain the lookup table [13] 

Once the images have been paired up and then rectified and undistorted, they are published 

using the Image Transport library. In this step, the rectification of the images can be checked 

by tracing epipolar lines, as it can be seen in Figure 31. 

 

Figure 31. Epipolar lines in a pair of rectified images 

 

4.3.5. CNN Cone detection 
The next step in the pipeline is the cone detection that uses a convolutional neural network 

developed by R. Aylagas. This network is trained to detect four different classes which 

correspond to the four types of cones that need to be identified and localised, in Figure 32. 

This method for the detection was chosen according to the conclusions of the work developed 

in the PAE final project, in which a first simple contour-based cone detection approach was 

developed and tested. The need for a detection that is reliable, fast and resilient to weather 

conditions supposed that a CNN-based detection needed to be used. 



        

34 
 

 

Figure 32. Colour and physical characteristics of the cones 

This network was trained using an open source dataset [14] of around 18000 images of cones 

that was developed by FSD teams. More than 800 of these images were shot by the Driverless 

UPC team, using the cameras that will be in the car and then they were manually labelled. 

 

Figure 33. First training of the neural network 

The implementation of this neural network is done in Python, which provides a very easy way 

to interact with both the GPU and the CPU of the Jetson TX2. This allows the use of a multi-

threaded approach to the neural network, doing a very interesting use of the available 

resources to obtain an inference rate of around 30 fps. The downside of this detection is that 

Nodelets aren’t available in ROS python. In the absence of Nodelets, for the communication to 

this node, the Image Transport library (detailed in section 3.1.4) is used. The left images, which 

are the ones that this node uses for the detection, are transmitted through the Jetson TX2 

network interface, but are compressed to ensure that no network saturation is produced.  

      

4.3.6. Stereo processing 
The final algorithm of the pipeline is the stereo processing itself. It takes as input a 

synchronized pair of images and an array structure that contains the detections made by the 

neural network.  

The first step is the bounding box propagation. This means using the previous knowledge 

about the cones’ size to obtain an estimate of the detections on the right camera image. 

This part of the system works very similarly on how the Instagram face filters do, in which 

some keypoints are extracted from the face and knowing their relative position, these 
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keypoints can be extrapolated to a 3D model and estimate the tridimensional position of the 

face in relation to the camera. 

For example, the most common keypoints are the eyes, nose, lips and chin. Once these are 

found, the next step is to match these 2D positions in pixels to the average 3D position of these 

features in real people.  

 

Figure 34. 2D-3D correspondences of a face filter to insert an augmented 3D object 

This step is normally done by neural networks that learn features about the target and then 

reproduce them in new instances of that same target. At the start of this project this was 

intended to be done in this way but due to the occupation created by the CNN cone detection 

on the Jetson TX2 GPU, this approach was discarded and a much simpler yet effective approach 

was found.  

Instead of regressing some keypoints from the cones, the bounding box corners provided by 

the detection are used. The received bounding boxes from the neural network are assumed to 

have approximately the horizontal and vertical dimensions of the cones. This allows the 2D-

3D EPnP algorithm [15] to estimate the position of a cone by matching the corners of the 

bounding box to its 3D model with its real dimensions (228 mm x 325 mm for the small ones 

and 285 mm x 505 mm for the big ones).  

 

Figure 35. Bounding box propagation scheme (left) and feature matching (right) 

The algorithm used, the Efficient Perspective n Point, is a very fast solution to the PnP problem, 

providing a rough approximation for the position. However, the goal here is not to be accurate, 

but to quickly extend the neural network detection from one image to the other. This is now 

done by projecting the 3D bounding box approximation to the right camera, using the stereo 

camera parameters. With this propagation, a local feature extraction and matching can be 

performed. That is, using feature extraction on both bounding boxes and a KNN matching 

algorithm to establish pairs of points. These pairs of points are restricted to be on a range of 

+/- 5px vertically, as they are assumed to trace epipolar lines, due to the rectification of the 
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images. Finally, those points are triangulated and their centroid is estimated to provide the 

final and precise estimation. 

In some cases, it can occur that no good matches are found on the image. This is solved by 

using the first rough estimate of the position that was used to propagate the bounding box. 

This step provides robustness to the algorithm, that is be able to function on all the cases that 

no matches are found but more importantly it can operate with only one camera, in the event 

that one of the available cameras were to fail. 

4.4. SENSOR FUSION 

4.4.1. Introduction 
The aim of the sensor fusion system is to combine information of both sensors, cameras and 

LiDAR, to obtain a more reliable estimation of the cones on the track. The CNN cone detection 

of the camera pipeline has a much better accuracy in comparison to the point cloud processing 

algorithms that the LiDAR pipeline uses. However, the positions obtained using the stereo 

camera are susceptible to the sub-pixel calibration errors, which can have an effect of meters 

at long distances. These characteristics of the systems can be fused together to increase the 

results.  

The need to combine information from both sensors is also important because the information 

that each independent pipeline provides is relative to its own coordinates system and, 

therefore, a common coordinates system can be used to express the positions of all the 

detected cones. This system can then be used by the Estimation and Control department to 

obtain an approximate map of the environment.  

The registration between the sensors can be expressed as the relative transformation between 

their coordinates axes of the type: ),,,,,(  zyxcl ttt , which are the translations along each 

Cartesian axis and the three angles of rotation. This is a difficult to obtain transformation, as 

the optical centre of the stereo camera is not a physical point on the device, neither are their 

axis. This coordinate system emerges from the camera model, which is something abstract. 

Similarly, the LiDAR approximation of the optical centre and its axes provided by the 

manufacturer is not precise enough to obtain the transformation.  

To solve this problem, both devices need to be set in a fixed relative position. Then, similarly 

on how the camera calibration works, a calibration pattern can be used to obtain a mapping 

between the points detected from one sensor to the other. However, for this specific 

calibration problem there is no “standard” pattern to use. There exist many different ways to 

obtain this registration such as checkerboard or circle patterns. However, the final decision 

was to use the pattern proposed by C. Guindel et al [16], which is a flat board with four circular 

holes. 

Once the calibration is solved, the obtained registration can be used to project the LiDAR point 

cloud onto the left camera plane. Then, the points that fall into a bounding box in the image 

are treated like a cluster, not only with a very reliable detection provided by the neural 

network, but also knowing its colour and maintaining the good position estimates provided 

by the LiDAR sensor. 
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4.4.2. Calibration 
As stated above, the calibration stage uses the set-up proposed by C. Guindel et al [16]. To 

calibrate a stereo camera and a LiDAR sensor. These two sensors need to generate a point 

cloud so that the detected features from the calibration target can be identified on both 

sensors and obtain a proper transformation.  

The process starts with the point cloud generation. For the LiDAR this step is automatic, as the 

output from the sensor itself is already a set of points with XYZ coordinates. For the stereo 

camera, however, this requires some previous steps. Like in all other stereo processing 

algorithms, the intrinsic and extrinsic parameters of the cameras need to be known. Then, the 

image pairs are rectified and processed by using the semi-global matching algorithm (SGM) 

[17]. This approach is similar to the block matching algorithm, but instead of naively looking 

for matches, this method imposes a pixel-wise cost function that helps to find the best match, 

in combination with a continuity constraint that penalizes abrupt changes in the disparity.  

Once both point clouds have been obtained, the next step is to filter them. Both point clouds 
are filtered by range according to the approximate distance at which the pattern is placed to 

eliminate the points that don’t belong to the pattern. Then, a plane RANSAC is applied to 

further discard the outliers and finally, RANSAC is used again to find the final points that may 

be part of a circle and obtain its centre. Particularly, the stereo camera also uses the left image 

gradient to obtain a better estimation of the borders of the pattern. This whole process can be 

seen in Figure 36. 

 

 

Figure 36. Processing of the LiDAR and Stereo point clouds 

After the processing, the obtained centroids are stored in two separate cumulative point 

clouds. When there are enough instances, the translation that minimises the Euclidean 

distance between the respective centroids is obtained by computing the least-squares solution 

of the overdetermined system of 12 equations provided by the registration of the four 

reference points. Using this purely translational model as a first step is convenient because it 

gives a first approximation of the final transformation function.  After that, the final 

transformation is obtained by using a rotational and translational algorithm known as 

Iterative Closest Points [18].  
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4.4.3. ROS implementation and point cloud projection 
The ROS implementation for this part of the pipeline is multi-platform because the 

convolutional neural network is running on the NVIDIA Jetson TX2 and all the other 

algorithms are running on the Cincoze. This requires that a minimum amount of data is 

transmitted. This is solved by only transmitting the detection (the bounding box corners and 

the detected class) and the camera parameters to the Cincoze, and, this way, the link between 

these two processing units is not saturated. Moreover, both devices need to be have the exact 

same time, as the received ROS topics need to have timestamps as accurate as possible to get 

synchronized by a Message Filter. For that, NTP packets are used. The diagram for the 

implementation in ROS for this pipeline can be seen in Figure 37.  

 

Figure 37. Sensor fusion ROS diagram 

Once the extrinsic transform between the sensors has been obtained, the sensor fusion 

algorithm can project the filtered point cloud to the image plane and use the bounding boxes 

detected by the CNN to determine that a cluster is indeed a cone and extract its colour. In 

Figure 38, the CNN detections (bottom left), the projected point cloud (top left) and the full 

point cloud with the final detections (right) can be seen. In this case, a slight calibration error 

can be appreciated on the top left image. However, the performance of the algorithm is not 

compromised, because even if only a few points of a cone are projected inside the bounding 

box, as there are a lot more points in comparison to the stereo camera and their position 

estimation given by the LiDAR sensor is so precise, the final position for that cone is 

determined correctly. This run-time part of the sensor fusion system has been developed by 

A. Roche. 



        

39 
 

 

Figure 38. Sensor fusion: project the point cloud to the image plane and detection using the CNN 
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5 RESULTS 

5.1. STEREO PIPELINE RESULTS 
The results of the stereo pipeline will be presented in this section. To start, the root mean 

squared error in respect to a ground truth of cones will be compared to the theoretical RMSE 
based on the parameters of the stereo setup [19].  

This test is a setup of cones closely positioned to the camera, ranging from 2 to 5 meters. After 

running the stereo algorithm for around 500 iterations, the results are the plotted in Figure 

39.  

 

Figure 39. Estimated cone positions in comparison to the ground truth (left) and estimated distance boxplot (right) 

The average error for these cones is rather inconsistent. While the blue cones on the left and 

the last two yellows show little to no error, the first two yellow cones show a lot of variance in 

their position estimate. Moreover, this variance can be seen mainly in the direction of the 
projection lines (from the optical centre to the position estimate). This is happening because 

of erroneous matches inside the bounding box, which could be mitigated by the use of a 

median filter for all the matches found. Also, this errors could be caused because the lenses’ 

distortion grows at the borders of the images and the model for this distortion does not 

provide a precise enough calibration.  

Using all the obtained data, the overall root mean squared error is 5,88 cm. However, if the 

two first yellow cones are considered to be outliers, the error would be of around 4,48 cm. 

This means that the accuracy of the position estimation increases significantly when no 

erroneous matches or calibration errors are found, and that these effects are in sight for future 

improvements.  

The boxplot on the right shows that there is a lot of variability on the distance estimation, due 

to the problems mentioned in the paragrahps above. However provided that the mean value 

converges to the real position, at 15 frames per second there are enough position estimates so 

that the data from the same cone in different frames can be associated. 

The theoretical error curve for the stereo camera setup can be seen in Figure 40, along with 

the results of this test. With a depth of 5m, the theoretical RMSE is around 12cm. The approach 

presented in this work for the stereo camera based position estimation shows less error than 

the expected. This could be because of the preliminary knowledge of the cones that is used 
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significantly improves the position estimates in comparison to other approaches such as the 

ones that are based on block matching.  

 

Figure 40. Theoretical vs empirical RMSE 

Regarding the real-time requirement, the stereo system runs at 10-15 fps, maintaining a delay 

of around 70ms on average. 

 

Figure 41. Timings of the stereo pipeline 
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5.2. SENSOR FUSION PIPELINE RESULTS 
The sensor fusion pipeline will be tested in several ways. In the first place comparing the two 

registered point cloud, then by projecting the point cloud onto the image plane and in the final 

place evaluating the performance of the full sensor fusion algorithm in conjunction with the 

E&C systems. 

To start, a coarse way to evaluate the results is to superimpose both point clouds and compare 

the different elements that are in the scene, such as the calibration pattern, in Figure 42.  

 

Figure 42.Two different setups of Stereo and LiDAR point clouds superimposed 

Once the calibration stage has been performed, the point cloud projection can be tested, and 

the quality of the registration can also be evaluated, as in Figure 38, where the projected point 

clouds that represented cones were slightly out of position. 

Also, the same test with the same ground truth as for the stereo system was performed. With 

eight cones at a known distance, the average RMSE is 3,68cm. This system slightly outperforms 

the stereo system when talking about average accuracy and furthermore, in terms of variance 

of the estimate it is way better as it can be seen in the boxplot on the right, in Figure 43. 
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Figure 43. Estimated cone positions vs ground truth (left). Sensor fusion distance estimation statistics (right) 

 

In relation to the speed of this algorithm, while it maintains its time of execution under 100ms, 

it is limited by the frame rate of the LiDAR sensor which, in this case, is of 10Hz for a full frame. 

Finally, in Figure 44, a real test in which the control algorithms computed the track limits, 

trajectory planning, etc. All this with real data acquired by using the sensor fusion pipeline. 

 

Figure 44. Track limits and path planning using the sensor fusion 
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6 BUDGET 

All the software used in this project is under the BSD open source license. An exception is the 
MATLAB software and its calibration tool. 

The hours for the involved engineering students are around 27h/week during 24 weeks, with 

a wage of 10€/h.  

For the TFG tutor, 3h of weekly meetings during 24 weeks with a wage of 30€/h.  

Plus all the materials and devices needed, the total budget equals a sum of 29.936,31 €. 

However, this is a university project and many companies want to be part of it by providing 

material in exchange for a sponsorship. The team has achieved more than 17.000,00 € in 

discounts, leaving a final cost of 12.224,50 €.  

 

Table 2. Budget 

 

  

Concept Qty Cost Real cost Sponsor discount Final cost

The Imaging Source DFK33UX252 Industrial colour camera + board lens + USB3 cable 2 1.200,00 € 2.400,00 € 100% 0,00 €

Velodyne VLP-32C 1 13.000,00 € 13.000,00 € 100% 0,00 €

NVIDIA Jetson TX2 1 350,00 € 350,00 € 33% 234,50 €

Cincoze DX-1000 1 5.000,00 € 5.000,00 € 33% 3.350,00 €

D-Link Ethernet switch 1 46,31 € 46,31 € 100% 0,00 €

MATLAB license / year 1 500,00 € 500,00 € 100% 0,00 €

Junior engineer (648h * 10€/h) 648 10,00 € 6.480,00 € 0% 6.480,00 €

TFG tutor (72h * 30€/h) 72 30,00 € 2.160,00 € 0% 2.160,00 €

TOTAL 29.936,31 € 12.224,50 €
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7 CONCLUSIONS AND FUTURE DEVELOPMENT:  

To sum up, two subsystems for the perception of the Driverless UPC Formula Student car 
“Xaloc” have been developed in this project. The overall perception system is designed to fulfil 

the requirements of robustness and reliability, having three different ways to simultaneously 

provide accurate cone position estimates, while minimizing delays. 

In retrospective, the systems that were developed in the context of this project, have been an 

excellent way to explore many aspects of the computer vision field: some classical methods 

were learnt, such as the pinhole model camera calibration and the keypoint extraction and 

matching, but also many state of the art techniques and algorithms were used, like the extrinsic 

Stereo-LiDAR calibration, the sensor fusion itself, etc. 

In addition, the choice of self-developing a stereo camera instead of opting for a commercial 

one gives an added value to this system, because a deeper insight on how these kind of sensors 

work has been achieved, besides giving more versatility to the system. Also, the fact of cleverly 

using the prior knowledge of the cones’ size to obtain a rough position estimation is a very 

notable improvement. In addition to avoiding to run the neural network on both left and right 

images and thus optimizing the use of the resources, this method provides robustness to the 
algorithm in the case of a possible sensor failure. The results shown in section 5 prove that the 

performance of the stereo camera is adequate in terms of accuracy and speed. However, the 

system could be improved in many ways as discussed in the results section. For example, 

finding ways to reduce the variance of the position estimates, or increasing the range. 

In relation to the Sensor Fusion pipeline, the implemented extrinsic calibration system 

between Stereo and LiDAR reliably provides the transformation function between them both. 

However, a future implementation of a calibration that doesn’t require a stereo point cloud 

could be considered, as the accuracy of such point clouds might not be as accurate as other 

methods of obtaining the distance. The provided registration of sensors has proven to be 

resilient to vibrations, and the slight miscalibrations that can occur in practise while operating 

the vehicle are easily corrected manually. When talking about performance, the overall Sensor 

Fusion pipeline outperforms the Stereo in terms of accuracy, but it is a bit slower, being able 

to run at a maximum of 10Hz.  

In this kinds of projects where there is a need to integrate many different algorithms, there 
needs to be a way to put them together in the most efficient way possible. In this case, ROS 
provided the best way of doing that, thanks to its distributed architecture, standardized 
message types, powerful visualization tools, etc. The use this framework resulted in a very fast 
and efficient integration between different algorithms in the same department and even when 
integrating with the rest of the team. The learning curve of the Robot Operating System might 
be steep at first, but it is definitely worth the effort. 

While this project finishes here, the Driverless UPC team will keep going on until the season 
ends in August 2019, after the Formula Student competitions in which the vehicle will be put 
to its ultimate test. The last objective of the project presented here is to grant the continuity of 
the Driverless UPC team, accumulating all the knowledge acquired, all the challenges that have 
been overcome and also all the mistakes that were made through this first season, to always 
keep in mind that “It’s not only about going faster, it’s about getting smarter”.     
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Glossary 
 

CNN - Convolutional Neural Network 

E&C – Estimation and Control department (Driverless UPC) 

FOV - Field Of View 

FSD - Formula Student Driverless 

GMM - Gaussian Mixture Model 

GUI - Graphic User Interface 

HW – Hardware department (Driverless UPC) 

KNN - K Nearest Neighbours 

LiDAR - Light Detection and Ranging 

PAE - Projecte Avançat d’Enginyeria 

PER – Perception department (Driverless UPC) 

PU – Processing unit 

PnP - Perspective n Point 

RMSE – Root Mean Square Error 

ROS - Robot Operating System 

SDK - Software Development Kit 

TF - Transformation Function 


