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Abstract

Nowadays, concern about air pollution has risen due to the effects of the
climate change. Citizens and governments are aware of the importance of
reducing the air pollution, so that, monitoring pollution levels is a key aspect
to introduce new prevention measures. According to recent studies, more than
4 million deaths occur each year due to the presence of air pollution. Internet
Of Things (IoT) platforms can provide an efficient way to record pollution
data. In this project, data from low-cost air pollutant sensors, from a real IoT
platform deployed by the H2020 CAPTOR project, is used to compare several
machine learning techniques for sensor calibration. The resulting models are
compared taking into account limitations of real calibration campaigns. The
algorithms are compared in terms of Quality of Information (QoI) metrics
in a short-term and long-term use. Besides, the effect of the training set
size is studied, also the training times of the different models, as well as the
presence of bias in the long-term predictions. Moreover, taking profit that
several collection nodes were placed in the same location, the use of several
sensors for sensor fusion using machine learning is seen. Thus, the impact of
deploying devices with more than one sensor measuring the same pollutant
is studied in terms of prediction accuracy. All results can help to select a
calibration model depending on the characteristics of a real deployment, thus
improving the accuracy of the data obtained by low-cost sensors.
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1 | Introduction

Air pollution is one of the major concern nowadays, the effects of the climate
change are becoming more and more noticeable. According to theWorld Health
Organization (WHO) 1 around four million people die each year due to the
exposure to outdoor air pollution. In addition, all this pollution can cause
serious health issues like heart problems, respiratory infections, etc. Among
the different air pollutants present, the tropospheric ozone (O3) is a secondary
pollutant, formed due to reactions with other precursor pollutants. It is also
a greenhouse gas, so that it contributes to the global warming and it affects
more rural villages than urban areas. This pollutant is created as a result
of photo-oxidation of some nitrogen oxides (NOx), carbon oxide (CO) and
volatile organic compounds (V OCs) combined with the presence of sunlight
irradiation. These pollutants are produced in big cities and are transported
with the wind to areas where they can not be absorbed, because for the removal
of ozone a titration with NO to form NO2 is needed. So, with the presence of
sunlight irradiation and the precursors, O3 appears, that is why the maximum
levels of tropospheric ozone are observed during the summer. Despite that the
NOx gases are not produced in these rural areas, the combination of pollution
in cities and the wind results in air pollution in rural areas.

Tropospheric ozone can produce a wide range of respiratory problems, from
lung problems to eyes irritation. Because of that, governments (e.g. Spanish
government) place different reference stations, equipped with measurement in-
struments that worth thousands of euros, in order to control air quality levels
to give alarms and produce new preventive measures 2. Catalan government
leads an alert and warning campaign in which the levels of tropospheric ozone
are measured and when these are above some threshold ( information threshold
of 180µgr/m3 and alert threshold of 240µgr/m3) the government immediately
communicate it to the citizens via the media and puts in action some mea-
sures. The main problem in air pollution monitoring is that the location of the
reference stations is sparse over the country, due to their elevated cost, here is
where Internet of Things (IoT) and low-cost sensors kick in.

1https://www.who.int/airpollution/data/en/
2Catalunya O3 air quality map

2

http://mediambient.gencat.cat/ca/05_ambits_dactuacio/atmosfera/qualitat_de_laire/vols-saber-que-respires/visor-de-dades/
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Figure 1.1: Tropospheric ozone simplified life cycle.

IoT devices - with low-cost air pollutant sensors attached - can provide a
cheaper way to locate more measuring devices over areas, in order to obtain
measurements at a finer grain scale. The availability of pollution levels at more
places can lead to a more efficient data analysis and more spatio-temporal
resolution to provide alarms and useful insights about pollution. However,
when dealing with low-cost sensors, the measurements obtained may be less
accurate than those obtained by reference stations, because of internal error
sources (e.g. dynamic range, sensor drift, etc.) and external error sources
(e.g. cross-sensitivities, environmental conditions, etc.). The European H2020
CAPTOR 3 project is inspired by this idea, building IoT do it yourself (DiY)
devices, called Captors, with low-cost tropospheric ozone sensors to form an
internet of things platform to combine citizen science with grassroots activism
to raise awareness about O3 pollution. The captor project deployed nodes
(Figure 1.2a)) during the summer campaign of 2017 and the summer campaign
of 2018. Deploying a total of 35 nodes (with 140 metal-oxide (MOX) ozone
sensors, 35 temperature sensors and 35 relative humidity sensors) in Spain,
Italy and Austria in each campaign. All these nodes can form what is called
a Wireless Sensor Network (WSN), where all nodes have sensors that record
data and can communicate between them.

The use of low-cost sensors have a clear limitation, besides they can be in-
accurate, they need to be calibrated. Manufacturers usually provide calibrated
sensors, but these are calibrated in controlled chambers, so when these sensors
are deployed in a real environment the calibration is not accurate. For this
purpose, captor nodes are placed besides reference stations during calibration

3https://www.captor-project.eu/en/
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(a) Captor node. (b) Palau Reial
(Barcelona) reference
station.

Figure 1.2: Captor Device: 4 ozone MICS sensors, 1 temperature sensor and 1 relative
humidity sensor. On the right, Palau Real reference station with some nodes deployed
(at the top) for calibration purposes.

periods (what is called a collocated node), so that sensors can be calibrated
using the ground-truth values of the reference stations. This calibration is
performed by means of machine learning algorithms, from the simple Multiple
Linear Regression(MLR) to Support Vector Regression (SVR). Different ma-
chine learning methods are compared in real ozone campaign scenarios to see
which algorithm performs the best with these conditions. Other important
aspects like the loss in accuracy as the time evolves and the environmental
conditions change is studied, what is called the long-term prediction. The
comparison of the different models is done by means of comparing Quality of
Information (QoI) measures like the Root Mean Square Error (RMSE) and the
R2, training time, training set size and long-term predictions. The long-term
prediction plays a key role in a real deployment as the models can present a loss
in accuracy as time evolves, so the models may become biased, this happens
because of the seasonality behaviour of the ozone and the limited data used
for training. Besides, the fact that a node can have attached more than one
sensor measuring the same pollutant can be used to perform sensor fusion us-
ing machine learning, to improve the models or even to provide fault-tolerance
properties to the models. Indeed, the evolution of the RMSE depending on the
number of ozone sensors used in the calibration is studied. All these aspects,
can be useful for future IoT deployments to help decide things like the calibra-
tion time length, the algorithm to calibrate the sensors and how many sensor
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are attached to a node. All these studies are done with the data acquired by
the H2020 Captor project data collected during the 2017 campaign.

The different goals of the project can be summarized as follows:

• Acquiring understanding of low-cost O3 sensors.

• Performing sensor calibration using different machine learning techniques
and studying their impact with a real calibration campaign data.

• Studying the calibration period length needed depending on the algo-
rithm used for calibration.

• Studying the behaviour of each model in a long-term prediction setting.

• Studying the performance of machine learning models to perform sensor
fusion when there exist replicated sensors.

• The production of scientific journal articles in the research area. With
one article published [2] showing the results for the whole 2017 family of
sensors with MLR and a distributed proposal to overcome the long-term
predictions error (not seen in this thesis). One paper submitted, which
is based on the results of this master thesis, and one article in edition
process, showing sensor fusion results.

It is worth noting that the initial proposal proposed the study of graph
signal processing (GSP) applied to the calibration of sensors, but this study
was changed by the fusion of sensors study. Since there was not much literature
on this type of fusion, and in addition, the available data sets allowed to make
the study.



2 | State of the Art

2.1 Low-cost sensor calibration

Methods for calibrating low-cost air pollutant sensors is an active research
field. The common approach used by the different researchers and used in
this project consists in placing several devices with sensors in an area where
a reference station (the real pollution levels) is present. These devices can
form what is called WSN, which can be used for distributed processing and
obtaining measures at a finer grain scale. Then, after the devices have collected
data for a period, this data is calibrated using a supervised machine learning
approach with the ground-truth values (provided by the reference stations) as
response variable.

Maag et al. [13] present different techniques used in the calibration of
low-cost sensors. In addition, they explain that calibration or adjustment of
low-cost sensors must be performed due to the presence of internal and external
errors sources in these sensors. In fact, among the internal errors are; drift,
dynamic range of response and nonlinearity (sometimes present in metal oxide
senors), which can be overcome with a nonlinear method. Among the external
errors are the environmental effects and interferences of other pollutants in the
readings (cross-sensitivities), which can also be improved with the use of an
array of sensors in the calibration.

Some low-cost sensors, like temperature and relative humidity sensors, in
general have a linear response with respect to the true phenomena. Moreover,
other sensor responses like CO, NO2, O3 and other gas pollutants have been
studied [15], [12]. Indeed, it is shown that an array of sensors is needed in
order to calibrate some gas pollutant sensors. For instance, in order to calibrate
tropospheric ozone, the ozone, the temperature and relative humidity measures
are needed. The most common approach used in the literature is a machine
learning approach where the sensors are collocated near a reference station,
data is collected and machine learning models are built using a supervised
learning algorithm (Spinelle et al. [23]).

6
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The following equation denotes the most widely used model to predict levels
of ozone. A multiple linear regression with the ozone sensor measure, the
temperature sensor and the relative humidity sensor as independent variables:

ŷ = β0 + β1 ∗ sO3
+ β2 ∗ Temp+ β3 ∗RH (2.1)

In the paper presented by Castell et al. [5], low-cost sensors for several
air pollutants (e.g. NO, CO, etc.) are studied and some important results
obtained. The sensors are studied in terms of different quality of information
metrics like the Mean Bias, the RMSE and the coefficient of determination
(R2). It is observed that sensors depend on the meteorological conditions and
each sensor response is unique, because of that they must be individually cal-
ibrated. Besides, they study the expanded uncertainty and conclude that the
low-cost sensors are not accurate enough for awareness purposes. However,
they state that recent applications of machine learning for calibration can im-
prove the accuracy of these sensors.

2.2 Machine learning applied to sensor calibra-
tion

Different techniques have been compared for calibrating NO,NO2 electro-
quemical low cost sensors. The simple Multiple Linear Regression (MLR), the
Support Vector Regression (SVR) and the Random Forest (RF) are used by
Bigi et al. [4]. The results obtained show that the nonlinear methods (support
vector regression and random forest) achieve the best performance compared
to the linear method. Another common method tested for sensor calibration
are the Artificial Neural Networks (ANN) (Spinelle et al. [23], [24]), some
metal-oxide low-cost sensor for measuring O3, NO and NO2 have been cali-
brated with this method. The ANN also shows good results when calibrating
low-cost sensors. Zimmerman et al. [25] use the Random Forest technique for
calibrating O3 sensors among others, the results obtained also show that this
nonlinear models outperforms the simple multiple linear regression. Barcelo-
Ordinas et.al [2] present a deep study of a calibration of a family of metal-oxide
low cost sensor using MLR, the short-term is analyzed as well as the long-term
predictions, showing the present of bias due to the environmental conditions
and a novel distributed solution to reduce this error. Most of these studies
are done using a data set obtained after a calibration period, which is then
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split into a training set and a test set, then the models are compared using the
performance over the test set. However, the models are no tested for long-term
predictions, where predictions are done after some time from the calibration.
The presence of a drift in low-cost sensors has also been observed and studied.
Different solution have been proposed but he most common is a re-calibration
approach where the nodes must be placed besides a reference station period-
ically to obtain a new model or update the previous one (e.g. Mijling et al.
[14]).

Other techniques like including lag variables are tested in a research (see.
[6]) using different nonlinear algorithms. The results show that the method that
performs the best is the Support Vector Regression with lag variables (like an
autoregressive model). Moreover, some geostatistical approaches when deal-
ing with WSN of low-costs sensors are also studied in detail in the literature
(Schneider et al. [20]), where the Kriging method is used to perform a dis-
tributed calibration of the sensors and to predict pollution levels at unobserved
places. Kriging performs the prediction as a weighted average of the pollution
at observed places. Other different approaches are present in literature (e.g.
Kim et al. [11]) where chemistry and location pollution knowledge are used
to calibrate a low-cost sensor network. This shows that there are other al-
ternatives to machine learning, but these may require deep knowledge about
chemistry and environmental models.

2.3 Sensor fusion

The most common type of sensor fusion present in the literature explains how
to use sensors measuring different pollutants to improve the accuracy of a
model ([7], [23], [24]). This kind of fusion takes benefit of the influence of
a pollutant over sensors of different pollutants, the cross-sensitivities present
correlates different types of sensors. For instance, including CO and O3 to
improve the model of the CO2. All the sensors are introduced to a machine
learning algorithm as features, models like ANN or MLR. Barcelo-Ordinas et
al. [3] already study the use of up to 4 sensors per node to improve calibration
models using sensor fusion. Specifically, a fusion of four MOX ozone sensors
using a multiple linear regression is done, producing a small improvement over
the best sensor of the four available.

Other sensor fusion techniques focus on using statistical methods to sum-
marize the data. Khedo et al. [10] use quantiles to fuse measures from different
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sensors. Therefore, measures like quantiles, medians or means are a simple way
to combine readings from different sensors. The main benefit of using this pro-
cedure is the reduction of traffic in the communication and power savings in
a WSN. From the machine learning point of view, using the mean of several
models or sensors may improve or not the accuracy depending if we use a better
or a worse sensor than the baseline one.

Despite the fact that sensor fusion has been studied, using replicated sensors
of the same technology has not been studied in great detail (only the use of
four sensor with the MLR model). That is one aspect studied in the project,
whether if using more than one sensor of the same pollutant can improve
the model’s accuracy. Although sensors’ readings of the same pollutant are
correlated, they may not be perfect correlated and some improvement can be
achieved by using several of them.

2.4 Contribution to the state of the art

Method Short-Term Long-Term Training Set Size Sensor Fusion

MLR X X X X
KNN X
RF X
SVR X

Table 2.1: Studies in the literature regarding the methods used in the project (X
denotes studied method).

In previous works, it is shown the use of different machine learning methods
with several air pollutant low-cost sensors and also with different type of sensors
(electro-chemicals and metal-oxide). It has been seen that each sensor must
be calibrated individually (no global model can be used) and that the different
technologies obtain different results in terms of accuracy. Table 2.1 shows the
studies done in the literature with respect to the studies done in this project.
The behaviour of the long-term prediction and the effects of the training set
size for the nonlinear methods are studied in this project, as well as, the use
of machine learning to fuse sensors’ readings of the same family of sensors.



3 | Sensor Calibration

There exist several sensor calibration settings depending on different character-
istics: whether ground-truth values are used, number of sensors, etc. Here the
different possible approaches are listed, the ones in bold are the ones used in
the project. Our main goal is to obtain labelled data to perform a supervised
learning task. This brief introduction to the sensor calibration taxonomy is
based on Barcelo-Ordinas et al. [1] survey. Figure 3.2 summarizes the calibra-
tion setting taxonomy. The type of calibration is defined depending on:

• Number of sensors:

– Single senor: Only the sensor of interest is used to estimate the
pollution levels.

– Sensor fusion: More than one sensor are used in order to combine
the information (sensor fusion experiment done in section 6.5).

• Processing mode:

– Centralized: All data is sent to a central server where the data
is processed for calibration purposes and calibration parameters are
computed.

– Distributed: Every node in a sensor network sends data and collab-
orates in the calibration parameters computations.

• Operation mode:

– Off-line: Sensor calibration is done when the nodes are not oper-
ating in the deployment location.

– On-line: Sensor calibration is done on the fly, as the sensor records
new data and the node is operating.

• Calibration frequency:

– Pre/Post: The calibration of the sensors is done before and after
the deployment of the node in one area. For instance, ozone occurs

10
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during the summer, so the sensor needs to be calibrated before and
after the summer.

– Periodic calibration: The sensors are re-calibrated after a given pe-
riod of time.

– Opportunistic Calibration: The calibration is not guaranteed for
a period of time, sensors are calibrated whenever they are close
to ground-truth values providers. For instance, when sensors are
attached to a bus and this passes by a reference station.

• Position of reference stations:

– Collocated: Nodes are placed besides the reference stations, which
provide ground-truth values, to record sensor values with the same
conditions as the reference station.

– Multi-hop: Nodes are calibrated using other calibrated nodes that
have been calibrated previously.

– Model-based: The nodes are calibrated using references stations
that are not near them by using a mathematical model able to infer
reference values.

• Ground-truth use:

– Non-blind: The reference values recorded by the reference station
are used to calibrate the sensors via a supervised learning approach.

– Semi-blind: Only a partial view of the reference values is available.
– Blind: In this case no ground-truth data is used for sensor calibra-

tion. Instead, some phenomena knowledge (e.g. physical models) is
used to calibrate them.

• Calibration area:

– Micro: Each sensor is calibrated individually with the goal of ob-
taining a good calibration for that certain location.

– Macro: Sensors are calibrated globally in order to obtain the best
calibration model for a whole area of deployment.

Figure 3.1 shows the calibration strategy used in the H2020 Captor project.
A non-blind pre-post calibration is done with the nodes, these are collocated
close to the reference station were they are to be deployed. Then, collected data
is processed and the sensors calibrated off-line. Finally, nodes are deployed in
the area were they have been calibrated.
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Figure 3.1: Calibration type; nodes are collocated besides the reference station; only
one sensor is used; calibrated using the ground truth-values; pre-calibration during
calibration period; centralized calibration with node not working; nodes deployed in
one specific location with the sensor individually calibrated.

Centralized Distributed

On-Line Off-Line

Periodic OpportunisticPre/PostNon-Blind Semi-Blind Blind

Single SensorSensor Fusion

Micro Macro
(Point) (Area)

Model-BasedCollocated Multi-hop

CALIBRATION

Area of
Interest

Number of
Sensors

Ground-Truth
use

Calibration
time

Operation
mode

Processing
mode

Position from
reference

Figure 3.2: Sensor calibration settings taxonomy. Source: [1]



4 | Machine Learning
Techniques

In this section a brief overview of the different machine learning methods used is
provided, as well as a brief introduction to the Principal Components Analysis
(PCA), used in sensor fusion.

4.1 Multiple Linear Regression

The Multiple Linear Regression (MLR) method is the extension of the simple
linear regression when dealing with several explanatory variables. Given the
explanatory variable set X = (x1, ..., xN ) (where xi ∈ Rp) and the response
vector y = (y1, ..., yN ) (where yi ∈ R), the MLR approximates the response
variable y by a linear combination of the explanatory variables:

yi = β0 +

P∑
j=1

βjxi,j + εi i = 1, .., N (4.1)

Where β ∈ RP is the vector of coefficients and the error term εi ∼ N(0, σ2).
The vector of coefficients can be found by minimizing the Residual Sum of
Squares (RSS), obtaining what are called the Normal equations:

min
β

N∑
i=1

(yi − (β0 +

P∑
j=1

βjxi,p))
2 (4.2)

β̂ = (XTX)−1XTy (4.3)

In a Linear Regression is interesting to check which coefficients are signifi-
cant, it is to say, they do not have a negative impact on predicting the response

13
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variable. The following hypothesis test is performed for each coefficient:

H0 : βi 6= 0 (4.4)
H1 : βi = 0 (4.5)

The statistic used for an unknown variance and one coefficient testing is
the t, which follows a t ∼ t− studentn−p,α/2.

4.2 K-Nearest Neighbours

TheK-nearest neighbours (KNN), is a nonlinear, non-parametric method where
the model itself is the set of training samples, what is called an instance-based
method. Given the explanatory variable set X = (x1, ..., xN ) (where xi ∈ Rp)
and the response vector y = (y1, ..., yN ) ( where yi ∈ R), the value of the
response for a new sample xN+1 is the average of the K nearest samples in the
feature space:

ŷN+1 =
1

K

∑
i∈N(xN+1)

yi (4.6)

So, the response ŷN+1 will be the response’s average of the K closest train-
ing samples to the new sample. As it may be noticed, a distance measure is
needed to obtain the points that are closer in the feature space. An exam-
ple of a distance measure for numeric variables is the Euclidean distance or
the Manhattan distance, but more generally, the Minkowski distance is the
generalisation:

d(x, x
′
) =

P∑
i=1

(|xi − x
′

i|q)
1
q (4.7)

4.3 Random Forest

The Random Forest (RF) is an ensemble method. Basically, it builds several
uncorrelated decision trees from the data sample, and averages the response
of all trees to produce the prediction, so that the variance of the response is



CHAPTER 4. MACHINE LEARNING TECHNIQUES 15

reduced. The algorithm proceeds as follows; given the explanatory variable
set X = (x1, ..., xN ) (where xi ∈ Rp) and the response vector y = (y1, ..., yN )
(where yi ∈ R), the algorithm makes T ∈ N bootstrap samples of the data, as
many as trees. Each decision tree is built with a bootstrap sample. Afterwards,
another randomisation step is introduced, at each decision node of each tree a
random subset of variables to be considered is selected. This way, the decision
trees build are uncorrelated as possible. Finally, the prediction for a new
observation xN+1 will be:

ŷN+1 =
1

T

∑
tree∈F

ftree(xN+1) (4.8)

As it can be seen above, the response of the different decision trees in the
forest for the new data sample is averaged.

4.4 Support Vector Regression

The Support Vector Regression (SVR) is a kernel method, the regression vari-
ant of the support vector machine. The idea is to map the data to a higher
dimensional space where the inner products of the data are done and the re-
gression is performed in that space. This may sound extremely time expensive,
but it is done via the kernel trick, which consists on using a kernel function
k(x, x

′
) which implicitly maps the data to a higher dimensional space and per-

forms the inner products at the cost of working in the input space. The SVR
extrapolates the idea of the margin classifier to the regression setting by using
the ε− insensitive loss function:

Vε(r) =

{
0 if |r| ≤ ε

|r| − ε otherwise
(4.9)

This method is trained with the Kernel Matrix K ∈ Rnxn instead of the
design matrix, so the optimization problem will grow with the number of ob-
servations. This can lead to computational problems when dealing with large
data sets. It is also worth mentioning that the SVR solves a quadratic opti-
mization problem. For further information about support vector regression see
[22].
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4.5 Principal Components Analysis

The Principal Components Analysis (PCA) is statistical method whose main
goal is to find the directions of maximum variation. Thus, the first component
will have the largest variance, followed by the second one, third, etc. From the
optimization point of view, we want to find the direction u that maximizes the
inertia:

MaxuIn = Maxu
n∑
i=1

wiψ
2
i = u

′
X

′
NXu (4.10)

Where X is the centered data matrix and N the weight matrix. Each one of
the components is a linear combination of the original features:

ψi = u1ix1 + u2ix2 + ..+ upixp (4.11)

Using this method we can perform dimensionality reduction by keeping the
components that explain at least an 80% of the variance or we can use other
criteria like the last elbow rule to select the desired number of components to
keep. However, this method can also be used for feature extraction by using
the resulting components, which have the special property of being orthogonal.

A special case of the PCA appears when the data is standardized (as is our
case in calibration), then the optimization procedure reduces to the diagonal-
ization of the correlation matrix:

Max u
′
X

′
NXu = λ

s.t. u
′
u = 1

. (4.12)

where X
′
NX = Cor(X). For further information about principal compo-

nents analysis refer to the book [9].



5 | Data, Methodology and
Experiments

In this chapter, the data used in the investigation, as well as the devices used,
are described. Moreover, the machine learning methodology used for model
building and hyper-parameter selection is explained along with the experiments
to compare the different methods (experiments’ results explained in chapter
6).

5.1 Data

The project is held within the Statistical Analysis of Networks and Systems
(SANS) research group of the computer architecture department of the UPC.
Different campaigns for O3 sensor calibration have been done in the European
H2020 Captor project1. In order to obtain air pollution measurements for low-
cost air pollution sensors, a WSN was deployed. The nodes contained in the
WSN were IoT devices with internet connection and some sensors attached to
a processing unit. The idea behind using a WSN with IoT devices is that each
one of the nodes can collect data and perform operations individually (e.g.
record sensors, send data to repository, etc.), but they can also communicate
between them to perform operations like a multi-hop calibration, it is to say,
data from other nodes is received to improve the calibration models.

The resulting IoT device was called CAPTOR, the original device followed a
do it yourself philosophy. The device used low-cost sensors and anArduino Yun
as a computing unit. The idea was to create simple nodes that were likely to be
build by any non-expert in electronics, so anyone could put a node in his/her
home and collect air pollution data for investigation and awareness purposes.
The node has an Arduino yun as computing unit, four SGX Sensortech MICS

1H2020 Captor project: project funded by the European Union for collecting air pollution
data and to raise awareness.

17
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2614 metal-oxide (MOX)2O3 sensors, one temperature sensor and one relative
humidity sensor. The node is powered by an external power supply and sends
the collected data via 3G or Wifi to a central database. Therefore, the node
sends a tuple to the central database containing : timestamp, sensor 1 reading,
sensor 2 reading, sensor 3 reading, sensor 4 reading, temperature reading and
relative humidity reading. The ozone sensors’ readings consist of resistor values
in kiloOhm obtained from measuring the load voltage VL (obtained from the
A/D converter), the input voltage Vin and the load resistor RL:

Sraw = RL(1− VL
Vin

) (5.1)

The different units of each readings are: kiloohm for ozone sensors, celcius
degrees for temperature sensors and percentage for relative humidity sensors.
The device takes samples every minute, then takes intervals of thirty minutes,
sorts the samples and removes the largest and smallest samples (5%, as they
were outliers), averages the samples and sends the tuple described every half
an hour. In Appendix B, the metadata of the three data sets used is provided
(feature description and basic descriptive statistics).

For ozone calibration, three different sensors are needed (as seen in the
state of the art chapter 2) and therefore present in the node: the ozone sen-
sor, the temperature and the relative humidity sensors. Tropospheric ozone
is a seasonal pollutant, this means that the highest levels of ozone pollution
are usually recorded during the summer. Thus, sensor calibration via ma-
chine learning should be as close as possible to the deployment period. Sensor
data for calibration has been collected during the 2017 and 2018 summer cam-
paigns mainly. Three testbeds have been used to collect data: Spain, Austria
and Italy. The campaigns were scheduled in four different phases, these are
described in table 5.1:

For the 2017 and 2018 a total of 35 captor devices were spread over different
places of Catalonia, Austria and Italy. So, a total of 140 sensors where used
each year. Figure 5.1 shows the places where 2017 Captors were placed in
Catalonia testbeds (areas of Tona, Vic, Manlleu and Montseny). Some of the
nodes were placed during the whole campaign near by a reference station, these
nodes remained in the same place for phase 1, 2 and 3. Thus, these nodes are
the ones used for investigation purposes as the amount of data collected is large
enough to perform the experiments of sections 6.1, 6.2, 6.3 and 6.4.

2Two main sensor technologies are used nowadays: metal-oxide sensors and electro-
chemical sensors.
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Phase Description

Phase 0
All sensors are placed in the
Palau Reial (Barcelona) reference station to check that all
sensors and network connections work properly.

Phase 1
At this stage, also called pre-calibration phase, the nodes
are placed at reference stations close by the final
deployment location (phase 2).

Phase 2
Few nodes are kept close to the reference stations during the whole
measuring stage while some other nodes are placed in volunteers homes.
This phase usually comprises July and August months.

Phase 3 Post-calibration phase, all nodes are placed again near the
reference stations were they had been previously placed in phase 1.

Table 5.1: Campaign phases description.

Figure 5.1: Deployment places of the different nodes during 2017 campaign. Captors
spread over Tona, Vic, Manlleu and Montseny.

The data sets used in experiments (6.1-6.4) developed in this project (ex-
plained in the next section) are the data from nodes C17013, C17016, C17017
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(from Manlleu, Vic and Tona respectively). These nodes remained close to a
reference station during the different campaign phases, so data for the entire
months of July and August of 2017 is available, and this large amount of data
is needed for the experiments. Specifically, node C17013 was deployed from
08/05/2017 to 04/10/2017, node C17016 from 26/05/2017 to05/10/2017 and
node C17017 from 08/05/2017 to 05/10/2017. To sum up, data from 12 low-
cost metal-oxide sensors is used for calibration and machine learning method
comparison.

In section 6.5, a sensors fusion experiment is studied, for this purpose a
different data set is used. The two data sets used consist of nodes that coin-
cided in the same place during Phase 1, so the amount of data is smaller but
have more sensors available to perform sensor fusion. The following Table 5.2
describes the nodes that coincided for a period of time (phase 1) in the same
place, so that, used to perform sensor fusion. The two data sets have more
than 900 samples (3 weeks approximately), and consist of 24 sensors in the
Tona case and 28 in the Manlleu case.

Place Manlleu Tona

Nodes 17017, 17006, 17007, 17012,
17014, 17027

17013, 17001, 17002, 17003, 17005
17010, 17011

Total Samples 918 1395

Table 5.2: Nodes used to perform sensor fusion experiments.

All data is available at zenodo website, doi:10.5281/zenodo.3233516, where
the captor data for nodes C17013, C17016 and C17017 is available along with
the long-term predictions.

To sum up, the following table 5.3 summarizes the two sets of data used in
the different sections. It indicates the number of nodes by which the data sets
are formed. The data set one is larger compared to the data set two:

http://dx.doi.org/10.5281/zenodo.3233516


CHAPTER 5. DATA, METHODOLOGY AND EXPERIMENTS 21

Data Set Description Number of sensors Sections Size

Data Set 1 This data set corresponds to nodes that
have been placed during the different
phases in a reference station. So, more
samples with the corresponding refer-
ence values are available for research
purposes.

12 6.1, 6.2, 6.3,6.4 Large

Data Set 2 This data set corresponds to nodes that
have been placed in the same location
during the campaign phase 1. So, more
sensors with the reference values are
available to study a sensor fusion ap-
proach to calibration.

24 in Manlleu, 28 in
Tona

6.5 Small

Table 5.3: Table summarizing the different data sets using in the project, and their
composition.

5.2 Machine learning methodology & experiments

In this project, all steps of the CRISP data mining methodology (Figure 5.2)
have been done in order to perform a proper data analysis. Data understand-
ing was one of the most important steps, where knowledge about MOX ozone
sensors and some knowledge on the pollutant itself were acquired. The nonlin-
earities were observed at this step, the effects of the environmental conditions
were also noticed, which is an important aspect to take into account. In the
data preparation the data was downloaded in a specific file format (.csv) from
the central database in order to make easier the data analysis part, while some
pre-processing steps like the normalization of the data was also done and the
removal of errors in the sensors’ readings. In the modelling stage the different
machine learning methods where applied, then in the evaluation the different
QoI metrics were compared. Finally, the deployment was not done, as the
experiments were done only for research purposes, but the resulting methods
can be applied to a real WSN deployment. Several iterations have been done,
several models were studied, after the evaluation the data was reviewed to
further understand the nature of the underlying structure of the sensor data.
For instance, the first approach to sensor fusion did not take into account the
presence of multicollinearity, once it had been observed, PCA was used to use
orthogonal variables to avoid learning problems, after that models were built
and evaluated again.
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Figure 5.2: CRISP-DMwheel. Source: ftp://public.dhe.ibm.com/software/analytics/
spss/documentation/modeler/18.0/en/ModelerCRISPDM.pdf

The data collected by the nodes was used to generate several data sets.
The ground-truth values - obtained from the reference station - along with the
measurements of the different sensors present in a node lead to a supervised
learning problem, where the ground-truth value is to be approximated with
the sensors’ readings. It has been seen in previous researches (see chapter 2)
that each sensor needs to be calibrated individually and that the metal-oxide
sensors need the temperature and relative humidity as independent variables
to produce a good ozone approximation. For the experiments of sections 6.1,
6.2, 6.3 and 6.4, twelve ozone sensors are used, a total of three nodes (one per
location) with four ozone sensors each.

Given a data set [(x1, y1), ..., (xN , yN )] where xi ∈ Rp and yi ∈ R, a cross-
validation approach is used to perform hyper-parameter selection for the dif-
ferent models 5.3. Before that, a pre-processing step is performed, the different
features are normalized by subtracting the mean of the feature in the training
set and dividing by the standard deviation of the feature in the training set.
Each model needs some hyper-parameters to be provided, these are selected
using a 10-fold cross-validation procedure. The data set is divided into train-
ing set and validation set, 75 percent of the whole data set for training and
25 percent for validation. Then, the training set is used to perform the cross-
validation, where the training set is split into 10 bins, a model with a set of
hyper-parameters is trained with 9 out of the 10 bins and tested on the tenth.
Finally, all cross-validation errors are compared, the best hyper-parameters
will be those whose model has the lowest error. Once the hyper-parameters
are selected, the model is fitted again with all the training data and tested on
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the validation set, so that it can be compared with the other models. Instead
of using a test set we decided to use the hold-out partition as a validation
set, because we do not want to select a final model among all of them for a
deployment, instead, we want to check the performance of the different models
(with their best set of hyper-parameters) on a validation set. Table 5.4 shows
the different hyper-parameters optimized for the the different models and the
range of values tried for each one.

Figure 5.3: Model building methodology.

Hyper-parameter Values
MLR No hyper-parameter selection needed

KNN k: number of neighbours [1, 49]
p: Minkowski distance power [1, 8]

RF

N_trees: number of trees in the ensemble [16 , 1000]
Max_features: maximum number of features to be considered [1, 3]in a decision node
Max_depth: maximum depth of each tree in the ensemble [3, 10]

SVR

C: cost of the violations, acts as a regularization term [1, 1000](controls the number of support vectors)
Gamma: scale parameter of the RBF kernel [0.1, 2.0]
Epsilon: width of the epsilon-insensitive tube (also [0.05, 0.25]influences the number of support vectors)

Table 5.4: Grid of values used for model selection for each model.
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Method comparison in sensor calibration can be challenging, different met-
rics can be used to compare different aspects of a method’s performance in a
real calibration. Here, the different experiments done along with their goal are
explained:

1. Statistical Analysis or Short-term prediction: a basic machine
learning approach is used. The whole data set is shuffled, afterwards it is
split into training set and validation set. The models are compared using
the validation set with some metrics like the coefficient of determination
(R2) and the Root Mean Squared Error (RMSE). Moreover, the predic-
tion of each model (whether overestimates or underestimates) is studied.
The goal is to see how the real ozone can be approximated using low-
cost metal-oxide sensors. As we are shuffling the data, the change in the
environmental condition will not affect model’s performance as temporal
order is lost.

2. Training set size: learning curves are studied, a validation procedure is
done while increasing the size of the training set. The goal is to see how
many samples each model needs to produce an accurate enough output.
In a real campaign it is important to know how many days are needed
for calibration before the deployment stage. More precisely, 7 validation
weeks are set at the end of the calibration stage, after that, consequent
models are build with increasing size, week by week, starting right before
the beginning of the validation weeks. The RMSE of the 7 validation
weeks is averaged. Figure 5.4 shows the procedure explained:

Figure 5.4: Learning curve experiment setting.

3. Training times: the complexity of each model is studied in terms of
training time. The goal is to determine which model takes the largest to
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be trained. This information is useful to see how many time is needed
after the calibration weeks to build the model before the deployment of
the IoT nodes.

4. Long-Term prediction: the model is build using a few calibration
weeks (4 weeks), then model’s performance is tested with the follow-
ing weeks after the training, day by day. The difference between this
approach and the first one is that the data is not shuffled. Thus, en-
vironmental conditions can affect the model as we are validating it in
different conditions. The goal is to see if the calibration at the beginning
of the summer degenerates as summer goes and environmental conditions
change (case of a real campaign). Figure 5.5 shows the experiment done
with the different sensors, where wi are the initial weeks and dj are the
days where the models are tested:

Figure 5.5: Long-term experiment, prediction day by day.

5. Sensor Fusion: a similar procedure as in the statistical analysis experi-
ment is done. However, in this case the data sets used contain more than
four ozone sensors, the data sets contain all the sensor that coincided
in Tona and Manlleu in phase 1 of the campaign. Models of increasing
number of O3 sensors are build to see whether if increasing the number
of sensors of the same family can improve the model’s accuracy. At each
step, the validation error of ten different models, with randomly selected
sensors in each model (the best sensor of all is always present), is aver-
aged to give an approximate measure for a model with a certain number
of sensors.
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In this chapter, the results of the experiments (explained in chapter 5.2) done
are presented and discussed. The different models are compared with five
experiments in order to see the performance of each one. Moreover, sensor
fusion is studied to observe whether it provides some advantages. Part of the
results of this chapter are in the process of being published in research journals.
The first part; sensor analysis, training set size and long term prediction , has
been submitted to the IEEE Internet Of Things journal. While the fusion of
sensors part is in the process of being written to be sent to a journal.

6.1 Statistical analysis

As explained in section 5.2, in this section the different models are compared
in terms of several goodness-of-fit measures (e.g. RMSE and R2). The com-
mon machine learning approach is used, data is shuffled and split for hyper-
parameter selection and validation. This way we are evaluating a short-term
prediction where the training set is large and contains representative data for
all environmental conditions (because data is shuffled). The use of nonlinear
methods is motivated by the fact that although the metal-oxide O3 sensor’s re-
sponse is known to be linear with respect to the ground-truth data sometimes
some nonlinearities arise in the sensor’s response ([13]). Figures 6.1 show the
nonlinearities present in some sensors’ responses.

Figure 6.2 shows the boxplots for all the data sets. Here you can see the
value ranges given by the different sensors, you can see how the response of
the sensors is unique and that they follow asymmetric distributions. It is
not possible to identify as outliers the values far from the whiskers since the
outliers have already been removed by the IoT nodes. In addition, the sensors
approximate the levels of ozone (densities in figure 6.3) and these follow a
multimodal distribution, for that reason in the boxplots extreme values can be
observed. The reference densities are observed to be similar in the Manlleu

26
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Figure 6.1a) Normalized sensor vs. normalized ground-truth value (C17013 s4) b)
Normalized sensor vs. normalized ground-truth value (C17016 s4)

(a) C17013 (b) C17016 (c) C17017

Figure 6.2Boxplots raw sensor values.

and Vic case where there are two modes and the most frequent values are
the low concentrations and the concentrations around 100µgr/m3, while the
concentrations in Tona are higher and the shape of this distribution differs in
the mode’s place.

(a) Manlleu ozone den-
sity.

(b) Vic ozone density. (c) Tona ozone density.

Figure 6.3Ozone densities for Manlleu, Vic and Tona 2017 campaign.
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Figure 6.4Tona, Vic and Manlleu ground-truth ozone concentration values during the
whole 2017 campaign.

To get an idea of how ozone concentrations are distributed throughout the
campaign in different cities, the above Figure 6.4 shows the daily ozone average
for the different reference stations, as well as the maximum and minimum
average concentrations per month. Basically, it is seen how the ozone values
decrease as the summer ends, they decrease with the temperatures, because
for the generation of ozone a high solar irradiation is necessary. In addition, it
can be observed how the trends for the different reference stations are similar,
except for Tona, whose concentrations are higher than those of Manlleu and
Vic. For further information about the sensor data, check Appendix B, where
some basic descriptive statistics for the different sensors present in the three
data sets used in this section are provided.

Nonlinear models are used, because of the presence of nonlinearities, the
use of more complex models may result in a better response approximation.
Let’s visualize how the ozone concentrations evolve during the summer in Tona
and vic (validation set in the long-term prediction), Figure 6.5. It is important
to see that the concentrations have large fluctuations and are highly correlated
with the temperature, ozone appears with a combination of sunlight and other
components, so the temperature is correlated. This large variability does not
allow us to perform a classical time series analysis as we get measures every half
an hour and the dynamics of the evolution of the ozone may be lost. The black
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line present in both Figures 6.5a),b) represent the mean ozone concentration
in the training set (May and beginning of July). As it is seen the ozone
concentrations fluctuate a lot and the environmental conditions during the
different months of the summer can be different. For instance, at the end of
the summer (September) the ozone concentrations fall below the mean ozone
of the training set.

(a) Half day averages of ozone
and temperature, C17016 s4

(b) Half day averages of ozone
and temperature, C17017 s1

Figure 6.5Evolution of ozone concentrations and temperature.

Figure 6.6: RMSE boxplots for the dif-
ferent methods applied to the valida-
tion data.

The results obtained for the different
models for the short-term prediction are
shown in Figure 6.6. As it can be seen,
there is a great difference between the
MLR and the nonlinear models. The
median of the RMSE is reduced more
than 2µgr/m3 by the nonlinear models.
However, there is not a clear difference
in the performance of the SVR, RF and
KNN, the three of them seem to pro-
duce similar results. All three methods
have a similar RMSE median, but the
SVR has the lowest 3rd and 1st quan-
tile. The 3rd quantile is also improved
by more than 2µgr/m3 with respect to
the MLR model. So, there is no big dif-
ference between the performance of the
nonlinear models. However, the SVR is
more complex than the other two (as it will be seen in section 6.3) and the
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KNN is the simplest among the nonlinear models. The SVR is able to reduce
the RMSE in 3.06µgr/m3 in average, the RF in 3.11µgr/m3 and the KNN in
2.62µgr/m3. All this also reinforces the fact that even all sensors belong to
the same family of sensors their responses are unique and some sensors’ errors
can vary a lot. Indeed, in this case the RMSEs range from 9 to 20µgr/m3,
showing a large variability on the errors. That is why, using an array of sensors
of the same family in a device can add some robustness by using always the
best sensor.

(a) Validation RMSE & R2. (b) Target diagram Captors.

Figure 6.7: Performance plots captors.

Figure 6.7a) shows the RMSE and the R2 for the twelve sensors. It can be
seen the reduction in the RMSE by the nonlinear models as well as the fact
that the nonlinear models are able to explain much more proportion of the
response variability. The coefficient of determination increases as the RMSE
decreases, meaning that the models are able to reduce the error and explain
more response’s variability. Moreover, the target diagram (see appendix A)
for the different sensors is shown, the Mean Bias (Mbias) and the Centered
Root Mean Square Error (CRMSE) divided by the deviation of the ground-
truth values are observed in the plot. All models share a common property,
all sensors have a low bias, indicating that when using a large data set with
representative data from all epochs the models have low bias and CRMSE term
dominates the error. Indeed, the RMSE can be related to the mean bias and
CRMSE:

RMSE2 = CRMSE2 +MBias2 (6.1)

It is interesting to observe how the responses of the different models behave.
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In air pollution awareness, when some levels of pollution are exceeded an alarm
is produced. So, it is important to see whether a model overestimates or
underestimates high concentration values. In order to address this problem,
Figures 6.8 show the predicted ozone concentration against the reference ozone
concentration (for the validation set) for the C17013 node sensor one. As it can
be seen, the MLR, which is the simplest model, saturates with high pollution
concentrations, it is to say, that the model underestimates the ozone values
when the concentrations are large. On the other side, methods like the SVR
or the RF have a better accuracy (predictions near to the perfect fit) and in
general, the nonlinear models do not underestimate, sometimes they achieve
large values while others not.

(a) Validation data C17013 s1,
MLR.

(b) Validation data C17013 s1,
KNN.

(c) Validation data C17013 s1,
RF.

(d) Validation data C17013 s1,
SVR.

Figure 6.8: Validation Reference O3 against validation predicted O3 (calibration of
node 17013 sensor 1) for the different methods.
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6.2 Training set size

The goal of this section is to check how the different models behave depending
on training set size. The procedure goes as follows; the validation RMSE is
obtained for different sizes of the training set, validating the model on the
seven last weeks. The experiment starts with a small training set and starts
increasing it (moving away form the validation set) in order to see how many
observations each model needs to obtain the best accuracy. Related to a real
sensor calibration campaign, this would mainly tell how many samples/time
each models needs in order to obtain an accurate enough model. For the model
building stage, with each training set size a cross-validation (CV) procedure is
done to obtain the best model hyper-parameters using the training set.

For illustration purposes only two learning curves are shown (the most rep-
resentatives). Figures 6.9a),b) show the learning curves for two sensors placed
in Vic and Tona (C17016 s4 and C17017 s1) . It shows how the validation
RMSE evolves as the training set size is increased. Several aspects can be
observed:

(i) The MLR method obtains the worst performance but is the model that
stabilizes the most quickly. With 1/2 weeks of data it is able to obtain
the best model possible with the MLR.

(ii) In general, the nonlinear methods obtain the best performance in terms
of validation error but they need more samples in order to obtain the best
model possible with each method. Indeed, it is seen that with the non-
linear models the larger the training set the better (as seen in subfigures
6.9a) and b))

(iii) The SVR is in general the model that need more samples in order to
obtain a better models than the linear one. Between 3/4 weeks are needed
to obtain a good enough model. This fact can be seen in subfigure 6.9c).

The models behave different depending on the training set size, this may
play a key role when deciding the amount of time that a node is placed besides a
reference station in order to collect data for calibration purposes. For instance,
if we aim to calibrate the sensors with the support vector regression model we
should take into account that the node must remain more time collocated in
order to have enough data samples to build the model properly.
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(a) Learning curve C17016 s4. (b) Learning curve C17017 s1.

Figure 6.9: Learning curves for sensors C17016 s4 and C17017 s1.

6.3 Training time

In this section the training times are presented in order to compare the algo-
rithms in terms of complexity. The training time may be important in order
to know how many time is needed to build the model before the deployment.
This time depends directly on the algorithm complexity of each method, their
underlying optimization problems and the number of hyper-parameters to try
in the cross-validation procedure. The experiments for obtaining the following
times were done in a Dell Optiplex with processor Intel Core i5-6500 3.2Ghz
and 8GB RAM.

Table 6.1Confidence intervals for mean training time of a single MICS sensor.

Training Time (sec.)
MLR KNN RF SVR
0± 0 325.41± 10.8 1535.07± 32.91 18545.22± 1320.24

Model building times clearly show that nonlinear models take much more
time than the linear model. The SVR is the model that takes more time, that
is because the SVR method uses the kernel matrix, which is an RNxN matrix,
and the number of hyper-parameters tried is large. The models ordered from
less complex to most complex are: MLR, KNN, RF and SVR. The multiple
linear regression has a training complexityO(p2n+p3), the KNN naïve needs no
training as it is an instance based methods but it requires two hyper-parameters
to be optimized, the random forest has complexity O(n2pntrees) and the SVR
O(n2p+ n3). These, can vary depending on the implementations.
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6.4 Long-term prediction

In this section the models’ long-term prediction is studied. The purpose is to
simulate a real deployment where after getting all sensors calibrated they are
placed in locations to measure levels of pollution, there, there is no longer a
reference station/ground-truth values, so it is not known whether the predic-
tions become less accurate as time evolves. In order to simulate this situation,
a calibration of (4-5 weeks) is done (without shuffling the data, data from the
end of may and beginning of June), then the model is validated day by day
in order to see if the accuracy decreases as the environmental conditions (e.g.
temperature, humidity and other factors present in summer) change.

First of all, the evolution of the RMSE is inspected. For simplification pur-
poses the evolution of sensor 1 from nodes 17013 and 17017 and sensor 4 node
17016 are shown in figure 6.10, as they are representative enough of all sensor
family. It can be seen that the error does not remain constant as time and
environment conditions evolve, it has a large variability, sometimes the error
can be as low as 5µgr/m3 while there are peaks above 40µgr/m3. However,
in subfigure a), the RMSE is seen to increase as the time goes on, indicating
that even though a good calibration is done before the deployment period, the
models and the metal-oxide sensors can not handle properly the difference in
the environmental conditions (regarding the training set/calibration weeks).
The other sensors also show an increasing trend in the RMSE, despite of not
being as significant as with node 17016, they vary a lot and increase over the
days. For instance, the RMSE of sensor s1 C17017 increases during July and
decreases during the month of August. Another interesting fact to study is
the difference in the long-term performance for the different machine learn-
ing techniques. The three subfigures in 6.10 show the nonlinear methods to
outperform the linear one in the first days after the calibration period, but as
time and conditions change the nonlinear models’ performance crosses with the
linear one. Thus, there is no clear advantage in using the nonlinear methods
for a long-term prediction as the error also increases like in the linear case.
Indeed, in some cases (in subfigures a) and b)) the RMSEs at the month of
September for the nonlinear methods are seen to be worse than in the linear
method (in subfigure c) not). So, there is no better model when evaluating
long-term predictions as all models present some bias.

Now, target diagrams (see Appendix A for further explanation) are used in
order to understand better the evolution of the error in the long-term predic-
tions. The target diagram decomposes the RMSE in terms of the normalized
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(a) Long Term RMSE C17016
s4.

(b) Long Term RMSE
C17013 s1

(c) Long Term Target
RMSE C17017 s1

Figure 6.10: Long term target diagrams for C17016 s4 and the different methods.

mean bias and the normalized centred root mean squared error. The centred
root mean squared error helps to understand better the variance component of
the error (as the means of the reference and prediction are subtracted). This
values are plot in a target diagram where the x-axis is the normalized mean
bias and the y-axis is the normalized CRMSE, those points that fall outside the
unit circle indicate that the null model (mean value of the reference values) is
better than the current model. The value of the centred RMSE will always be
positive, a convention states that samples will fall on the positive or negative
side of the x-axis depending on the ratio of the deviation of reference and the
deviation of the predictions. So, this will indicate whether the model has more
or less variance than the true phenomena.

All target diagrams show the same pattern on the evolution of the error,
in Figure 6.11 the target diagrams for the node 17016 sensor 4 are show for
the different methods. The darker points denote days closer to the calibration
phase while the lighter ones are the days most far away from the calibration.
As mentioned before, the points start to change sides of x-axis, indicating that
sometimes the model’s variance is larger than the reference values variance,
what is important is that there is a small variation in the x-axis but a large
variation in the y-axis. This is stating that the normalized CRMSE has a small
increase as time evolves (spread of points along x-axis) while the normalized
mean bias is seen to increase as days pass. Thus, the blue points are closer to
the y = 0 value while the others sometimes are closer and others are farther.
Moreover, for days that are far enough from the calibration or that day had
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extreme ozone or environmental conditions values, the model becomes worse
than the null model. So, the models degrade with environmental condition
and consequently with time. As seen in the RMSE evolution 6.10, the dif-
ferent methods behave similarly among them and there is no clear advantage
of the nonlinear models over the linear ones. The nonlinear methods Figure
6.11b),c),d) show less variation along the x-axis but there is no clear difference.

(a) Long Term Target diagram (b) Long Term Target diagram.

(c) Long Term Target Diagram. (d) Long Term Target Diagram.

Figure 6.11: Long term target diagrams for C17016 s4 and the different methods.

Now, let’s take a look at the evolution of the mean bias and the CRMSE
to see which one causes the increase in the RMSE metric. In Figure 6.12 the
evolution of these metrics is shown, it can clearly be seen that although there
is variability in both metrics the mean bias is the one that increases more
as days pass. It can be clearly seen in sub-figure a) and b) that the mean
bias increases over the months. However, the CRMSE does not show such an
increasing trend but it has a large variability over the days depending on the
conditions of a certain day.

All this indicates, that all models present a bias as time evolves. This bias
could be caused by the metal-oxide sensor’s bias, where the behaviour of the
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(a) Normalized CRMSE and
Mbias for C17016 s4

(b) Normalized CRMSE and
Mbias for C17013 s1

(c) Normalized CRMSE and
Mbias for C17017 s1

Figure 6.12: Evolution of Mean Bias and CRMSE for sensor 1 of nodes C17013 and
C17017 and sensor 4 of node C17106.

sensor depends on the environmental conditions where it has been placed, so
that sensor data changes. The use of nonlinear models does not overcome
this limitation. As seen in the previous work several approaches can help to
overcome this bias problem, the most easy solution but the most expensive one
would be a re-calibration procedure (see Mijling et al. [14]).

A virtual re-calibration approach is done with the different methods in
order to see if the biases can be improved. The re-calibration is simulated by
using the previous four weeks of a period for calibration and validating the
model with the consecutive week. These calibration window is slided over the
whole data set of the different nodes. Following Figure 6.13, shows the re-
calibration results for the different models. It is seen that the re-calibration
moves all points that are far away from the training period to the y-axis center,
this means that in average the predictions have a low bias. Moreover, as the
nonlinear models are more complex, they have a lower CRMSE than the MLR
bacause of their ability to explain more response’s variability. Moreover, the
nonlinear method perform a better job at the re-calibration as they are better
at prediction at short-term. Thus, the SVR, RF and KNN care able to group
more the data to the point x = 0, y = 0.

This can be done in a real setting at the expensive price of taking the node
to the reference station where it needs to be calibrated again, so data from
re-calibration periods will be lost and taking the node to a reference station
periodically can be costly.
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(a) MLR Long-term. (b) MLR Long-term re-calibration

(c) KNN Long-term. (d) KNN Long-term re-calibration.

(e) RF Long-term. (f) RF Long-term re-calibration.

(g) SVR Long-term. (h) SVR Long-term re-calibration.

Figure 6.13: Long term target diagrams for C17016 s4 and the corresponding re-
calibration results.
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6.5 Calibration using sensor fusion

The CAPTOR project deployed thirty-five devices with a total of 140 MOX
ozone sensors during the 2017 summer campaign. As mentioned in Chapter
5, nodes were spread over the different reference stations during phase 1, for
calibration purposes. Therefore, some nodes coincided in the same place during
a small period of time (3/4 weeks approximately), allowing us to investigate
whether if using more than one metal-oxide sensor in the calibration model
would improve the model’s accuracy. Basically, the idea is to introduce each
sensor as a feature in the machine learning method and see whether the model
improves or not.

An experiment can be done for investigating sensor fusion. Sensor fusion
is studied in terms of what a real deployment would look like. Thus, the idea
is to test how a node with more than one low-cost ozone sensor would work,
studying the improvement of using several sensors in a measuring node. In sub-
section 6.5.1, the introduction of the sensor fusion is motivated by studying
the different correlations present between the sensors. Finally, in sub-section
6.5.2 the results of the fusion experiments are presented.

6.5.1 Correlations

To understand how the sensor fusion works the correlations between sensors
are studied. The idea behind the fusion is to use sensors whose values are
not perfectly correlated between them and highly correlated with the response
variable. This way, fusing two sensors in a model improves over the best of the
two individual ones.

It is true that all sensors measure tropospheric ozone, so that, all sensors
will be correlated between each other. However, each sensor presents unique
irregularities that could improve the prediction of concentration levels. Figure
6.14 shows the heatmaps with the correlations between sensors and also the
reference values (first column) for the two data sets. First, we must observe
the first column of the different heatmaps, this corresponds to the correlation
between the sensors and the target values. We want these correlations to be
as large as possible, it is seen that some of them have a correlation larger than
0.9 while a few other a correlation of 0.5. Therefore, some sensors will be more
accurate as they represent better the true phenomena. Second, the correlation
between sensors is important because we want them to be as less correlated
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as possible. Highly correlated features can be a problem for different machine
learning models (e.g. KNN and RF). There are some sensors more correlated
than others but again it is seen the fact that each sensor response is unique,
so even if they are correlated they do not have a correlation equal to one.

Filter methods for feature selection use some importance metric (e.g. the
correlation or the mutual information) in order to rank the different features
according to their importance to predict the response variable. This is the
main idea seen in the last paragraph where the larger the correlation between
a sensor and the reference values the better. Furthermore, the behaviour of
the sensor fusion will depend on whether the sensors used for the fusion are
more correlated with the reference values or not.

(a) Heatmap correlations Manlleu. (b) Heatmap correlations Tona.

Figure 6.14: Correlation between sensors and reference values for super nodes of
Tona, Manlleu and Montecucco.

The correlations seen in Figure 6.14 show that ozone sensors can have large
correlation between them, what is obvious given that all of them measure the
same phenomena, and this can lead to an unstable solution with the multiple
linear regression and problems when training the nonlinear ones. There are
a lot of sensors that have a large correlation between them (e.g. more than
0.8), highly correlated features can cause learning problems in methods like the
KNN or the RF. In the KNN case, it is a problem because the importance of the
true underlying phenomena will be given too much importance, while in the RF
case, the randomization (random selection of variables in each decision node)
may be flawed. To detect multicollinearity problems the variance inflation
factor (VIF) can be used (see Appendix A), when it is above 10 it indicates that
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a feature can be explained almost perfectly using the other features. Figure
6.15 show the number of features with VIF larger than 10, meaning presence
of multicollinearity, for each number of sensors present in the fusion. It is seen
that most of the ozone sensors present in each fusion have multicollinearity
problems, in almost all fusions all sensors but one have a VIF larger 10, it
makes sense given that all sensors measure the same underlying phenomena,
tropospheric ozone concentrations.

Figure 6.15: number of features with VIF larger than 10.

There exists several machine learning procedures to address this problem.
Filter and wrapper methods are used to perform feature selection. Filter meth-
ods search the best set of features using some metric like the Pearson corre-
lation coefficient. Wrapper methods search the best subset of features given
they performance with the machine learning to use, this method can be really
computational expensive when dealing with lots of sensors and expensive ma-
chine learning algorithm like the SVR or artificial neural networks. But in our
case we do want to keep all the original features (sensors).

An easy way to overcome the multicollineariy problem is the use of Princi-
pal Components Analysis (PCA). This method can be used for dimensionality
reduction, but in this case the goal is to use all the resulting principal com-
ponents, because they are orthogonal between them. As we are keeping all
components the MLR solution with the principal components as features will
reduce to the original solution. Indeed, all principal components are a linear
combination of the original features. No dimensionality reduction is done be-
cause we want to use the information of all sensors. It is interesting to take
a look at the first PCA results (all captors placed in Manlleu during phase
1), the projection of the variables into the first and second components (Fig-
ure 6.16a)), the two first components explain a large amount of the variability
(almost an 89%). Taking a look at the projection of the variables, it seen
that all sensors are related to a latent variable (the ozone) but not perfectly



CHAPTER 6. RESULTS 42

and that the relative humidity is negatively related to the first component and
the temperature is also positively related. This has sense as the both tem-
perarure and relative humidity are correlated, positively and negatively, with
the tropospheric ozone phenomena. Although in Figure 6.16b) the cumulative
explained variability is shown, and only few components are needed, we use
all components given that we want to use the information of all the available
sensors.

(a) Variable projection into the first and
second components.

(b) Cumulative percentage of variance
explained by components.

Figure 6.16: Variable projection and explained variance for all nodes present in Man-
lleu, so, a 28 sensor fusion.

6.5.2 Calibration experiments

The most important aspect of sensor fusion may be: how many sensors should
a device have attached ? In order to find out the how the RMSE changes as we
add more sensors to a collection node, both data sets mentioned in the previous
chapter are used. Thus, data from Tona and Manlleu is used, the procedure
used to obtain a validation measure for a number of sensors is the following:
train and validation split is done, for each number of sensors, ten sets are
obtained by random sampling (always including the best sensor to not to fool
the results) and the validation RMSE of each one of the sets averaged. The
confidence intervals for the mean validation RMSE are computed as follows
(the t-student distribution is used as the sample size is smaller than thirty):
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x̄± t(0.975, 9) ∗ σ√
10

(6.2)

(a) Mean validation RMSE in Manlleu (b) Mean validation RMSE in Tona

Figure 6.17: Mean validation RMSE for number of sensors in Tona and Manlleu

In order to train each one of the models, the input data used were the
principal components obtained in the previous step to the training, principal
components analysis.

Figure 6.17 shows the fusion using the MLR and the nonlinear methods.
It is seen that both methods are able to reduce the validation RMSE as the
number of sensors increase. However, the nonlinear methods have a greater
slope, it is to say, the KNN with 4 sensors it is able to reduce the RMSE
from 9.07 µgr/m3 to 8.02 µgr/m3 and from 7.1 µgr/m3 to 5.76 µgr/m3 in
average. In the linear case the improvement of adding one sensor at a time is
smaller, so with few sensors the improvement is small and more sensors than
in the nonlinear case are required for a significant improvement. Moreover, the
nonlinear methods stabilize the RMSE at 6 sensors making the improvement
non-significant adding more sensors. This is telling that using 4 or 5 sensors
with a nonlinear method is enough to produce a significant improvement. It
can also be observed that with many sensors the MLR does not stabilize and
can have a similar performance to KNN and RF. The support vector regression
is able to reduce the RMSE more than 5 µgr/m3 in average in the Manlleu
data set and more than 2 µgr/m3 in average in the Tona case.

Following table 6.2, shows the average validation RMSE (different selection
of sensors) for the different models, data sets and for 1 sensor, 4 sensors and 14
sensors. Four sensors are the number of sensors currently attached to a captor
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node and at fourteen sensors the RMSE has stabilized. As it can be seen, the
SVR is the model that achieves the best results.

Average Validation RMSE (µgr/m3)
1 sensor 4 sensors 14 sensors

MANLLEU

MLR 10.46 9.16 7.01
KNN 9.07 8.02 6.11
RF 10.14 7.03 6.33
SVR 9.51 5.81 3.34

TONA

MLR 8.51 8.06 6.12
KNN 7.09 5.76 4.71
RF 6.78 5.44 4.80
SVR 5.32 4.08 2.67

Table 6.2: Average validation RMSE for different number of sensors, models and the
two data sets.

It would be interesting to study if the sensor fusion can help to overcome or
at least alleviate the bias and variance problems of the long term predictions,
but it is left as future work, as this is a simple introduction to sensor fusion
using machine learning.



7 | Conclusions

In this project we have seen four machine learning techniques (MLR, KNN,
RF and SVR) that can be used for low-cost metal-oxide ozone sensor calibra-
tion. Among the different experiments done in this thesis, the short-term, the
needed training set size, training time for each one of the models, the long-
term predictions and the use of sensor fusion for the different methods has
been studied. All this experiments have been done using data from metal-
oxide low-cost ozone sensors deployed during the 2017 summer, forming an
IoT platform for atmospheric data monitoring. This project has analysed and
given useful insight of tropospheric ozone data recorded during the CAPTOR
H2020 project.

The following list includes the most important aspects seen in the project:

1. All four models (linear and nonlinear) have small bias when using a large
data set, with data representative for all environmental conditions. This
means, that the best scenario is that we have data representative from all
different months of a deployment (June, July, August and September).
This happens because the O3 is a seasonal pollutant so its higher levels
occur during the summer.

2. Among the linear and nonlinear methods, the methods that achieves the
best accuracy in terms of RMSE and R2 are the nonlinear ones. These
have been able to reduce the validation RMSE at least in 2.6µgr/m3 in
average.

3. The MLRmodel needs 2 weeks (2weeks∗7 daysweek∗48 samplesday = 672samples)
for training while the nonlinear models the more data for training the
better. Otherwise, the SVR takes between 3 or 4 weeks (∼ 1000samples)
to achieve a considerable improvement in terms of accuracy.

4. The SVR is known to be the most complex optimization problem among
the used models. Thus, it is the method that takes the most to train,
also because the grid search done for this method is costly as the gamma,
the C and the epsilon variables are optimized.

45
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5. When fixing the training set size in 4 weeks and observing the behaviour
of the long-term predictions biases in the models appear, these can be
caused due to changes in the environmental conditions. Even the non-
linear methods are not able to overcome this problem.

6. A simple solution to the presence of model bias in a long-term setting
is the re-calibration. This methodology has also been studied in the
literature and it has been seen to correct the biases in all four models.
However, this is done at a cost of moving the nodes periodically to a
reference station, so loosing samples and increasing deployment costs.

7. Using more than one ozone sensor in the calibration model has been seen
to improve the accuracy of a model with just one sensor. Indeed, us-
ing the principal components as features to overcome multicollinearity
problems and training the models with these features reduces consider-
ably the validation RMSE. Moreover, the SVR model is the one that is
able to take more profit of using more than one sensor. It has also been
seen that using between 4 and 6 metal-oxide ozone sensors with a non-
linear method improves the validation RMSE a lot (> 3µgr/m3). The
nonlinear models are the ones that stabilize the RMSE fastest.

To sum up, the following Table 7.1, summarizes the best conditions for
each one of the models studied. The different methods have a score that goes
form one to four, indicating the best and the worst method depending on the
conditions.

Methods Representative Data ? * Large calibration time ? Multi-sensors
Yes No Yes No Yes No

MLR 4 1/2/3/4 4 1 4 4
KNN 1/2/3 1/2/3/4 3 2 3 1/2/3
RF 1/2/3 1/2/3/4 2 3 2 1/2/3
SVR 1/2/3 1/2/3/4 1 4 1 1/2/3

Table 7.1: Methods sorted from best to worst (1-4) depending on the calibration con-
ditions.(* Representative data means if data from all different conditions is available,
short-term experiment)



8 | Future Work

There are several aspects that can be investigated further. First of all, if the
sampling frequency is higher than the one used in the captor nodes, then the
calibration could be studied from the time series analysis point of view. The
use for autoregressive models could be tried for sensor calibration. Secondly,
the use of sensor fusion for calibration has only been seen from the short-term
prediction perspective. Thus, a long-term analysis to see if using more than
one sensor measuring the same phenomena could alleviate the model’s bias is
quite interesting. As well as, studying other methods to overcome the bias
problems in order to avoid the cost of re-calibration. The sensor fusion of
sensors can also be studied in deeper detail by using other methods to not just
fuse sensors but to fuse different models using these sensors.

The presence of bias in the long-term predictions is an open research field.
The use of a WSN using a geostatistical method like a Kriging process could
be studied like in [2], [20]. Including the reference stations as simple nodes in
order to have more accurate data in the Kriging process. Moreover, a recent
field called Graph Signal Processing (GSP) has emerged and its applications
are still to be discovered. Thus, the possible use of GSP could be used for
low-cost sensor calibration, building graphs with each one of the sensors and
the location data of each one.

The whole study has focused on ozone analysis. As future work, could
also be studied other pollutants such as the NO2, PM2.5, etc. Study these
pollutants in the Barcelona area and see if there are also long-term problems
for non-seasonal pollutants.

Finally, the availability of ozone measures during a long consecutive pe-
riod of time would allow us to study in detail the effects of sensor ageing,
characterizing it and finding solutions to overcome this problem.
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Glossary

Captor IoT device built in the Universitat Politècnica de Catalunya by the
SANS research group for an European H2020 project. It is formed by a
processing unit, low-cost sensors, a power supply and a Wifi/3G connec-
tion.

EC Electro-chemical sensor, a sensor technology.

IoT Internet of Things.

KNN K-Nearest Neighbors.

Long-Term prediction Experiment to test a machine learning model taking
into account the effects of the environmental conditions of the different
summer months. It is the real scenario of a real deployment campaign,
where the models are build with four weeks at the beginning of the sum-
mer and the model is tested during the whole summer, day by day.

MLR Multiple Linear Regression.

MOX Metal-oxide sensor, a sensor technology.

QoI Quality of information. Godness-of-fit measures..

RF Random Forest.

Short-Term prediction Experiment to test a machine learning model with-
out taking into account the effect of the environmental conditions of
different time periods. Basically, the data set is shuffled to have repre-
sentative samples from different data space areas. Then, the model is
evaluated on the validation set, it is like evaluating the model with data
close to the time where the model has been built .

SVR Support Vector Regression.
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A | Performance metrics

The RMSE is the root of the mean squared error. It is an error measure in
the units of the response variable.

RMSE =
√
MSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (A.1)

The R2 also known as coefficient of determination tells how much variance of
the response variable is explained by the model, the closer to 1 the better the
model.

R2 = 1−
∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

(A.2)

The CRMSE (Centered Root Mean Squared Error) is the difference in
amplitude of two signals. The mean of the predicted and true values are
subtracted from the instantaneous predictions:

CRMSE =

√√√√ 1

N

N∑
i=1

[(yi − ȳ)− (ŷi − ¯̂y)]2 (A.3)

The Mean Bias indicated the differences between the observed and the
predicted values taking into account the sign.

MBias =
1

N

N∑
i=1

(ŷi − yi) (A.4)

The target diagram is an evolution of the Taylor diagram that provides
information about the mean bias, the RMSE, the CRMSE, the standard de-
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viation and the coefficient of correlation. It is a kind of bias-variance decom-
position. When a point lies within the negative x-axis it is because the model
underestimates the variance of the reference values, while if it falls in the pos-
itive side it overestimates. Ideally, a point should fall within the unit circle,
meaning it has both normalized mean bias and normalized CRMSE minor than
1, this also means that the model is better at predicting the reference values
than the null model (observations’ average).

Figure A.1Target diagram explanation. Source: [17]

The Variance Inflation Factor (VIF) is a measure that quantifies the
presence of multicollinearity in an ordinary least squares regression. The VIF
is calculated as follows:

V IF (xj) =
1

1−R2(xj)
(A.5)

where the R2 is the one obtaining by regressing xj with respect to the other
features. A VIF larger than ten indicated the presence of multicollinearity, or
that a feature is a linear combination of the other features.



B | Metadata

In this appendix chapter the metadata, of the three main data sets used is
explained. A brief description of each feature, as well as their unit and some
basic descriptive statistics are shown.

Table B.1Manlleu data set metadata.

Description Units Min/Max Avg

Date This variable represents the date and
hour in which the measures have been
taken. Format: dd/mm/YYYY hh:mm

- - -

Ref This variable represents the values pro-
vided by the reference station, Manlleu
in this case.

µgr/m3 1.0/213.0 60.96

S1 This represents the measure value by
the metal-oxide ozone sensor one in the
corresponding captor node.

KiloOhms 20.83/787.77 236.68

S2 This represents the measure value by
the metal-oxide ozone sensor two in the
corresponding captor node.

KiloOhms 25.12/734.55 172.87

S3 This represents the measure value by
the metal-oxide ozone sensor three in
the corresponding captor node.

KiloOhms 15.46/424. 114.56

S4 This represents the measure value by
the metal-oxide ozone sensor four in the
corresponding captor node.

KiloOhms 9.601/447.059 121.704

Temp Measure values of the temperature sen-
sor. Indicates temperature.

◦C 7.97/43.23 23.71

RH Measure values of the relative humidity
sensor. Indicates relative humidity.

% 23.0/83.20 41.23

51



APPENDIX B. METADATA 52

Table B.2Tona data set metadata.

Description Units Min/Max Avg

Date This variable represents the date and
hour in which the measures have been
taken. Format: dd/mm/YYYY hh:mm

- - -

Ref This variable represents the values pro-
vided by the reference station, Tona in
this case.

µgr/m3 2.0/224.0 75.74

S1 This represents the measure value by
the metal-oxide ozone sensor one in the
corresponding captor node.

KiloOhms 37.86/839.37 298.31

S2 This represents the measure value by
the metal-oxide ozone sensor two in the
corresponding captor node.

KiloOhms 27.35/715.50 201.52

S3 This represents the measure value by
the metal-oxide ozone sensor three in
the corresponding captor node.

KiloOhms 17.26/570.81 114.15

S4 This represents the measure value by
the metal-oxide ozone sensor four in the
corresponding captor node.

KiloOhms 33.51/874.64 312.90

Temp Measure values of the temperature sen-
sor. Indicates temperature.

◦C 3.0/39.70 18.65

RH Measure values of the relative humidity
sensor. Indicates relative humidity.

% 9.67/95.0 49.15
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Table B.3Vic data set metadata.

Description Units Min/Max Avg

Date This variable represents the date and
hour in which the measures have been
taken. Format: dd/mm/YYYY hh:mm

- - -

Ref This variable represents the values pro-
vided by the reference station, Vic in
this case.

µgr/m3 1.0/211.0 61.06

S1 This represents the measure value by
the metal-oxide ozone sensor one in the
corresponding captor node.

KiloOhms 14.87/379.25 73.97

S2 This represents the measure value by
the metal-oxide ozone sensor two in the
corresponding captor node.

KiloOhms 22.54/704.52 176.60

S3 This represents the measure value by
the metal-oxide ozone sensor three in
the corresponding captor node.

KiloOhms 5.83/597.43 157.70

S4 This represents the measure value by
the metal-oxide ozone sensor four in the
corresponding captor node.

KiloOhms 18.09/621.96 182.61

Temp Measure values of the temperature sen-
sor. Indicates temperature.

◦C 3.90/37.07 19.44

RH Measure values of the relative humidity
sensor. Indicates relative humidity.

% 14.0/95.0 54.01
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