

Position Estimation Using a Stereo

Camera as Part of the Perception

System in a Formula Student Car

by

Eloi Bové Canals

Advisor: Josep R. Casas

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona

Universitat Politècnica de Catalunya

In partial fulfilment

of the requirements for the degree in TELECOMMUNICATIONS TECHNOLOGIES AND

SERVICES ENGINEERING

Barcelona, June 2019

1

Abstract
This thesis presents a part of the implementation of the perception system in an autonomous

Formula Student vehicle. More precisely, it develops two different pipelines to process the
data from the two main sensors of the vehicle: a LiDAR and a stereo camera.

The first, a stereo camera system which is based on two monocular cameras, provides traffic

cone position estimations based on the detections made by a convolutional neural network.

These positions are obtained by using a self-designed stereo processing algorithm, based on

2D-3D position estimates and keypoint extraction and matching.

The second is a sensor fusion system that first registers both sensors based on an extrinsic

calibration system that has been implemented. Then, it exploits the neural network detection

from the stereo system to project the LiDAR point cloud onto the image, obtaining a balance

between accurate detection and position estimation.

These two systems are evaluated, compared and integrated into “Xaloc” – The Formula
Student vehicle developed by the Driverless UPC team.

2

Resum

Aquesta tesi presenta una part de la implementació del sistema de percepció en un vehicle
autònom de Formula Student. En concret, es desenvolupen dos sistemes diferents per
processar les dades dels dos principals sensors del vehicle: un LiDAR i una càmera estèreo.

El sistema de càmera estèreo es basa en dues càmeres monoculars, i proporciona estimacions
de les posicions dels cons de trànsit que delimiten la pista basades en les deteccions fetes amb
una xarxa neuronal convolucional. Aquestes posicions s'obtenen mitjançant un algoritme de
processament d’estèreo propi, basat en estimacions de posició 2D-3D i en extracció i
correspondència de “keypoints”.

El segon és un sistema de fusió de sensors que registra els dos sensors en base a un sistema
de calibratge extrínsec que s'ha implementat. A continuació, fa servir les deteccions de la xarxa
neuronal del sistema estèreo per projectar el núvol de punts LiDAR a la imatge, obtenint un
equilibri entre una bona detecció en imatge i la precisió del núvol de punts LiDAR.

Aquests dos sistemes són avaluats, comparats i integrats al “Xaloc” – el vehicle sense
conductor de l’equip de Formula Student Driverless UPC “.

3

Resumen
Esta tesis presenta una parte de la implementación del sistema de percepción en un vehículo
autónomo de Formula Student. Concretamente, se desarrollan dos sistemas diferentes para el
procesado de datos de los dos sensores principales del vehículo: un LiDAR y una cámara
estéreo.

El sistema de cámara estéreo se basa en dos cámaras monoculares y proporciona estimaciones
de la posición de los conos de tráfico que delimitan la pista en base a las detecciones realizadas
por una red neuronal convolucional. Estas posiciones se obtienen mediante el uso de un
algoritmo de procesamiento estéreo de diseño propio, basado en estimaciones de posición 2D-
3D y en extracción y correspondencia de “keypoints”.

El segundo es un sistema de fusión de sensores que primero registra ambos sensores
basándose en un sistema de calibración extrínseco que se ha implementado. Luego, usa la
detección hecha con la red neuronal del sistema estéreo para proyectar la nube de puntos
LiDAR en la imagen, obteniendo lo mejor de cada sensor: una detección robusta y una
estimación de posición muy precisa.

Estos dos sistemas se evalúan, comparan e integran en “Xaloc” – el vehículo sin conductor del
equipo de Formula Student Driverless UPC.

4

Acknowledgements
This project has been developed as part of the Driverless UPC project of building an

autonomous race car. An acknowledgment has to be made to the team itself, which is formed
by 21 engineering students from multiple disciplines, and through the course of this project, a

lot of collaboration has been established with all the team members.

An acknowledgement also to the Open Source community for developing and sharing tools

such as ROS, OpenCV, and PCL, which were fundamental for the creation of this thesis. Special

thanks also to the Formula Student Driverless community for sharing datasets, documents,

etc.

Also, a special acknowledgment has to be given to the Team Leaders, Sergi Catalán and Monica

Pérez for their guidance, as well as the Tutor of this thesis, Dr Josep R. Casas for his wise

counselling. Also to Dr Albert Aguasca for his crucial support.

Last but not least, the work developed in this thesis is highly influenced by the Perception

department. This project wouldn’t have been possible without their mutual help and support.

5

Revision history and approval record
Revision Date Purpose

0 01/05/2019 Document creation

1 24/06/2019 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Eloi Bové Canals eloibove@gmail.com

 Josep R. Casas Josep.ramon.casas@upc.edu

Written by: Reviewed and approved by:

Date 23/06/2019 Date 24/06/2019

Name Eloi Bové Canals Name Josep R. Casas

Position Project Author Position Project Supervisor

6

Table of contents
1 Introduction 11

1.1. Formula Student: Driverless UPC 11

1.1.1. The competition 11

1.1.2. The team 12

1.2. Objectives 13

1.3. Requirements and specifications 14

1.3.1. Requirements 14

1.3.2. Specifications 14

1.4. Methods and procedures 14

1.5. Work plan 15

2 State of the art 17

2.1. Formula Student 17

2.1.1. Introduction to FSD 17

2.1.2. AMZ Racing 17

2.1.3. TUfast Racing 18

3 Methodology 20

3.1. Software Architecture 20

3.1.1. Introduction to ROS: basic architecture 20

3.1.2. Rosbag: record and playback 20

3.1.3. Rviz: powerful visualization 21

3.1.4. Nodelets: zero-copy transport 22

3.1.5. Message filters: synchronization between topics 22

3.1.6. OpenCV: optimized computer vision 23

3.1.7. PCL: cutting edge point cloud processing 23

4 Development 24

4.1. Physical setup 24

4.1.1. Sensors used 24

4.1.2. Processing units 25

4.1.3. Support and casing 26

4.2. Perception Systems 28

4.3. Stereo pipeline 28

4.3.1. Introduction 28

4.3.2. Camera calibration 29

4.3.3. Image acquisition and trigger 31

4.3.4. Synchronization and rectification 32

7

4.3.5. CNN Cone detection 33

4.3.6. Stereo processing 34

4.4. Sensor fusion 36

4.4.1. Introduction 36

4.4.2. Calibration 37

4.4.3. ROS implementation and point cloud projection 38

5 Results 40

5.1. Stereo pipeline results 40

5.2. Sensor fusion pipeline results 42

6 Budget 44

7 Conclusions and future development: 45

8

List of Figures
Each figure in the thesis must be listed in the “List of Figures” and each must be given a page

number for its easy location.

Figure 1. Dynamic and static events .. 11

Figure 2.Using the cone colour to plan the trajectory .. 12

Figure 3. 2019 Driverless UPC race car: CAT12d - "Xaloc". The cameras can be seen mounted

under the main hoop and the LiDAR sensor on the front wing ... 12

Figure 4. Autonomous design of the CAT12d .. 13

Figure 5. Final work plan ... 16

Figure 6. Vision from the perspective of “gotthard” 2018 AMZ Racing car [2] 17

Figure 7. Viewpoint from the left stereo camera (left) compared to the central mono camera

(right) ... 18

Figure 8. Triangulation of the distance based on the cone height .. 18

Figure 9. Data association based on GMM .. 19

Figure 10. ROS structure example .. 20

Figure 11.Timeline of rosbag shown on rqt_bag .. 21

Figure 12. 3D model of a car and its environment acquired by sensors in rviz 21

Figure 13. ApproximateTime sync with jitter [5] .. 23

Figure 14. ApproximateTime sync with different frequencies [5] ... 23

Figure 15. Trade-off between the characteristics of the used sensors ... 24

Figure 16. Velodyne VLP-32C (left) and 2x DFK33UX252 (right) .. 25

Figure 17. Range and FOV of the developed perception systems ... 25

Figure 18. NVIDIA Jetson TX2 (left) Cincoze DX-1000 (right) ... 26

Figure 19. Envelope to mount sensors ... 26

Figure 20. Stereo camera and LiDAR supports ... 26

Figure 21. Connection diagram inside the PU box ... 27

Figure 22. Perception block diagram .. 28

Figure 23. Stereo pipeline diagram .. 29

Figure 24. Barrel distortion (left) and pincushion distortion (right) .. 30

Figure 25. Extrinsic transform between left and right imagers ... 30
Figure 26. Reprojection error as the distance between the detected and reprojected points 31

Figure 27. Image rectification. Epipolar lines are horizontal on the rectified plane [8] 31

Figure 28. Free-running cameras timestamps .. 32

Figure 29. Hardware triggered cameras timestamps .. 32

Figure 30. Inverse mapping to obtain the lookup table [13] .. 33

Figure 31. Epipolar lines in a pair of rectified images ... 33

Figure 32. Colour and physical characteristics of the cones ... 34

Figure 33. First training of the neural network .. 34

Figure 34. 2D-3D correspondences of a face filter to insert an augmented 3D object 35

Figure 35. Bounding box propagation scheme (left) and feature matching (right) 35

Figure 36. Processing of the LiDAR and Stereo point clouds .. 37

Figure 37. Sensor fusion ROS diagram ... 38

Figure 38. Sensor fusion: project the point cloud to the image plane and detection using the

CNN ... 39

Figure 39. Estimated cone positions in comparison to the ground truth (left) and estimated

distance boxplot (right) .. 40

Figure 40. Theoretical vs empirical RMSE .. 41

9

Figure 41. Timings of the stereo pipeline.. 41

Figure 42.Two different setups of Stereo and LiDAR point clouds superimposed 42

Figure 43. Estimated cone positions vs ground truth (left). Sensor fusion distance estimation

statistics (right) .. 43

Figure 44. Track limits and path planning using the sensor fusion ... 43

10

List of Tables:
Each table in the thesis must be listed in the “List of Tables” and each must be given a page

number for its easy location.

Table 1. Milestones ... 15

Table 2. Budget ... 44

11

1 INTRODUCTION

1.1. FORMULA STUDENT: DRIVERLESS UPC

1.1.1. The competition
The purpose of this project emerges from the Formula Student Driverless challenge [1], an

engineering competition that gathers teams of students from all around the world to compete

in a series of events or tests. The overall goal of the teams is to design and build an autonomous

race car that is able to overcome all the challenges that this competition entails.

The events that this competition include are divided into two groups: the static and the

dynamic events. The three static events consist on Business Plan, Cost and Manufacturing and

Engineering Design, which are documents and presentations related to marketing, finances

and the overall design choices of the vehicle. These events represent roughly half of the

competition points. The dynamic events, however, focus on testing and putting to the limit the

abilities of the car itself. Each event is designed to take into account different features of the

vehicle, such as the acceleration, the behaviour in closed curves, the endurance, etc. However,

the most demanding dynamic events are the Trackdrive, which consists in completing 10 laps

in a closed circuit, from which the car doesn’t have any previous knowledge, within the

shortest time possible, and the Autocross, which consists in completing a single lap in the same

circuit with the same rules.

The combination of these two types of events grant that, as the FSG says, “The competition is

not won solely by the team with the fastest car, but rather by the team with the best overall

package of construction, performance, and financial and sales planning”.

The driverless dynamic events are based on a controlled environment. This means that the

track that the car needs to follow is marked with differently coloured cones, blue on the left

and yellow on the right. This helps the cars to determine the trajectory that needs to be

followed, as can be seen in Figure 2.

Figure 1. Dynamic and static events

12

Figure 2.Using the cone colour to plan the trajectory

1.1.2. The team
The Driverless UPC team was born as a part of ETSEIB Motorsport, a team that has been

competing in the Formula Student Electric competition for 8 years. Driverless UPC is

participating for the first time in the Formula Student Driverless with its new prototype: the

CAT12d. This vehicle was built using the body and dynamics of the CAT10e and the electronics

and power train of the CAT11e, which were the former electric prototypes developed by

ETSEIB Motorsport, while designing and implementing the autonomous system and all the

needed adaptations and modifications to the already existing parts.

The team is organized in sections, which are Perception (PER), Estimation and Control (E&C)

and Hardware (HW). These are organised to build the autonomous system of the car and also

its adaptation.

Figure 3. 2019 Driverless UPC race car: CAT12d - "Xaloc". The cameras can be seen mounted under the main hoop
and the LiDAR sensor on the front wing

The autonomous system of the vehicle is based on the diagram from Figure 4. The perception

of the vehicle relies on two main sensors, the stereo camera and the LiDAR. These sensors
perceive and locate the cones on the track. Then, the detections are fused to create a virtual

map of the environment, fusing the data from perception, the localization and the speed

information. The following step is the trajectory planning, which defines the path that the car

needs to follow. Once this path is defined, the control algorithms generate and send the

commands to the motors so that they can move according to the planned trajectory.

13

Figure 4. Autonomous design of the CAT12d

1.2. OBJECTIVES
The objectives of this project emerge from the Driverless UPC team objectives. Being a first-

year team, these objectives are mainly focused on reliability and robustness, leaving

performance and optimization as secondary objectives. For that, the main objectives of the

team are getting good results in the static events, and to build a reliable and robust car so that

it is able to finish all the dynamic events.

Regarding the Perception section, the main objective is to provide accurate positions to the

Estimation and Control department. The developed systems must be able to overcome a

sensor failure, having reliable alternatives to grant that the car will be able to run under such

circumstances.

The aim of this work is to develop a stereo camera system that is able to estimate the 3D

position of the detected cones. Also, in parallel, implement an extrinsic calibration algorithm

for the stereo camera and the LiDAR sensor, so that their data can be compared and/or fused.

These systems need to be carefully designed so that the car can complete the most demanding

challenges of the FSD competition: the Trackdrive and the Autocross events. These events are

based on the same layout, a closed loop with the following guidelines:

 Straights: no longer than 80m

 Constant turns: up to 50m diameter

 Hairpin turns: minimum of 9m of outside diameter

 Minimum track width: 3m

 Maximum longitudinal distance between cones: 5m

 Miscellaneous: chicanes, multiple turns, decreasing radius turns, etc.

14

1.3. REQUIREMENTS AND SPECIFICATIONS

1.3.1. Requirements
The requirements for the stereo and the sensor fusion systems are the following:

 The pipelines need to be able to run in real-time, allowing the same thing for all the
algorithms and processes that come after them: from the path planning to the control

of the motors.

 There is a need for a good colour and distance estimation, to provide a good base for
the Estimation and Control department.

 All the developed algorithms need to be in consonance with the requirements of the

HW and the E&C department. This includes the characteristics of the data that is being

transmitted, the transmission of the data itself, the operating characteristics of the

sensors, etc.

 The setup needs to be resilient to vibrations, to withstand the conditions in which the
vehicle needs to operate and not sacrifice accuracy for that.

1.3.2. Specifications
The specifications of the systems are described in this section.

 The range of the detections is specified by the E&C department. The algorithm that
finds the track limits and the trajectory planning need, at least, three pairs of cones to

obtain a good enough estimation of the track layout. This distance will vary depending

on the track but, in the worst case, three cones with a separation of 5m results in a

range of 15m.

 The horizontal field of view of the system should allow the vehicle to see enough cones
in a closed curve.

 The error in the positions of the cones should be comparable to the error in depth of a
commercial stereo camera, which can be modelled with an exponential curve

depending on the depth.

 The maximum processing time of the perception pipeline, besides from working “in
real-time”, is specified by the frequencies from the other devices and systems on the

vehicle. The most limiting ones are the frequency of the LiDAR (10Hz) and the working

frequency of the kinematic control of the vehicle, which can operate at 10Hz but

lowering the frequency significantly lowers the maximum speed of the car. That means

that the output frequency of the perception systems needs to be equal or higher than

10Hz.

 In fulfilment of the requirement of accuracy, the calibration phases of both sensors

needs to be as accurate as possible. That means, at least, sub-pixel accuracy. That is

because small errors in pixels can have great impact at long distances.

 The supports for the sensors need to be resilient to vibrations as they are the most
susceptible to be affected by them, as the extrinsic calibrations highly depend on that.

1.4. METHODS AND PROCEDURES
This project, as stated before, is a part of the development of a greater project in the context

of the Driverless UPC competing in the Formula Student Driverless competition. All the

15

contributions made by other team members and, to a bigger extent, by the members of the

Perception department will be clearly stated in this section. Moreover, some parts of this

project were developed by the Author in the context of the PAE subject, and are also clearly

stated in the next paragraphs.

The CAD design of the cameras’ casing, appearing in section 4.1.3 was conceived in

collaboration with the Hardware department.

The convolutional neural network briefly explained in section 4.3.5 was developed by R.

Aylagas, member of the Perception department as a part of his Final Degree Thesis.

The point cloud projection explained in the section 4.4.3 of the sensor fusion pipeline was

developed by A. Roche, member of the Perception department as a part of his Final Degree
Thesis, along with the whole LiDAR pipeline.

Finally, the first steps with the stereo calibration in MATLAB, and a simple and undeveloped

stereo matching algorithm were part of the PAE project of the Author, along with a preliminary

cone detection algorithm that went unused and substituted by the CNN in 4.3.5.

1.5. WORK PLAN
The final work plan for this project can be seen in Figure 5. This work plan does not present

any major changes in relation to the original work plan presented in the Proposal & Work Plan

document of this thesis.

WP Short title Milestone Date
2 Full pipeline test Visualization tool and LiDAR + Stereo

algorithms
28/02/2019

3 Data acquisition Camera driver ready 11/03/2019
4 Sensor fusion Calibration software ready 16/04/2019
4 Car fully mounted All the software systems ready 01/05/2019

Table 1. Milestones

Regarding the milestones, the first one was not accomplished, as it might have been too

ambitious. Due to delays in the E&C and PER departments, the full pipeline test was delayed

until May. However, internally in the perception department, the visualization of the LiDAR

detections could be tested. The second and third milestones were indeed accomplished, in

contrast to the fourth, which was delayed until June.

The biggest deviation from the work plan, besides the delays, was that the first one included

the development of a neural network or a deep learning approach for the stereo matching

algorithm, which didn’t end up being developed. This is further detailed in section 4.3.6.

16

Figure 5. Final work plan

17

2 STATE OF THE ART

2.1. FORMULA STUDENT

2.1.1. Introduction to FSD
The Formula Student Driverless challenge started in 2017 and, since then, many teams have

taken the autonomous driving challenge.

Each team can have very different approaches to design and implement their autonomous

system. To start with, teams may choose from a wide variety of sensors. Most teams include

some type of camera; either mono or stereo, many of the teams use LiDAR sensors and some

of them even rely on RADAR. More importantly, the second part is to develop data processing

algorithms that can reliably and accurately provide the positions of the cones that delimit the

track, while also taking into account that these algorithms must be able to run in real time, be

robust to failures, etc.

Two interesting approaches are the ones from Zurich ETH (AMZ Racing) and from Munich TU

(Tufast Racing). These will be explained in the following sections.

2.1.2. AMZ Racing
AMZ Racing has been the winning team of the past two editions. Their car features a sensor

layout formed by three cameras (two of them working as a stereo pair and one of them as a

mono) and a LiDAR. The data that these sensors provide is processed in three different

pipelines, mono, stereo and LiDAR, providing a lot of redundancy but also the same amount of

robustness in the case that one of these pipelines were to fail.

Figure 6. Vision from the perspective of “gotthard” 2018 AMZ Racing car [2]

The LiDAR pipeline is processed in three different steps. These are the pre-processing, the

cone detection and the colour estimation. In the first step, the LiDAR scans are accumulated

by using their velocity estimation of the vehicle. This process removes the artefacts that can

occur in the point cloud when the vehicle is moving fast. Then the FOV is filtered to roughly

180 degrees and the ground is removed. This step leaves a filtered point cloud that allows the

use of a simple clustering algorithm to detect the cones in the second step. Finally, each cluster
is classified according to the cone colour using a colour estimation based on the infrared

intensity perceived by the LiDAR.

The Stereo pipeline uses the state-of-the-art YOLOv2 [3] CNN to detect the cones in the images.

This neural network can detect objects with a very good localization accuracy and a low

misclassification rate, while running in real time. Then, with the knowledge of some cone

18

priors (size, width of the strip in the middle, etc.), the 3D pose of each detection is estimated

by using a 2D-3D correspondence algorithm. This 3D pose is used to extrapolate the detection

from one image to the other and then use keypoint extraction and matching to obtain the final

position estimations for the cones.

Finally, the Mono pipeline uses the same structure as the Stereo pipeline, but uses the 3D pose

estimation as the final position for the cone. This would cause no improvement in relation to

the Stereo pipeline if it weren’t for the mono camera optics that allows the mono pipeline to

see much further than the stereo pipeline, as can be seen in Figure 7.

Figure 7. Viewpoint from the left stereo camera (left) compared to the central mono camera (right)

2.1.3. TUfast Racing
The team from Munich has achieved considerably good results in the last competitions (top 6)

and they are distinguished by their simple yet effective approach.

The perception of their vehicle is based on a single monocular camera. The first step of their

pipeline is the CNN cone detection, for which they also use the YOLOv2 convolutional neural

network. Once the detections are done, the distance at which the cone is in relation to the car

can be estimated by using the cones’ height, as can be seen in Figure 8.

Figure 8. Triangulation of the distance based on the cone height

The simplicity of this approach is translated into a very low computational load, allowing the

system to be running at a high frame rate. This fact is exploit by the data association

algorithm, which fuses the multiple instances of each cone provided by the perception

system based on a GMM or Gaussian Mixture Model for each cone.

19

Figure 9. Data association based on GMM

20

3 METHODOLOGY

3.1. SOFTWARE ARCHITECTURE

3.1.1. Introduction to ROS: basic architecture
Robot Operating System [4], or ROS for short, is a set of software libraries and tools that are

aimed to build robot applications. It is widely used in research and in the robotics industry,

mainly because it integrates many state of the art algorithms and very powerful developer

tools. Also, it is open source.

ROS bases its distributed architecture in different programs or nodes that normally

communicate to each other using TCP/IP protocol. The information transmitted is organised

in topics, which define the type of message that the nodes send or receive when they publish

or subscribe to a certain topic. For example, the node for a camera driver publishes the

obtained images at the topic /camera/image_raw and another node can subscribe to this topic

and then publish some extracted features about the images.

These nodes can communicate thanks to the ROS Master node, which provides naming and

registration services to the rest of the nodes in the ROS system. Following with the previous

example, the camera driver advertises that it wants to publish to the topic. Then, the other

node communicates with the Master to subscribe to that same topic. Then, a peer to peer

connection is established between these two nodes to send and receive the messages.

Figure 10. ROS structure example

This manner of working provides a lot of versatility, as the nodes can be physically running in

different computers. This allows to split the computational charge between multiple

computing units, providing they are connected through Ethernet or a wireless connection.

3.1.2. Rosbag: record and playback
Rosbag is a developing tool that allows the user to record all the messages that are sent during

a certain duration. All the recorded messages are saved into a .bag file and can later be

replayed, in the same chronological order that they were recorded.

This tool is very useful because the recorded data can be used to test different

implementations and algorithms far away from the full setup, although the timing might not

be the most precise because, as stated above, the messages are played back on the timestamp

that they were recorded, not the timestamp they were sent.

21

Also, the rqt_bag tool can be used to play the messages with a user-friendly GUI that shows a

time line with the messages, thumbnails for the image topics and also can be used to visualize

raw data, along with a series of buttons to control the time.

Figure 11.Timeline of rosbag shown on rqt_bag

3.1.3. Rviz: powerful visualization
Rviz is the ROS visualizer. It can visualize the most important ROS topics in real time, which

can be especially useful when dealing with data types such as images or point clouds.

Moreover, customized 3D markers can be added in order to visualize the computed

trajectories of a trajectory planner or the detected objects in a point cloud, for example.

Rviz integrates a main screen that represents the 3D space and can display topics such as point

clouds, positions, markers, etc. Moreover, if these topics have different systems of coordinates,

Rviz can display them in the same system if the user provides a TF that relates each system of

coordinates. This helps preserve the modularity of each node, while providing a fundamental

tool for integration and visualization.

Also, image topics can be added in separate secondary displays.

Figure 12. 3D model of a car and its environment acquired by sensors in rviz

22

3.1.4. Nodelets: zero-copy transport
The same characteristics that give ROS a lot of versatility cause an important drawback when

transmitting large amounts of data. The fact that all the data is transmitted using TCP sockets

can cause the network to saturate, even using only one computer. For small packets of data

that don’t represent a big amount of traffic, such as the torque and rpm that need to be applied

to a motor, this doesn’t present a big issue. However, when working with images and point

clouds, major delays can occur and finally cause the application to crash.

There exist two different approaches to tackle this problem.

The first one is the Image Transport. In the case of images, this class can be used to compress

the image stream in two ways, either compressing each individual image (using JPEG or PNG)

or turning the images into a video stream with the Theora codec. The first causes less delay

but achieves a worse compression ratio, whereas the second one provides better compression

but a lot more delay.

The other option are Nodelets. These are a generalization of the typical ROS nodes. They are

designed to provide a way to run multiple algorithms in the same process with zero-copy

transport between them in the same computer. These nodelets need to be contained in one

single process - the nodelet manager - that will run them in a shared memory environment, in

order to communicate through boost shared pointers.

To do this, nodelets allow dynamic loading of classes into the same nodelet manager, while

providing simple separate namespaces such that the nodelet acts like a separate node, despite

being in the same process. Moreover, these are dynamically loaded at runtime by using the

pluginlib library that can open other libraries containing exported classes at any point without

the application having any prior awareness of the library or the header file containing the class

definition.

This represents two clear advantages in comparison to the regular nodes: using zero-copy

transport does not contribute to the saturation of the network and also there is no need to

serialize, pack and send the data, eliminating the delay that these processes cause.

3.1.5. Message filters: synchronization between topics
Usually, when working with different sensors or many different topics, a synchronization

point needs to exist. For example, a node that computes the disparity between two images

from two different cameras will need to start when both images arrive, possibly with two

slightly different timestamps.

The ROS Message Filters library provides a system of buffers that store a number of messages

of a specified topic in a queue. Then, given a type of filter, the messages are forwarded or

discarded.

The most used filters are the Synchronization Filters. These type of filters need a sync policy

that determines how the messages need to be synchronized, which can be either exact or

approximate. The ExactTime policy waits for messages that have exactly the same timestamp,

down to the nanoseconds, while the ApproximateTime policy uses an iterative algorithm to

synchronize the messages, assuming they can have different timestamps. This last policy can

be used, for example, to synchronize topics with delays, jitters, different frequencies, etc.

23

Figure 13. ApproximateTime sync with jitter [5]

Figure 14. ApproximateTime sync with different frequencies [5]

3.1.6. OpenCV: optimized computer vision
OpenCV is an open source computer vision and machine learning software library. It includes

more than 2500 optimized algorithms, ranging from classical computer vision to state of the

art machine learning algorithms. It is written in C/C++ and it is supported and used by some

ROS libraries. All these characteristics make it a fundamental tool for the project, specially for

the camera calibration and 3D reconstruction [6] algorithms that it provides.

3.1.7. PCL: cutting edge point cloud processing
The Point Cloud Library [7] is an open source point cloud processing library. It is the

equivalent to OpenCV when talking about point clouds. Even though it is not as developed as

OpenCV, it shows great potential and it is already being used in research and in the industry.

Moreover, ROS uses PCL for most of the visualization that rviz provides, and also in many of

its libraries.

24

4 DEVELOPMENT

4.1. PHYSICAL SETUP

4.1.1. Sensors used
The perception of the vehicle is built upon two main sensors, a LiDAR and a stereo camera.

These sensors have some weaknesses and strengths and their combination offers a good

trade-off.

Figure 15. Trade-off between the characteristics of the used sensors

The main strengths to exploit of the camera sensors are their resolution, affordable cost,

colour and contrast. Also, the strongest point is the already existing literature on image

processing, detection and classification in comparison to the LiDAR point cloud processing,

which is still not as developed. In contrast, LiDAR sensors have great distance estimation, low

sensitivity to light conditions and range, making them very good and robust choices for the

sensor layout of the autonomous vehicle.

The used LiDAR is a Velodyne VLP-32C. It is widely used due to its excellent specifications. It

has a range of 200 meters and an excellent field of view of 360º horizontally and 40º vertically,

which is the angle that the sensor is able to perceive. This is significantly useful in closed

curves, in which the system is able to detect most of the cones in the curve to obtain a proper

mapping and trajectory. The LiDAR allows spinning frequencies from 5 to 20 Hz. Also, the

point cloud is divided in 32 layers that, in this case, correspond to the number of rotating lasers

that scan the environment. The working frequency affects the resolution these layers provide,

for example, at 10 Hz a point cloud has around 30.000 points and at 20Hz it can be ten times

this size. This is a relevant constraint because the processing unit must be able to process all

the data, which is transmitted via 100Mbps Ethernet using UDP packages.

The stereo vision system incorporates two independent colour cameras that are used as a

stereo pair. The chosen cameras are two DFK33UX252 from The Imaging Source. They have a

global shutter, meaning that the sensor is exposed to light all at once, avoiding the rolling

shutter effect that appears in high speed applications. This model also allows the hardware

trigger, meaning that the images taken from the camera are shot by using an external electrical

signal, allowing a master device to control all the cameras to shoot at once. The resolution goes

25

from 640x480 to 2048x1536 pixels, and the framerate is limited by the available bandwidth

of the USB 3.0 interface that the cameras use.

Figure 16. Velodyne VLP-32C (left) and 2x DFK33UX252 (right)

The lenses used are two 5MP low distortion board lenses with a format of 1/2 inches and a

focal length of 3.4 mm. The parameters of these lenses are designed to acquire field of view of

96° vertically and 113° horizontally. This FOV, however, is then reduced because of the stereo

configuration, depending on the baseline of the cameras and the resolution used. At a

resolution of 640x480, for example, the vertical and horizontal FOVs are 76.5° and 89.2°

respectively.

Finally the maximum range of the sensors, taking into account the size of the targets to detect

and the stereo parameters of the developed setup is summed up by the following figure.

Figure 17. Range and FOV of the developed perception systems

4.1.2. Processing units
It is important that the processing units are powerful enough to process the data from the

sensors and run all the algorithms involving the perception and control of the vehicle at a high

computing speed. For some computer vision algorithms, such as neural networks, GPU

processing is much faster than CPU. For that reason, a NVIDIA Jetson TX2 is used to carry out

these calculations, as it has a 256 core graphical processing unit and 8GB of RAM memory.

With that, it can run the inference of a neural network at around 30 fps (depending on the size

and architecture).

26

For other perception algorithms, such as the LiDAR pipeline, as well as all the Estimation and

Control algorithms, a rugged device with an Intel i7 processor and 16GB of RAM (Cincoze DX-

1000) is used. These two computing units are interconnected via Ethernet through a switch

and enclosed in a box that is resistant to dust and water.

Figure 18. NVIDIA Jetson TX2 (left) Cincoze DX-1000 (right)

4.1.3. Support and casing
The cameras should have a good perspective of the cones, that’s why they are placed on the

main hoop of the vehicle. In this part of the vehicle, the FSG rules highly regulate the

positioning of sensors. All sensors have to be mounted within the rollover envelope, and in a

maximum distance of 500 mm above the ground and less than 700 mm forward of the front of

the front tires, as can be seen in Figure 19.

The support for the cameras consists of an aluminium plate that contributes to the cooling of

the cameras, that is supported by two 3D printed braces that are held onto the main hoop.

Also, two 3D printed covers for the cameras with a methacrylate front part that allows proper

visibility.

Regarding the LiDAR support, it is mounted on the front wing with an aluminium support,

fabricated with laser cut and welded together.

Figure 19. Envelope to mount sensors

Figure 20. Stereo camera and LiDAR supports

27

All The processing units are enclosed in a box that is mounted behind the main hoop. These

are interconnected by an Ethernet switch. The Ethernet connection between the two

computers is mandatory for the ROS distributed architecture, so that both can share topics

and services. The switch is useful because it can either be connected directly to a third PC for

configuration or can be plugged into a wireless router to do it at longer distances. The

connection diagram can be seen in Figure 21.

Figure 21. Connection diagram inside the PU box

28

4.2. PERCEPTION SYSTEMS
The perception of the vehicle consists on the following diagram. This system processes the

data from the two types of sensors in three different streams, the LiDAR pipeline, the Stereo

pipeline and the Sensor Fusion pipeline. This is done in this way due the requirement of

robustness, as different approaches can tackle the weaknesses of the others.

In the best case scenario, the Sensor fusion pipeline can be the most accurate of the three, but

in the case of a sensor failure, harsh weather conditions or other complicated scenarios, it may

be better to run different approaches.

Moreover, these pipelines are designed to be able to be run in parallel, so that the detections

provided can be compared between each other.

Figure 22. Perception block diagram

4.3. STEREO PIPELINE

4.3.1. Introduction
In this section, an in-depth exploration on the Stereo pipeline will be made. All the nodelets,

their connections and the internal steps will be explained, in addition to their purpose and

why many of the design choices were made. But first, a brief overview of the system will be

done.

29

Figure 23. Stereo pipeline diagram

To start with, both cameras need to be calibrated. Knowing well their intrinsic and extrinsic

parameters is a fundamental step for many of the following algorithms. That’s why there is a

first offline phase in which these parameters are carefully obtained.

To begin with the online phase, a self-developed ROS camera driver is used to capture the

images and introduce them in the ROS environment. Each camera has its own instance of this

driver and they publish images asynchronously. To obtain synchronous image pairs, an

ApproximateTime synchronizer is used. This program also cancels out the distortion caused

by the lens and rectifies the images, meaning that they are projected onto the same plane.

Then, a convolutional neural network is applied on the rectified images from the left camera,

resulting in the detection of cones and its colour. Then, the intrinsic and extrinsic parameters

of the stereo camera, as well as the previous knowledge about the cones' size, are used in order

to obtain an estimated detection on the right camera image.

As the neural network is the bottleneck of this pipeline, this approach is less time consuming

than running the neural network cone detection on both left and right camera images.

Moreover, the bounding box propagation to the right image provides a coarse estimation of

the 3D position of the cones, which is later used as a backup if the stereo distance calculation

could not be obtained.

Once the same detection on the two images is obtained, a local feature matching algorithm is

applied, along with a triangulation. This final step estimates the final position of the cones. In

case no successful matches were to be found, the previous coarse position estimation is used.

4.3.2. Camera calibration
The camera calibration stage is fundamental for all the stereo computations, and also to

correct the lens distortion and to allow a better detection for the neural network. This stage is

performed offline, and the information obtained is stored to be used in the online phase.

The objective is to characterise the camera using a pinhole model. This model uses the focal

length 𝑓, the spatial sampling frequencies [𝑠𝑥 , 𝑠𝑦]and the principal point of the camera (the

image centre) [𝑐𝑥 , 𝑐𝑦]. These parameters in the configuration of the intrinsic matrix, usually

referred as 𝐾, are an approximation of how the points in 3D space are projected onto the

30

image. So, being [𝑥, 𝑦] the pixel coordinates, 𝜆 a scaling parameter and [𝑋, 𝑌, 𝑍] the 3D world

coordinates, the following formula is obtained.

Equation 1. Intrinsic camera matrix formula

More complexity can be added to the model, by using the distortion coefficients 𝑘𝑐 that model

the distortion that is added by the lens. This model takes into account the two most common

types of circular distortion, barrel or pincushion.

Figure 24. Barrel distortion (left) and pincushion distortion (right)

These kinds of distortion can be distinguished by using a checkerboard pattern as shown in

the image above. Also, the alternating colour of the squares is used to detect corners and,

therefore, they can be used to estimate the intrinsic parameters of the camera, as their real

size is known.

Once the intrinsic parameters of both cameras have been obtained, some more parameters

have to be computed for the stereo camera setup. These are the relationships between their

optical centres and their relative rotation, modelled by the 𝑇 and 𝑅 vectors.

Figure 25. Extrinsic transform between left and right imagers

For the calibration process, the MATLAB stereo calibration tool is used. Based on around 20

pairs of synchronized images of a checkerboard pattern, this tool computes the intrinsic and

extrinsic parameters of the stereo camera that optimize the reprojection error, which is the

error between the actual detected corner points of the checkerboard pattern and the ones that

31

are projected again after the 3D estimation, by using the parameters and the Equation 1. The

reprojection error is depicted in Figure 26.

Figure 26. Reprojection error as the distance between the detected and reprojected points

Finally, these parameters are now used for the image rectification. The goal is to apply a

projective transform to both images so that they are onto the same plane. This means that the

epipolar lines are horizontal, and the projections of any point in space share the same y-

coordinate on both images. This fact is widely exploit among many stereo processing

algorithms to reduce searching areas, make calculations simpler, etc.

Figure 27. Image rectification. Epipolar lines are horizontal on the rectified plane [8]

4.3.3. Image acquisition and trigger
The first step of the pipeline is the image acquisition. The aim of this stage is to get the images

from the camera and then introduce them into the ROS framework. Also, an important

requirement for the stereo image processing is that the cameras need to be synchronized. In

consonance with these requirements, a self-made driver was developed in order to ensure
their fulfilment, as the already available tools didn’t.

The driver uses the well-known GStreamer library [9] to obtain the images and the open

source tiscamera SDK [10], developed by the manufacturer of the cameras, to communicate

with their devices and set their properties or adjust their parameters.

First, the GStreamer pipeline is started, along with the ROS publishers to provide the images

to the other nodelets. Then, a time rectification is applied between the ROS and the GStreamer

timestamps. For the synchronization, it is a better option to use the GStreamer timestamps as

32

they come from a lower level and are less subject to possible delays, but these timestamps are

relative, as they start when the GStreamer pipeline is opened. After the time rectification, the

images have the more precise GStreamer timestamp but in relation to the Unix Time [11], that

is used by ROS.

Then, for the triggering of the cameras there are two possible approaches: a hardware trigger

that makes the two cameras shoot at once or a more passive approach that lets the cameras

send their frames independently at a constant rate.

The first approach is better in terms of synchronization because it is guaranteed that the two

frames that are closest in timestamp are shot at the same moment, whereas the second one is

subject to an error in time of half the period of acquisition in the worst case, which can lead to

significant effects depending on the speed of the vehicle. For example, at 15 m/s and 30 fps,

the error is 𝑒𝑝 =
1

2∗30
𝑠 ∗ 15𝑚/𝑠 = 0.25 𝑚 which is unacceptable, but can work in steady

conditions for testing.

The hardware trigger normally requires an external source to give a signal to both cameras at

the same time at a determined rate. However, in this case, both cameras have GPIO pins that

can be configured in a master-slave configuration. One camera will trigger at a constant frame

rate, for example at 15fps (master), while the other (slave) will trigger when it receives the

trigger signal from the master. In this way, the delay between both cameras’ triggers is

minimized, allowing a better synchronization.

Figure 28. Free-running cameras timestamps

Figure 29. Hardware triggered cameras timestamps

4.3.4. Synchronization and rectification
Once both camera drivers are publishing the images, there is a need for synchronism as the

following nodelets require a pair of images as input topic and they may have slightly different

timestamps. For this purpose, the synchronization and rectification nodelet uses an

ApproximateTime synchronizer. Then, the timestamp of both images is set to the mean value
between them. This is done because all the following nodelets will use an ExactTime

synchronizer. The use of ExactTime instead of ApproximateTime is preferred because the

exact produces less delay than the approximate, as it doesn’t have to use an iterative algorithm

to find the image pairs. Moreover, setting the same timestamp to both images will grant that

the same pair of images is chosen at the input of the following nodelets.

The next step is the rectification and lens correction. As these operations involve many matrix

products, they are computationally expensive. A common practice is to use precomputed look

up tables. These tables are transformations that map the pixels in the original image and the

rectified and undistorted image. The use of this method substitutes floating point operations

for individual pixel mappings that make the computations way faster. Moreover, an

implementation of this inverse mapping is available in the OpenCV 3D Geometry and Stereo

Vision chapter [12].

33

Figure 30. Inverse mapping to obtain the lookup table [13]

Once the images have been paired up and then rectified and undistorted, they are published

using the Image Transport library. In this step, the rectification of the images can be checked

by tracing epipolar lines, as it can be seen in Figure 31.

Figure 31. Epipolar lines in a pair of rectified images

4.3.5. CNN Cone detection
The next step in the pipeline is the cone detection that uses a convolutional neural network

developed by R. Aylagas. This network is trained to detect four different classes which

correspond to the four types of cones that need to be identified and localised, in Figure 32.

This method for the detection was chosen according to the conclusions of the work developed

in the PAE final project, in which a first simple contour-based cone detection approach was

developed and tested. The need for a detection that is reliable, fast and resilient to weather

conditions supposed that a CNN-based detection needed to be used.

34

Figure 32. Colour and physical characteristics of the cones

This network was trained using an open source dataset [14] of around 18000 images of cones

that was developed by FSD teams. More than 800 of these images were shot by the Driverless

UPC team, using the cameras that will be in the car and then they were manually labelled.

Figure 33. First training of the neural network

The implementation of this neural network is done in Python, which provides a very easy way

to interact with both the GPU and the CPU of the Jetson TX2. This allows the use of a multi-

threaded approach to the neural network, doing a very interesting use of the available

resources to obtain an inference rate of around 30 fps. The downside of this detection is that

Nodelets aren’t available in ROS python. In the absence of Nodelets, for the communication to

this node, the Image Transport library (detailed in section 3.1.4) is used. The left images, which

are the ones that this node uses for the detection, are transmitted through the Jetson TX2

network interface, but are compressed to ensure that no network saturation is produced.

4.3.6. Stereo processing
The final algorithm of the pipeline is the stereo processing itself. It takes as input a

synchronized pair of images and an array structure that contains the detections made by the

neural network.

The first step is the bounding box propagation. This means using the previous knowledge

about the cones’ size to obtain an estimate of the detections on the right camera image.

This part of the system works very similarly on how the Instagram face filters do, in which

some keypoints are extracted from the face and knowing their relative position, these

35

keypoints can be extrapolated to a 3D model and estimate the tridimensional position of the

face in relation to the camera.

For example, the most common keypoints are the eyes, nose, lips and chin. Once these are

found, the next step is to match these 2D positions in pixels to the average 3D position of these

features in real people.

Figure 34. 2D-3D correspondences of a face filter to insert an augmented 3D object

This step is normally done by neural networks that learn features about the target and then

reproduce them in new instances of that same target. At the start of this project this was

intended to be done in this way but due to the occupation created by the CNN cone detection

on the Jetson TX2 GPU, this approach was discarded and a much simpler yet effective approach

was found.

Instead of regressing some keypoints from the cones, the bounding box corners provided by

the detection are used. The received bounding boxes from the neural network are assumed to

have approximately the horizontal and vertical dimensions of the cones. This allows the 2D-

3D EPnP algorithm [15] to estimate the position of a cone by matching the corners of the

bounding box to its 3D model with its real dimensions (228 mm x 325 mm for the small ones

and 285 mm x 505 mm for the big ones).

Figure 35. Bounding box propagation scheme (left) and feature matching (right)

The algorithm used, the Efficient Perspective n Point, is a very fast solution to the PnP problem,

providing a rough approximation for the position. However, the goal here is not to be accurate,

but to quickly extend the neural network detection from one image to the other. This is now

done by projecting the 3D bounding box approximation to the right camera, using the stereo

camera parameters. With this propagation, a local feature extraction and matching can be

performed. That is, using feature extraction on both bounding boxes and a KNN matching

algorithm to establish pairs of points. These pairs of points are restricted to be on a range of

+/- 5px vertically, as they are assumed to trace epipolar lines, due to the rectification of the

36

images. Finally, those points are triangulated and their centroid is estimated to provide the

final and precise estimation.

In some cases, it can occur that no good matches are found on the image. This is solved by

using the first rough estimate of the position that was used to propagate the bounding box.

This step provides robustness to the algorithm, that is be able to function on all the cases that

no matches are found but more importantly it can operate with only one camera, in the event

that one of the available cameras were to fail.

4.4. SENSOR FUSION

4.4.1. Introduction
The aim of the sensor fusion system is to combine information of both sensors, cameras and

LiDAR, to obtain a more reliable estimation of the cones on the track. The CNN cone detection

of the camera pipeline has a much better accuracy in comparison to the point cloud processing

algorithms that the LiDAR pipeline uses. However, the positions obtained using the stereo

camera are susceptible to the sub-pixel calibration errors, which can have an effect of meters

at long distances. These characteristics of the systems can be fused together to increase the

results.

The need to combine information from both sensors is also important because the information

that each independent pipeline provides is relative to its own coordinates system and,

therefore, a common coordinates system can be used to express the positions of all the

detected cones. This system can then be used by the Estimation and Control department to

obtain an approximate map of the environment.

The registration between the sensors can be expressed as the relative transformation between

their coordinates axes of the type:),,,,,(zyxcl ttt , which are the translations along each

Cartesian axis and the three angles of rotation. This is a difficult to obtain transformation, as

the optical centre of the stereo camera is not a physical point on the device, neither are their

axis. This coordinate system emerges from the camera model, which is something abstract.

Similarly, the LiDAR approximation of the optical centre and its axes provided by the

manufacturer is not precise enough to obtain the transformation.

To solve this problem, both devices need to be set in a fixed relative position. Then, similarly

on how the camera calibration works, a calibration pattern can be used to obtain a mapping

between the points detected from one sensor to the other. However, for this specific

calibration problem there is no “standard” pattern to use. There exist many different ways to

obtain this registration such as checkerboard or circle patterns. However, the final decision

was to use the pattern proposed by C. Guindel et al [16], which is a flat board with four circular

holes.

Once the calibration is solved, the obtained registration can be used to project the LiDAR point

cloud onto the left camera plane. Then, the points that fall into a bounding box in the image

are treated like a cluster, not only with a very reliable detection provided by the neural

network, but also knowing its colour and maintaining the good position estimates provided

by the LiDAR sensor.

37

4.4.2. Calibration
As stated above, the calibration stage uses the set-up proposed by C. Guindel et al [16]. To

calibrate a stereo camera and a LiDAR sensor. These two sensors need to generate a point

cloud so that the detected features from the calibration target can be identified on both

sensors and obtain a proper transformation.

The process starts with the point cloud generation. For the LiDAR this step is automatic, as the

output from the sensor itself is already a set of points with XYZ coordinates. For the stereo

camera, however, this requires some previous steps. Like in all other stereo processing

algorithms, the intrinsic and extrinsic parameters of the cameras need to be known. Then, the

image pairs are rectified and processed by using the semi-global matching algorithm (SGM)

[17]. This approach is similar to the block matching algorithm, but instead of naively looking

for matches, this method imposes a pixel-wise cost function that helps to find the best match,

in combination with a continuity constraint that penalizes abrupt changes in the disparity.

Once both point clouds have been obtained, the next step is to filter them. Both point clouds
are filtered by range according to the approximate distance at which the pattern is placed to

eliminate the points that don’t belong to the pattern. Then, a plane RANSAC is applied to

further discard the outliers and finally, RANSAC is used again to find the final points that may

be part of a circle and obtain its centre. Particularly, the stereo camera also uses the left image

gradient to obtain a better estimation of the borders of the pattern. This whole process can be

seen in Figure 36.

Figure 36. Processing of the LiDAR and Stereo point clouds

After the processing, the obtained centroids are stored in two separate cumulative point

clouds. When there are enough instances, the translation that minimises the Euclidean

distance between the respective centroids is obtained by computing the least-squares solution

of the overdetermined system of 12 equations provided by the registration of the four

reference points. Using this purely translational model as a first step is convenient because it

gives a first approximation of the final transformation function. After that, the final

transformation is obtained by using a rotational and translational algorithm known as

Iterative Closest Points [18].

38

4.4.3. ROS implementation and point cloud projection
The ROS implementation for this part of the pipeline is multi-platform because the

convolutional neural network is running on the NVIDIA Jetson TX2 and all the other

algorithms are running on the Cincoze. This requires that a minimum amount of data is

transmitted. This is solved by only transmitting the detection (the bounding box corners and

the detected class) and the camera parameters to the Cincoze, and, this way, the link between

these two processing units is not saturated. Moreover, both devices need to be have the exact

same time, as the received ROS topics need to have timestamps as accurate as possible to get

synchronized by a Message Filter. For that, NTP packets are used. The diagram for the

implementation in ROS for this pipeline can be seen in Figure 37.

Figure 37. Sensor fusion ROS diagram

Once the extrinsic transform between the sensors has been obtained, the sensor fusion

algorithm can project the filtered point cloud to the image plane and use the bounding boxes

detected by the CNN to determine that a cluster is indeed a cone and extract its colour. In

Figure 38, the CNN detections (bottom left), the projected point cloud (top left) and the full

point cloud with the final detections (right) can be seen. In this case, a slight calibration error

can be appreciated on the top left image. However, the performance of the algorithm is not

compromised, because even if only a few points of a cone are projected inside the bounding

box, as there are a lot more points in comparison to the stereo camera and their position

estimation given by the LiDAR sensor is so precise, the final position for that cone is

determined correctly. This run-time part of the sensor fusion system has been developed by

A. Roche.

39

Figure 38. Sensor fusion: project the point cloud to the image plane and detection using the CNN

40

5 RESULTS

5.1. STEREO PIPELINE RESULTS
The results of the stereo pipeline will be presented in this section. To start, the root mean

squared error in respect to a ground truth of cones will be compared to the theoretical RMSE
based on the parameters of the stereo setup [19].

This test is a setup of cones closely positioned to the camera, ranging from 2 to 5 meters. After

running the stereo algorithm for around 500 iterations, the results are the plotted in Figure

39.

Figure 39. Estimated cone positions in comparison to the ground truth (left) and estimated distance boxplot (right)

The average error for these cones is rather inconsistent. While the blue cones on the left and

the last two yellows show little to no error, the first two yellow cones show a lot of variance in

their position estimate. Moreover, this variance can be seen mainly in the direction of the
projection lines (from the optical centre to the position estimate). This is happening because

of erroneous matches inside the bounding box, which could be mitigated by the use of a

median filter for all the matches found. Also, this errors could be caused because the lenses’

distortion grows at the borders of the images and the model for this distortion does not

provide a precise enough calibration.

Using all the obtained data, the overall root mean squared error is 5,88 cm. However, if the

two first yellow cones are considered to be outliers, the error would be of around 4,48 cm.

This means that the accuracy of the position estimation increases significantly when no

erroneous matches or calibration errors are found, and that these effects are in sight for future

improvements.

The boxplot on the right shows that there is a lot of variability on the distance estimation, due

to the problems mentioned in the paragrahps above. However provided that the mean value

converges to the real position, at 15 frames per second there are enough position estimates so

that the data from the same cone in different frames can be associated.

The theoretical error curve for the stereo camera setup can be seen in Figure 40, along with

the results of this test. With a depth of 5m, the theoretical RMSE is around 12cm. The approach

presented in this work for the stereo camera based position estimation shows less error than

the expected. This could be because of the preliminary knowledge of the cones that is used

41

significantly improves the position estimates in comparison to other approaches such as the

ones that are based on block matching.

Figure 40. Theoretical vs empirical RMSE

Regarding the real-time requirement, the stereo system runs at 10-15 fps, maintaining a delay

of around 70ms on average.

Figure 41. Timings of the stereo pipeline

42

5.2. SENSOR FUSION PIPELINE RESULTS
The sensor fusion pipeline will be tested in several ways. In the first place comparing the two

registered point cloud, then by projecting the point cloud onto the image plane and in the final

place evaluating the performance of the full sensor fusion algorithm in conjunction with the

E&C systems.

To start, a coarse way to evaluate the results is to superimpose both point clouds and compare

the different elements that are in the scene, such as the calibration pattern, in Figure 42.

Figure 42.Two different setups of Stereo and LiDAR point clouds superimposed

Once the calibration stage has been performed, the point cloud projection can be tested, and

the quality of the registration can also be evaluated, as in Figure 38, where the projected point

clouds that represented cones were slightly out of position.

Also, the same test with the same ground truth as for the stereo system was performed. With

eight cones at a known distance, the average RMSE is 3,68cm. This system slightly outperforms

the stereo system when talking about average accuracy and furthermore, in terms of variance

of the estimate it is way better as it can be seen in the boxplot on the right, in Figure 43.

43

Figure 43. Estimated cone positions vs ground truth (left). Sensor fusion distance estimation statistics (right)

In relation to the speed of this algorithm, while it maintains its time of execution under 100ms,

it is limited by the frame rate of the LiDAR sensor which, in this case, is of 10Hz for a full frame.

Finally, in Figure 44, a real test in which the control algorithms computed the track limits,

trajectory planning, etc. All this with real data acquired by using the sensor fusion pipeline.

Figure 44. Track limits and path planning using the sensor fusion

44

6 BUDGET

All the software used in this project is under the BSD open source license. An exception is the
MATLAB software and its calibration tool.

The hours for the involved engineering students are around 27h/week during 24 weeks, with

a wage of 10€/h.

For the TFG tutor, 3h of weekly meetings during 24 weeks with a wage of 30€/h.

Plus all the materials and devices needed, the total budget equals a sum of 29.936,31 €.

However, this is a university project and many companies want to be part of it by providing

material in exchange for a sponsorship. The team has achieved more than 17.000,00 € in

discounts, leaving a final cost of 12.224,50 €.

Table 2. Budget

Concept Qty Cost Real cost Sponsor discount Final cost

The Imaging Source DFK33UX252 Industrial colour camera + board lens + USB3 cable 2 1.200,00 € 2.400,00 € 100% 0,00 €

Velodyne VLP-32C 1 13.000,00 € 13.000,00 € 100% 0,00 €

NVIDIA Jetson TX2 1 350,00 € 350,00 € 33% 234,50 €

Cincoze DX-1000 1 5.000,00 € 5.000,00 € 33% 3.350,00 €

D-Link Ethernet switch 1 46,31 € 46,31 € 100% 0,00 €

MATLAB license / year 1 500,00 € 500,00 € 100% 0,00 €

Junior engineer (648h * 10€/h) 648 10,00 € 6.480,00 € 0% 6.480,00 €

TFG tutor (72h * 30€/h) 72 30,00 € 2.160,00 € 0% 2.160,00 €

TOTAL 29.936,31 € 12.224,50 €

45

7 CONCLUSIONS AND FUTURE DEVELOPMENT:

To sum up, two subsystems for the perception of the Driverless UPC Formula Student car
“Xaloc” have been developed in this project. The overall perception system is designed to fulfil

the requirements of robustness and reliability, having three different ways to simultaneously

provide accurate cone position estimates, while minimizing delays.

In retrospective, the systems that were developed in the context of this project, have been an

excellent way to explore many aspects of the computer vision field: some classical methods

were learnt, such as the pinhole model camera calibration and the keypoint extraction and

matching, but also many state of the art techniques and algorithms were used, like the extrinsic

Stereo-LiDAR calibration, the sensor fusion itself, etc.

In addition, the choice of self-developing a stereo camera instead of opting for a commercial

one gives an added value to this system, because a deeper insight on how these kind of sensors

work has been achieved, besides giving more versatility to the system. Also, the fact of cleverly

using the prior knowledge of the cones’ size to obtain a rough position estimation is a very

notable improvement. In addition to avoiding to run the neural network on both left and right

images and thus optimizing the use of the resources, this method provides robustness to the
algorithm in the case of a possible sensor failure. The results shown in section 5 prove that the

performance of the stereo camera is adequate in terms of accuracy and speed. However, the

system could be improved in many ways as discussed in the results section. For example,

finding ways to reduce the variance of the position estimates, or increasing the range.

In relation to the Sensor Fusion pipeline, the implemented extrinsic calibration system

between Stereo and LiDAR reliably provides the transformation function between them both.

However, a future implementation of a calibration that doesn’t require a stereo point cloud

could be considered, as the accuracy of such point clouds might not be as accurate as other

methods of obtaining the distance. The provided registration of sensors has proven to be

resilient to vibrations, and the slight miscalibrations that can occur in practise while operating

the vehicle are easily corrected manually. When talking about performance, the overall Sensor

Fusion pipeline outperforms the Stereo in terms of accuracy, but it is a bit slower, being able

to run at a maximum of 10Hz.

In this kinds of projects where there is a need to integrate many different algorithms, there
needs to be a way to put them together in the most efficient way possible. In this case, ROS
provided the best way of doing that, thanks to its distributed architecture, standardized
message types, powerful visualization tools, etc. The use this framework resulted in a very fast
and efficient integration between different algorithms in the same department and even when
integrating with the rest of the team. The learning curve of the Robot Operating System might
be steep at first, but it is definitely worth the effort.

While this project finishes here, the Driverless UPC team will keep going on until the season
ends in August 2019, after the Formula Student competitions in which the vehicle will be put
to its ultimate test. The last objective of the project presented here is to grant the continuity of
the Driverless UPC team, accumulating all the knowledge acquired, all the challenges that have
been overcome and also all the mistakes that were made through this first season, to always
keep in mind that “It’s not only about going faster, it’s about getting smarter”.

46

Bibliography:

[1] “FSG,” [Online]. Available: www.formulastudent.de.

[2] A. B. M. P. C. E. M. G. R. S. A. G. M. P. M. B. I. S. R. D. R. S. Nikhil Bharadwaj Gosala,

“Redundant Perception and State Estimation for Reliable Autonomous Racing,”

International Conference on Robotics and Automation, 2019.

[3] A. F. Joseph Redmon, “YOLO9000: Better, Faster, Stronger,” CoRR, 2016.

[4] M. &. C. K. &. P. G. B. &. F. J. &. F. T. &. L. J. &. W. R. &. Y. N. A. Quigley, “ROS: an open-

source Robot Operating System,” ICRA Workshop on Open Source Software, 2009.

[5] "Approximate time sync - ROS," [Online]. Available:

http://wiki.ros.org/message_filters/ApproximateTime.

[6] “OpenCV: Camera Calibration and 3D Reconstruction,” [Online]. Available:

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reco

nstruction.html.

[7] S. C. Radu Bogdan Rusu, “3D is here: Point Cloud Library (PCL),” IEEE International

Conference on Robotics and Automation, 2011.

[8] "Stanford Notes on Epipolar Geometry," [Online]. Available:

https://web.stanford.edu/class/cs231a/course_notes/03-epipolar-geometry.pdf.

[9] “GStreamer,” [Online]. Available: gstreamer.freedesktop.org/data/doc/gstreamer.

[10] “Tiscamera,” [Online]. Available: github.com/TheImagingSource/tiscamera.

[11] “Unix Time,” [Online]. Available: https://en.wikipedia.org/wiki/Unix_time.

[12] S. Brahmbhatt, Practical OpenCV, Apress, 2013.

[13] D. M. S. S. K. B. Pritam Prakash Shete, "A real-time stereo rectification of high definition

image stream using GPU," International Conference on Advances in Computing,

Communications and Informatics (ICACCI), 2014.

[14] “FSOCO,” [Online]. Available: https://ddavid.github.io/fsoco/.

[15] F. M.-N. P. F. Vincent Lepetit, “EPnP: An Accurate O(n) Solution to the PnP Problem,”

International Journal of Computer Vision, 2009.

[16] J. B. D. M. F. G. Carlos Guindel, “Automatic Extrinsic Calibration for Lidar-Stereo Vehicle

Sensor Setups,” IEEE 20th International Conference on Intelligent Transportation

Systems (ITSC), 2017.

47

[17] H. Hirschmuller, “Accurate and Efficient Stereo Processing by Semi-Global Matching

and Mutual,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

[18] N. D. M. Paul J. Besl, “Method for registration of 3-D shapes,” SPIE Proceedings, vol. 1611,

1992.

[19] “Nerian stereo camera calculator,” [Online]. Available:

https://nerian.com/support/resources/calculator/.

[20] H. F. C. H. V. R. F. V. M. I. S. R. D. A. R. G. M. B. R. S. Miguel de la Iglesia Valls, “Design of an

Autonomous Racecar: Perception, State Estimation and System Integration,”

International Conference on Robotics and Automation, 2018.

[21] D. D. L. V. G. Ankit Dhall, “Real-time 3D Traffic Cone Detection for Autonomous Driving,”

IEEE Intelligent Vehicles Symposium, 2019.

48

Glossary

CNN - Convolutional Neural Network

E&C – Estimation and Control department (Driverless UPC)

FOV - Field Of View

FSD - Formula Student Driverless

GMM - Gaussian Mixture Model

GUI - Graphic User Interface

HW – Hardware department (Driverless UPC)

KNN - K Nearest Neighbours

LiDAR - Light Detection and Ranging

PAE - Projecte Avançat d’Enginyeria

PER – Perception department (Driverless UPC)

PU – Processing unit

PnP - Perspective n Point

RMSE – Root Mean Square Error

ROS - Robot Operating System

SDK - Software Development Kit

TF - Transformation Function

