UNIVERSITAT POLITECNICA DE CATALUNYA
BARGCELONATECH
Escola d'Enginyeria de Telecomunicacio

i Aeroespacial de Castelldefels

MASTER THESIS

TITLE: Common Media Application Format. Implementation and Analysis

MASTER DEGREE: Master’s degree in Applied Telecommunications and Engineer-
ing Management (MASTEAM)

AUTHOR: Gerard Solé i Castellvi
ADVISOR: Juan Lopez Rubio
SUPERVISOR: Javier Lopez Rubio

DATE: July 8, 2019

Titol: Common Media Application Format. Implementacio i analisi
Autor: Gerard Solé i Castellvi

Director: Juan Lopez Rubio
Supervisor: Javier Lopez Rubio
Data: 8 de juliol de 2019

Resum

Les empreses de streaming de video sobre internet estan en auge, transmetent tota clas-
se de continguts a un public cada vegada més gran. En I'ambit operacional, tot i que el
streaming sobre HTTP esta estandarditzat hi ha hagut molta fragmentacié en el mercat a
causa de la mancanca de col-laboraci6 entre empreses de streaming i dispositius. Aques-
ta fragmentacié acaba degenerant en una ineficiéncia per a les empreses, tant des del
punt de vista tecnologic com de I'operacional i producte. Per a solucionar aixo, grans em-
preses del sector del streaming com ara Amazon, Apple, Google, Microsoft i Netflix, junt
amb altres empreses del mén de I'electronica com ara Samsung i LG, s’han posat d’acord
per dissenyar un nou format de fitxer preparat per trencar amb la fragmentacié existent.
Aquest nou format s'anomena Common Media Application Format (CMAF) i s’espera que
sigui ampliament acceptat per totes les empreses relacionades amb el mén del streaming.

En aquest document es presenta una prova pilot realitzada a RakutenTV estudiant la
implementacié de CMAF en les operacions de I'empresa i analitzant la viabilitat de la
soluci6. Com a moltes altres empreses, Rakuten TV sofreix de la fragmentacié en el
sector del streaming el qual té un impacte directe en el rendiment de la plataforma i en el
cost economic de mantenir-la. Amb la nova solucié s’espera poder oferir un servei més
eficient i reduir I'impacte economic derivat de la gesti6 i 'emmagatzematge dels fitxers
actuals.

Title : Common Media Application Format. Implementation and Analysis
Author: Gerard Solé i Castellvi

Advisor: Juan Lopez Rubio
Supervisor: Javier Lopez Rubio
Date: July 8, 2019

Overview

Internet streaming companies are an important business nowadays streaming all kinds
of content to a growing audience. Although streaming over HTTP is standardized, there
has been a lot of fragmentation in the market due to the lack of collaboration between
streaming companies and devices, this affects the company operations because of how
they manage all the technologies together. This fragmentation ends up degenerating into
an inefficiency for the companies, from the technological, operational and productive point
of view. To solve this issue, large companies in the streaming sector such as Amazon, Ap-
ple, Google, Microsoft and Netflix, along with other companies in the electronics world, like
Samsung and LG, have agreed to design a new file format ready to break with the existing
fragmentation. This new format is called Common Media Application Format (CMAF) and
is expected to be widely accepted by all companies related to the world of streaming.

This document presents a test carried out at RakutenTV studying the implementation of
CMAF in the operations of the company and analyzing the its feasibility for a long-term
run. Like many other companies, RakutenTV suffers from fragmentation which has a direct
impact on the performance of the platform and the economic cost of maintaining it. With
the new solution, it is expected to be able to offer a more efficient service and reduce the
economic impact derived from the management and storage of current files.

A tothom qui m’ha ensenyat, i a tothom que ha volgut apendre de mi.

CONTENTS

Introduction il
CHAPTER 1. Project Overview
1.1. Playback chain at RakutenTV
1.1.1. Normalizationofthemaster 4
1.1.2. Package generation oL 4
1.1.3. Package delivery through network
1.1.4. Contentkeydelivery 6]
1.1.5. Playbacksession [l
1.2. Technical introduction rd
1.21. Codec [7
1.2.2. Container 9l
1.2.3. Encryption algorithmso Lo 10
1.3. Motivation behind the Common Media Application Format
1.3.1. Fragmentation in RakutenTV 12]

1.3.2. Common Media Application Format. Solution to the fragmentation . . {3

1.4. Objectives 14
1.5. Document structure
CHAPTER 2. Stateofthe Art il
2.1. Streaming protocols L 7
2.1.1. Progressivedownload {7
2.1.2. Adaptivestreaming {8
2.2. Common encryption 22,
2.21. Schemetypes 22
2.2.2. Signalingthe container 23]
2.3. Content key acquisition L Lo 24
23.1. ClearKey 24
2.3.2. Digital Rights Management (DRM)

CHAPTER 3. Technology and Tools Analysis 29

3.1. Streaming Packager 29

3.1.1. Comparisonof Packagers 30|
3.2. DRM Licenseservers 30|
3.21. PlayReady 30
3.2.2. WidevineModular 31l
3.23. FairPlay 32
33. Players 33
3.3.1. WebBrowserso 134]
3.3.2. Smartphones 35
3.33. Others e 35
34. Conclusions 36|
CHAPTER 4. ImplementingCMAF 39
4.1. Developmentprocess 39
4.2. Encoding 40
4.2.1. Master normalization 42
4.2.2. Generating adaptive streaming renditions 43|
4.3. Packaging 45|
43.1. Bentod 45|
43.2. ShakaPackager 47
44. DRMandLicensing 48|
441. WidevineModular 0. 48|
442 PlayReady 49|
443. FairPlay 50
4.5. Playback Testing 50!
451, Browsers. e e e e e e 50
452. Smartphones
453. Others e
4.6. Conclusions
CHAPTER 5. Operational Benefits
5.1. Streaming packages in RakutenTV 93
5.1.1. WidevineClassic 53

51.2. DASHand MSS 54

5.2. Continental expansion B5

5.3. Moving forward with CMAF 58
5.4. Estimationofcosts oo 58

5.4.1. Averagecostperpackageo fe]

54.2. Repackage 61
5,5. Conclusions 61
CHAPTER 6. Conclusions 63
6.1. ProjectConclusions 63
6.2. Achieved Objectives 64
6.3. Personal Conclusions 65
6.4. Future Work 65
6.5. Environmental Impact oL 66!
Glossary 67
Bibliography 69
APPENDIX A. Adaptive streaming manifests 73l
A.1. Microsoft Smooth Streaming(MSS)

A11. Clientmanifest. 73

A1.2. Servermanifest L L [74]
A.2. Dynamic Adaptive Streaming over HTTP (DASH)
A.3. HTTP Live Streaming (HLS)
APPENDIX B. CMAF-Tools dockerimage (77
B.1. Installed software (77
B.2. Repositories (77

B.2.1. Dockerfile [77]

LIST OF FIGURES

1.1
1.2

1.3

1.4

1.5

1.6

1.7

1.8
1.9

Year over year is streaming services are growing compared to old content broad-
casting methods. Original image obtained from Motion Picture Associate of
Americal1]. e

Playback chain at RakutenTV.
Streaming package representation. Contains a Manifest file with pointers to the
video rendition files and the encryption information.
CDN Network representation with multiple Points of Presence and its connection
to the Origin Server where packages arestored.
Simplified vision of a DRM system. The device has a trusted environment in
the CPU and in the RAM which stores the Content Key fetched from a remote
server, and then performs the decryptioninasecureway.
Frame sequence showing how a GOP works for video streams.
Container representation where different tracks of data are defined.
Difference between a regular MP4 and a Fragmented MP4. Notice the segmen-
tation of the MOOF and MDAT boxes.
Encryption diagram using AES-CTRmode.
Encryption diagram using AES-CBCmode.

1.10RakutenTV current packages. Supporting Widevine Classic (Deprecated) and

DASH/MSS with Common Encryption.

1.11Apple Legacy Package to support iOS and MacOS devices.
1.12CMAF proposes a standardization on the container and encryption level. All the

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

streaming parties agreed on a common format.

Three different renditions using an fMP4 container. Each rendition contains
the same number of segments holding a similar duration between them. Frag-
mented MP4 makes easy the quality switching because of each fragment is
independent of the others.
Microsoft Smooth Streaming is based on transmuxers which convert the re-
quested time range to the corresponding datachunk.
DASH does not require a transmuxer. Devices are smart enough to request the
appropriate byte-ranges.o
Scheme types included in the Common Encryption definition by MPEG - Part 7:
Common encryption in ISO base media file formatfiles.
License Acquisition process on a Digital Rights Management system.

License Acquisition in FairPlay. The company uses the provided PlayReady
Server SDK to build the service, it only needs to attach a small method that
adds the content key and the play rightsto alicense.
License Acquisition in Widevine Modular. The company builds a Proxy Server
which uses Google’s Widevine remote service.
License Acquisition in FairPlay. The company builds the whole License Server
and it calls the embedded FairPlay SDK with the appropriate license parameters.

B3

3.4

4.1
4.2
4.3
4.4
5.1
5.2
5.3
5.4
5.5

5.6

Browsers can use bundled CDMs in the same application or use the Operating
System CDM. Chrome uses the first approach while Edge and Safari uses the
SECON. e e

Process for CMAF packaging and device validation.
Big Buck Bunny Cover. Video sample used on thethesis.
Overlapped captures for the three generated renditions.
Boxes comparison betweena MP4andafMP4.

Widevine Classic package, each package contains one video resolution and one
audiolanguage. e
Current DASH and MSS package with multiple audio languages and audio qual-

Graph showing the evolution of the Widevine Classic and DASH with MSS pack-
age size by the number of languages.
Graph that shows the relative distribution (in size) for all the streaming packages
generatedinayear..
Current DASH and MSS package with multiple audio languages and audio qual-

39)

LIST OF TABLES

3.1

4.1

5.1

5.2
5.3

Comparison between principal open source packagers. 30
KID (Content Id) and Content Key to be used in the test medias. 45
Ingested masters grouped by the amount of included languages and the year of
ingestion.
Summary of the operational cost only by infrastructure and storage. 59
Summary of the time required to encode all the renditions and generate each

package with the required renditions. 60

INTRODUCTION

Online streaming services have become an important business for multiple kind of compa-
nies. With the introduction of platforms like Netflix, HBO and RakutenTV people is getting
used to watch any content at the time they want. This creates an interesting market niche
where companies can make profit. Motion Picture Association of America (MPAA) pub-
lished a study in 2018 where the American home entertainment market was analyzed,
Figure[1|shows the streaming service growth from 2014 to 2018. In the American market it
has surpassed the PayTV (cable) in subscriptions, and the tendency is that it will continue
growing with new types of content.

Global Pay TV & Online Video Subscriptions (Millions)??
Source: IHS Markit
700 +

600 - /. =o=Online subscription video
500 - Cable
400 -

==@==|nternet Protocol Television (IPTV)
300 4
=D Satellite

200 4
100 .‘C/’, =@==Digital Terrestial Television (DTT)

04 e e———————e———————fe———————@ 2 —#—Third party premium
2014 2015 2016 2017 2018

Figure 1: Year over year is streaming services are growing compared to old content broad-
casting methods. Original image obtained from Motion Picture Associate of America [1].

RakutenTV is an European Video-on-Demand company, it was founded back in
2009 under the name of Wuaki.tv, on 2012 it was bought by Rakuten. Its main focus is on
transactional streaming (or Pay-per-View) where customers can buy or rent a movie in the
platform. In 2019, the company is facing a continental expansion, it will be present in more
than 42 countries. This thesis is related to the streaming technologies, seeking on how to
make it efficient in a company like RakutenTV.

RakutentTV, as other companies in the streaming market, suffer from the fragmentation
issues caused by the large number of devices to serve and which standards do they sup-
port. The biggest problem for streaming companies is how to manage all the packages
from an efficient way. Streaming packages are basically the video streams stored in a
certain format and they can be streamed using multiple kind of protocols, devices tend to
support only some of them. If companies need to manage too many package formats, the
storing and operational costs will grow and make the platform unprofitable.

To solve these issues, companies related to the streaming business, both service providers
and device manufacturers have designed a new standard which defines how the stream-
ing packages must be built and processed. Service providers like Apple, Microsoft and
Google, and manufacturers such as LG and Samsung have been involved in the definition
of the Common Media Application Format (CMAF). This new package takes profit from the
knowledge acquired from the other streaming protocols, it defines how the videos must be
processed and protected, and how to store the data in a well-known format so players can

1

2 Common Media Application Format. Implementation and Analysis

play the content.

CMAF implementation and viability has been studied for RakutenTV, if it is suitable to
be included in the company operations and how it could be economically feasible. In
this thesis the implementation possibilities will be analyzed and validated against current
market devices. Apart from this, some estimations on the package implementation inside
the company will be done.

CHAPTER 1. PROJECT OVERVIEW

The idea behind this project comes from the Playback Department at RakutenTV. This
company provides a streaming service of movies and shows at European level. The work
carried out during this thesis is a proof-of-concept for future technical implementations
inside the company, on the playback area.

In this chapter there will be an introduction to the streaming chain at Rakuten TV, followed
by some technical introductions and finally which is the motivation for this thesis.

1.1. Playback chain at RakutenTV

Playback department in RakutenTV is in charge of the whole streaming chain developing
technical solutions to improve the picture and streaming responsiveness of the platform.
Figure shows the whole playback chain in the company starting from the provider’s
master and ending in the device, where the playback session of the media is done. It is
important to introduce how this process works to have a global vision of streaming on a
company.

> Encoding ==
Normalization - Encyption
Encoding No'\l;lmallzed Licensing 8 8
aster A .
Packaging Streaming

Packages

Origin Traffic
License Server
Media Traffic

Decryption Key

Rakuten TV Players

Figure 1.1: Playback chain at RakutenTV.

When the company acquires a master video from a cinema studio it can be delivered using
multiple ways, there is a team inside the company in charge of obtaining such material and
upload it to the ingestion platform. There are multiple ways to obtain the master, some
companies push them to a remote file server, others provide websites where content can
be downloaded, and finally there are others that send directly hard drives to the office.
This introduces a complex start point, each material must be treated differently because
of there is not a standardized way to supply the medias nor the medias are equal between
them. Each master file can have different properties, some of them may use common

3

4 Common Media Application Format. Implementation and Analysis

specifications and technologies, others not. Maybe some master files contain black bars
on the top and bottom of the picture, but others use the whole display, etc. This forced
the company to standardize a very accurate process to manipulate, generate and stream
each media in the same way.

The following subsections introduce the four big steps that are carried out on the playback
chain.

1.1.1. Normalization of the master

Imagine dealing with the material received from studios, those masters will not have a
common format, if each step in the stream processing pipeline requires to support all the
possible formats the software will not be maintainable. When writing the software to be
used in each step of the pipeline it is better to have a common way to process the files,
knowing which is the input format simplifies a lot the software development. A standard
file will reduce the technical complexity and the possible failure points.

Because of this, the master normalization is the first step in the streaming chain. The
normalization process will ingest any kind of material and process it so the output of the
step is a well-known formatted video. This is known as the normalization encoding, and
the output will be a normalized master that can be treated always in the same way on
further steps. Within the normalization process some metadata information is added to the
file, things such as the title name, provider, format of the video, and even the languages
and subtitles are stored so next steps can process automatically the file without human
intervention.

1.1.2. Package generation

Normalized masters cannot be streamed through network, they must be processed and
prepared to do so. This is the step known as packaging, there is a second encoding of
the normalized master where different videos are generated from the input file. These
videos are known as renditions, and they are created to satisfy different conditions while
streaming. Some renditions have a really great quality, while others have lower quality, but
they can be streamed through the network without requiring so much bandwidth.

Film industry requires strict protection policies to avoid piracy on the VoD platforms. Be-
cause of this, the companies are required to protect the renditions using approved and
secure methods certified by the studios and publishers. Usually this protection is achieved
by using encryption algorithms together with secure key transmission between the VoD
company and the players. Once the renditions are encoded and encrypted, the outcome
of this step is a bunch encrypted video files. These encrypted video files are usually de-
scribed on a manifest which holds the information of each rendition, their properties and
the encryption method applied to the files. A player will use the manifest to fetch and play
the content, within the manifest there is information on how to obtain the decryption key of
the content.

This group of files (manifest and renditions) is a streaming package and it must be reach-
able through HTTP to enable the devices play the content. Figure [1.2]shows a schema of
the contents of a streaming package.

CHAPTER 1. PROJECT OVERVIEW 5

Streaming Manifest&

£l [T D | eI Video File Rendition #1

#2 Rendtion Pointer ‘

Video File Rendition #2

#3 Rendtion Pointer
Video File Rendition #3

Encyription information

Streaming Package

Figure 1.2: Streaming package representation. Contains a Manifest file with pointers to
the video rendition files and the encryption information.

During this thesis, three streaming manifests will be presented, each one is used in a dif-
ferent streaming protocol. Just for future reference, they are Microsoft Smooth Streaming
(MSS), Dynamic Adaptive Streaming over HTTP (DASH) and HTTP Live Streaming (HLS).

1.1.3. Package delivery through network

Once the streaming packages are built and stored, the delivery team will be in charge
of making them available through internet. Streaming video is a resource demanding
process, good network speeds and peering are required to satisfy all the playback sessions
that may occur at a given moment. The company use several Content Delivery Networks
that can provide all the required bandwidth and content distribution. CDNs are
perfect for cases such as streaming, they fetch the content from the original location and
store it within their own network.

From a simplified point of view, a CDN can be seen as large distributed cache for content.
When a CDN receives a content request the following steps will happen:

1. CDN checks the closest server (cache) to the user that is requesting the content.

2. The closest server will check if it already has the content cached, if it is there it will be
returned directly to the customer.

3. If the content is not present on the server, the server itself will check on other servers
within the CDN if they have the content. If the content is found it will be cached and
then returned

4. Finally, if the requested content is not found withing the CDN, the server will fetch the
content from the origin (where medias are always available), store it locally and send it
back to the customer.

CDNs are distributed across regions, and they have multiple Points of Presence
where the caches are present. Having PoPs closer to the final customers will improve the
throughput and latency between the player and the content.

6 Common Media Application Format. Implementation and Analysis

Origin Server

CDN PoP

Figure 1.3: CDN Network representation with multiple Points of Presence and its connec-
tion to the Origin Server where packages are stored.

Figure [1.3] shows a simple representation of a CDN, the PoPs are distributed in different
regions and are connected between them. They can reach the origin servers to fetch the
content and spread it within the caches.

When partnering with CDNs it is important to check their network capacity and their sup-
port for the streaming protocols that are going to be used. Current streaming protocols
work over HTTP making CDNs suitable for such delivery case.

1.1.4. Content key delivery

Streaming packages have been secured and encrypted, no one will be able to steal or
expose the content on the clear in Internet, the players need the content key to decrypt the
stream. Movie studios enforce the usage of Digital Rights Management (DRM) systems
in VoD services. They ensure the security and confidentiality of the content key, DRM
helps on keeping the content secure and encrypted while giving service to the customer.
A customer has the rights to watch a movie, but not to hold and store the content in clear.

CPU Content Key

Decryption module

Content Key acquisition Request the Content Ke: DRM License Server
RAM

DRM System

Trusted Environment

Device

Figure 1.4: Simplified vision of a DRM system. The device has a trusted environment in
the CPU and in the RAM which stores the Content Key fetched from a remote server, and
then performs the decryption in a secure way.

CHAPTER 1. PROJECT OVERVIEW 7

Figure [1.4] shows a simplified view of a[DRM| system in a device. The DRM will create a
secure and trusted environment within the device, the RAM and CPU usage of the DRM
is encrypted and protected, so no other processes running in the device can read the data
stored there. Then, the DRM will be responsible to call the external DRM license server
requesting the content key of the stream, once returned, the content key must be used
to configure the decryption module. The decryption module is in charge of decrypting the
movie content without exposing any data of the decryption key. The DRM implementation
in the device must match with the DRM license server, both technologies are proprietary
and they depend on third parties which develop right protection mechanisms. The princi-
pal companies that offer Digital Rights Management solutions are Google, Microsoft and
Apple, deeper information about DRM systems will be explained in the following chapters.

1.1.5. Playback session

At this point the streaming packages are properly set up and the company has enough
capacity to stream content. Now it is time for the customers to enjoy the movies at their
devices. Remember that each package has multiple versions of the same video which are
named renditions, and each rendition is encrypted. The player, at this point, will fetch the
streaming manifest and from that file it will select the renditions that are prone to be used.
Apart from this, it requires a decryption key to be able to decrypt the content and start
showing properly the image. The information on how to obtain the key it is also present in
the manifest.

The player will request to a license server (key server) the content key to decrypt the files
through a DRM system. The DRM system explained above will make sure that the key
is be delivered in a safe manner so it stays secure at all points of the transaction. Once
the device is able to decrypt the content, it will start fetching the data from the selected
renditions through the CDN. Remember that the renditions have the same content with
different qualities, the player can switch between renditions at any time, most probably
because of network conditions.

1.2. Technical introduction

There are some technical topics that should be explained to properly understand the fol-
lowing chapters. These are related to the treatment of video data and with some encryption
algorithms and patterns.

1.2.1. Codec

A codec in the multimedia world is an algorithm or method to encode and decode audio
or video information (data). Usually they offer a standardized protocol to compress the
stream, making it more efficient for storage or streaming. Codecs evolve according to
capacity requirements, when the data increase on terms of quality, and quality derives to
size, a new codec is designed, so the data can still be stored, treated and decoded on an
efficient way.

8 Common Media Application Format. Implementation and Analysis

This thesis is not focused on the codecs itself, but as an introduction for future references
the most common codec for video streaming is H.264 or AVC (Advanced Video Coding). It
is designed for video and is supported on the bast majority of devices. All major browsers
can decode and handle H.264 streams.

Current codecs optimize video streams by storing the picture motion between frames in-
stead of storing the full frame, it is known as motion compensation. This obviously reduces
the amount of data that needs to be saved. In general, there are three kinds of frames, the
Intra Frame (I-Frame) that is a complete representation, the Predictive Frame (P-Frame)
that contains the motion-compensated difference between previous I-Frames. And finally
the Bipredictive Frame (B-Frame) that stores the motion-compensation between past and
future | and P-Frames. A Group of Pictures (GOP) starts with an I-Frame, and then con-
tains a series of P and B-Frames. Figure shows a very simple GOP with their frame
references.

Motion-compensated
from I-Frame
Full Frame ‘

‘ ?‘/I

| B P B P B B| I

Group of Pictures

N/
Motion-compensated
from past and forward | and P frames

Figure 1.5: Frame sequence showing how a GOP works for video streams.

On streaming, the most important frame is the Intra-Frame (I-Frame or Key-Frame), a GOP
always starts with one of those frames, which is required to successfully decode the whole
group. Imagine a user that is watching a movie and at a certain point it decides to skip
a scene. The decoder will seek an I-Frame near the position where the user moved, and
from that I-Frame the player will start decoding the following P and B-Frames.

Last but not least, there is a concept of bitrate related to codecs. Bitrate is directly related
to how much information is contained in a span of time. Encoding an image preserving
a good quality detail will produce a high-bitrate video. Stream size will be much bigger
but the quality will be good. If the codec encodes the image skipping details, and loosing
some picture quality, the output stream will have lower-bitrate and the resulted stream will
be lighter.

More bitrate requires more internet throughput, this has a direct impact on the streaming
session. If internet’s speed is lower than the bitrate, buffering events will happen on the
client side. This is why current streaming protocols use bitrate ladders on the renditions,
with them the customers can enjoy the best picture quality supported by their network
speed.

CHAPTER 1. PROJECT OVERVIEW 9

1.2.2. Container

As it has been explained, a codec is a way to process and optimize data. But this data
does not have any kind of format, it needs to be stored properly and this is what a container
does.

A container gives format to the output of an encoding step, a codec generates raw data
that needs to be stored and formatted so players can be able to decode it back to pictures
and represent the image. Containers define the way this data is stored by a group of
bytes that hold the information of the stream and the raw data. Containers usually store
information of the codec and the encoded data, such as the bitrate, resolution, content
type, etc. It basically gives format and persistence to raw data. They usually let specify the
codec of the contained data, so players can decode it, but sometimes it might happen that
a container does not support a codec because there is no way to specify it.

Format Container: .mkv, .mp4, .avi, .mpg

Define a format for the content. How to store and read it. Players can parse a container to
obtain the encoded data

Video Track | |#1 Audio Track Captioning Metadata

Encoded audio
stream.

Language #1 Subtitles Author
Encoded video Descriptions Title
stream Objects Duration
#2 Audio Track Copyright

Protection
Encoded audio

stream.
Language #2

Figure 1.6: Container representation where different tracks of data are defined.

There are multiple containers on the market, this thesis will mainly focus on just one con-
tainer the one that is called MPEG4 Part 14 (MP4), but MPEG-2 Transport Stream (MPEG-
2 TS) will also be relevant in this document. Both of them are suitable to store and stream
through network audio and video content.

e MPEG-2 Transport Stream (MPEG-2 TS) was designed back into 1995 and it was
built taking in mind the diffusion of the content through unreliable networks such as
Digital Video Broadcasting (TV and Satellite). This container holds small payloads
so it can recover from errors on streaming because information is segmented in
small chunks. One of the streaming technologies that will be explained in this doc-
ument started using this container, but recently it was deprecated in favor of MP4
because newer codecs where not supported. Refer to VideoLAN [2] website to know
more about the supported codecs.

e MPEG-4 Part 14 (MP4) was standardized in 2003. It is a modern and flexible con-
tainer which supports any kind of content such as video, audio or subtitles. It was

10 Common Media Application Format. Implementation and Analysis

designed to support metadata within the container. lIts first definition was done un-
der the name of ISOBMFF. The container is structured in fields that hold information,
these fields are known as Boxes (previously where named atoms), they describe and
signal information of the container, tracks, content, etc. Some boxes hold timing in-
formation, others the stream size or even pointers to the data, so players can easily
seek without having to read all the data content. MP4 compared to MPEG-2 TS can
hold any codecs inside it, it just requires to signal the codec brand in the appropriate
box. Finally, this container support streaming through HTTP but it has some issues
when seeking, to solve this, there are containers based on MP4 such as fMP4.

— Fragmented MP4 is an evolution of MP4 container. The basic idea is
to chunk data in small fragments which can be decoded independently. For
example, instead of holding 2 hours of video data in a single MDAT (media
data) box the video will be split in chunks of 2 seconds and each chunk will be
stored in a different MDAT. This would result in a MP4 with 3600 MDAT boxes
(also known as segments or fragments).

>
MP4 18 MDAT
s
g 5l8 5 5
fMP4 o 2|8 MDAT o MDAT o MDAT
=|2|= s s

MOOV | Movie Metadata: contains information of the track (identifiers, timeline characteristics, ...)
SIDX | Segment Index: stores byte-range locations of moof + mdat segments
MOOF | Movie Fragment: stores the information related to the fragment, basically its time duration

MDAT | Movie Data: contains the samples of the video/audio. They hold closed GOPs

Figure 1.7: Difference between a regular MP4 and a Fragmented MP4. Notice the seg-
mentation of the MOOF and MDAT boxes.

1.2.3. Encryption algorithms

One of the hot topics in this thesis is the multimedia protection. Protection is typically
achieved by encrypting the content of a container. The standard algorithm used for media
encryption is Advanced Encryption Standard (AES).

AES is a symmetric-key block cipher which accepts three key lengths: 128, 192 and 256
bits, the same key is used both for encryption and decryption. The algorithm uses a 128
bit block size, which means that the cipher can only process 128 bits at once, data will be
split in blocks of 128 bits (one per operation).

To increase security, cipher blocks have different working modes so the key or the data
changes at each step, same input data will be different on the output (data is randomized).
This changes helps on avoiding repetition of data so the same input produces different
outputs. The main problem is that changing the working mode also changes the ciphered
output., same mode must be used for encryption and decryption.

There are several modes of operation but the most used ones in media encryption are

CHAPTER 1. PROJECT OVERVIEW 11

AES-CTR (Counter) and AES-CBC (Cipher Block Chain). Below there is a little explanation
on how encryption works for both modes, just to explain that the output of will differ between
modes.

e Counter requires the use of a Nonce and a Counter, this data will be piped
into the cipher box, so they must have a length of 128 bits. Then, the key is applied
to the cipher-box and the output is XORed with the plain data also having a length
of 128 bits. This process is repeated per each chunk of data and the Counter is
increased by one, the Nonce remains the same. Figure [1.8] shows how the Nonce
and Counter are used within the block cipher and how the output is XORed with the
plain data.

Nonce Counter Nonce Counter Nonce Counter
¢59bcf35. [elelelelelelele] c59becf3s. [clelelelelelen) c59bcf35. [elelelelelelele)

oo oI OO

block cipher block cipher block cipher
i B I By

Plaintext ? Plaintext ? Plaintext ?
[ITTTTTTITTTT] [OTTTTTTTTTTT]
[ITTTTTTITTTT] [OTTTTTTTTTTT] [TTTTTTITTTT]
Ciphertext Ciphertext Ciphertext

Counter (CTR) mode encryption

Figure 1.8: Encryption diagram using AES-CTR mode.

e Cipher Block Chaining makes use of an Initialization Vector in the first
encryption, this IV is XORed with the plain data and the result of this operation
is piped into the cipher box which is encrypted using the key. The result of this
operation will be the IV for the next encryption step. Figure shows that each
output is chained to the next operation, this randomizes the output even if the input
is always the same.

Plaintext Plaintext Plaintext
[OTTTTTITTTT1] [ITTTTTITTTT1 TTTTTITTTT
Initialization Vector (IV)
[OTTTTTTTTTT1] & —————®
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
[ITTTTTTITTTT]
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption
Figure 1.9: Encryption diagram using AES-CBC mode.
Refer to Recommendation for Block Cipher Modes of Operation [3] provided by National

Institute of Standards and Technology (NIST) for more information about encryption or
decryption using different working modes for block ciphers.

12 Common Media Application Format. Implementation and Analysis

1.3. Motivation behind the Common Media Application
Format

On the next chapters multiple streaming technologies will be show cased. But in a general,
the current market technology is fragmented in several ways. There are multiple streaming
protocols, and each one can use different codecs and containers. There is not a common
standard that unifies streaming protocols, codecs and containers. On terms of protection,
there are multiple solutions in the market that use either AES-CTR or AES-CBC, most of
them proprietary. It must be said that, although the licensing (key exchange) is kept private
and proprietary, all the solutions try to share the same underlying encryption schemas.
In most cases, it depends on the device vendors to choose which decryption algorithms
supports the device.

1.3.1. Fragmentation in RakutenTV

RakutenTV, as other [VoD]and OTT companies, suffer from fragmentation on which stan-
dards are supported by the different devices and partners. lIts service is based on pro-
viding films and content to end users trying to support as many devices as possible. The
company currently uses two streaming packages which are enough to cover all the major
devices. The first one is based on a deprecated technology from Google, it is maintained
due to legacy reasons. Most of the devices prior to 2013 do not support current streaming
technologies, because of this the service is provided through this legacy technology. For
the newer devices, there is a single package supporting two of the three current streaming
technologies. On the state-of-the-art chapter the streaming technologies will be presented.

Figure shows the two packages that are being used nowadays in the company. None
of them can be used within Apple devices, Figure shows the package schema that it
would be suitable for iOS and MacOS.

/ Adaptive Streaming: HLS \ Adaptive Streaming: DASH / MSS
Container: MPEG-2 TS f Container: fMP4 (ISOBMFF) \

f Encryption: AES-CBC \ / Encryption: AES-CTR

Video Codec: Video Codec:

H264 (AVC) H264 (AVC)

¢ 24)

Current Streaming Package widely accepted
(Including RakutenTV)

Legacy HLS Streaming Package for Apple

Figure 1.10: RakutenTV current packages. Supporting Widevine Classic (Deprecated)
and DASH/MSS with Common Encryption.

CHAPTER 1. PROJECT OVERVIEW 13

Apple devices require another kind of streaming package, which instead of use AES-CTR
it employs AES-CBC. The container is also different, it employs an MPEG-2 TS while the
codec remains the same. Figure[1.11]this package:

/ Adaptive Streaming: HLS \

Container: MPEG-2 TS

Encryption: AES-CBC

Video Codec:

H264 (AVC)

g\ 4

Legacy HLS Streaming Package for Apple

Figure 1.11: Apple Legacy Package to support iOS and MacOS devices.

Due to these technical discrepancies support Apple devices will imply the duplication of
the whole library. Smartphones are not a priority for the company, so no investment is
expected to generate the packages that can only be used in this platform.

1.3.2. Common Media Application Format. Solution to the fragmen-
tation

To solve fragmentation issues, the industry of streaming together with device vendors are
trying to unify all the technologies that build up a streaming service. Some of them are
big players of the streaming such as Adobe, Akamai, Microsoft, Apple and Netflix, while
others are device manufacturers like Lg, Samsung and Sony.

The new proposal is known as Common Media Application Format (CMAF) and defines
the container and the encryption protocols. It has been designed to support both DASH
and HLS streaming manifests. CMAF defines a new container format inherited from fMP4,
this is why most of the research done in this thesis (and even the software tools in the
market) assume that a fMP4 is a valid container for CMAF testing. Finally, the proposed
encryption algorithm is AES-CBC. As it has been said, Apple has been involved in the
definition of this format since they added support for fMP4 in their HLS streaming protocol.

Figure shows the new composition for the CMAF package. It is a mix of streaming
technologies between the used by Apple and the other ones used in the streaming sector.

14

Common Media Application Format. Implementation and Analysis

Adaptive Streaming: DASH / HLS

/ Container: fMP4 (CMAF) \

Encryption: AES-CBC

Video Codec:

H264 (AVC) or H265 (HEVC)

NS =~

Figure 1.12: CMAF proposes a standardization on the container and encryption level. All
the streaming parties agreed on a common format.

Through the development of this thesis what is going to be tested is the feasibility of CMAF.
If it is possible to generate CMAF packages on a simple way and which is the current device
acceptance. According to different information obtained from white and black papers or
even in some conferences it seems that the vendors are slowly moving towards the new

proposal.

1.4. Obijectives

The proposed objectives are listed below:

e CMAF packages: to be accomplished during the first part of this thesis.

Streaming packages: generate HLS and DASH streaming packages using
the fMP4 container.

Use AES-CBC: the streaming medias must use the new AES mode proposed
by CMAF.

Use content protection systems: support the industry accepted content pro-
tection systems that work with AES-CBC.

Validation: summarize multiple devices that may or should support CMAF and
validate if the built packages can be played properly on the devices. Those
should support at least one of the included content protection systems.

e Operational benefits: on the second part of the thesis, benefits and cost savings
of the new package will be studied.

Package efficiency: analyze the efficiency of adaptive streaming packages
when multilanguage is used compared to not using such efficient packages.

Viability of CMAF in terms of costs: study the viability of CMAF within the
company, which are the expected costs and how the company could support
CMAF without big budget increments.

CHAPTER 1. PROJECT OVERVIEW 15

1.5. Document structure

In the following chapters deep explanations will be done starting with the state of the art,
where current streaming technologies are showcased. It is followed by an analysis of cur-
rent software that help on the realization of this thesis. Then, the next chapter introduces
the validation of the hypothesis. Last but not least, the two remaining chapters will summa-
rize the benefits of the solution and introduce some overall conclusions and feasible future
work.

CHAPTER 2. STATE OF THE ART

After doing the introduction to the contents of the thesis and the different important tech-
nical topics, it is time to start with the state of the art in streaming. In this chapter current
streaming protocols, encryption patterns and protection solutions will be introduced.

2.1. Streaming protocols

Streaming protocols and technologies have evolved over time. Although there are lots of
ways to stream content, this thesis will focus on streaming over HTTP. There are two ways
to stream content, the first one is Progressive Download which can be considered as a
regular file download. The evolution of progressive download is Adaptive Streaming which
focuses on streaming responsiveness to network conditions, player screen sizes and in
general improve playback quality.

2.1.1. Progressive download

Progressive download can be seen as a regular file download where the player can start
playing the video as soon as it has the enough bytes to start showing frames. This kind of
streaming takes advantage of the HTTP/1.1 protocol that offers features such as request-
ing partial content and byte ranges.

There is some controversy when saying that this method is streaming, many parties con-
sider it as a pseudo-streaming technique, because it enables to playback while download-
ing. But things such as skip or trick playing have inherent problems related to the container
and the way data is sent. When doing trick playing, the player needs to know the position
of the bytes that correspond to the selected time. This information is held by the container
which normally have an atom that relates both time and byte position. The secondary prob-
lem is the codec itself, if the GOP is not constant the player needs to seek an appropriate
I-frame so it can start playing.

Usually this kind of streaming use single files and do not accept adaptive quality. If the
player or the network cannot cope with the bitrate requirements the play will start buffering.
It does not adapt to the different network or device conditions, resulting in bad playback
sessions.

RakutenTV use this kind of streaming for legacy reasons, old devices that do not sup-
port adaptive streaming can play files using this method. There are solutions for content
protection too, one of them is Widevine Classic. This format defines a single container
that can hold multiple streams and qualities, so the player can switch between them, it is
not considered adaptive streaming at all because the protocol is strict on what it offers,
for example it does not permit multi-resolution streaming, it won’t adapt to multiple screen
sizes.

Progressive download has issues when adapting to network or device conditions. Devices
suffer from buffering because sometimes the network throughput is lower than the video
bitrate, and the Widevine Classic package cannot lower the resolution so the playback

17

18 Common Media Application Format. Implementation and Analysis

session will start buffering.

2.1.2. Adaptive streaming

Progressive download evolved to Adaptive Streaming to improve the quality and perfor-
mance of streaming. Adaptive streaming protocols have been designed to be aware of
network and player conditions, for example they support multiple resolutions and bitrate
qualities. A single adaptive streaming package can contain versions of the same video in
multiple resolutions being able to adapt between devices. It is not the same a SmartTV
with a 60-inch screen than a 4-inch Smartphone, but both devices can be covered using
an adaptive streaming, the player will select the appropriate resolution. These packages
do not only have single resolutions but also different bitrates per resolution, depending
on the network capacity the player can select the most appropriate video between all the
available options.

Being able to adapt to network conditions will improve the quality of experience perceived
by the customer. Buffering will decrease because the player will be able to select the lower
qualities, but if the internet connection has good throughput the user will be able to play
the higher definitions.

An adaptive streaming package can be seen as a video that has been encoded in multiple
versions of itself, then a manifest holds all the information related to the encoded files. The
players will use the manifest to know the characteristics of each video, so when performing
the playback it can switch between all of them.

Figure[2.1]shows an example of three different renditions in a streaming package. They are
using a fragmented container, for example the fMP4 explained in the introduction. When
a container is fragmented all the resulting fragments will hold data with same duration, so
the first fragment of the first rendition will contain exactly the same samples of the first
fragment on the second rendition. To simplify things, lets focus only in the MDAT box of
the container, it contains the encoded video or audio, in case of video it is a closed group
of pictures. As it has been explained on the project overview, each GOP starts with an
I-Frame that is a full image frame. With a fragmented container a player can easily switch
between renditions only by knowing which is the following fragment to be shown. Each
fragment contains the enough video data to decode and show, fragments are independent
units of data, they can be processed alone. On the industry it has been standardized
segments of 2 seconds as a general rule, although different time lengths can be used.
This means that each MDAT will contain the required bytes to show 2 seconds of video.

CHAPTER 2. STATE OF THE ART 19

MOOF+MDAT are ordered and the player can switch between renditions easly
because they hold the same time frame

Low Quality [3|%|6 5 o] 6
Quality 812|8| mpar [8| moat | 8| mpaT | 8| mMpaT
Rendition == = = =
Mid Quality |3|%|6 6 o] o)
Q. . Yy 8 a 8 MDAT 8 MDAT 8 MDAT 8 MDAT
Rendition |=|®|= = = =
High Quality (3[%|6 o) & &
gh Quality 812(8 MDAT S MDAT S MDAT S MDAT
Rendition |3(o|= s s =
MOOV Movie Metadata: contains information of the track, its identifiers and the timeline characteristics
SIDX Segment Index: stores byte-range locations of moof + mdat segments
MOOF | Movie Fragment: stores the information related to the fragment, basically its time duration
Movie Data: contains the samples of the video/audio. They hold closed GOPs

Figure 2.1: Three different renditions using an fMP4 container. Each rendition contains
the same number of segments holding a similar duration between them. Fragmented MP4
makes easy the quality switching because of each fragment is independent of the others.

There are multiple Adaptive Streaming technologies, considering the case-study of this
thesis lets dive into the most relevant ones. On the following sections Smooth Streaming,
DASH and HLS protocols will be briefly introduced.

2.1.2.1. Microsoft Smooth Streaming (MSS)

Microsoft designed this streaming protocol as an extension for their Internet Information
Services (IIS) to provide streaming support on the media services. It was built on top
of HTTP and defined its own container format called Protected Interoperable File Format
(PIFF). Fortunately PIFF was based on /SO Base Media File Format which
is the standard behind the MP4, this also makes fMP4 is a suitable container for MSS
streaming.

Smooth Streaming has some limitations inherent to how it was designed, it restricts the
codecs to be used inside the container so newer encoding algorithms are not supported,
this makes device vendors to start supporting other streaming protocols. For example,
when streaming Ultra High Definition videos there are several codecs that compress a lot
the video and are becoming the industry standard for such content, the main problem is
that these newer codecs cannot work with MSS. Because of this, Microsoft has decided to
deprecate this protocol in favor of DASH.

Smooth Streaming clients are not required to support ISOBMFF. Players are provided with
a manifest file containing all the video and audio qualities (resolutions and bitrates) and
their respective time segments. The player will query a transmuxer that will convert a time
segment to a byte range and return that byte range from the rendition specified by the
client.

20 Common Media Application Format. Implementation and Analysis

Figure shows an example of this kind of streaming, the transmuxer is a required el-
ement that converts time segments to byte ranges. With the transmuxer devices do not
require support for the underlying container, they only need to support the codec which is
the data being returned by the transmuxer.

Device requests a Time-Range

Transmuxer returns the appropriate

__ Byte-Range from the Media Streaming
<€ Package
Origin

1
MSS Transmuxer

Transmuxer returns the appropriate
chunks for the Time-Range

MSS Streaming is based on HTTP Client/Server

Figure 2.2: Microsoft Smooth Streaming is based on transmuxers which convert the re-
quested time range to the corresponding data chunk.

Appendix [Al Adaptive Streaming Manifests in Section [A.1.Microsoft Smooth Streaming
client and server manifests examples are shown and explained how they are used.

Finally, when it comes to content protection, the standard defined only support for AES-
CTR. PlayReady DRM was the only approved DRM system on this streaming technology.
Head to section Content key acquisition for further information.

2.1.2.2. Dynamic Adaptive Streaming over HTTP (DASH)

Most of the knowledge acquired in the development and operations of Smooth Streaming
was used when defining the Dynamic Adaptive Streaming over HTTP protocol. DASH
(also known as MPEG-DASH) was designed from scratch to support adaptive streaming
between an HTTP server and a client without needing a transmuxer. Clients are powerful
enough to read a container and request the data chunks. It has been standardized under
the International Organization for Standardization (ISO) in the specification MPEG-DASH
ISO/IEC 23009-1:2014. It makes use of fMP4 container to hold the video data.

DASH manifest contains all the available renditions with its technical information, on each
rendition entry the file location and the byte-ranges for the initialization segments in the
container are specified. Being said this, the client will download the headers of each fMP4
container where the initialization segment is located, with the initialization segment the
player can calculate the position of each fragment for a specific time interval. The player
can switch between renditions because all of them contain the same amount of fragments.
In this case, because of the SIDX box that translates time to byte position there is no
required transmuxer between the player and the origin files, they are reached using byte-
range requests.

CHAPTER 2. STATE OF THE ART 21

Figure [2.3] represents the difference with the previous picture in this case there is no
transmuxer between the player and the media.

EI Streaming

Package
= CDN

Device requests Byte-Range

No transmuxer required.
The CDN returns the appropriate data chunks

Figure 2.3: DASH does not require a transmuxer. Devices are smart enough to request
the appropriate byte-ranges.

Appendix [Al Adaptive Streaming Manifests in Section [A.2]Dynamic Adaptive Streaming
over HTTP shows an example of a DASH manifest for VoD.

The same organization that standardized this streaming protocol designed an encryption
system to work on top of it. Common Encryption was designed for ISOBMFF containers
to provide content protection. The same standard provided information on how to signal
the encryption data on DASH manifests, so both protocols are really suitable for streaming
VoD content. Head to Section Common Encryption to know more details about media
protection.

The main drawback of this technology is the support on Apple devices, protected DASH
streaming is not supported in iOS and MacOS.

2.1.2.3. HTTP Live Streaming

Finally, HTTP Live Streaming was designed by Apple to be integrated within its software
and hardware. It is similar to MPEG-DASH based on plain HTTP requests. In this case
Apple submitted an RFC draft, the latest version (v7) is RFC8216 [7].

First releases of this protocol only supported MPEG-2 TS, as it has been explained it
cannot store data from newer codecs. Fortunately, in the version 7 of HLS support for
fMP4 was included. HLS manifests are similar to DASH, players can handle directly the
container and obtain the appropriate byte-ranges from an HTTP server, no intermediate
transmuxer is required, it works on the same way as Figure 2.3

HLS manifests are split into multiple files, the first one holds the information of all the
renditions, each entry points to a secondary manifest related to a single rendition file.
In that manifest all the byte-ranges are listed so the player can fetch from the origin the
appropriate bytes. To know more about the manifests please check Section HLS in
the appendix.

22 Common Media Application Format. Implementation and Analysis

Last but not least, HLS supports content protection using multiple DRM systems, although
the most relevant ones are Widevine and FairPlay. FairPlay is the one that will work in
Apple devices and it makes use of Sample-AES for the underlying encryption. Sample-
AES is basically an AES-CBC with pattern encryption. Next section will cover the details
of encryption and their modes.

2.2. Common encryption

Content providers and cinema studios are very strict on the treatment of movies, they
enforce strict rules on the content protection. All the streaming chain must be secure
enough so the content does not get leaked and widely available for free.

Back in 2012 there were efforts from multiple parties to standardize under the International
Organization for Standardization (ISO) a specification for media encryption using MP4
containers. It was standardized under the name MPEG - Part 7: Common encryption
in ISO base media file format files (ISO/IEC 23001-7). The specification was revised in
three different editions being the last one published on 2016. Each revision added new
encryption mechanisms and signaling metadata for the container.

Common Encryption specifies a standard encryption and key mapping method that can
be used to secure multimedia files. In this section the focus will be the encryption, the
decryption side will be covered in the next section (Content key acquisition).

The standard makes use of Advanced Encryption Standard and support two en-
cryption modes, AES-CTR and AES-CBC, both of them can be used to protect the content.
Within these modes there are multiple scheme types, that define how the video or audio
samples must be encrypted.

2.2.1. Scheme types

AES modes are CTR which is based in a counter and CBC which chain blocks by using the
encrypted result. Within these two modes the ISO standard also introduced the encryption
scheme that defines how the content is going to be encrypted. The content can be fully or
partially encrypted depending on how video samples are treated:

e Full Encryption: when applying this scheme all the video (or audio) samples inside
the MDAT container will be encrypted. No content will be left on the clear.

e Pattern Encryption: this second scheme type appeared to improve the perfor-
mance of decryption on low end devices. Instead of performing a full encryption
of the content, it partially encrypts the data stored in the container. The samples (or
frames) will be encrypted using a pattern, some samples will be encrypted and other
ones will be left in clear. This reduces drastically the amount of data that a processor
needs to decrypt, the rationale behind this scheme is that it improves the decryption
throughput as fewer data needs to be decrypted. Over time resolutions are being
increased which means that each frame will hold much more data, improving the
efficiency on the decryption will let devices with less resources still work with higher
resolution content.

CHAPTER 2. STATE OF THE ART 23

As it has been said, both scheme types can be applied to the existing AES modes. The
combination between the encryption mode and the encryption scheme is represented in
Figure each combination receives a name that is used to identify the scheme and
mode used to encrypt a stream. This name is signaled in the streaming manifests and
inside the container.

Full Pattern
Encryption Encryption

AES-CTR CENC CENS
Mandatory to be CENC compliant
Mandatory to be CMAF compliant
AES-CBC CBCt1 CBCS

Figure 2.4: Scheme types included in the Common Encryption definition by MPEG - Part
7: Common encryption in ISO base media file format files.

First release of the Common Encryption specification only defined the cenc type and it was
mandatory to be supported by any system implementing such definition, on subsequent
standard updates the other combinations where added.

Common Application Media Format enforces the usage and support of AES-CBC with
pattern encryption. Every device that properly supports CMAF will be required to support
the encryption scheme cbcs.

2.2.2. Signaling the container

Medias and manifests must be signaled with the encryption information or players will not
be able to decrypt and play the content. Common encryption enforces the signaling of
multiple parameters, the most important ones will be the key identifier (which links a track
with an encryption key), the scheme used when encrypting and finally the DRM systems
supported within the media.

The following bullet points summarize the most important parts to be signaled within the
media or the streaming manifest:

o Key identifier (KID): encryption keys must be associated to the corresponding video
or audio track, so the player can request the appropriate decryption key. KID is the
key identifier and it is written both in the container and the manifest, the player will
use this KID with a content key acquisition system to fetch the key and decrypt the
stream.

e Encryption scheme: the scheme must be signaled so the player can configure the
decryption mode on the module in charge of decrypting fragments. On common
encryption AES uses 128-bit keys, but the underlying algorithm and scheme type
works different depending on the mode to be used. The appropriate scheme name
from the four defined scheme types will be used to signal the encryption type both
in the container and in the manfiest. The valid identifiers for the schemes are cenc,
cens, cbc1 and cbes.

24 Common Media Application Format. Implementation and Analysis

e Protection System Specific Header (PSSH): the medias and manifests must be
signaled with the specific DRM system protection as Common Encryption defines.
Each DRM system is recognized by a unique identifier which can be specified either
on the appropriate fMP4 box or in the manifest itself. Within the system identifier
some other data is included which is used by the player to engage the DRM protec-
tion.

2.3. Content key acquisition

After explaining the different streaming protocols and content protection methods it is time
to introduce how the system obtains the key to decrypt the content. This step is known as
content key acquisition, players can obtain the decryption key using several methods, one
of them is defined by the common encryption standard and it is mandatory to be included
in any browser following the CENC spec. Apart from the key acquisition method defined
on the standard there are other proprietary methods known as Digital Rights Management

(ORM).
As it has been said, the manifest and the container are signaled with the KID, encryption

scheme and PSSH. Players will use this data to query an external server and obtain the
decryption key for the specified KID. With that key and the encryption scheme.

On the following subsections ClearKey and different DRM systems are introduced, al-
though the first one is not suitable for production environments it is good as a starting point
in media encryption.

2.3.1. ClearKey

ClearKey is the reference implementation that any browser should support when imple-
menting common encryption and the Encrypted Media Extensions (EME). This was done
to ensure that open-source browsers had at least one open protocol to acquire content
keys. Usually open-source community is not prone to include software that restricts users
liberty, and that is what a DRM system does. Most open-source browsers will not have a
DRM bundled in it unless they agree to do so.

When using encrypted content the websites will use the Encrypted Media Extensions
(EME) included in the browser, they require some signaling to engage all the subsystems.
In the case of ClearKey the system will respond to the usage of “org.w3.clearkey” iden-
tifier. When using that identifier the browser will request the content key for the supplied
media KIDs (usually, in ClearKey there is a method to supply the content keys). Once the
system is engaged with the appropriate content keys the decryption module will decrypt
the buffered video samples and image will be shown.

This method is not secure enough for content providers because it does not ensure the
privacy of the content key. A user with average programming skills will be able to intercept
the calling methods on the website code and leak the decryption keys. Leaking the de-
cryption keys means that content will be easily decrypted and available for piracy in matter
of minutes.

CHAPTER 2. STATE OF THE ART 25

2.3.2. Digital Rights Management (DRM)

Studios enforce strict measures to keep the content secure, this means that users are
granted to watch the content but cannot hold the content in clear, to avoid this it is impor-
tant to keep the content key private, even for the users who bought the video. Any device
included in an OTT platform with copyrighted content must support a secure content key
acquisition system that keeps the key hidden. Digital Rights Management (DRM) mech-
anisms are designed to enable the secure decryption of the content without exposing the
key details. They are proprietary solutions embedded in the browsers or operating sys-
tems, and they work by creating trusted environment where the content key is stored and
the decryption is done.

Modern DRM systems use the Trusted Execution Environment (TEE) embedded in the
processors to create the secure environments that are used to store and process the
copyrighted content. TEE provides an isolated environment that grants confidentiality and
integrity to the processes that are using them. Only the process that created the isolated
environment is granted to read the information stored there, no other processes within the
CPU can obtain the content from there. But not all the devices have TEEs, in the case
where a device does not have a secure environment the DRMs work by using software
obfuscation. Most studios only allow lower resolutions to be reproduced when the security
is provided by obfuscation.

Content key acquisition through DRM systems is known as License Acquisition. Within a
license there is the content key and some play rights that are used to configure and man-
age the playback session. These rights are usually used to keep control of the playback
session, for example, in a[VoD|service the DRM will control the rental time and the number
of plays, if the content was rented for 24 hours once this time has finished the system will
lock and no further playback will occur. There are other features in this play rights, most of
them to control different security policies to avoid the copy of the content.

DRM is used through the Content Decryption Module which is the standard inter-
face that browsers (and other devices) offer to interact with the proprietary DRM systems.
CDM’s relay in their own private protocols which are not public, part of the security of the
DRM is provided by the closed algorithms they use.

To briefly explain how license acquisition works, please refer to Figure [2.5 while reading
this explanation:

1. Generate a license request: with the PSSH information in the container or in the
manifest the player will engage with the DRM system. By using the Encrypted Media
Extensions the player will use make the [CDM]build a license request. This request will
contain the KIDs and some private information that the server will use to encrypt the
key and securely return the license.

2. Request validation: when the license server receives a request it validates that the
user/device who is requesting a license have rights over the content. If so, it will gener-
ate a license for the requested content.

3. Generate license response: as it has been explained a license is a bunch of infor-
mation containing the content keys of the media and the play rights to be used in the
player. Usually DRM systems encrypt the content key with the private information re-

26 Common Media Application Format. Implementation and Analysis

ceived in the request. Most of the systems use certificates with public and private key,
by using the public key secret content can be exchanged.

4. CDM configuration: when the CDM receives the license response it will engage all
the policies defined in the license. From the response it will obtain the content key
and configure it in the decryption module. The license acquisition and content key
processing is done in the Trusted Execution Environment (if available) or in the software
obfuscated environment. The information contained in the license will not be leaked to
outer processes.

5. Playback starts: finally the CDM will start decrypting the buffered frames and image
will show while more content is fetched from the CDN.

-

Device CDN License Acquisition
Server

Reads PSSH
DRM Information

Generates a
License Request

Request a Li

icense Acquisition 3

Validates License
Request

Returns License

with Content Key

Returns a License Response

<€—— containing the Content Key

CDM configures
the decryptor

Starts playback
session

——Request Video Chunk 3

Returns Video Chunk——
<«

Figure 2.5: License Acquisition process on a Digital Rights Management system.

On the following sections the most relevant DRM systems for media and VoD are ex-
plained.

CHAPTER 2. STATE OF THE ART 27

2.3.2.1. PlayReady

Microsoft designed PlayReady back in 2007 and it has been used since the appearance
of Smooth Streaming. Fortunately it is compatible with Common Encryption as it started
using AES-CTR and cenc scheme since the beginning. Its was design as a platform
independent DRM, because of this, Microsoft released a Device Porting Kit that can be
used to integrate the PlayReady DRM in any device.

It is the most widely used DRM solution on connected devices, almost all SmartTVs and
gaming consoles support PlayReady, Windows has native support embedded in the oper-
ating system and there are solutions to integrate the DRM in Android and iOS applications.

PlayReady’s CDM can run either at application layer or operating system layer, its security
will depend on the usage of Trusted Execution Environment or not.

2.3.2.2. Widevine Modular

Widevine was a company bought by Google which started on the DRM licensing with
Widevine Classic. At that moment they defined all the streaming stack, from the container
to the plugin (similar to a CDM) running on the remote browsers or devices. They didn’t
used any kind of open technology and when Common Encryption was standardized they
decided to deprecate it in favor of Widevine Modular.

Widevine Modular was built following the Common Encryption standard and was present
since the beginning on Google products and devices. Since 2017 Samsung’s SmartTVs
added support for Widevine Modular.

On Android and Chromecast the CDM runs at the operating system level, ensuring a
Trusted Execution Environment, but on browsers the secure environment is done by soft-
ware obfuscation which is less secure. For example, Widevine CDM was recently broken
in Chrome because it was using software obfuscation techniques and not reliable trusted
environments.

2.3.2.3. FairPlay

Last but not least, FairPlay is the DRM solution provided by Apple and implemented in all
the company devices. FairPlay is only supported on Apple devices, but because they have
a big market quota for VoD services it is interesting to support it, customers are used to
iPads to watch the platform content.

Although there are solutions to use Widevine or PlayReady in iOS they do not work as
good as FairPlay. In the case of Apple’s browser, Safari, it only supports FairPlay DRM.
The CDM has been implemented at operating system level, which ensures the Trusted
Execution Environment.

CHAPTER 3. TECHNOLOGY AND TOOLS
ANALYSIS

In this chapter an analysis of the available tools will be done. When developing this project,
there was an internal requirement to use only open-sourced code. Below different stream-
ing packages, DRM systems and players will be listed and analyzed. They will be used on
the implementation of this thesis.

3.1. Streaming Packager

On terms of streaming packagers there are two big players that open-sourced their code,
Bento4 and Shaka Packager. Both of them are suitable for this thesis because they sup-
port the required streaming protocols (DASH and HLS) and the appropriate encryption
scheme (cbcs).

e Bento4 is mainly developed and maintained by Gilles Boccon-Gibod, owner of Ax-
iomatic Systems LLC. It is offered in a dual license system (open source and com-
mercial). RakutenTV uses Bento4 because of its support for current streaming pro-
tocols, MSS and DASH are generated with this tool. In theory, it also supports HLS
so it is a suitable solution for this project.

e Shaka Packager is developed by Google, which is creating a multimedia suite con-
sisting of a packager and a player. Its streaming packager only support DASH and
HLS, because of this it was not considered on RakutenTV. Now with the CMAF
project it could make sense to test its viability, as it supports by default CMAF com-
pliant packages.

There are other solutions in the market which provide the same features as Bento4 and
Shaka Packager, but the problem is that they are not open source, or they are offered
as Software as a Service (an application for encoding and packaging offered as a cloud
service). Some of them are listed below:

e Azure: Microsoft’s cloud provider offers unified solutions to package and deliver
multimedia content. Support for CMAF has been added recently.

¢ Unified Streaming: this company offers solutions for media packetization including
encoding, packaging and streaming. It has also added support for CMAF medias.

e AWS Elemental: Amazon Web Services have a suite of media products, they offer
tools for packaging and streaming which they do already support CMAF.

Although they are well-known solutions in the market, trusted by several VoD companies
these solutions are not suitable for RakutenTV. The philosophy of the engineering in the
company is to use open source tools that can be extended and modified upon require-
ments. Sometimes teaks to the packagers must be done in order to support a wide range
of devices.

29

30 Common Media Application Format. Implementation and Analysis

3.1.1. Comparison of Packagers

Below a table summarizes the key features between Bento4 and Shaka Packager. They
offer similar features and both are open source which make them suitable for this thesis.
On the implementation chapter both packagers will be tested in order to verify that they
can build CMAF compliant packages.

Bento4 Shaka Packager
Streaming Packages MSS, DASH, HLS DASH, HLS
Encryption Common Encryption Common Encryption
(cenc, cens, cbc1, cbcs) (cenc, cens, cbc1, cbces)
PlayReady PlayReady
DRM Widevine Modular Widevine Modular
FairPlay FairPlay
Widevine Classic No Only decrypt
Platforms Linux, Mac, Windows Linux, Mac, Windows
Programing Language C++, Java & Python C++
Command Line Interface Yes. Through Python Yes. Compiled binary
License GPL V2'O. . BSD-3
non-GPL commercial license

Table 3.1: Comparison between principal open source packagers.

3.2. DRM License servers

Copyright content requires secure ways to protect and deliver the decryption key, in terms
of DRM licensers the company manages their own licensing infrastructure, so license
servers are built in-house instead of using third-party providers. PlayReady and Widevine
Modular servers are developed and maintained by the Playback department. FairPlay has
not been used in the company, but within the context of this thesis an evaluation of available
options has been done.

DRM companies force signing non-disclosure agreements when companies use their soft-
ware, the explanations of each system are a general overview without deeply entering in
details.

3.2.1. PlayReady

Licensed companies are provided with a Server SDK that must be used to build the server,
it contains all the necessary software to build an HTTP server that can handle PlayReady
license requests, it automatically performs all the parsing, generation of license, encapsu-
lation of content keys, etc. The developers in the company are only required to implement
a method that will be used by the SDK. This method will configure the license params
that should be used when issuing a license, in general they will be the associated content
keys with the KIDs, and the play rights of the content (validation, license duration, output
protection, etc).

CHAPTER 3. TECHNOLOGY AND TOOLS ANALYSIS 31

Companies are forced to use the Server SDK programming language in their custom code
because of it is integrated within the SDK calls.

Figure shows a block diagram of a PlayReady license acquisition process, the green
blocks are provided by the SDK while the blue one is implemented by the company.

> Handle License Request

!

Parse License Request details

Device i

D H Add Content Key and Rights

—

Generate License with Rights

v

] Handle License Response

PlayReady SDK Server

PlayReady License Server

Figure 3.1: License Acquisition in FairPlay. The company uses the provided PlayReady
Server SDK to build the service, it only needs to attach a small method that adds the
content key and the play rights to a license.

Following the previous picture this are the steps carried out in a PlayReady implementation:

1. Request handling and license parsing: once the server receives a new license re-
quest the PlayReady SDK handles it, it parses the content of the license request and
calls the implemented method with the parameters of the license request.

2. License configuration: this step is performed in the company code, basically it will
use the parsed license to fetch the requested KID and return the appropriate content
keys along with all the play rights a device should have.

3. License generation and response: finally with the license parameters the PlayReady
SDK will generate a valid license which will be returned to the device.

3.2.2. Widevine Modular

Google took a different approach than Microsoft, instead of offering a Server SDK that
builds a complete solution they offer a remote service which parses and generates the
licenses. Companies are required to use that service through an intermediate proxy which
wires the request validation and the license configuration with the remote service.

Companies can choose the programming language by their own, they only need to be able
to perform HTTP requests to the remove Widevine service.

32 Common Media Application Format. Implementation and Analysis

Figure |3.2| shows the basics of Widevine Modular license acquisition, the Widevine Mod-
ular Proxy Server is developed by the company (blue blocks) while the Widevine Modular
License Server is offered by Google (green blocks).

> Handle License Request
>
Fetch License Request details Parse License Request details
I~
) |
Device
&
Add Content Key and Rights > Generate License with Rights
e
Widevine Modular License Service
Handle License Response h

Widevine Modular Proxy Server

Figure 3.2: License Acquisition in Widevine Modular. The company builds a Proxy Server
which uses Google’s Widevine remote service.

Following the previous picture this are the steps carried out in a Widevine Modular imple-
mentation:

1. Request handling: the proxy receives a license request but it does not know how to
read the license request details.

2. Remote license parsing: with the raw payload, the proxy requests the remote service
to provide a parsed license request, with all the details in clear. This details will include
the requested KIDs and general device information.

3. License configuration: once the proxy receives the parsed request it can generate
the license parameters containing the content key and the different play rights.

4. Remote license generation: the license parameters are sent to the remote service
which is in charge of generating a Widevine Modular license.

5. License response: the license generated by the remote server is directly returned to
the device, the proxy only forwards the response.

3.2.3. FairPlay

Last but not least, Apple’s server implementation is the most basic one, they deliver a
package containing the source code of the cryptographic operations that are used to issue
a license. The problem is that the source code is written in C which is not a common
language for server side development. The C implementation is a reference example,
Apple expects the companies to integrate the source in their systems or port the whole
license code to another programming language.

There are two open-source implementations of FairPlay’s code, one written in Java [13]
and the second one written in Golang [14]. After analyzing both of them, the Golang one
is much easier to use and modify.

CHAPTER 3. TECHNOLOGY AND TOOLS ANALYSIS 33

Figure shows how the licenser works, as the other examples, the blue boxes are de-
veloped by the company while green ones are provided by the FairPlay package.

Y

Handle License Request

P

Parse License

1)
Device | Add Content Key and Rights
by g v

Generate License

FairPldy SDK

Handle License Response

FairPlay License Server

Figure 3.3: License Acquisition in FairPlay. The company builds the whole License Server
and it calls the embedded FairPlay SDK with the appropriate license parameters.

Following the previous picture this are the steps carried out in a FairPlay implementation:

1. Request handling: the server receives a license request, using its payload the FairPlay
method that generates licenses is called.

2. License configuration: Apple’s algorithms will take care of parsing the license request
and call a company-implemented method that returns the content key and the license
parameters.

3. License generation: once the FairPlay SDK has the license parameters it can issue a
valid license which is returned to the device.

3.3. Players

On terms of players, the idea was to cover all the major devices that RakutenTV sup-
ports. In this thesis the players and platforms that are expected to support the new CMAF
package will be evaluated. The easiest devices to make them support the new standard
are Web Browsers and Smartphones, whereas SmartTVs, Consoles and other ones, will
be harder to make them work. Usually, manufacturers do not add new features in their
firmware updates.

34 Common Media Application Format. Implementation and Analysis

3.3.1. Web Browsers

Within the Web Browsers section, different browsers and players will be covered. The
most relevant browsers, taking into account their support for DRM are Google Chrome
with Widevine Modular, Microsoft Edge for PlayReady and finally Safari which employs
FairPlay. In terms of players the big players are DASH-IF which is being developed by
the DASH Industry Foundation and it is the reference player of DASH. The other option is
Shaka Player, which is maintained by Google and it is widely used.

Browsers can use a DRM CDM with different strategies, some of them can include the
CDM on the application layer, bundled with the browser, or others can use directly the
CDM embedded in the operating system. Usually, browsers that come installed with the
operating system will use the CDM embedded in the operating system, others browsers
will be bundled with a CDM.

HTML5 Player usingy HTMLS5 Player using EME \

Browser with CDM CDM Browser using OS CDM
7
Operating System / Operating System CDM
Device Device

Figure 3.4: Browsers can use bundled CDMs in the same application or use the Operating
System CDM. Chrome uses the first approach while Edge and Safari uses the second.

e Chrome: on this browser, the technology that will be tested is DASH with both
players. Chrome is developed by Google and it includes the Widevine CDM. Since
version 68, the included CDM supports cbc1 and cbcs encryption. First tests where
carried out on the Chrome Canary (alpha version with test features), on summer
2018. When this thesis was being written in 2019, CMAF package was already being
supported in the stable branch of the browser. Chrome implements the Widevine
CDM at browser level, so they can update the bundled CDM by releasing a new
version of Chrome.

e Microsoft Edge: currently, in the company, DASH with PlayReady is being used in
Edge browser. According to Microsoft, in the PlayReady Conference at New York
2018, it was confirmed that Edge will include AES-CBC support in future releases.
The implementation of PlayReady in the client side depends on the Windows Core
Team, instead of the Edge developing team. In this case, Edge does not bundle a
standalone CDM but it uses the included in Microsoft Windows, the CDM operates
at system level instead of browser level. Updating Edge will not modify the CDM
version, it depends on Windows upgrades.

e Safari: this is the included browser in all the Apple devices. HLS is supported
directly by the browser, it is able to parse and play m3u8 manifests. Starting from

CHAPTER 3. TECHNOLOGY AND TOOLS ANALYSIS 35

macOS 10.12 Apple introduced support for [fMP4| container when streaming HLS
medias. Encryption schema for Apple has been always AES-CBC with cbcs, in this
case, Safari should support CMAF packages using FairPlay CDM. Apple follows the
same strategy as Microsoft, the CDM is bundled in the operating system instead of
being included in the application layer.

3.3.2. Smartphones

There are two big players in the Smartphone market: Android and iOS. Android supports
Widevine Modular because its CDM is managed by the operating system, while iOS di-
rectly includes the FairPlay DRM.

e Android: Google introduced a new Widevine CDM version starting from Android 7.1
(Nougat). This new version enables the playback of AES-CBC encrypted content,
supporting both cbc? and cbes encryption schemes. CMAF requires the usage of
cbes. Any device using a version equal o higher than Android 7.1 will be able to
play any [CMAF| package. To perform the tests, the selected player is ExoPlayer,
provided developed by Google. This player supports DASH playback with Widevine
CDM protection. If the media is protected and includes the Widevine Modular PSSH
information, the player will engage all the protection and play rights issued in the
license. Some Android devices also include support for PlayReady, in that case
ExoPlayer can also use PlayReady’s CDM.

e iOS: Apple was already supporting AES-CBC with cbcs encryption previous to the
[CMAF] specification. Firstly, HLS only supported the MPEG-2 TS container which
had issues with newer codecs, with that issues Apple decided to start supporting
on its protocol and devices. Starting from iOS 10.0, they supported in
HLS while protecting the content with FairPlay.

3.3.3. Others

There are multiple devices on the market that support streaming, and are important for
[VoD] companies because customers owns them.

e Google Chromecast: this device was designed to work with old televisions that
did not benefit from smart features. The device acts like a receptor and can be
used as a streaming client for VoD services. It supports multiple protection systems,
RakutenTV uses PlayReady, but it is also possible to use Widevine Modular. Google
published in the Widvine news page that Chromecast was updated in summer 2018,
the update included a new Widevine CDM with support for CMAF standard.

e SmartTV: in Europe most of the new televisions being sold are SmartTV which offer
more features compared to the traditional televisions. VoD services usually make
their application available in such devices, manufacturers such as Samsung, LG,
Philips and Sony are key devices for RakutenTV.

36 Common Media Application Format. Implementation and Analysis

— Samsung Tizen: Samsung already supports DASH using protected fMP4 on
their devices. The problem comes when CMAF requires AES-CBC on the
encrypted medias. Samsung has not integrated the latest PlayReady Porting
Kit, so SmartTVs still do not have any support for CMAF required encryption.
It is expected to be included in the following years.

— LG WebOS: LG is in a similar situation like Samsung. They do not currently
support AES-CBC with the included DRM (PlayReady). No possibility either to
currently support such device.

— Android TV: some device manufacturers like Sony and Philips have used An-
droidTV instead of building their own operating system. AndroidTV has the
Widevine Modular CDM embedded in the operating system, so if the TV uses
a version higher than 7.1, it will support AES-CBC with cbcs encryption.

e Video Game Console: over time, these devices are getting relevant, they are
present in most of the living rooms of customer, someone who owns a gaming con-
sole is used to pay for a service, this is an interesting customer for a VoD service.

— Sony PlayStation 4: currently it supports PlayReady for protected content, but
the main problem is that uses an old Device Porting Kit that does not support
AES-CBC. Next generation of PlayStation is to be released in 2020, so, no
further updates in the PlayReady CDM are expected. Probably, this device will
never support CMAF.

— Microsoft Xbox One: in this case, Microsoft took a different approach and
decided to add AES-CBC support to the Xbox One, their idea is to make the
Xbox One the test-bed for all the PlayReady related tests. In this case, com-
panies can use this gaming console to test CMAF encrypted medias with the
PlayReady License server.

They contain old versions of the PlayReady Porting Kit, and no further updates are
expected on the included CDM, because new versions of this gaming consoles will
be presented in 2020. They will not support CMAF content.

In general the device status confirms that CMAF is not mature nor production ready, where
TV vendors are not including support for AES-CBC right now. It is estimated that starting
from 2020, CMAF will start taking more relevance. Probably, if the mobile industry is
moving towards CMAF, this will make device manufacturers to include support for the new
encryption algorithm.

3.4. Conclusions

There are several open-source tools that can already generate CMAF packages, with
the underlying fMP4 container and encrypting the content using AES-CBC with the cbcs
scheme. Bento4 and Shaka Packager will be used to generate sample packages in the fol-
lowing section. Both packages should support signaling the appropriate DRM information
on the streaming manifest, both for DASH and HLS.

CHAPTER 3. TECHNOLOGY AND TOOLS ANALYSIS 37

Most common Digital Rights Management systems should support the CMAF content key
delivery. In fact, they should support the delivery independent of the encryption mode,
key lengths are equal in AES-CTR and AES-CBC. It is strange that PlayReady requires
to signal the decryption type when returning the content key, the player could read itself
the information on the manifest or in the appropriate box in the fMP4 and configure the
decryption mode accordingly.

Finally, it seems that most of the connected devices such as smart tvs and gaming con-
soles do not currently support CMAF because they do not have the appropriate CDM and
no further updates are expected. In case of Android and iOS it is expected to be able to
play CMAF packages out of the box, they should be supported in the new versions of the
operating system. Browsers should also support CMAF either because the CDM can be
updated at the application level (Chrome), or the CDM is implemented by the operating
system (Safari and Edge).

With all of these, in the next chapter the validation of the packagers, DRM systems and
players will be carried out.

CHAPTER 4. IMPLEMENTING CMAF

This chapter will summarize how the analysis was carried out, and which devices success-
fully played the generated CMAF packages.

4.1. Development process

The implementation process during this chapter is shown on Figure [4.1], it mimics the steps
done in RakutenTV'’s playback chain.

Normalization Normalized g::glrg(t)igi
Master

Big Buck Bunny

FFMPEG FFMPEG
Packagi Bento4
ackaging ShakaPackager
e Microsoft Edge
PlayReady
License Server DASH
& Xbox One
@® Google Chrome 8 8
Widevine Modular DASH Ej 8 DASH
License Server = HLS
Android — Streaming
. Packages
[os
FairPlay

HLS

License Server .
Safari

Figure 4.1: Process for CMAF packaging and device validation.

The following enumeration summarizes step by step (following Figure the different
stages on the execution of CMAF implementation:

1. Master normalization: the first step that would mimic RakutenTV process is the in-
gestion and normalization of a master video file. The input video will be a generic video
available in internet with some random characteristics in terms of codecs and contain-
ers. The output of this process will be a normalized video where the container will use
the MP4 format and the video stream will be encoded using the AVC codec (H.264).
This step would make sure that the input file is not corrupt and at the same time make
the output file to be compatible with the next steps. Ffmpeg is the encoding tool chosen
to perform this job, it is a well-known open-source project used in most of the video and
audio encoding engines.

2. Renditions generation: once the normalized master is available and follows the ex-
pected parameters it is time to generate the renditions. To generate them ffmpeg will

39

40 Common Media Application Format. Implementation and Analysis

be used, using the normalized master will be mapped into several sub-quality output
files, the encoding will transform the input video in multiple versions which different
resolutions and bitrates, they will be used on the packaging step.

3. Packaging: the renditions will be encrypted and packaged into a streaming package
using the CMAF specification. Bento4 and Shaka Packager will be used in this step,
both of them support the encryption algorithms required in CMAF. The output package
will contain the streaming manifests for [DASH| and [HLS| Those manifests will include
the necessary information that DRM systems requires to acquire the content key and
engage the playback session.

4. Storage and delivery: this part will be different compared to RakutenTV, instead of
using a distributed file system and delivering the content through different CDNs, the
packages will be stored in the same encoding server. An HTTP file server will be
used to serve the packaged content, the minimum requirement is that the HTTP server
must support secure connections (HTTPS). Browsers require HTTPS to engage the
Encrypted Media Extensions, so the content key is fetched securely, if HTTPS is not
enabled the CDM will reject the license server.

5. License Acquisition: security is a fundamental part of this thesis and the execution
of the test could not be properly done without using industry proven DRM solutions.
Internal services have been adapted to support license delivery for CMAF packages.
The existing PlayReady license server was upgraded with the latest version of the SDK
adding support for AES-CBC key acquisition. Widevine Modular’s server was not nec-
essary to modify, the encryption scheme is not necessary when generating Widevine
licenses. Finally, a FairPlay license server was implemented using the Golang project
explained in the previous chapter, it was developed only the bare minimum logic to
issue valid licenses.

6. Device testing: the last step is to check device compatibility with the generated pack-
ages, both DASH and HLS will be tested using the medias that are encryted with the
cbces encryption scheme. The testing will consist on a playback of the package, check if
license is delivered and the playback session is properly started. Basically, if the device
can play the new created package. Bento4 and Shaka Packager output manifests will
be tested to verify that both options are suitable to be used on further implementations.

All the development has been carried out in an Ubuntu Server with enough CPU power
to encode and encrypt flawlessly the master and its renditions. Docker has been used to
simplify all the setup process required to get the encoding and packaging tools working. A
Docker image has been created which contains all the software required to create CMAF
packages. Check appendix Bl CMAF-Tools Docker Image to know more about Docker and
the cmaf-tools image built for this project.

4.2. Encoding

Everything starts with a sample master, the tests in this thesis were carried out using only
a video stream, the audio was left aside (this simplifies the whole testing). The objective is
to verify the viability of the project, so its better to keep things simple and controlled.

CHAPTER 4. IMPLEMENTING CMAF 41

To perform the proof of concept, the selected media was Big Buck Bunny. It is an open-
sourced short done with Blender. Since it was created, it has become a standard testing
video on the industry.

Figure 4.2: Big Buck Bunny Cover. Video sample used on the thesis.

The listing shows the output of mediainfo command when applied to the Big Buck
Bunny sample file. Mediainfo command can be used to obtain the information of the media,
including the codecs, container, duration, resolution, bitrate, frame rate, and other technical
information of the stream.

The master video that has been used is encoded using MPEG-4 and stored in an [AV]]
(Audio Video Interleave) container. The bitrate of the stream is variable, with an average
of 9387 kbps and encoded at 24 [fps| (frames per second).

Listing 4.1: Command: mediainfo output of the original video track.

$ docker run —rm —v /root/master—thesis/:/media —w /media gerardsoleca/cmaf—tools mediainfo <«
big_buck_bunny_ 1080p_stereo.avi

General

Complete name : big_buck_bunny_1080p_stereo.avi
Format : AVI

Format/Info : Audio Video Interleave

File size : 682 MiB

Duration 9 min 56 s

Overall bit rate mode : Variable

Overall bit rate : 9 587 kb/s

Writing application : MEncoder 2:1.07rc2—Oubuntul3
Writing library : MPlayer

Video

1D : 0

Format : MPEG—4 Visual

Codec ID : MP42

Codec ID/Info : Microsoft MPEG—4 v2 (pre—standard)
Codec ID/Hint : Microsoft

Duration 9 min 56 s

Bit rate : 9 328 kb/s

Width 1 920 pixels

Height : 1 080 pixels

Display aspect ratio : 16:9

Frame rate : 24.000 FPS

Compression mode . Lossy

Bits/(Pixel*Frame) : 0.187

Stream size

: 663 MiB (97%)

42 Common Media Application Format. Implementation and Analysis

From this source video file, the next step would be to normalize it. Treating media files in
the same way is better to avoid issues on further steps. Things that will be normalized are
the container and the codec with its own technical specifications.

Doing the normalization may prevent to perform costly encoding steps if the sample file is
corrupt for example.

4.2.1. Master normalization

In this step, the master will be normalized according to different parameters, this would be
the file that from which the different renditions will be generated. This normalized master
will be encoded using the H.264 codec, and the output stored in an MP4 container, the
resolution will be the same as the original master, which is in fullhd. The bitrate will vary
depending on the content with a maximum of 15 mbps. Taking into account that the codec
H.264 is more efficient compared to MPEG4, this will make that the resulting normalized
master be smaller in size compared to the original master..

Listing shows the ffmpeg command used to generate this intermediate file. It selects
only the video stream from the reference file, and applies the H264 video codec. The
parameters used on ffmpeg should generate a video stream with constant framerate, and
a visually loss-less image. The maximum bitrate of the encoded file can be up to 15 mbps,
but, because of the original master has an average bitrate of 9328 kbps, it is not expected
to be over the value of the original master.

Listing 4.2: Intermediate video stream generated using ffmpeg and libx264 to envide the
video with H264 codec.

$ docker run —rm —v /root/master—thesis/:/media —w /media gerardsoleca/cmaf—tools \
ffmpeg —y —err_detect explode —xerror \
—1i big_buck_bunny_1080p_stereo.avi \
—c:v 1ibx264 —preset medium —maxrate 15m —bufsize 30m —crf 17 \
—threads 0 —pix_fmt yuv420p —an \
master—bbb.mp4

Listing[4.3] shows the mediainfo output for the intermediate file, it is possible to see that the
codec being used is H.264, and it is stored in an MP4 container. Video bitrate has been
reduced to 8123 kbps, which has a direct impact on the output stream size, the normalized
master is smaller than the original one.

Listing 4.3: Mediainfo output for the normalized master. It shows the encoding and techni-
cal properties of the video stream.

$ docker run —rm —v $(pwd) :/media —w /media gerardsoleca/cmaf—tools mediainfo master—bbb.mp4d

General

Complete name . master—bbb.mp4

Format : MPEG—4

Format profile . Base Media

Codec ID : isom (isom/iso2/avcl/mp4dl)
File size : 578 MiB

Duration : 9 min 56 s

Overall bit rate : 8 125 kb/s

Encoded date : UTC 1904—01—01 00:00:00
Tagged date : UTIC 1904—-01—-01 00:00:00

Writing application : Lavf57.56.101

CHAPTER 4. IMPLEMENTING CMAF 43

Video

ID 1

Format : AVC

Format/Info : Advanced Video Codec
Format profile : High@L4

Format settings, CABAC . Yes

Format settings, ReFrames : 4 frames

Codec ID :avel

Codec ID/Info : Advanced Video Coding
Duration : 9 min 56 s

Bit rate 1 8 128 kb/s

Width : 1 920 pixels

Height 1 080 pixels

Display aspect ratio : 16:9

Frame rate mode . Constant

Frame rate 1 24.000 FPS

Color space T YOV

Chroma subsampling 1 4:2:0

Bit depth : 8 bits

Scan type : Progressive
Bits/(PixelxFrame) : 0.163

Stream size : 578 MiB (100%)
Writing library : x264 core 148 r2748 97eaef2

4.2.2. Generating adaptive streaming renditions

Once the normalized master has been encoded, the next step is to generate all the stream-
ing renditions. On adaptive streaming, several video files are generated with multiple bi-
trates and multiple resolutions. Having multiple versions of the same video can help players
to switch between video streams. Depending on the network quality, screen resolution and
other parameters such as DRM License configuration, some resolutions or bitrates can be
better than others when playing, a good streaming protocol will adapt the playback session
to the network or device conditions, trying to maximize the quality of the video.

There are multiple ways to select the appropriate renditions for a given content, current
trends in VoD services is to use artificial intelligence to detect the best combinations of
resolution and bitrate optimizing both size and quality. Maximizing the quality while keeping
the size low helps on reducing the required budget to store the content.

These renditions usually are also called as rendition leaders, because they are encoded in
a progressive way, where each rendition has better quality compared to the previous one.
The idea is that the player can switch up or down if the network can cope with the bitrate.
The appropriate leader will depend on the content, in this thesis three different renditions
will be generated, one per each standard resolution: FullHD (1080p) with a bitrate of 3000
kbps, HD (720p) using 2200 kbps and finally a SD (480p) at 1400 kbps.

Listing shows the command to be used when generating the different renditions. It is
more optimal to generate all the renditions at once instead of generating them one by one.
In this case the ffmpeg will decode the normalized master and re-encode each mapped
stream to a sub-quality rendition.

Listing 4.4: Ffmpeg command that generates the multiple renditions to be used in this
thesis.

ffmpeg —y —err_detect explode —xerror —i master—bbb.mp4 \
—filter_complex "[0:v]split=3[file_out_0][file_out_1][file_out_-2];[file_out_0]setdar=wxsar/h<«>
,drawtext=fontfile =./usr/share/fonts/truetype/dejavu/DejaVuSans. ttf :text="1920x1080—3000<—

44 Common Media Application Format. Implementation and Analysis

k’:fontsize=36:fontcolor=white , split[file_out_0_0];[file_out_1]setdar=wsxsar/h,drawtext=«
fontfile =./usr/share/fonts/truetype/dejavu/DejaVuSans. ttf :text="1280x720—2200k ": fontsize <>
=36:fontcolor=white, split[file_out_1_11];[file_out_2]setdar=wxsar/h,drawtext=fontfile =./«
usr/share/fonts/truetype/dejavu/DejaVuSans. ttf :text="854x480—1400k ': fontsize =36:¢—
fontcolor=white , split[file_out_.2_2]" \

—map "[file_out-0.0]" —c:v 1ibx264 —pix_fmt yuv420p —preset fast —tune film —profile:v main <
—b:v 3000k —minrate 3000k —maxrate 3000k —bufsize 6000k —s:v:0 1920x1080 —sc_threshold 04
—g 48 —keyint_min 24 —coder 1 —bf 3 —refs 4 —an —movflags +faststart —map_chapters —1 —¢
avoid_negative_ts 1 —shortest —vsync 1 —f mp4 encoding/1920x1080—3000k.mp4 \

—map "[file_out_-1_.1]” —c:v 1ibx264 —pix_fmt yuv420p —preset fast —tune film —profile:v main ¢
—b:v 2200k —minrate 2200k —maxrate 2200k —bufsize 4400k —s:v:0 1280x720 —sc_threshold 0 <«
—qg 48 —keyint_min 24 —coder 1 —bf 3 —refs 4 —an —movflags +faststart —map_chapters —1 —¢
avoid_negative_ts 1 —shortest —vsync 1 —f mp4 encoding/1280x720—2200k.mp4 \

—map "[file_out_-2.2]” —c:v 1ibx264 —pix_fmt yuv420p —preset fast —tune film —profile:v main <
—b:v 1400k —minrate 1400k —maxrate 1400k —bufsize 2800k —s:v:0 854x480 —sc_threshold 0 —¢
g 48 —keyint_min 24 —coder 1 —bf 3 —refs 4 —an —movflags +faststart —map_chapters —1 —¢
avoid_negative_ts 1 —shortest —vsync 1 —f mp4 encoding/854x480—1400k .mp4

The previous command takes the normalized master, and then it applies a filter complex
which splits the video into three different sub-streams and maps each sub-stream to an
encoder, the encoder applies the H.264 codec algorithm and burns the codec configuration
in the stream (easy to know which stream is being played). When the encoding finishes,
there will be three renditions with the specified qualities.

Adaptive streaming requires a video with constant bitrate, that is why the minimum and
maximum bitrate configured in the codec property is the same. Frame rate is also re-
quired to be constant with closed GOPs. For adaptive streaming it is mandatory to have
I-Frames every N-frames, the previous command will enforce an I-Frame every 24 frames
(keyint_min parameter specifies that).

Figure [4.3| shows all the renditions overlapped between them. Players will scale between
this three resolutions and bitrates depending on their screen-size and Internet perfor-
mance.

I e Hhti

Figure 4.3: Overlapped captures for the three generated renditions.

CHAPTER 4. IMPLEMENTING CMAF 45

4.3. Packaging

Once the renditions are generated, the next step to be carried out is the packaging, in
this step the renditions will be encrypted and information relative to the encryption and the
content protection systems will be added in the container. Medias must be fragmented and
encrypted using the cbcs scheme.

The finality of this thesis is to support [HLS| and [DASH] streaming protocols without repli-
cating the underlying content. Bento4 and Shaka Packager are able to generate both
streaming manifests using the same renditions.

As stated on previous sections, Common Encryption works by using an AES key and a
key identifier, so the media is encrypted with the key and it is identified with the KID. Then,
DRM systems will use the requested KID to return the appropriate decryption key.

On the Table [4.1]the KID and the Content Key are represented, both in hexadecimal and
base64 formats. In the next commands this values will be used within the packager, so the
media gets encrypted and properly identified.

KID Content Key
Hex a1cb5¢9393807¢a023d9c8d1d7ec5837 | 2673e1b813f36f083cd825€9721b3d15
Base64 octck5OATKAj2¢jR1+xYNw== JnPhuBPzbwg82CXpchs9FQ==

Table 4.1: KID (Content Id) and Content Key to be used in the test medias.

4.3.1. Bento4

The first software being tested is the Bento4, which is the current packager used in the
company. Reading its documentation, it clearly states that it will generate [CMAF| compat-
ible medias, encrypting the content with AES-CBC using pattern encryption and properly
dealing with the DRM information which must be added on the manifests. Bento4 provides
several high-level scripts that will simplify the whole packaging operation.

To properly generate a media, Bento4 requires two different executions. The first
one will fragment the input medias, generating fragmented fMP4 containers compatible
with the standard. On the second step, the medias will be encrypted and the streaming
manifests created.

4.3.1.1. Fragmentation

During the encoding process, the renditions have been generated using MP4 containers
with constant frame rate and constant I-Frames, they are ready for the fragmentation pro-
cess. The fragmenter requires an |-Frame to generate a new mdat box, containing the
video data for a specified duration interval. Usually, the industry uses 2-second fragments.
When streaming such content, the player will be able to switch between qualities every two
seconds (although in a real case it would depend on the buffer length).

The following Bento4 command will fragment each rendition using a timescale of 10 MHz
and a fragment duration of two seconds.

46 Common Media Application Format. Implementation and Analysis

Listing 4.5: Bento4 to generate Fragmented MP4s (fMP4) from the encoded renditions

Fragment the containers so it is suitable for streaming
docker run —rm —v $(pwd) :/media —v /tmp:/tmp —w /media gerardsoleca/cmaf—tools \
mpd4fragment —index —fragment—duration 2000 —timescale 10000000 1920x1080—3000k.mp4 /tmp<—
/1920x1080—3000k—frag.mp4

docker run —rm —v $(pwd) :/media —v /tmp:/tmp —w /media gerardsoleca/cmaf—tools \
mpd4fragment —index —fragment—duration 2000 —timescale 10000000 1280x720—2200k.mp4 /tmp/12804¢—
x720—2200k—frag.mp4

docker run —rm —v $(pwd) :/media —v /tmp:/tmp —w /media gerardsoleca/cmaf—tools \
mp4fragment —index —fragment—duration 2000 —timescale 10000000 854x480—1400k.mp4 /tmp/854<—
x480—1400k—frag.mp4

It is possible to compare the original and the fragmented MP4, The differences between
them will be easier to notice. On the left side of the Figure [4.4]the normal MP4 container
is shown, there is a single mdat and moov box. On the left, the fragmented one is listed, it
has multiple mdat and moof boxes, they are repeated periodically, in this case each mdat
will contain 2 seconds of video. The first fragment on each mdat box will be an I-Frame
(full frame), so the player can successfully decode the portion of video contained in the
fragment.

v @ 1920x1080-3000... 1920x1080-3000...

Figure 4.4: Boxes comparison between a MP4 and a fMP4.

4.3.1.2. Encryption and DRM signaling

After generating the fragmented containers, it is time to package the media. The packaging
consists of encrypting the medias and then generate the streaming manifests for HLS and
DASH. These manifests need to be properly signaled with the DRM information, so the
players can securely fetch the content key and enable the playback on the device.

Bento4 offers a tool which encrypts, signals and generates the manifests. For a VoD
service, the required DASH manifest is the “on_demand”, the encryption scheme for CMAF
has to be set to cbes. KID and Content Key are configured in the encrypted-key argument,
both of them specified in hexadecimal. After configuring the encryption arguments, it is
time to set the configuration for the DRM signaling. It is mandatory to provide the license

CHAPTER 4. IMPLEMENTING CMAF 47

server url for PlayReady, and the configuration of the stream for Widevine. The generation
of the PSSH data, which will signal the DRM is provided by Bento4. In the same command
HLS is enabled, and by using the setting his-key-url the FairPlay License server will be
configured. Last but not least, all the renditions are added into the command and tagged
as a video files.

Listing 4.6: Bento4: encrypt, signal DRM and generate HLS and DASH manifests with
mp4dash.

docker run —rm —v $(pwd) :/media —v /tmp/package/:/tmp/package/ —w ”"/media” gerardsoleca/cmaf—

tools \

mpddash \

—o bento4 —force —profiles=on—demand —mpd—name stream.mpd \

—encryption—cenc—scheme=cbcs \

—encryption—args="—global—option mpeg—cenc. piff —compatible :true” \

—encryption—key alcb5c9393807¢ca023d9c8d1d7ec5837:2673e1b813£36£083cd825e9721b3d15 \

—playready—header=LA_URL:https://playready—license.server.com \

—widevine—header=provider:cmaf—thesis#content_id«
:6131636235633933393338303763613032336439633864316437656335383337#protection_scheme :cbcs<«
\

—playready—add—pssh \

—hls \

—hls—key—url=https://fairplay—license.server.com \

[type=video]/tmp/package/1920x1080—3000k—frag.mpd \

[type=video]/tmp/package/1280x720—2200k—frag.mp4 \

[type=video]/tmp/package/854x480—1400k—frag.mp4

After running the command in the Listing the created package will look like Listing
It contains the three encoded renditions, a stream.mpd which is the DASH manifest
representation, and the m3u8 files, that are the HLS manifests.

Listing 4.7: Bento4 package elements

—rw—r—r— 1 root root 927 Jun 4 23:46 master.m3u8

—rw—r—r— 1 root root 216473812 Jun 4 23:46 media—video—avcl—1.mp4
—rw—r—r— 1 root root 158235350 Jun 4 23:46 media—video—avcl—2.mp4
—rw—r—r— 1 root root 100924576 Jun 4 23:46 media—video—avcl—3.mp4
—rw—r—r— 1 root root 3013 Jun 4 23:46 stream.mpd

—rw—r—r— 1 root root 23750 Jun 4 23:46 video—avcl—1_iframes.m3u8
—rw—r—r— 1 root root 23913 Jun 4 23:47 video—avcl—1.m3u8
—rw—r—r— 1 root root 23661 Jun 4 23:46 video—avcl—2_iframes.m3u8
—rw—r—r— 1 root root 23852 Jun 4 23:47 video—avcl—2.m3u8
—rw—r—r— 1 root root 23444 Jun 4 23:46 video—avcl—3_ iframes.m3u8
—rw—r—r— 1 root root 23734 Jun 4 23:48 video—avcl—3.m3u8

4.3.2. Shaka Packager

Shaka Packager has a simplified command interface. It provides an all-in-one executable
that will be in charge of the fragmentation, encryption, DRM signaling and manifest cre-
ation. The KID and content key will be the same as before.

The idea is the same, by default shaka-packager uses an "on_demand” manifest for DASH.
When using the packager command, it expects the renditions as input files, and they need
to be tagged using a drm_label (leave aside this, it is out of the scope of this thesis, this are
parameters to be used on the license server to allow playback of certain tracks). Shaka
Packager introduces 6 seconds in clear at the beginning of the stream, this leads to a
non-encrypted media on the first seconds. Setting 0 to the clear_lead parameter enforces

48 Common Media Application Format. Implementation and Analysis

that the encryption starts from the beginning. This packager by default tries to fetch the
encryption key from Widevine or PlayReady Key Servers, that is why it is applied the raw
encryption to be able to use specific KID and content key within the media. The other
protection systems are Widevine, PlayReady and Fairplay, the packager will handle the
PSSH generation

Listing shows the issued command which will handle the fragmentation, encryption
and manifest creation in Shaka Packager.

Listing 4.8: Shaka Packager: encrypt, signal DRM and generate HLS and DASH manifests
with packager.

docker run —rm —it —v $(pwd) :/media —w /media gerardsoleca/cmaf—tools \

packager \
in=1920x1080—3000k .mp4 , stream=video,output=shakapackager/1080p.mp4,drm_label=HD \
in=1280x720—2200k .mp4 , stream=video, output=shakapackager/720p.mp4,drm_label=HD \
in=854x480—1400k .mp4 , stream=video, output=shakapackager/480p.mp4,drm_label=SD \

—protection_scheme cbes \

——clear_lead 0 \

—enable_raw_key_encryption \

—%keys label=SD:key_id=alcb5c9393807ca023d9c8d1ld7ec5837:key=2673e1b813£36£083cd825e9721b3d15,+

label=HD:key_id=alcb5c9393807ca023d9c8dld7ec5837 :key=2673e1lb813£36£083cd825e9721b3d15 \

—protection_systems CommonSystem,Widevine,PlayReady,FairPlay \

—mpd_output shakapackager/stream.mpd \

—hls_master_playlist_output shakapackager/stream_master.m3u8 \

—hls_key_uri https://fairplay—license.server.com

The generated package contains all the encrypted renditions and the manifests to play
both HLS and DASH streams. Shaka Packager’s output is shown in the following listing:

Listing 4.9: Shaka Packager package elements

—rw—r—r— 1 root root 216419817 Jun 4 20:42 1080p.mp4
—rw—r—7r— 1 root root 100870597 Jun 4 20:42 480p.mp4
—rw—r—r— 1 root root 158181355 Jun 4 20:42 720p.mp4
—rw—r—r— 1 root root 5545 Jun 4 20:42 stream_0.m3u8
—rw—r—r— 1 root root 5646 Jun 4 20:42 stream_1.m3u8
—rw—r—r— 1 root root 5502 Jun 4 20:42 stream_2.m3u8
—rw—r—r— 1 root root 446 Jun 4 20:42 stream_master.m3u8
—rw—r—r— 1 root root 3237 Jun 4 20:42 stream.mpd

4.4. DRM and Licensing

Both packagers inject similar DRM information in the streaming manifests. The different
DRM systems define how the medias must be signaled, so the embedded CDM in the
device can use such information to acquire the content key using the license server.

Below are shown how the different DRM information is written in the DASH or HLS mani-
fest:

4.4.1. Widevine Modular

In this thesis Widevine Modular is signaled in the DASH manifest, so Android and Chrome
can properly use their CDM. This DRM system is identified by a unique uuid: edef8ba9-

CHAPTER 4. IMPLEMENTING CMAF 49

79d6-4ace-a3c8-27dcd51d21ed, which players use to fetch the DRM information and set
up the CDM.

Listing shows how the Widevine Modular is specified in the DASH manifest, it uses a
ContentProtection object identified with the pertinent uuid. The contained data is a binary
payload in base64 format. That payload will contain the VoD provider who licenses this
content and the KID among other proprietary data to be used by the CDM.

Listing 4.10: Widevine Modular definition in a DASH manifest.

<!— Widevine —>
<ContentProtection schemeldUri="urn:uuid:edef8ba9 —79d6—4ace—a3c8—27dcd51d21ed ">
<cenc:pssh>AARAAXXBzc2gAAAAATe+LaXnWSs6jyCEcIROh7QAAADOIARIQoctck50AfKAJ2CcjRI+4—=
xYNx0oFd3Vha2kiIGExY2I1YzkzOTM4MDdjYTAyM2Q5YzhkMWQ3ZWM10DM3</cenc:pssh>
</ContentProtection>

4.4.2. PlayReady

In this case, PlayReady is only supported in DASH, and as Widevine, the DRM data is
stored in a ContentProtection object inside the manifest. The player will use the sys-
tem identifier 9a04f079-9840-4286-ab92-e65be0885f95 to obtain the PlayReady Protec-
tion Header and make the CDM request the information with it.

Listing 4.11: Shaka Packager package elements

<!— PlayReady —>
<ContentProtection schemeldUri="urn:uuid:9a04f079 —9840—4286—ab92—e65be0885f95 ">
<mspr:pro><«
XAIAAAEAAQBSA jwAVWBSAEOASABFAEEARABFAFIATIAB4AGOADABUAHMAPQAIAGgAdABOAHAAOGAVACBACWB—

</mspr:pro>
</ContentProtection>

The data inside the "mspr.pro” field is an XML encoded in base64, Listing [4.12] shows the
decoded content. It is important to notice two things, the first one is that the encryption
algorithm is not properly configured. The ALGID specifies that the request will be for
an AES-CTR media, but the media has been encrypted using AES-CBC, this must be
modified so the playback works properly when requesting the key. The second thing to
notice is the KID, even it is different from the Listing it is correct, PlayReady changes
the endianess format of the KID so the encoded base64 changes.

Listing 4.12: Shaka Packager package elements

<WRMHEADER xmlns="http://schemas. microsoft.com/DRM/2007/03/PlayReadyHeader” version="4.0.0.0">
<DATA>
<PROTECTINFO>
<KEYLEN>16</KEYLEN>
<ALGID>AESCTR</ALGID>
</PROTECTINFO>
<KID>k1zLoYCToHwj2cjR1+xYNw==</KID>
<CHECKSUM>vAVT 98gLJIdo=</CHECKSUM>
<LA_URL>http://playready—license.server.com</LA_URL>
</DATA>
</WRVHEADER>

50 Common Media Application Format. Implementation and Analysis

4.4.3. FairPlay

FairPlay is only supported in HLS manifests because Apple’s DRM does not support other
streaming protocols. Listing shows how the FairPlay information is added to the
streaming manifest. The "EXT-X-KEY” is used to configure the player with the correspond-
ing information. SAMPLE-AES is the code that Apple uses for AES-CBC using pattern
encryption (cbces), and the URI contains the URL of the DRM license server that the player
will use to fetch the content key. Finally, the players will use the "TKEYFORMAT” to identify
which kind of DRM system must be used and then engage it.

Listing 4.13: FairPlay information embedded in the HLS manifest.

#EXT—X—KEY :METHOD=SAMPLE—AES,URI="https://fairplay —license .server.com/«
a1cb5¢9393807ca023d9c8d1d7ec5837” ,KEYFORMATVERSIONS="1" ,KEYFORMAT="com. apple .+
streamingkeydelivery”

4.5. Playback Testing

Once medias were generated it was time for the playback testing. Shaka Player and DASH-
IF were used to build a simple testing page, while ExoPlayer for Android was compiled and
configured to fetch the generated manifests by both packagers. Below the results are listed
showing which devices worked properly and which ones failed:

4.5.1. Browsers

Following items summarize the results carried out using the different browsers that are
widely used:

e Google Chrome: as it was expected, current stable versions of Google Chrome
support the new CMAF standard. Both DASH-IF and Shaka Player have been able
to play the DASH manifests using Widevine Modular.

— Firefox: this browser has a deal with Google were Widevine Modular support
is given to Firefox. Firefox’s CDM is exactly the same that is found in some
versions of Chrome. The problem, in this case, was that the DASH package
could not be played, the CDM that Firefox is using in the latest release does not
support AES-CBC. It could be expected that in future releases of this browser
the CDM gets updated with the newer algorithms.

e Microsoft Edge: Edge was tested using the DASH manifest of both packages, none
of them worked. Bento4 and Shaka Packager did not signaled correctly the en-
cryption algorithm on the protection header of the manifest. But once corrected,
Edge was still failing to play the content. Supposedly, Microsoft confirmed in the
PlayReady conference held in New York in 2018 the support of CMAF in Edge
browser, but next years conference, in 2019, they said that the Windows develop-
ment team was facing some issues when porting the CDM with AES-CBC support in

CHAPTER 4. IMPLEMENTING CMAF 51

Windows. Because of this, there is still no support for CMAF packages in Microsoft’s
browser.

e Apple Safari: as it has been explained, Safary supports HLS directly in the browser,
it recognizes the manifest and performs all the steps to acquire the content key and
decrypt the files. It successfully played the media built with both packagers. No
issues with fMP4 nor the cbcs encryption scheme. The unique problem was that
for this thesis no production certificate was granted by Apple, so the tests where
carried out using the clear key method. Even dough, Apple confirms that if the
playback works using the clear key method, then, the same media will work when
using FairPlay for license acquisition.

4.5.2. Smartphones

The playback results for both platforms are shown below:

e Android: ExoPlayer successfully played the DASH streaming protocol of the Bento4
and Shaka Packager. The DRM systems that it was used was Widevine Modular,
so it is possible to confirm that CMAF is supported in the Android platform. Back
on June 2018, the Bento4 package could not be played, so this clearly states that
there is ongoing work to support CMAF both in Android and in the packager. The
problem was how the media was being encrypted by Bento4. As it has been stated,
nowadays, both packagers can build a working CMAF package for Android.

e i0OS: this is the same case as Safari, the result of both packagers could be played
in the Apple’s phone using the HLS manifest. As it was expected, the newer iOS
versions perfectly support the fMP4 container.

4.5.3. Others

As it was expected, most of the connected devices did not have an updated CDM which
supported cbcs encryption scheme. PlayStation 4, SmartTVs from LG and Samsung did
not work with the DASH version of the CMAF package.

Below are shown the test results for the expected working devices:

e Android TV: this is the same case as Android, if the operating system version is
higher than 7.1 and they include the Widevine CDM, ExoPlayer will be able to handle
the playback of DASH streams using the CMAF package.

e Chromecast: this device from Google was the first one getting support for AES-CBC
in the Widevine CDM. Back on summer 2018 the playback test was successfully
done with the DASH stream and using the Widevine Modular license server. This
device is already compatible with CMAF packages.

e Xbox One: on 2019 PlayReady conference Microsoft shown examples of an Xbox
One playing a CMAF package using DASH streaming. But unfortunately, the device
could not be tested within this thesis because there where no units to test.

52 Common Media Application Format. Implementation and Analysis

4.6. Conclusions

Although it seems that both packagers properly encrypt and generate the streaming man-
ifest there are some side issues with the DRM signaling that should be solved in their
source code.

The PlayReady Protection Header is not properly built for none of the packagers, if the pro-
tection header is decoded it shows that the media is encrypted using AES-CTR although
it is using AES-CBC. This can be circumvented manually by modifying the header with the
correct information.

HLS has also an issue with the DRM signaling, both packagers add DRM information for
Widevine Modular and FairPlay, Safari and iOS could not properly play the HLS file until
it was modified by removing the Widevine Modular information. On a production ready
system, there should be a post-processing step where some sanitation is done in the
manifest.

Finally, it seems that CMAF support is being slowly added into multiple devices, by now, it
covers browsers and smartphones, but there is lack of support for connected devices such
as SmartTVs which are key devices in RakutenTV. Most of the revenue comes LG and
Samsung televisions and it is expected to have CMAF support on them starting on 2020
onward.

CHAPTER 5. OPERATIONAL BENEFITS

On this chapter the impact of CMAF in a VoD service such as RakutenTV will be carried
out. It is important to understand the benefit of the new package, why makes sense to
introduce it to the platform and finally which is its economic impact.

5.1. Streaming packages in RakutenTV

Currently, playback department at RakutenTV is managing two main packages for copy-
right content. The first one is Widevine Classic, as it has been explained, it is a legacy
Google technology supported by old devices. The second one, which is the main package
in the company, supports both DASH and MSS sharing the underlying medias.

It is important to evaluate the technology, to know how flexible and optimized is and which
problems could face in a long-running term. To contextualize the situation, lets imagine the
following movie characteristics which will be the source of the different streaming packages
generated in the company.

e Video qualities: the adaptive streaming package should contain resolutions for all
screen sizes, if the master video has a FullHD resolution, the streaming packages
will support the following resolutions:

— FHD — HD - SD

e Audio languages: content is offered in multiple languages, so the customers can
enjoy the cinema in the language they want. Typically, in the platform there are five
main languages which are the following ones:

— Spanish (SPA) — French (FRA) — ltalian (ITA)
— English (ENG) — German (DEU)

e Audio qualities: to offer a premium experience, the customer should be able to
listen high-quality audio sound. The platform supports audio qualities from stereo to
surround:

— Stereo (2.0) — Surround (5.1) — DTS core (dtsc)

With this information, the following two sections will briefly introduce the streaming package
map for RakutenTV.

5.1.1. Widevine Classic

Figure [5.1] shows all the packages that will be generated following the previous premises.
Widevine Classic does not support multi-resolution streaming, so each package can only
contain renditions using the same resolution. Due to this, only packages for SD and HD

53

54 Common Media Application Format. Implementation and Analysis

resolutions are generated, FHD with Widevine Classic is not generated by two reasons:
cost of the package and playback experience for the customer. Widevine Classic is not
multi-resolution, if a user uses a FHD package in Widevine Classic it will not be able
to switch to lower qualities, this will end up with buffering and a bad experience for the
customer.

Another constrain for Widevine Classic is that each package can only contain one lan-
guage, no multi-language packages can be built with this technology. This forces to du-
plicate the video stream per each audio, to minimize the cost of the whole package only
stereo audio qualities are added.

| mwp || sPazo |||[so || seazo |
HD WVN SD WVN

| W | [EnG20 [s || EnG20
HD WVN SD WVN

| HD || FRA20 | s || FRazo
HD WVN SD WVN
HD WVN SD WVN
HD WVN SD WVN

Figure 5.1: Widevine Classic package, each package contains one video resolution and
one audio language.

Each box in the previous image represents a Widevine Classic package. Each package
will be a video stream with a single audio language. So, the example movie that will be
packaged will require ten Widevine Classic packages, two per each audio language. As
it is possible to foresee, this will not scale if the amount of languages grow, storage costs
multiply per each added language.

5.1.2. DASH and MSS

DASH and MSS packages are widely supported in almost all devices that can be used
within the platform. As explained before, DASH and MSS support CENC encryption with
multiple renditions and multiple audios, from a technical point of view both protocols share
the same underlying medias, this makes a great advantage compared to Widevine Classic,
two protocols are supported in the same package. Moreover, this package offers higher
qualities compared to the previous one, it can handle higher resolutions and even multiple
audio qualities and audio languages, all stored in separate files inside the same package.

CHAPTER 5. OPERATIONAL BENEFITS 55

FHD FHD FHD ’ SPA 2.0 ‘ ’ SPA 5.1 ‘ ’ SPA dtsc ‘
‘ FRA 2.0 ‘ ‘ FRA 5.1 ‘ ‘ FRA disc ‘
HD HD HD
| ENG 2.0 || ENG 5.1 || ENG disc |
B p |[s |

DEU 2.0 DEU 5.1 DEU dtsc
a DASH

ITA2.0 ITA5.1 ITA dtsc
CENC

DASH + MSS (AES-CTR)

Figure 5.2: Current DASH and MSS package with multiple audio languages and audio
qualities.

The previous figure represents the contents of DASH and MSS package, the two streaming
protocol manifests will contain references to all the video and audio files. The Streaming
manifest will hold all the video renditions with its information, all the languages and its
qualities. Each language is stored separately from the video file, so the player can choose
the desired audio for the video. Having independent audio files from the video makes the
system to scale better. Adding a new audio will not duplicate the whole video, this package
is extremely flexible and efficient because the video, the different audios and the streaming
manifests are decoupled.

5.2. Continental expansion

Since 2019, the company is facing a continental expansion where its presence has moved
from 14 countries to 42. Offering a VoD service in 42 countries force RakutenTV to op-
timize as match as possible all the streaming chain including the package creation and
operation. In the initial 14 countries there were five main languages: Spanish, English,
French, German and lItalian, but when moving to 42 countries, new languages must be
added into the platform. The content ingestion team is in charge of adding new languages
to the current content and the new films are being ingested with more than five languages.
The number of languages supported in the platform are expected to grow from five to
eleven in average.

Now the idea is to model the different package sizes to evaluate and understand how both
of them performs. RakutenTV usually considers that a movie has an average duration of
120 minutes, and the master video file uses FHD resolution and contains five languages.
With this information, the package sizes can be modeled in the following way:

e Widevine Classic: as it has been explained before, the amount of packages and the
size of them will depend on the number of languages that are included in the master
file. In Widevine Classic two package resolutions are built, one with the renditions
for the HD resolutions and the other one with the SD resolutions. Each package will
only contain one language, so for example, there will be one HD and one SD for
the English language, for the Spanish there will be again two packages. In average,
because the films are encoded using constant bitrate it is possible to consider an
average size per package of: 7.5 GB for the HD (including a single language) and

56 Common Media Application Format. Implementation and Analysis

3.6 GB for the SD (also including one language). The total size of the required
packages for the master will be the sum of HD and SD package multiplied by the
amount of languages.

e DASH and MSS: as it has been said, this two protocols use adaptive streaming
supporting all the resolutions in the market. The master file will be encoded into
multiple renditions ranging from the lower SD ones to the higher FHD. This kind of
package includes separate files for video and audio languages (including its quali-
ties), so with the current example, the package will contain all the resolutions files
and 15 audio files (there are three audio quality files per audio language). In av-
erage, the size of a 120 minute package will be around 11.59 GB (the sum of all
the renditions), while each language contributes to the package size with 1.08 GB
(considering three audio qualities: 2.0, 5.1 and dtsc).

Figure [5.3| shows how the number of languages impact on the size growth of each pack-
age. If the movie has only one language the combination of Widevine Classic SD and
HD packages is smaller compared to the DASH and MSS one. Although the adaptive
package will contain higher resolutions and video qualities (better quality of experience).
But when two languages are started to being used, DASH and MSS package size will be
smaller than the combination of the two Widevine Classic packages. When moving to 11
languages it can be clearly seen that the adaptive package outperforms in terms of size,
this has a direct reduction on the storage costs. Apart from this, DASH and MSS are more
optimal when streamed through the CDN, the same video file is shared across different
languages (so different countries will have the same video stream), this helps on keeping
the content cached in the CDN because is being used by customers all around Europe.
Having warm caches in the CDN reduces costs by avoiding content requests to the origin,
and it also reduces the buffer ratio because the content is already in the CDN network.

Package size growth by number of languages

120

112,5

. 825

60 60

Package size (GB)

43,2
40 39,6
37,5 2

18,07 =1 19,1 ——2’2—] e 22 e 23,47 = 24,55 e 26,71 127,79
’ ,55 25,63 6,71

: 21,3 39 ¥

8,0 15 ,23 ;

12,67 =l 13,75 11483 14417 16,99

10,8
75 72

36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Languages in package

=2—DASH & MSS HD WVN SD WVN

Figure 5.3: Graph showing the evolution of the Widevine Classic and DASH with MSS
package size by the number of languages.

Another analysis that can be done, is the relative distribution of packages inside the plat-
form, how does affect the evolution of streaming year over year. Although details of the

CHAPTER 5. OPERATIONAL BENEFITS

57

platform are confidential, Table [5.1] shows an approximation of how many masters could
be ingested in the platform grouped by the included languages.

2017 2018 2019
Movies | Languages Movies | Languages Movies | Languages

3156 1 3128 1 2228 1
862 2 733 2

52 3 74 3

38 4 23 4

245 5 64 5

1 6 21 6

4 7 11 7

5 8

4 9
4 10

6 11

Table 5.1: Ingested masters grouped by the amount of included languages and the year of
ingestion.

Graph [5.4] shows the previous data in format of a relative distribution. On 2017 all the
content ingested in the platform had a single language, because of this DASH and MSS
package required more storage than the packages in Widevine Classic. When the ingested
content started to have multiple audios the adaptive package started to outperform the
other in terms of storage, around 55% of the total cost was due to the inefficiency of
Widevine Classic packages, the remaining part was used by the adaptive streaming.

Relative distribution of package sizes per year
100%

- - - -

80%

70% 231278

474578 345278

60%

m SD WVN
HD WVN
B DASH & MSS

50%

40%
30%
20%
10%

0%

2017 2018 2019
Year

Figure 5.4: Graph that shows the relative distribution (in size) for all the streaming pack-
ages generated in a year.

From the previous graphic it can be seen that the content is not being efficiently ingested,
there is still room to improve by increasing the number of languages per package. Usually,

58 Common Media Application Format. Implementation and Analysis

content ingestion inserts the masters in pairs of local language and English language,
improving this and having all the content in the same streaming package will enhance the
metrics and reduce the operational costs. Less budget to keep the medias stored.

5.3. Moving forward with CMAF

In the previous section it has been presented the current package state in RakutenTV,
none of them is suitable for Apple devices because they do not support DASH nor CENC
encryption. The company did not generate the old MPEG-2 TS package for Apple devices
because it was limited to such platform. The cost of maintaining all the medias using
MPEG-2 TS will be similar to duplicating the cost of the current adaptive package, it does
not make sense the required investment just for the Apple support.

With the new CMAF standard, the support is expected to be widely once television man-
ufacturers start to include the updated CDMs on their devices. In the case of Google and
Apple devices they already support CMAF, so building the package will, at least, work for
these class of devices.

The unique difference between DASH and MSS package, and CMAF package is the en-
cryption algorithm and the supported streaming protocol.

FHD FHD FHD ’ SPA 2.0 ‘ ’ SPA 5.1 ‘ ’ SPA dtsc ‘
‘ FRA 2.0 ‘ ‘ FRA 5.1 ‘ ‘ FRA dtsc ‘
HD HD HD
| ENG 2.0 | | ENG 5.1 | | ENG dtsc |

o_|[s |

DEU 2.0 DEU 5.1 DEU dtsc
DASH
d b ITA
CBGS ITA2.0 ITA5.1 dtsc

DASH + HLS (AES-CBC)

Figure 5.5: Current DASH and MSS package with multiple audio languages and audio
qualities.

Figure shows the new package where the encryption scheme changes and HLS is
included, the audio languages (and their qualities) and the renditions are encrypted using
the cbcs scheme. The packaging step that already packages the DASH/MSS package

NO ESTA ACABAT

5.4. Estimation of costs

Knowing that the playback department wants to deprecate Widevine Classic packages, it
is possible to estimate the feasibility of using the cost of Widevine Classic to build and
maintain the CMAF package.

Widevine Classic packages are being maintained for the LG TVs because on the past
several problems with the MSS protocol were detected. There is an ongoing effort to

CHAPTER 5. OPERATIONAL BENEFITS 59

move the streaming protocol from Widevine Classic to MSS in these televisions. Once
successfully changed, the legacy packages could be finally deprecated and removed from
the platform.

5.4.1. Average cost per package

The playback team is in charge of developing and maintaining the encoding servers that
perform the encoding and packaging. It is out of the thesis context, but the encoding
platform is based on Amazon Web Services (AWS) and the software has been written to
scale according to the encoding and packaging queue. Figure [5.6/shows a simplified view
of the encoding platform, it is based on an orchestrator that manages which jobs are to be
processed and which ones are already done. Finally, all the process uses information from

the database.
Orchestrat
Job queue
l \ 4 l

Encoding engine | | Encoding engine | | Encoding engine

Figure 5.6: Simplified architecture for the encoding and packaging platform.

The previous simplified view runs on AWS instances, using EC2 servers for the orchestra-
tor and the encoding engines, the job queue is based on ElastiCache and the database is
an RDS (based in MySQL).

Then, all the medias are stored in an S3 bucket also in AWS which serves as the origin
for RakutenTV CDNs. Table [5.2] summarizes the operation cost of the encoding platform
using the public prices from the AWS page.

Operational Costs
Operation Cost
Encoding platform 0.592 €/hour
Storage 0.022 €/GB (monthly basis)
Transfer 0.085 €/GB (monthly basis)

S3

Table 5.2: Summary of the operational cost only by infrastructure and storage.

It is possible to estimate the required times for encoding and packaging taking into ac-
count the packages explained before. Considering a 120 minutes FHD movie with five
languages and three different audio languages per quality, the required time to encode all
the renditions and audios will be around 3 hours. In 3 hours the platform generates all the
renditions, the ones to be used in the DASH and MSS package, and the ones that are us-
ing within the Widevine Classic package. The next step is the encryption plus packaging,

60 Common Media Application Format. Implementation and Analysis

as it has been seen in the platform, packaging an SD Widevine Classic tooks around 6
minutes per language while the HD version only requires 3 minutes per language. The HD
version contains less renditions than the SD Widevine Classic package, due to this, the
required time is lower. For DASH and MSS, the time increases to 12 minutes per a pack-
age containing all the language files (five languages with three qualities per language), in
this case, adding a new language only adds around 30 seconds to the estimated time. Fi-
nally, the CMAF package will be similar to the DASH and MSS package, it uses the same
underlying medias and it only changes the encryption scheme, this would be again 12
minutes.

Operational Time
Operation Time
Encoding 3 hours
SD WVN 6 minutes - language
HD WVN 3 minutes - language
DASH and MSS 12 min
CMAF 12 min

Packaging

Table 5.3: Summary of the time required to encode all the renditions and generate each
package with the required renditions.

With the price information from Table[5.2] the processing times from Table [5.3|and the size
of each package (previous section), it is possible to estimate the cost of each package
taking into a count that the encoding and package step is carried out once and the storage
and transfer costs are in a monthly basis.

e Cost for Widevine Classic, DASH and MSS:

SD WVN: 0.296 €(packaging) + 1.902 €/month

HD WVN: 0.148 €(packaging) + 4.013 €/month

DASH and MSS: 0.188 €(packaging) + 1.182 €/month

Total: 1.776 €(encoding) + 0.632 €(packaging) + 7.097 €/month (storage)

e Cost for DASH and MSS, CMAF:

— DASH and MSS: 0.188 €(packaging) + 1.182 €/month
— CMAF: 0.188 €(packaging) + 1.182 €/month

— Total: 1.5€(encoding avoiding WVC renditions) + 0.376 €(packaging) + 2.364
€/month (storage)

From the previous details it can be deduced that the costs of encoding will change a little
because the Widevine Classic renditions could be avoided, less videos to encode. The
packaging could be reduced by a 50% when using only DASH and MSS along with the
new CMAF package. Having separated files requires less packaging time compared to
Widevine Classic where each language requires a full combination of audio and video
which takes more time to encrypt. Related to this, the storage and transfer costs are three
times lower with the combination of CMAF and current adaptive package compared to the

CHAPTER 5. OPERATIONAL BENEFITS 61

Widevine Classic with the adaptive package. This difference of price could make feasible
the introduction of CMAF in the company operations when deprecating Widevine Classic.

Take into account that this example is only carried out for a movie in a single month,
expanding this to a thousand movies plus a similar number of episodes for shows, and
month over month of catalog will increase the total bill of operations. Having more efficient
packages reduce the overall required budget and improves company KPIs related to the
quality of streaming.

5.4.2. Repackage

Finally, in order to build the CMAF packages for the old medias it would be possible to
perform a repackage instead of doing full encoding from the master and then the package
with the new encryption.

A repackage consists of decrypting the medias of the current DASH and MSS package,
and encrypting them again using the cbcs scheme. The source files (previous to the en-
cryption) are already valid for CMAF, this avoids the cost of re-encoding the whole catalog
just for building the new CMAF packages. Packaging would take up to an hour, 30 min-
utes for the decryption and 30 minutes for the encryption, making the process efficient and
relatively low cost.

5.5. Conclusions

RakutenTV principal streaming mechanism is Dynamic Adaptive Streaming over HTTP
and Microsoft Smooth Streaming because it is supported by the almost all the devices
in the platform. Both solutions share the same underlying medias which are encrypted
using AES-CTR with full encryption (cbcs scheme). With this solution, streaming on Apple
devices is not completely supported. The new standard pursued by the OTT companies in
the streaming market supports Apple devices, and most of the new Android and Chrome
versions are supported too. If the Widevine Classic package is finally deprecated there
will be enough budget to repackage all the medias to CMAF, and start packaging the new
medias also with CMAF (apart from the DASH with MSS pacakge).

As far as Widevine Classic is deprecated, CMAF can be maintained with less than the
required budget for the legacy protocol.

Then, having two adaptive streaming packages in the platform could ensure good KPls
for Apple devices (including iOS and Safari), and the rest of the devices. Having efficient
medias helps on reducing the required operational budget, and increases the efficiency of
the CDN keeping the content more warm.

CHAPTER 6. CONCLUSIONS

6.1. Project Conclusions

CMAF is becoming more mature year over year, when this thesis started back in 2018
there was no support in Chrome and support for Apple was recently added. By that time,
Microsoft’s license server already allowed AES-CBC, but Xbox One was the unique device
supporting such encryption method.

One year later it has been proven that VoD providers are moving towards CMAF, support
is increasing over time. Even Microsoft presented a full encoding and streaming platform
based on their Azure cloud, their service generates DASH and HLS packages using the
old encryption scheme (cenc) and the new one (cbcs). Back in 2018, it was expected to
see SmartTVs supporting AES-CBC with cbes starting from 2020. Currently, there is no
public commitment from them to add support for the new packages. Probably, they will be
forced to support such content once Netflix, HBO or big service providers start requiring it
to be present on the devices.

Although Bento4 and Shaka Packager support cbcs encryption and it has been proven to
work during this thesis, they require some modifications to properly support all the DRM
combinations or even fix the issue with the PlayReady Protection Header. Shaka Packager
gives a better feeling compared to Bento4, the packaging process is quicker and involves
less steps. Apart from this, Shaka Packager is developed by Google which, in theory, has
more strength to keep it up to date.

With all the knowledge acquired developing the thesis, it can be confirmed that in a real
production environment no new renditions will be required. Avoiding new renditions for
CMAF helps on taking advantage of the already encoded renditions for DASH and MSS,
this has a direct impact in cost savings (no extra encoding time is required). The packaging
time for adaptive streaming can be despised compared to Widevine Classic, new files
only contribute to some seconds of encryption, instead, the Widevine Classic requires to
encrypt every time the video stream which is a lot of data and requires more time.

The cost of CMAF can be simplified to the cost of the storage, the encoded medias will be
shared with the current CENC (DASH and MSS) package and the new CMAF package,
because of this, the encoding and packaging price is not relevant when thinking about
adding this new package to the platform.

There are some benefits behind CMAF that could make the company willing to implement
it:

e Apple’s iOS devices will be properly supported without requiring custom players,
or expensive third party solutions which do not actually provide good performance.
RakutenTV has developed a custom player which handles DASH streams with AES-
CTR and it is able to decrypt and transmux on the fly the content to AES-CBC.
The development has been carried out in an entire year by an iOS engineer, all
the knowledge of the system is only held by that engineer. This is a problem for the
company, where no other employees know how do the system work. This have some
side issues like maintenance, development time and upgrades on the software, one
engineers cannot cope with all the work that developing a player implies.

63

64 Common Media Application Format. Implementation and Analysis

e The in-house solution only works for iOS, but Safari or AppleTV are out of the equa-
tion, they are not supported in RakutenTV. With the introduction of CMAF, these
devices could be supported properly and customers will be satisfied. Company’s
customer service usually explains that most of the customers requests support for
Safari and AppleTV, supporting these devices could have a direct impact on rev-
enues.

On the operational benefits chapter it has been shown that deprecating Widevine Classic
would reduce the operational cost of the company. There is an ongoing effort to make
this happen on 2020, were the remaining devices that are using this legacy system will
be removed from the platform or upgraded to newer protocols such as Smooth Streaming.
If the deprecation finally happen there would be enough budget to start supporting the
new CMAF format. It is more efficient compared to Widevine Classic, and requires less
budget to be maintained. This would help on the company expenses, both from a technical
perspective and from the human management; ingestion and operation teams need to take
care of less packages and combinations which at the end has an impact on the operational
costs.

Finally, having efficient streaming packages such as CMAF or the current CENC where
multiple language files are under the same package helps on keeping a good cache hit
ratio in the CDN. If all the audios share the same video all the countries will have at least
a cached copy of the video stream. This helps reducing, again, the operating costs of
the platform, if the content is well cached in the CDN there is no requirement to fetch the
content from the origin. The origin traffic is much more expensive than the CDN traffic,
because of this, it is important to keep all the content well cached in the CDN.

6.2. Achieved Objectives

The objectives for this thesis where listed in the project overview chapter, below the out-
come of the study has been summarized:

e CMAF pakcages:
— Streaming packages: the reference video has been packaged and tested
successfully.

— Use AES-CBC: cbcs is supported both by the packagers and some of the
players.

— Use content protection systems: all of them work except PlayReady. Edge
did not support cbcs. Xbox One could not be tested, so there is no granted
support confirmed within this thesis.

— Validation: generated packages can be streamed and played.
e Operational benefits:

— Package efficiency: the package is more efficient compared with current
legacy Widevine Classic. With proper content ingestion with multiple audios

CHAPTER 6. CONCLUSIONS 65

per video there will be cost savings because of the package is more com-
pacted. Apart from this, adaptive streaming offers more quality by less storage
space, customers will be offered with better cinema experiences and the CDN
will outperform compared to Widevine Classic.

— Viability of CMAF in terms of costs: with the savings generated by Widevine
Classic deprecation it is feasible, the cost of keeping the Widevine Classic
catalog is higher than the same catalog built with CMAF. With this change the
company could reduce the operating expenses and even support new devices.

6.3. Personal Conclusions

Beyond the academic achievements, all the process involving this thesis has been re-
warding. This project has given me a real chance to increase my experience working on
strategic projects related to media and streaming services. At the beginning | experienced
a deep lack on encoding and packaging knowledge, as my background has always been
related to software development and networking. After working with the different toolsets,
encoders, packagers and in general, any software related to multimedia has given me a
deeper knowledge on the field of the company for which | am currently working.

While defining the overall project, it was important to picture the future of streaming, un-
derstand which changes were happening and how the company could benefit from them.
That was not a common thing | was used to. Then, on the development itself it was not
a big issue, as my background helped me on doing the first proofs of concept, the inter-
esting thing was to leverage, understand and differentiate the different options that the
market was offering from a strategic point of view. The interest for the solution was not for
a short-term, but for a long-term strategy.

Finally, working on a fast-paced company, which schedules projects on a semester ba-
sis it is hard to allocate time to study such things like the one carried out in this thesis.
Engineers need to understand the company requirements from an economic perspective.
That chapter helped me a lot with such tasks, as it is not common when coming from an
educational and engineering background.

6.4. Future Work

The results of the thesis point to several interesting directions for future work.

In the case of engineering:

e Production integration: Current development has been driven separately from the
main encoding tools inside the company. As it has been proven, it is feasible to start
working on a production-ready project. This should be scheduled on the company
timings and included on the budget estimations.

e Inclusion of HLS: With this solution, will finally be introduced in the company.
HLS is expected to improve the [KPIs of the Apple devices. This will have a direct
impact in the customer satisfaction. Current solution for iOS involves transmuxing

66 Common Media Application Format. Implementation and Analysis

on the device which is costly in terms of CPU. The KPIs for this device are lower
compared to other ones.

e Transmuxing in the edge: Finally, from an engineering point of view, it could be
interesting to encrypt and package the medias directly in the CDN edges. If the
package is built on the fly, no duplication would be required in the origin, so no
doubling of storage cost would happen.

In the case of operations:

e Improve media ingestion: CMAF should be economically viable if medias are rich
on languages, the cost of adding a new language is less than the cost of the video
renditions. Nowadays the content ingestion team sometimes do not ingest all the
languages at the same time which ends up on multiple adaptive packages with sep-
arated audios, if this is improved the required budget for storage will be reduced,
with the cost reduction CMAF could be afforded without a huge investment.

e Widevine Classic deprecation: Product team on the company should decide on
weather or not deprecate the use of this legacy DRM. It is inefficient from two per-
spectives, the way it works not supporting multi-resolution streams, and because it
is a single technology solution, so medias cannot be shared across different stan-
dards, and finally the DRM is on its end-of-life. Deleting all the Widevine Classic
medias, it could be feasible to store CMAF medias without bigger expenditures.

6.5. Environmental Impact

Last but not least it is relevant to talk about the environmental impact of the work described
in this document. This project analyses a new streaming protocol and studies the viabil-
ity of its implementation. Although this study has not a direct environmental benefit, its
implementation could reduce the amount of storage that is required to handle RakutenTV
medias. Having fewer data to be stored reduces the amount of required hard-drives. Typi-
cally, hard-drives are prone to fail, if more are required the probability of failure will increase
generating waste in terms of hardware.

GLOSSARY

A

AES: Advanced Encryption Standard
AVI: Audio Video Interleave

Cc

CBC: AES with Cipher Block Chaining

CDM: Content Decryption Module

CDN: Content Delivery Network

CMAF: Common Media Application Framework
CTR: AES with Counter Mode

D

DASH: Dynamic Adaptive Streaming over HTTP
DRM: Digital Rights Management

E
EME: Encrypted Media Extensions
F

fMP4: Fragmented MP4
fps: Frames per second

G

GOP: Group of Pictures

H

HLS: HTTP Live Streaming
I

ISO: International Organization for Standardization
ISOBMFF: ISO Base Media File Format
IV: Initialization Vector

K

KPI: Key Performance Indicator

M

MSS: Microsoft Smooth Streaming
P

PIFF: Protected Interoperable File Format
PoP: Point of Presence

67

68 Common Media Application Format. Implementation and Analysis

PSSH: Protection System Specific Header
T

TEE: Trusted Execution Environment

'

VoD: Video on Demand

BIBLIOGRAPHY

[1] Motion Picture Association of America “A comprehensive analysis and survey of the
theatrical and home entertainment market environment ”. (THEME) for 2018.

Report available at |https://www.mpaa.org/wp-content/uploads/2019/03/
MPAA-THEME-Report-2018.pdf

[2] “Accepted video codecs in MPEG-2 container.” (videolan.org, 2019) [9]
Information available at https://wiki.videolan.orq/MPEG/#Accepted_video_
codecs

[3] “Recommendation for Block Cipher Modes of Operation.”. National Institute of Stan-
dards and Technology.
Information available at |https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-38a.pdf

[4] Committee: ISO/IEC JTC 1/SC 29 “Multimedia application format (MPEG-A) - Part 19:
Common media application format (CMAF) for segmented media”. ISO/IEC 23000-
19:2018

Partially available at |https://www.iso.org/obp/ui/#iso:std:iso-1ec:23000:
-19:ed-1:vl:en

[5] Wolenetz, M., Smith, J., Watson, M., Colwell, A., Bateman, A. “Media Source
Extensions™”. W3C Recommendation 17 November 2016. (w3.org, 2016).
Available at https://www.w3.0rg/TR/2016/REC-media-source-20161117/

[6] Dorwin, D., Smith, J., Watson. M., Bateman, A. “Encrypted Media Extensions™”. W3C
Recommendation 18 September 2017. (w3.org, 2017).
Available at https://www.w3.0rg/TR/2017/REC-encrypted-media-20170918/

[7] Pantos, R., Ed., and W. May “HTTP Live Streaming”. RFC 8216, DOI
10.17487/RFC8216, August 2017.

Available at https://tools.ietf.org/html/rfc8216
[8] “Secure the delivery of streaming media to devices through the HTTP Live Streaming
protocol”. FairPlay Streaming.

Available at https://developer.apple.com/streaming/fps/

[9] “About the Common Media Application Format with HTTP Live Streaming”. HTTP Live
Streaming.

Available at https://developer.apple.com/documentation/http_live_
streaming/about_the_common_media_application_format_with_http_
live_streaming

[10] Committee: ISO/IEC JTC 1/SC 29 “Part 7: Common encryption in ISO base media
file format files”. ISO/IEC 23001-7:2016

Partially available at|https://www.iso.org/obp/ui/#iso:std:68042:en
69

https://www.mpaa.org/wp-content/uploads/2019/03/MPAA-THEME-Report-2018.pdf
https://www.mpaa.org/wp-content/uploads/2019/03/MPAA-THEME-Report-2018.pdf
https://wiki.videolan.org/MPEG/#Accepted_video_codecs
https://wiki.videolan.org/MPEG/#Accepted_video_codecs
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://www.iso.org/obp/ui/#iso:std:iso-iec:23000:-19:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:23000:-19:ed-1:v1:en
https://www.w3.org/TR/2016/REC-media-source-20161117/
https://www.w3.org/TR/2017/REC-encrypted-media-20170918/
https://tools.ietf.org/html/rfc8216
https://developer.apple.com/streaming/fps/
https://developer.apple.com/documentation/http_live_streaming/about_the_common_media_application_format_with_http_live_streaming
https://developer.apple.com/documentation/http_live_streaming/about_the_common_media_application_format_with_http_live_streaming
https://developer.apple.com/documentation/http_live_streaming/about_the_common_media_application_format_with_http_live_streaming
https://www.iso.org/obp/ui/#iso:std:68042:en

[11] Committee: ISO/IEC JTC 1/SC 29 “Dynamic adaptive streaming over HTTP (DASH)
— Part 1: Media presentation description and segment formats”. ISO/IEC 23009-
1:2014.

Available at MPEG-DASHISO/IEC23009-1:2014
[12] John A. Bocharov, Quintin Burns, Florin Folta, Kilroy Hughes, Anil Murching, Larry

Olson, Patrik Schnell, John Simmons “Portable encoding of audio-video objects”. The
Protected Interoperable File Format (PIFF)

Available athttps://go.microsoft.com/?1inkid=9682897

[13] Rikunov. Andrey “FairPlay Key Security Module (Java)”
Available at https://github.com/andreyrikunov/fairplay—ksm

[14] Lin. Eason “FairPlay Key Security Module written in Go (Golang)”
Available at https://github.com/easonlin404/ksm

MPEG-DASH ISO/IEC 23009-1:2014
https://go.microsoft.com/?linkid=9682897
https://github.com/andreyrikunov/fairplay-ksm
https://github.com/easonlin404/ksm

APPENDICES

APPENDIX A. ADAPTIVE STREAMING
MANIFESTS

In this appendix there are examples of each streaming manifest explained in[3 State of the
art.

A.1. Microsoft Smooth Streaming (MSS)

Smooth Streaming requires two manifests to work, one will be used by the client to switch
between qualities and to request the data corresponding to a time segment. The second,
which is being used on the transmuxer will be used to obtain the requested file and return
the data corresponding to the queried time segment.

A.1.1. Client manifest
ISMC manifest is used in the client side. It holds all the information related to the stream,

it lists all the renditions and time segments. The player will use the bitrate of the rendition
and the time segment to request the appropriate byte-data to the transmuxer.

Listing A.1: ISMC Manifest example to be used on the client side

<?xml version="1.0" 2>
<SmoothStreamingMedia Duration="80770208365" MajorVersion="2" MinorVersion="0" TimeScale="+<
10000000 ">
<Streamlndex Chunks="4039” Language="eng” Name="audio—eng—mp4a—1” QualityLevels="1" TimeScale=+>
”10000000” Type="audio” Url="QualityLevels({ bitrate })/Fragments (audio—eng—mpda—1={start <
time }) ">
<QualityLevel AudioTag="255" Bitrate="201773" BitsPerSample="16" Channels="2" <
CodecPrivateData="1190" FourCC="AACL” Index="0" PacketSize="4" SamplingRate="48000" />
<c d="20053302" />
<c d="20053302" />
<c d="19839969" />
<c d="20053302" />
<c d="20053302" />

</StreamIndex>
<Streamlndex Chunks="4035" DisplayHeight="216" DisplayWidth="384" MaxHeight="1080" MaxWidth="+«—
1920” Name="video” QualityLevels="8" TimeScale="10000000" Type="video” Url="QualityLevels<
({ bitrate })/Fragments (video={start time})">
<QualityLevel Bitrate="355680" CodecPrivateData="00000001674+«—
d400deca0c0efcb808800001f480005dc0078a14cb00000000168e93b3c80” FourCC="H264” Index="0" <
MaxHeight="216" MaxWidth="384"/>
<QualityLevel Bitrate="2079218”" CodecPrivateData="00000001674<—
d401feca07808bf7808800001f480005dc0078c18cb0000000168e93b3c80” FourCC="H264" Index="4" <+
MaxHeight="1080" MaxWidth="1920" />
<c d="20019984" />
<c d="20019984" />
<c d="20019984" />
<c d="20019984" />
<c d="20019984" />

</StreamIndex>
<Protection>
<ProtectionHeader System|D="9a04f079—9840—4286—ab92—e65be0885f95 ">«
XAIAAAEAAQBSAjwAVwBSAEOASABFAEE ...</ProtectionHeader>
</Protection>
</SmoothStreamingMedia>

73

A.1.2. Server manifest

On the server side, the transmuxer will use the received bitrate to locate the file using the
server side manifest. Then, using the requested time segment it will return the correspond-
ing bytes.

Listing A.2: ISMC Manifest example to be used on the server side

<?xml version="1.0" 7>
<smil xmlns="http://www.w3.0rg/2001/SMIL20/Language ">
<head>
<meta content="stream.ismc” name="clientManifestRelativePath” />
</head>
<body>
<switch>
<audio src="audio—eng—mp4a—1.isma” systemBitrate="201773">
<param name="tracklD” value="1" valueType="data”/>
<param name="trackName” value="audio—eng—mp4a—1" valueType="data” />
</audio>
<video src="video—avcl—1.ismv” systemBitrate="355680">
<param name="tracklD” value="1" valueType="data”/>
</video>
<video src="video—avcl—2.ismv” systemBitrate="2079218">
<param name="tracklD” value="1" valueType="data”/>
</video>
</switch>
</body>
</smil>

A.2. Dynamic Adaptive Streaming over HTTP (DASH)

As it has been explained the DASH protocol does not require a transmuxer, the client is
intelligent enough to parse the container and request the appropriate byte-ranges of each
segment.

The manifest signals all the files and qualities, and per each file the initialization segment is
signaled. The player will obtain this part of the container. With the initialization information
the client can compute the byte ranges to fetch or compute which is the segment to obtain
when doing trick playing.

Listing A.3: DASH Manifest using the on-demand profile

<?xml version="1.0" encoding="utf—8"?2>
<MPD xmins:cenc="urn:mpeg:cenc:2013” xmins:mspr="urn:microsoft:playready” xmins="<>
urn:mpeg:dash:schema:mpd:2011” mediaPresentationDuration="PT2H14M37.021S” minBufferTime="PT2<—
.00S” profiles="urn:mpeg:dash:profile:isoff —-on—demand:2011” type="static ">
<BaseURL>https: //prod—origin—pmd.cdn.server.com/example—media/</BaseURL>
<Period>
<AdaptationSet maxHeight="1080" maxWidth="1920" mimeType="video/mp4” minHeight="216" <«
minWidth="384" par="16:9” sar="1:1" segmentAlignment="true” startWithSAP="1">
<ContentProtection cenc:default_-KID="534042b7—4404—9f3f—-a95b—9301bf4b079e” <+
schemeldUri="urn:mpeg:dash:mp4protection:2011” value="cenc” />
<ContentProtection schemeldUri="urn:uuid:9a04f079 —9840—4286—ab92—e65be0885f95 ">
<mspr:pro>XAIAAAEAAQBSAJwAVWBSAEOASABFAEE . ..</mspr:pro>
</ContentProtection>

<ContentProtection schemeldUri="urn:uuid:edef8ba9 —79d6—4ace—a3c8—27dcd51d21ed ">
<cenc:pssh>AAARanBzc2gAAAAATe +...</cenc:pssh>
</ContentProtection>
<Representation bandwidth="355680" codecs="avc1.4D400D” frameRate="933747/38945" <«
height="216" id="video—avc1—1" scanType="progressive” width="384">
<BaseURL>video—avcl—1.1ismv</BaseURL>
<SegmentBase indexRange="1410—49861">
<lInitialization range="0—1409" />
</SegmentBase>
</Representation>
<Representation bandwidth="2079218" codecs="avc1.4D401F” frameRate="933747/38945" <-
height="1080" id="video—avc1—2" scanType="progressive” width="1920">
<BaseURL>video—avcl—2.1ismv</BaseURL>
<SegmentBase indexRange="1410—49861">
<lInitialization range="0—1409" />
</SegmentBase>
</Representation>
</AdaptationSet>
<AdaptationSet lang="eng” mimeType="audio/mp4” segmentAlignment="true” startWithSAP="1">
<ContentProtection cenc:default_KID="534042b7—4404—9f3f—a95b—9301bf4b079e"” <+
schemeldUri="urn:mpeg:dash:mp4protection:2011” value="cenc” />
<ContentProtection schemeldUri="urn:uuid:9a04f079 —9840—4286—ab92—e65be0885f95 ">
<mspr:pro>XAIAAAEAAQBSAJwAVWBSAEOASABFAEE . ..</mspr:pro>
</ContentProtection>
<ContentProtection schemeldUri="urn:uuid:edef8ba9 —79d6—4ace—a3c8—27dcd51d21ed ">
<cenc:pssh>AAARanBzc2gAAAAATe +...</cenc:pssh>
</ContentProtection>
<Representation audioSamplingRate="48000" bandwidth="201773" codecs="mp4a.40.2” id="+<
audio—eng—mp4a—1">
<AudioChannelConfiguration schemeldUri="+<>
urn:mpeg:dash:23003:3:audio_channel_configuration:2011” value="2" />
<BaseURL>audio—eng—mp4a—1.isma</BaseURL>
<SegmentBase indexRange="1344—-49843">
<lInitialization range="0—1343" />
</SegmentBase>
</Representation>
</AdaptationSet>
</Period>
</MPD>

A.3. HTTP Live Streaming (HLS)

On HLS there are multiple manifests holding different kind of information but all of them
are processed locally on the client side.

The master manifest holds the information related to all the renditions of a package, each
rendition points to a secondary manifest that signals all the byte ranges contained in the
video file associated with that rendition.

For the master manifest refer to listing [A.4]and [A.5]for the stream manifest.

Listing A.4: HLS master manifest that holds all the renditions of a package

#EXTM3U

#EXT—X—MEDIA:TYPE=AUDIO,GROUP—ID="stereo” ,LANGUAGE="en” ,NAME="English” ,DEFAULT=YES,AUTOSELECT=¢>
YES,URI="audio—eng—mp4a—1.m3u8”

#EXT—X—STREAM—INF : BANDWIDTH=355680,AVERAGE—BANDWIDTH=355680,CODECS="avc1.4D400D” ,RESOLUTION=384¢
x216

video—avcl—1.m3u8

#EXT—X—STREAM—INF : BANDWIDTH=2079218,AVERAGE—BANDWIDTH=2079218,CODECS="avc1.4D401F” ,RESOLUTION<
=1920x1080

video—avcl—2.m3u8

Listing A.5: HLS stream manifest that holds all the byte ranges of a single video

#EXTM3U
#EXT—X—VERSION: 6

#EXT—X—TARGETDURATION: 6

#EXT—X—PLAYLIST—TYPE:VOD

#EXT—X—MAP:URI="video—avcl —2.mp4” ,BYTERANGE="1409@0"

#EXT—X—KEY :METHOD=SAMPLE—AES,URI="key2.bin” ,IV=0xDD439B085C1357B51889720DB8D25083 ,KEYFORMAT="+4—
identity”

#EXTINF:6.000,

#EXT—X—BYTERANGE:1680937@49861

video—avcl—2.mp4

#EXTINF:6.000,

#EXT—X—BYTERANGE:1659882

video—avcl—2.mp4

#EXTINF:6.000,

#EXT—X—BYTERANGE:1467634

video—avcl—2.mp4

#EXTINF:6.000,

#EXT—X—BYTERANGE: 1456582

video—avcl—2.mp4

#EXTINF:6.000,

#EXT—X—BYTERANGE:1688090

video—avcl—2.mp4

APPENDIX B. CMAF-TOOLS DOCKER IMAGE

Docker has been used to simplify all the encoding and packaging process. Having an im-
age containing all the necessary tools makes the software portable between computers,
and avoids installing dependencies and leaving a dirty environment. Every time a docker
image is executed (through a container) it starts with a clean and reproducible environ-
ment. It simplifies all the environment preparation for this thesis.

B.1. Installed software

The docker image that has been built contains all the required software to encode and
package the media files. The following is the software that can be found on it:

e Encoding: ffmpeg and mediainfo have been installed directly from Debian 9 (Stretch)
repositories. The ffmpeg version of Debian stable is fair enough for the tests carried
out in this thesis. For production, probably it will be necessary to build it from the
source, applying the patches that the company is using.

e Packaging: both Bento4 and Shaka-Packager have been installed, Shaka-Packager
is compiled from its source whereas Bento4 can be added from the attached binaries
located in their site.

The usage of docker is out of the scope of this thesis, but there are several guides that
helps on start working with this tool. Refer to the following site for further information
https://docs.docker.com/get-started/.

B.2. Repositories

The Dockerfile has been uploaded into a public repository, where it can be fetched and
build on a computer o server. It can be reached in the following GitHub repository:
https://github.com/GerardSoleCa/cmaf-tools. On the other hand, the prebuilt im-
age can be fetched from the docker public repository in https://hub.docker.com/r/
gerardsoleca/cmaf-toolsl

B.2.1. Dockerfile

The following listing shows the content of the Dockerfile, how the software is included and
built, so the image contains all the appropriate software.

Listing B.1: Dockerfile to build the gerardsoleca/cmaf-tools

FROM debian:9 as builder
RUN apt—get update && apt—get install —y python build—essential curl git

Shaka Packager

77

https://docs.docker.com/get-started/
https://github.com/GerardSoleCa/cmaf-tools
https://hub.docker.com/r/gerardsoleca/cmaf-tools
https://hub.docker.com/r/gerardsoleca/cmaf-tools

Install depot-tools.
RUN git clone https://chromium.googlesource.com/chromium/tools/depot_tools.git
ENV PATH S$PATH:/depot_tools

WORKDIR shaka_packager

RUN gclient config https://www.github.com/google/shaka—packager.git —name=src —unmanaged
RUN gclient sync

RUN cd src && ninja —C out/Release

Generate lightweight image
from debian:9 as final

ENV PATH "$PATH:/opt/bento/bin/:/opt/shaka_packager/bin/”
RUN mkdir —p /opt/shaka_packager/bin

RUN apt—get update && apt—get install —y unzip ffmpeg vim python mediainfo

Copy compiled binaries

COPY —from=builder /shaka_packager/src/out/Release/packager \
/shaka_packager/src/out/Release/mpd_generator \
/shaka_packager/src/out/Release/pssh—box.py \
/opt /shaka_packager/bin/

COPY —from=builder /shaka_packager/src/out/Release/pyproto /usr/bin/pyproto

Bento4

ARG BENTO4_VERSION=1-5—1-628

ADD http://zebulon.bok.net/Bentod4/binaries/Bento4d—SDK—$BENTO4_VERSION.x86_64—unknown—linux.zip /4=
tmp/bento.zip

RUN unzip /tmp/bento.zip —d /opt && mv /opt/Bento4—SDK—$BENTO4_VERSION.x86_64—unknown—linux /opt¢>
/bento

	Introduction
	Project Overview
	Playback chain at RakutenTV
	Normalization of the master
	Package generation
	Package delivery through network
	Content key delivery
	Playback session

	Technical introduction
	Codec
	Container
	Encryption algorithms

	Motivation behind the Common Media Application Format
	Fragmentation in RakutenTV
	Common Media Application Format. Solution to the fragmentation

	Objectives
	Document structure

	State of the Art
	Streaming protocols
	Progressive download
	Adaptive streaming

	Common encryption
	Scheme types
	Signaling the container

	Content key acquisition
	ClearKey
	Digital Rights Management (DRM)

	Technology and Tools Analysis
	Streaming Packager
	Comparison of Packagers

	DRM License servers
	PlayReady
	Widevine Modular
	FairPlay

	Players
	Web Browsers
	Smartphones
	Others

	Conclusions

	Implementing CMAF
	Development process
	Encoding
	Master normalization
	Generating adaptive streaming renditions

	Packaging
	Bento4
	Shaka Packager

	DRM and Licensing
	Widevine Modular
	PlayReady
	FairPlay

	Playback Testing
	Browsers
	Smartphones
	Others

	Conclusions

	Operational Benefits
	Streaming packages in RakutenTV
	Widevine Classic
	DASH and MSS

	Continental expansion
	Moving forward with CMAF
	Estimation of costs
	Average cost per package
	Repackage

	Conclusions

	Conclusions
	Project Conclusions
	Achieved Objectives
	Personal Conclusions
	Future Work
	Environmental Impact

	Glossary
	Bibliography
	Adaptive streaming manifests
	Microsoft Smooth Streaming (MSS)
	Client manifest
	Server manifest

	Dynamic Adaptive Streaming over HTTP (DASH)
	HTTP Live Streaming (HLS)

	CMAF-Tools docker image
	Installed software
	Repositories
	Dockerfile

