
New real-time GNSS algorithms for the
detection and measurement of potential

geoeffective stellar flares
Bachelor Degree in Informatics Engineering

Author
David Moreno Borràs
Specialization in Computing

Supervisor
Manuel Hernández-Pajares

Department of Mathematics

Ponent
Karina Gibert

Department of Statistics and Operations Research

July 05, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231704687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Stellar flares are sudden electromagnetic emissions on a star’s surface that release
large amounts of energy. These flares are detected by telescopes such as Swift
or Fermi by performing radiation observations from low Earth orbit. However,
the radiation also has an effect on Earth’s ionosphere electron content. Another
approach for detecting these events is possible: the aforementioned electron content
variation can be processed using data from Global Navigation Satellite Systems
(GNSS) such as GPS to study the flares.

The Blind GNSS Search of Extraterrestrial EUV Sources (BGSEES) algorithm
for detecting solar flares without knowing the location of the source, that is, the
position of the Sun relative to Earth, is presented, as well as a study on the feasibility
of the detection of such events for the challenging scenario of far-away stars, aiming
to find an alternative detection method to that of the telescopes and using free,
open access data.

Keywords: Solar flares, Stellar flares, GNSS, GPS, IGS, GRB

Resumen

Las fulguraciones estelares son incrementos repentinos de radiaciones electromagnéticas
en la superficie de una estrella que contienen gran cantidad de enerǵıa. Son de-
tectadas por telescopios tales como Swift o Fermi realizando observaciones desde
satélites artificiales en órbita baja terrestre. Esta radiación también afecta al con-
tenido total de electrones de la ionosfera terrestre. Esto permite una alternativa
para detectar las fulguraciones: detectar el incremento repentino y según un cierto
patrón espacial caracteŕıstico del mencionado contenido de electrones, que puede ser
procesado usando las medidas transionosféricas en doble frecuencia de los Sistemas
de Navegación Global por Satélite (Global Navigation Satellite Systems, GNSS),
como por ejemplo GPS.

Se propone el algoritmo Blind GNSS Search of Extraterrestrial EUV Sources
(BGSEES) para detectar fulguraciones solares sin conocimiento previo de la posición
de la fuente, es decir, la posición del Sol relativa a la de la Tierra en la caracterización
del algoritmo ante fulguraciones solares conocidas, aśı como un estudio sobre la
viabilidad de la detección de fulguraciones que tienen lugar en estrellas lejanas.
El objetivo final es el de confirmar la validez de un nuevo método de detección
alternativo al de los telescopios que use datos de libre acceso y sea omnidireccional.

Keywords: Solar flares, Stellar flares, GNSS, GPS, IGS, GRB

Resum

Les fulguracions estel·lars són increments de radiacions electromagnètiques en la
superf́ıcie d’una estrella que contenen una gran quantitat d’energia. Són detectades
per telescopis com Swift o Fermi realitzant observacions des de satèl·lits artificials
en òrbita baixa terrestre. La radiació també afecta el contingut total d’electrons
de la ionosfera terrestre. Això permet una alternativa per detectar les mencionades
fulguracions: detectar l’increment i seguint un patró espacial caracteŕıstic del con-
tingut d’electrons, que pot ser processat utilitzant les mesures transionosfèriques en
doble freqüència dels Sistemes de Navegació Global per Satèl·lit (Global Navigation
Satellite Systems, GNSS), com per exemple GPS.

Es proposa l’algoritme Blind GNSS Search of Extraterrestrial EUV Sources
(BGSEES) per detectar fulguracions solars sense cap coneixement previ de la posició
de la font, és a dir, la posició del Sol relativa a la de la Terra en la caracterització de
l’algoritme davant de fulguracions solars conegudes, aix́ı com un estudi sobre la via-
bilitat de la detecció de fulguracions que tenen lloc a estrelles llunyanes. L’objectiu
final és el de confirmar la validesa d’un nou mètode de detecció alternatiu al dels
telescopis que sigui omnidireccional i fagi servir dades de lliure accés.

Keywords: Solar flares, Stellar flares, GNSS, GPS, IGS, GRB

Contents

1 Project Management 10
1.1 Introduction . 10
1.2 Scope of the project . 11

1.2.1 Objectives . 11
1.2.2 Scope . 11
1.2.3 Methodology and rigor . 12
1.2.4 Obstacles and risks of the project 13

1.3 Contextualization . 15
1.3.1 Areas of interest . 15
1.3.2 Stakeholders . 15
1.3.3 State of the art . 16

1.4 Planning and scheduling . 17
1.4.1 Task description . 17
1.4.2 Time table . 19
1.4.3 Scheduling: Gantt chart . 19
1.4.4 Action plan . 20
1.4.5 Resources . 21

1.5 Cost estimation . 21
1.5.1 Software resources . 22
1.5.2 Hardware resources . 22
1.5.3 Human resources . 23
1.5.4 Indirect costs . 23
1.5.5 Budget per task . 24
1.5.6 Total budget . 25
1.5.7 Budget control . 25

1.6 Sustainability . 25
1.6.1 Environmental sustainability 26
1.6.2 Economic sustainability . 27
1.6.3 Social sustainability . 27

4

CONTENTS

2 Background 28
2.1 Global Navigation Satellite Systems 28
2.2 Ionosphere . 29
2.3 Stellar flares . 30
2.4 Gamma-Ray Bursts . 30

3 Solar flare detection 32
3.1 Data . 32

3.1.1 GPS Data . 32
3.1.2 Formatting . 33
3.1.3 The Halloween Solar Storm: X17.2 flare 34

3.2 Vertical Total Electron Content (VTEC) 34
3.2.1 Computing the VTEC . 34
3.2.2 Distribution throughout the day 35

3.3 Solar-zenith angle . 37
3.4 Results . 38

4 Brute Force Approach 40
4.1 Correlation . 40
4.2 Algorithm . 41

4.2.1 Implementation . 42
4.2.2 Mean VTEC as a reliable indicator of the moment of the flare 45
4.2.3 Results . 47

5 Decreasing search range method 49
5.1 Decreasing the range of the search . 49
5.2 Pseudocode . 50
5.3 Implementation . 50
5.4 Linear fitting: discarding outliers . 53
5.5 Results . 54

6 Least Squares method 56
6.1 The system of equations . 56
6.2 Pseudocode . 59
6.3 Implementation . 60
6.4 Results . 65

6.4.1 Single iteration . 65
6.4.2 Multiple iterations: narrowing the search 66
6.4.3 Multiple iterations: residual sum 67

5

7 Other methods and optimizations 69
7.1 Hill Climbing . 69
7.2 OpenMP . 71

8 Results: solar flares 72
8.1 Using all available data . 75
8.2 Direct VTEC filter . 76
8.3 Decreasing range: linear fit . 77
8.4 Least Squares: Iterations . 78

8.4.1 Discarding by source position 78
8.4.2 Discarding the measurements with high residuals 79

8.5 Using multiple epochs . 80
8.6 Discussion . 81

9 Stellar flares 83
9.1 Study on the feasibility of stellar flare detection 83

9.1.1 Sources of data and possible candidates 83
9.1.2 The Neil Gehrels Swift Observatory and its data 84
9.1.3 Objective function . 85
9.1.4 Obtaining the data . 86

9.2 Testing the BGSEES algorithm . 87
9.2.1 Discarding the day Ionosphere 87
9.2.2 Proxima Centauri . 88
9.2.3 NGTS J121939.5-355557 . 92

10 Conclusions 97
10.1 Future work . 97

Listings

3.1 Format of the ti file . 33
3.2 Simple Fortran function to compute the VTEC value 35
3.3 AWK script to estimate the VTEC 36
3.4 Bash script to execute the procedures 36
3.5 Computation of the solar-zenith a angle’s cosine 38
4.1 Main loops . 42
4.2 Correlation computation . 43
4.3 Updating the summations . 44
4.4 Computing the correlation coefficient using the summations 45
4.5 Finding a VTEC spike . 46
4.6 Brute force approach algorithm output 47
5.1 Decreasing the range and increasing the precision 50
5.2 Setting the new range based on the estimated source location 51
5.3 Iterating over possible locations within the given range 52
5.4 Discarding outliers and computing the correlation 54
5.5 Decreasing range using a cutoff value for outliers 54
5.6 Decreasing range using linear fit for outliers 55
6.1 Adding a new row to a two dimensional array 61
6.2 Main Least Squares function . 62
6.3 Storing the data from the input file 63
6.4 Compute the components of the IPP’s unit vector 64
6.5 Function matrixComputations to solve the system 64
6.6 Obtaining the source’s location using the system’s solution 65
6.7 One iteration of the Least Squares method 65
6.8 Function checkOutlier to discard outliers 66
7.1 Hill Climbing . 70
8.1 Filtering the ti file . 73
9.1 Discarding the day hemisphere . 87

List of Figures

1.1 Gantt chart with the planning of the project 20

3.1 VTEC as a function of the cosine of the solar-zenith angle 34
3.2 VTEC distribution throughout the day for IPPs that have Vill as the

receiver . 36
3.3 VTEC value as a function of the solar-zenith angle cosine 38

4.1 Correlation and error of the solution as the mean VTEC decreases . . 47

5.1 All visited candidates of the solution space 53
5.2 All data (red) and fitted samples (blue) 54

6.1 VTEC as a function of the solar-zenith angle’s cosine 57

7.1 All visited candidates of the solution space 69
7.2 Paths taken by the Hill Climbing algorithm 70

8.1 Results of LS method with 10 iterations based on the estimated LS
error . 78

8.2 Comparison of the estimation error and execution time for the Least
Squares and Decreasing Range methods 81

9.1 Result of the GSFLAI algorithm for the 181228A GRB 86
9.2 Estimation error surrounding the moment of the flare using 20 epochs

(Proxima Centauri) . 89
9.3 Estimation error surrounding the moment of the flare using 10 epochs

(Proxima Centauri) . 90
9.4 Estimation error surrounding the moment of the flare using 20 epochs

in groups of 2 (Proxima Centauri) . 91
9.5 Estimation error surrounding the moment of the flare using 20 epochs

(NGTS) . 93
9.6 Estimation error surrounding the moment of the flare using 10 epochs

(NGTS) . 94

LIST OF FIGURES

9.7 Estimation error surrounding the moment of the flare using 20 epochs
in groups of 2 (NGTS) . 95

9

Chapter 1

Project Management

1.1 Introduction

Stellar flares are sudden electromagnetic emissions on a star’s surface that release
large amounts of magnetic energy. For the case of solar flares (originating from the
Sun), these flares emit radiation that has an effect on Earth’s ionosphere electron
content and therefore the many satellites orbiting it. [9]

Several NASA missions that aim to detect these and other flares from far-away
stars exist, like the Swift and Fermi missions, these satellites, however, perform this
by using their instruments to study the gamma-ray, x-ray and ultraviolet radiation
bands. [6]

The aforementioned ionosphere electron content variation, however, makes it
possible to detect these flares with a more indirect approach: using data from the
satellites belonging to global positioning systems.

As the sudden increase of electron content in the ionosphere has an effect on
the signals these satellites receive and send, this data can be used to detect flares
by using the appropriate algorithms. Parameters such as the angle between the
Sun and the zenith of the Earth, or the Total Electron Content (TEC) in the air
have to be taken into consideration for them to work. This is already feasible with
flares that have the Sun as a source, so our goal is to, first of all, expand on that
by detecting these flares without knowing the location of the Sun, and then apply
that to study if it is possible to detect flares from far-away stars by developing the
appropriate algorithms.

Therefore, the main objective of our project is to present an algorithm: Blind
GNSS Search of Extraterrestrial EUV Sources (BGSEES), able to detect Solar flares
without taking into consideration the position of the Sun, so that we can later adapt
it to the challenging scenario of flares from far-away stars. Finally, it could be
extended to real-time detection.

The aim of this chapter is to give a detailed description of the project, its scope

10

Project Management

and context, as well as the planning for the different objectives of the project and
its impact: environmental, social and economic.

1.2 Scope of the project

Now that we have defined the problem that we want to solve, we proceed to define
the scope of our project: how are we going to tackle it, and what could be some
obstacles that might arise during its development.

1.2.1 Objectives

For a possible progression we could present the objectives of the project as follows:

• To understand how the already existing algorithms for solar flare detection
work, and see how we can apply them to the challenging scenario of far-away
stars.

• Be able to work with GNSS data in order to use it as the input for our
algorithms and compare that to flares registered by satellites like Swift or
Fermi.

• Using this data, developing new algorithms that can perform the detection
using solar flares first but without knowing the origin of the source, that is,
not only detecting the solar flare, but the position of the Sun relative to the
Earth.

• Applying this to the challenging scenario of far-away stars without knowing
the position of the potential ionizing source.

• Prepare these algorithms to be applied for real-time data.

1.2.2 Scope

We need to study the impact of stellar flares on the Earth’s ionosphere by adapting
the already existing algorithms that work with the Sun, but without knowing the
source of the flare to see if we can apply this method to the scenario of far-away
stars.

And finally, if possible, using the result to adapt the solution to run in real-time.

11

Project Management

1.2.3 Methodology and rigor

The project has been planned to assure that it is developed in a bottom-up style,
from less to most challenging objectives because every step of the development relies
on the previous one to work. Therefore, as we have specified before, the project is
going to start by working with a less-challenging scenario: the Sun.

The objective is to develop an algorithm that is able to detect solar flares without
knowing their location, so we can later extend it to far-away stars. Before starting
with this algorithm, a first approach will be done knowing the location of the source
(the location of the Sun relative to the Earth in the moment of a recorded flare) so
we can assure that the computations are correct.

Parallel to this, the feasibility of detecting far-away flares will be studied, using
the currently existing algorithms [9] but applied to recorded stellar flares, rather
than Solar. If it is possible, we will adapt the previously developed algorithm so
that it works not only with the Sun, but far-away stars (of which we don’t know the
location).

Finally, if any of the two objectives is successful, the algorithms will be adapted
to run in real time: instead of just testing them with previous data and checked
against recorded events, they will be run in real time using the latest available GNSS
data.

Development tools

Git and GitHub are going to be the tools used for version control and code mainte-
nance.

The platform we will be developing on will be Linux, and regarding programming
languages, C-Shell will be used for scripts, AWK for the pre-processing of data and
Fortran for the main algorithms.

Fortran was used for computing the relation between the Sun’s angle with the
Earth’s zenith and the VTEC given by the data of a satellite, but a new part of
our algorithm that didn’t have to be considered with the previous ones is how to
traverse the set of GNSS satellites of the whole globe and decide which ones should
compute this relation, that is, efficiently consider which satellites could possibly lead
us to results, instead of checking that for all of them with a brute force algorithm.

We will consider if there’s any alternative that may bring us more benefits than
using Fortran for this part.

Others tools might be used in the process, for example we could use something
like Python to scrap the website of the Swift satellite for the data we want or
download it and process it with C-shell or Bash.

Regarding the GNSS data we are going to be using, this is made available by
the International GNSS Service (IGS). This voluntary federation offers open access
GNSS data that can be used to obtain ionospheric information. [10]

12

Project Management

Progress monitoring

In order to track the progress and comment on the results, a weekly meeting with
the project director is organized, where we set several “Action Items” to be done
during the week prior to our next meeting. Additionally, communication via email
is also a possibility for any problems that might arise during the week.

Validation of the results

Data from the Swift or Fermi missions is going to be used for the validation of our
results. Using past GNSS data, we will develop algorithms that use it to detect
flares and the location of the source.

Swift and Fermi data will have information about the flares, so we will compare
our results to see if we really detected a flare. This will also be done for the scenario
of far-away stars.

Regarding the last phase, the algorithms running in real time, the only way
to validate the results is to wait for any matching data from the Swift and Fermi
databases.

1.2.4 Obstacles and risks of the project

Although we have stated the objectives that we aim to follow in our project, its
development may be hampered by some common problems that appear when devel-
oping software and algorithms, and others that may arise due to the nature of our
problem.

Understanding of the problem

The problem has a considerable physics background that I, as a Computer Science
student, lack the knowledge to completely understand it. Although a basic knowl-
edge in the field will suffice for developing the algorithms, not having a background
in physics might lead to confusion at some point.

Unfeasibility of the solution

The problem that we want to solve is clear: detecting stellar flares from far-away
stars. This has been studied for some cases [17], concluding that we face the pos-
sibility that the proposed solution is not totally feasible due to the nature of the
problem: flares from far-away stars will not have an impact on the ionosphere as
noticeable as the one from the sun, so it may be difficult, or even impossible, for
them to be detected in some cases.

13

Project Management

Interferences with the Sun

With the Sun, only the daylight hemisphere is studied for the detection of flares
using GPS data (it is the only one flares’ effects can reach)

In our case we don’t have a fixed source, but rather aim to find it. Flares could
be having an effect on any part of the ionosphere so it may not be possible to study
their effect on the daylight hemisphere because of the Sun’s (presumably) higher
effect on it.

Because of this factor we might have to focus only on the night hemisphere and
we would be missing on possible flares.

Understanding previous algorithms

It is often difficult to understand code that has not been written by oneself, let alone
understanding complex algorithms without any previous knowledge. This could be
another possible obstacle, as the study of the previously developed algorithms will
play an important role in the development of ours.

Bugs

As we will be writing code it is clearly possible that we face problems with bugs
that may appear in the process.

Computational power

Taking into consideration we may be dealing with large volumes of data, its pro-
cessing may be another challenge for the project, we will have to find efficient ways
to do so and think about which strategies will work best in our algorithms.

14

Project Management

1.3 Contextualization

In this section we aim to give a brief description of the area of interest of the project
and present which actors are going to be involved in its development.

1.3.1 Areas of interest

The problem has a clear background in the field of physics and astronomy. I
wanted to work on a project related to astronomy to see how computer science
could be applied to this field.

Although there’s an important theory part behind, the weight of the project lies
in developing the algorithms.

On the other hand, the study of large sets of data is another area of interest
of the project, and how we can use all the GNSS data efficiently in order to generate
new information.

If successful, it could also be expanded with other interesting fields like AI or
Machine Learning to aid in the detection or classification of these flares, for example.

1.3.2 Stakeholders

Developers

The project is being developed by myself, David Moreno Borràs. Computer Science
student at the Barcelona School Of Informatics (FIB).

I will be writing the documentation and working on the project but as I lack
the knowledge of the more theoretical part of the project, the director, Manuel
Hernández-Pajares, will aid me with these aspects, as this is his area of expertise.

Directors

The director of the project is Manuel Hernández-Pajares, professor from the depart-
ment of Applied Mathematics at the Technical University of Catalonia (UPC).

He has conducted several studies related to the field of this project (ionospheric
sounding and GNSS navigation) and is the creator of the already existing algorithms
used for detecting solar flares, so he can assist me when understanding how they
work and how they can be used to develop the new ones.

15

Project Management

Benefited Actors

The mainly benefited actors would be astronomers because this technique would
allow to use GPS as an astronomical instrument for the measurement of the Sun’s
EUV radiaton.

This would be a ground system with zero cost to detect stellar flares by using
free, publicly available GNSS data.

1.3.3 State of the art

In this section we will discuss the situation of the project regarding previous studies
on the field, and what does it aim to extend upon.

Far-away stars

Detection of flares by far-away stars and Gamma-Ray Bursts, powerful explosions
caused by supernovas (the result of a dying star) are studied by the Swift or Fermi
missions [6], for example. As will be seen later in the sustainability section, our
project, if successful, would be presenting an alternative to these telescopes with
less complex technology.

A first-study of this topic was done in the Master Thesis “First study on the
feasibility of Stellar Flares detection with GPS” [17] written by David Martinez Cid
and also directed by Manuel Hernández-Pajares.

The project concluded by stating that more stellar flares should be studied in
order to determine whether the solar flare detection algorithms are able to detect
stellar flares, which is what we intend to do with new algorithms that don’t rely on
the location of the source.

It is a challenging scenario due to the location of the source, as it will not have
the same impact on Earth as flares from the Sun, but considering more powerful
stars exist, their effects might be able to reach Earth.

Solar Flares

As mentioned before, the project director, Manuel Hernández-Pajares has conducted
several studies on this topic and presented different solutions as can be seen in
“GNSS measurement of EUV photons flux rate during strong and mid solar flares”
[9] where a detailed explanation of the case is presented and “GPS as a solar obser-
vational instrument: Real-time estimation of EUV photons flux rate during strong,
medium, and weak solar flares” [22], in collaboration with the Indian Institute of
Technology.

16

Project Management

In both of these papers the use of GPS measurements is presented as an accurate
Solar observational tool using the GNSS solar flare activity indicator (GSFLAI) al-
gorithm.

The project would be expanding on this topic by presenting a solution that does
not consider the source of the flare, that is, detecting it without knowing the position
of the Sun relative to the Earth. This would be a tool able to determine the position
of the Sun and the event of a solar flare without a dedicated satellite, using only
free, open-source data.

1.4 Planning and scheduling

The aim of this section is to present the tasks and stages of the project and how are
they going to be planned and scheduled so the project meets its objectives within
the given deadlines.

Because we rely on some stages of the project to work before we begin to tackle
others, this planning might be updated as the project progresses, perhaps because
a part took longer to develop than expected or (luckily) less.

1.4.1 Task description

In this section a description of each task is presented in a similar order to that which
will be seen later in the planning section.

1 Introduction to the problem

Study past research papers related to the problem to gain some background on the
project, this includes the following topics:

• The use of GNSS data as a solar flare meter. Some research papers about this
topic were discussed in the State of the Art section, most of them written by
the director, Manuel Hernández-Pajares. [9]

• Solar and stellar bursts and their effect on Earth’s ionosphere. The aforemen-
tioned papers give a brief introduction to the topic, although others can be
found that cover the topic with more depth. [18]

2 GEP

The GEP course is done early in the project to help with the documentation of the
thesis, understanding the scope and context of the project, and its planning. Its
different stages are:

17

Project Management

• Context and Scope of the project

• Project planning

• Budget and sustainability

This also involves a final deliverable that includes the previously listed parts but
taking into consideration the feedback of the professors of the course.

Finally, an oral presentation will be done describing the work done during this
course, which will also be a starting point of the final presentation of the thesis.

3 Feasibility of the detection of flares from far-away stars

Before developing the algorithms to be able to perform this without knowing the
source of the flare, a study should be done with the already existing algorithms.
This is one of the most challenging problems of the project as it is not clear yet if
this is possible.

To do this, we will use open-source data from missions like Swift or Fermi (satel-
lites that are able to detect flares or burst) and see if there is any correlation between
that data and the results given by the algorithms that detect solar flares.

4 Detection of solar flares with no information about the location of the
Sun

This task will be done in parallel to the previous one. The current algorithms are
able to, knowing the position of the Sun, study if any flares have had an effect on
the ionosphere, detectable by the satellites belonging to GNSS.

We aim to do the same, but assuming we don’t have any information about the
position of the Sun relative to the Earth. This is an important task for the project,
because it will be necessary when expanding it to far-away stars, of which we ignore
the location.

5 Detection of stellar flares in real-time

If the previous systems work, instead of studying flares using past GNSS data and
checking that the results match detections by satellites like Swift or Fermi, we
will use the latest available data to detect them in real-time, without knowing the
location of the ionizing source. For this to work the detection of far-away stars using
this system and the detection of solar flares without knowing the location of the Sun
have to work properly.

18

Project Management

6 Writing the report

This task will be done in parallel to the rest. As we perform the other tasks a memory
of the project will be written giving a detailed explanation of all the phases, the
methodology and development of the solutions, problems or obstacles that might
have appeared, and the final results of each of them.

7 Final presentation

The final task, once the report of the project is finished, is to prepare an oral
presentation for the defense of the thesis. This will try to cover all the progress of
the work done during the last months as concisely as possible, presenting the results,
obstacles that may have appeared and solutions presented for the problems.

1.4.2 Time table

Table 1 shows the estimation of the amount of hours that will have to be dedicated
for the completion of each task. The expected amount of dedicated hours to the
project is 18 ECTS x 30h/ECTS = 540 hours, of which 3x30 = 90 hours are dedicated
to the GEP course.

Task Dedication Time (hours)

Introduction 20
GEP 90

Study of flares from far-away stars 120
Detection of solar flares 120
Detection in real-time 100

Writing report 90
Final presentation 4

Total 544

Table 1.1: Dedication time to each of the tasks

Taking into consideration the project will span 14 weeks, a weekly dedication of
34 hours is possible for the project planning to work as scheduled.

1.4.3 Scheduling: Gantt chart

Having started mid-February, the development of the project will span between 4
or 5 months as the oral presentations are scheduled for the first week of July.

The report should be handed in one week prior to the lectures, so for the planning,
our objective is to finish the project a week before: Friday, 21th of June, so that
there is enough time to revise it and make any convenient changes.

19

Project Management

To visually represent the schedule of the planning, a Gantt chart is shown below
in Figure 1. This chart has been generated using the online tool teamgantt.com:

Figure 1.1: Gantt chart with the planning of the project

1.4.4 Action plan

Our idea is to work in the presented order as planned in the the previous sections,
some tasks depend on previous ones to be finished to continue, and others are going
to be done in parallel, like writing the report.

The project was been scheduled as previously presented, but if the dedication
for some of the tasks is more than expected, the schedule should be modified as
the project progresses to adapt to these situations. Another factor that might
have an effect on our scheduling are some problems that might appear during the
development of the project, this may cause delays and that will force us to reschedule
the project planning, some of which are presented below.

As seen in the methodology section, a weekly meeting with the supervisor is
held, so if any delays have appeared during the week, the schedule can be changed
accordingly.

Understanding of the problem

The problem has a considerable physics background that I, as a Computer Science
student, lack the knowledge to completely understand it. Although a basic knowl-
edge in the field will suffice for developing the algorithms, not having a background
in physics might lead to confusion at some point, and will make it more difficult to
understand what does the algorithm have to exactly do.

20

Project Management

Understanding previous algorithms

It is often difficult to understand code that has not been written by oneself, let alone
understanding complex algorithms without any previous knowledge. This could be
another possible obstacle, as the study of the previously developed algorithms will
play an important role in the development of ours.

Bugs

As we will be writing code it is clearly possible that we face problems with bugs
that may appear in the process.

1.4.5 Resources

Several tools that will be studied in detail in the following section, along with the
cost they imply, will be needed for the development of the project. These resources
can be classified in three major groups:

Software resources

Many software tools will be needed for the development of the project, although
all of them will be free and open-source. All the used tools are listed in the next
section, although some of the main ones are Git, which will be used for version
control, everything will be running on Linux and LATEX will be used for the reports.

Hardware resources

In this case only a computer will be needed, we will be relying on data that has
been obtained using far more complex technologies (all the satellites and hardware
involved in GNSS) but a computer and its peripherals will be the only hardware
used during the project.

Human resources

One person will be developing the project and will have three roles: the project
manager (time management and writing the report), software developer (developing
the necessary algorithms) and tester (testing said algorithms).

1.5 Cost estimation

In the following sections, an estimation of the cost is presented. These are going
to be divided in four major sections: hardware, software, human resources and
indirect costs. Because some of the tasks will use the same resources, they have

21

Project Management

been grouped, but those that use different resources will be studied in a different
section.

1.5.1 Software resources

Common resources

Product Units Price Useful life (years) Amortization

Ubuntu 18.04 1 0 e - 0 e

Google Chrome 1 0 e - 0 e

Evince 1 0 e - 0 e

Total 0 e 0 e

Table 1.2: Software costs

Developing the algorithms

Product Units Price Useful life (years) Amortization

Git 1 0 e - 0 e

GitHub 1 0 e - 0 e

Sublime Text 3 1 0 e - 0 e

Python 1 0 e - 0 e

GNSS Data 1 0 e - 0 e

GFortran 1 0 e - 0 e

Total 0 e 0 e

Table 1.3: Software costs

GEP and writing the report

1.5.2 Hardware resources

The following table contains the costs of the hardware that is going to be used for
the project. These resources are common to all phases.

22

Project Management

Product Units Price Useful life (years) Amortization

LibreOffice 1 0 e - 0 e

LaTeX 1 0 e - 0 e

TeamGantt 1 0 e - 0 e

Total 0 e 0 e

Table 1.4: Software costs

Product Units Price Useful life (years) Amortization

Asus X555L 1 750 e 6 60 e

PC devices 1 200 e 6 20 e

Total 950 e 80 e

Table 1.5: Hardware costs

1.5.3 Human resources

The project is going to be developed by one person, which will have to be the project
manager, software developer and tester.

We estimated in the planning section a total dedication time for the project
of 550 hours, so here we present an estimation of the distribution of those hours
between the roles and the cost of each.

Role e/hour Hours Cost

Project manager 45 100 4500

Software developer 40 300 12000

Tester 30 150 4500

Total 550 21000

Table 1.6: Human resources costs

1.5.4 Indirect costs

Indirect costs of elements that will be needed in order to use the previous hardware
are shown in table 6:

We can estimate the energy expenditure during the project assuming the com-
puter consumes an average of 200 watts per hour. If we plan to use it during the
550 hours of the project, we cam estimate a total of 110 kW spent.

23

Project Management

Product Use Price Estimated cost

ADSL 4 months 40 e/month 160 e

Electricity 110 kWh 0.1067 e/kWh 11.7 e

Total 172 e

Table 1.7: Indirect costs

1.5.5 Budget per task

In the following table we can see an estimation of the total cost of the project
distributed among the tasks presented in the planning section, according to the
dedication time of each of these tasks and the total cost of the project:

Task Estimated cost

Introduction to the problem 1106 e

GEP 4424 e

Feasibility of the detection of flares from far-away stars 4424 e

Detection of solar flares with no information about the location of the Sun 4424 e

Detection of stellar flares in real-time 3318 e

Writing the report and final presentation 4424 e

Total 22122 e

Table 1.8: Budget per task

24

Project Management

1.5.6 Total budget

In the following table, the total cost of the project can be seen, estimated using data
seen in the previous tables.

As we can see, there is no software cost because only open-source or free tools
have been used.

Resource Estimated cost

Software 0 e

Hardware 950 e

Human resources 21000 e

Indirect costs 172 e

Total 22122 e

Table 1.9: Total cost of the project

1.5.7 Budget control

As seen in the planning section, some of the tasks may take longer than estimated
because of unexpected difficulties, which would in turn increase the total cost of the
project. So we have to consider the fact that these delays could lead to an increase
in the total cost of the project.

Weekly meetings are held to check that everything is going as scheduled, so if
any problem appears we can try to reschedule the planning of the project and avoid
as much extra costs as possible.

Although unlikely, hardware faults might occur that would require more re-
sources, but the main factor that might influence the budget during the project is
time, which would increase the amount of work hours done by either the project
manager, the software developer or the tester.

1.6 Sustainability

The form presented by EDINSOST has helped me reflect on how, although in some
courses during the degree the relation between Computer Science (or engineering in
general) and sustainability has been studied, as engineers, we don’t usually consider
these factors on our own, such as the environmental or social impact. The economical
impact is something usually considered, specially by project managers, but seldom
is the effect of the technology on the environment taken into consideration.

I have realized how in many of the projects I collaborate, I do not usually stop to
think about the impact they are having, for example, on the environment, and how

25

Project Management

I have no experience in these fields, specially in the economic management part.
Therefore, I hope I can gain some experience by studying these aspects more in
depth and the impact of the project in them.

In this section we will focus on evaluating the impact of our project by studying
its sustainability in three different aspects: environmental, economical and social.

The analysis is going to be based on the application of the following sustainability
matrix which is scored in a [0,10] range and then will study each of the three main
aspects:

PPP Exploitation Risks

Environmental
(2) Design

consumption
(2) Ecological

footprint
(2) Environmental

risks

Economic (4) Resources needed (2) Cost (7) Human resources

Social
(9) High personal

impact
(5) Medium social

impact
(2) Low social risks

Table 1.10: Sustainability matrix

1.6.1 Environmental sustainability

During the project we are going to use the minimum amount of resources possible,
which have been presented in the Cost estimation section. Because what we are
going to use is mainly software, the resource from the project which will have an
environmental impact is going to be the energy spent by the devices running during
the project (the computer).

Furthermore, if the project is successful, it would present an alternative to cur-
rently working satellites that detect Gamma-Ray Bursts (GRB), like the Gamma-ray
Large Area Space Telescope (GLAST) or weather satellites like the Geostationary
Operational Environmental Satellite (GOES).

As seen in its specification manual (https://www.nasa.gov/pdf/221503main GLAST-
041508.pdf) GLAST needs about 1500 watts average over an orbit, which is signifi-
cantly more than the consumption of the computer that we have estimated before:
110 kWh. The telescope, however, is equipped with solar panels that can supply up
to 3122 watts in sunlight.

While our alternative would not obtain results with the precision and information
that these missions aim to achieve, some results would be similar, so we can also

26

Project Management

consider the difference in environmental impact between both.
The larger environmental impact of the GLAST mission, however, lies in the

design, build and launch of the telescope. While information about the cost of the
previous factors is available and will be studied in the next section, there is no
information provided regarding its environmental impact, although we can say that
it likely has a considerably larger one than that of our project, in which only a
computer is used.

In conclusion, the project’s resources are mainly software and the factor with
the biggest environmental impact will be the energy expenditure of the computer,
which is significantly lower than that of the currently existing alternatives.

1.6.2 Economic sustainability

In previous sections we have studied the cost of our project (hardware, software
and human resources). From an economical point of view, our project presents an
alternative to telescopes like GLAST or GOES. Albeit less precise and equipped,
some of its aspects and purposes are shared.

The cost to design, build and launch GLAST, for example, had a total interna-
tional contribution of 690 US dollars. Considering our project relies only on free
or open-source data and software, it would be offering an alternative with a lower
economical impact.

It would be difficult to do this project with a lower cost, considering the only
resource that has an economical impact besides the human work is the hardware
(a computer). It would be difficult to lower the costs of this area considering a
computer is needed for most computer science projects.

1.6.3 Social sustainability

Personally, the project is very relevant to me. I wanted to work on a project to see
how computer science could be applied to a field like astronomy or physics. I think
the project and algorithms we are developing are a good example of the place CS
has in this fields and the role it plays.

It has also helped me gaining experience in terms of information retrieval and
research. Both writing reports like this one, planning projects and researching in-
formation from reputable sources that can be used in our project.

If the project is successful, it could turn into a useful tool for astronomers that
could be used as an astronomical instrument to measure the Sun’s EUV using only
open-source GPS data, rather than a dedicated telescope, which would be a useful,
less expensive alternative.

27

Chapter 2

Background

As the project requires a certain background in physics and astronomy, some of
the relevant topics that are going to be studied are introduced: Global Navigation
Satellite Systems, the Ionosphere, Stellar Flares and Gamma-Ray Bursts.

2.1 Global Navigation Satellite Systems

GNSS and GPS

These two terms may lead to confusion as Global Navigation Satellite Systems
(GNSS) is the generic term for all satellite navigation systems. The Global Posi-
tioning System (GPS), in particular, is the United States’ GNSS system, the world’s
most used GNSS. Other systems, for example, are the European Galileo or Russian
GLONASS [8].

Global Navigation Satellite Systems use satellites to determine the clock error
and the position of a given receiver or device in terms of, for instance, latitude,
longitude and height.

Positioning

In short, GNSS works as follows: out of all the GNSS satellites orbiting Earth,
at least four of them are constantly visible from a specific point and transmitting
information at two or more frequencies. When a device receives a signal from one of
them, the distance to the satellite can be calculated by means of the speed of light
and the time required to reach it. As many variables might affect the speed of light
such as the medium through which it is propagating, this estimation of the distance
is called pseudo-range.

Thus, the location of the receiver can be estimated using a technique which can
be understood through its simplified version: trilateration. Having three spheres

28

Background

around each of the satellites with the range as their radius, the intersection of these
spheres yields the location of the receiver [12].

The International GNSS Service

In 1998 the International GNSS Service (IGS) was created as a collaboration of
several members of the scientific community: Center for Orbit Determination in
Europe (CODE), (European Space Agency) ESA, Jet Propulsion Laboratory (JPL)
and Polytechnic University of Catalonia (UPC). This voluntary federation has made
available open access GNSS data since its creation [2] [3].

Its data is provided by more than 300 GPS receivers around the globe and is
processed by the previous institutions which compute the global distribution of the
Vertical Total Electron Content (TEC) [10].

GNSS is a key component to this project because, as mentioned before, many
variables can affect the speed of light and therefore the time it takes for the trans-
mitter’s signal to be intercepted by the receiver. One of these variables is the
electron content of the layer of the atmosphere where GNSS satellites operate: the
ionosphere.

2.2 Ionosphere

The ionosphere is a layer of the Earth’s atmosphere that lies 75-1000km above the
surface of the planet [23].

High energy from Extreme UltraViolet (EUV) and X-ray radiation can cause its
atoms to be ionized and create a layer of electrons [20]. Due to these free electrons
and ionized molecules, it is capable of affecting radio wave propagation, thus having
an effect on Global Navigation Satellite Systems (GNSS) technology, this phenomena
allows these satellites to be used as a global scanner for the ionosphere. The free
electrons, with a charge-to-mass ratio more than three order of magnitude larger
than the one of positive ions, are much more effective interacting with the crossing
electromagnetic signals. [11].

The main physical quantity used for describing the electron content of the iono-
sphere is the Vertical Total Electron Content (TEC), the VTEC is the total
number of free electrons between two points (r1, r2) along a cylinder of base 1m2.
Slant TEC (STEC), in particular, can be defined as the TEC in which r1 and r2
are a satellite and a receiver’s positions [22].

The unique properties of the ionosphere enable us to use the data provided by
the GNSS technology to study stellar flares, a powerful phenomena that occurs in
many stars across the universe, which can generate a sudden overionization with a
well defined pattern dependent on the cosine of the source-IPP angle [9].

29

Background

Ionospheric Pierce Points

Ionospheric Pierce Points (IPP) are going to be very relevant throughout the devel-
opment of the project. These will be the locations that we are going to use for our
measurements, not those of satellites or receivers. A Ionospheric Pierce Point is the
point where the line between the satellite and a receiver intersect at the ionosphere’s
effective height, where the Vertical Total Electron Content can be estimated. [4]

2.3 Stellar flares

Flares from stars, in particular those that have the Sun as a source (more noticeable
due to its proximity) are sudden flashes of brightness in the surface of stars which
release large amounts of energy across the whole electromagnetic spectrum1. Flares
that have the Sun as a source can increase the electron content of the ionosphere
and have an effect on waves passing through it, affecting satellite communications
and causing a delay in the pseudo-range and an advance in the carrier phase. This
phenomena is the key element of the project, as it enables us to study these events.

Satellites can also be harmed by the effects of these events: the flares heat up
the outer atmosphere, which in turn increases the drag on these satellites reducing
their lifetime in orbit [9].

The previous phenomena applies to flares originating from the Sun, whether a
flare that has a star from outside the Solar System as a source has an effect on the
Earth’s atmosphere (detected using GNSS measurements) or not is one of the topics
that is going to be studied in this project, as the distance will dramatically reduce
their effect on the Earth.

2.4 Gamma-Ray Bursts

Throughout the project, in particular when studying the feasibility of stellar flares
detection, a more specific type of event will be mentioned and studied as well:
Gamma-Ray Bursts (GRBs):

GRBs are highly energetic explosions that occur in distant galaxies, releasing
large amounts of radiation, in particular Gamma rays, hence the name of the event.
These bursts, despite being millions of light years away from the Earth, are so
powerful they might still have an impact on the ionosphere, like the aforementioned
stellar flares.

Despite not being a typical stellar flare, the phenomena we aim to detect, this
event is going to be studied in the following section to test the currently working
algorithms, mainly for two reasons: it has been studied and cataloged by telescopes

1X-rays and Extreme Ultraviolet (EUV) radiation

30

Background

such as the Fermi Observatory and there’s is available information that we can use
for our study, and the large amounts of energy they emit it could mean GRBs are
a more feasible target to detect.

31

Chapter 3

Solar flare detection

Before developing the main solar flare detection algorithm a first study is presented
targeting a powerful solar flare for which we knew the time of the event and therefore,
the location of the Sun.

Although the aim of the main algorithm is detecting the solar flare without taking
into consideration the position of the Sun, this study was done to understand how
the core of the algorithm works: studying the correlation between the cosine of
the solar-zenith angle and the detrended VTEC computed from the double-time
difference of VTEC, hereinafter, the VTEC increase.

This chapter also provides an introduction to the formatting and use of the
Global Navigation Satellite Systems data (GPS in this case) and how the main
parameters necessary for the algorithms are computed.

3.1 Data

3.1.1 GPS Data

As we have seen in previous sections, the International GNSS Service (IGS) has
made available open access GNSS data since its creation. The Crustal Dynamics
Data Information System (CDDIS) is a central data archive for the NASA’s Crustal
Dynamics Project (CDP), dedicated to archiving space geodesy data for research.
This archive has been storing and providing access to the GNSS data generated by
the IGS since 1992.

Data is stored in the CDDIS server (ftp://cddis.nasa.gov/gps/data/hourly/).
The files in this server contain raw GPS data that is then pre-processed to obtain
the ambiguous STEC measurements, line-of-sight geometry and detrended VTEC
in the form of ti files.

However, for this and the following section, only the pre-processed ti files of
past dates were needed, as detecting the flares in real time is a task that will be

32

ftp://cddis.nasa.gov/gps/data/hourly/

Solar flare detection

discussed later in the project, in which this pre-processing will have to be taken into
consideration. The project supervisor, Manuel Hernández-Pajares, provided some
of data sets to use as input for the algorithms, along with information about the
formatting of this files.

3.1.2 Formatting

The ti files contain several rows of pre-processed GPS data. Each row has a Receiver
Id. and a Transmitter Id., therefore, for each row we have the Ionospheric Pierce
Point between the Receiver and Transmitter. Each IPP has several parameters that
are relevant for our computations:

• The GPS time

• The Receiver Id.

• The Transmitter Id.

• The double time difference of Li

• The ionospheric mapping function, the approximate vertical-to-slant total
electron content factor

• The right ascension and declination of the IPP

1 Field number | Example value | Description

2 [...]

3 3 0.008333333333 GPS time/hours (tsecdayobs /3600. d0)

4 4 cand Receiver Id.

5 5 3 Transmitter Id.

6 [...]

7 21 -0.5131586E-02 d2li

8 [...]

9 43 0.1565765332E+01 xmapping_ion

10 44 334.449 xraion

11 45 33.092 xlation

12 [...]

Listing 3.1: Format of the ti file

The files also contain the right ascension and declination of the Sun, which will be
used in the last chapters to study the error of the algorithm’s estimations of the
source’s position.

33

Solar flare detection

3.1.3 The Halloween Solar Storm: X17.2 flare

First, the data set we used was that of the so-called Halloween Storm, a powerful
geomagnetic storm that took place from October to early November in the year
2003. In particular, we will try to replicate the results shown in figure 3.1, shown
in the paper ”GNSS measurement of EUV photons flux rate during strong and mid
solar flares” for a poweful flare that took place in October 28th, 2003 [9].

Figure 3.1: VTEC as a function of the cosine of the solar-zenith angle

As we can see the plot of the flare called X17.2 took place exactly at 2003.301.39777
(year.day.seconds of GPS time). In hours, 39777 seconds of a day is 39777s ∗
1h/3600s = 11.049...h, around 11AM.

The ti files provided contained data from 10.5h to 11.5h (with a sampling rate
of 30 seconds), so that we could see the VTEC distribution throughout the day.

With this data we can compute the two parameters that will yield the plot shown
in figure 3.1: the detrended VTEC value and the cosine of the solar-zenith
angle, i.e. solar-IPP angle.

3.2 Vertical Total Electron Content (VTEC)

Fisrt we wanted to obtain the VTEC distribution throughout the day, to visually
see if any spikes appeared confirming that the moment we were going to study based
on the paper was correct.

For each epoch in our data set (from 10.5 to 11.5 with a sampling rate of 30
seconds) we needed to compute an estimation of the VTEC value.

3.2.1 Computing the VTEC

As we have mentioned before, one of the main paramenters relevant to the computa-
tion is the double time difference of LI, the d2li field in the ti file. The Li is the

34

Solar flare detection

”ionospheric combination of carrier phases” [9], a direct measurement of TEC. Be-
cause this is proportional to the double derivative, with the following operation we
obtain curvature of the VTEC, which is proportional to the detrenteded VTEC,
this will be observed in figure 3.2.

This value can be estimated using the following operation:

d2V =
d2Li

M
= −2 ∗

(LI(t)− (LI(t−dt)+LI(t+dt))
2

)

M
(3.1)

Where M = 1
cosZ

is the ”ionospheric mapping function”, the inverse of the cosine
of the satellite-zenith angle that we have for each IPP. [9]. This is the xmappingion
field in the ti file.

Although the data that will be used throughout the project is going to be the
curvature of the detrended VTEC, it will be referenced simply as VTEC from now
on for readability. This value indicates whether a point is a maximum or a minimum,
so it can work as an indicator of the VTEC.

Implementation

Below is the code used to compute the VTEC value in Fortran that we will use to
replicate the plot from figure 3.1.

1 double precision function estimateVTEC (mapIon , d2Li)

2 implicit none

3 double precision , intent(in) :: mapIon , d2Li

4 double precision :: vtec

5
6 vtec = d2Li/mapIon

7 return

8 end function estimateVTEC

Listing 3.2: Simple Fortran function to compute the VTEC value

3.2.2 Distribution throughout the day

Because the only operation that had to be performed was the previous division, a
simple AWK script was used to filter the two necessary fields from the data file and
print the resulting value as well as its time.

35

Solar flare detection

1 {

2 /a/

3 d2li = $21;

4 mappingFunc = $43;

5 vtec = d2li/mappingFunc;

6 print $3 " " vtec

7 }

Listing 3.3: AWK script to estimate the VTEC

1 #!/bin/bash

2 tiDataFile="../ data/ti .2003.301.10 h30m -11 h30m.gz"

3
4 zcat "$tiDataFile" | gawk -f previewVTECDistribution.awk >

vtecValues

5 gnuplot -e "set terminal png; set output ’vtecDistribution.png ’;

set title ’VTEC Distribution ’; set xlabel ’Time of the day (

hours) ’; set ylabel ’VTEC ’; set grid; plot \"vtecValues\" using

1:2 with point"

Listing 3.4: Bash script to execute the procedures

The bash script executes the AWK process with the data as the input and outputs
n rows with two columns: the time of the day and the calculated VTEC, and
finally plots the results using Gnuplot.

Figure 3.2: VTEC distribution throughout the day for IPPs that have Vill as the
receiver

Visually, a spike can be seen between 11 and 11.2 hours. To see the event more
clearly, though, we can focus on one specific receiver (which will still yield multiple
IPPs, as the receiver works with different satellites). For the particular case of the
Villafranca, Spain station (identified as Vill in the ti files), we obtain the plot from
figure 3.2. At this time of the day around 11:00h the Sun would have a greater effect

36

Solar flare detection

on the IPPs of this station due to its location close to the zenith, so the spike can
be seen more clearly.

As mentioned before, the flare took place at 11.05, so we could proceed using
the studied data range and this epoch in particular.

3.3 Solar-zenith angle

The solar-zenith angle (denoted χ from now onward) plays a major role when study-
ing this event: it is the angle formed by the Sun and the Earth’s zenith and indicates
the effect the flare is having on a particular IPP. It is expected that this variable
presents a correlation with the increase in VTEC with an scaling factor proportional
to the source EUV flux rate drift [9], which is what we aim to observe in this chapter.

Figure 6.1, at the end of the chapter, provides a visual representation of this
variable that along with the results depicts how it can affect the VTEC value.

Right Ascension and Declination are two concepts similar to longitude and lati-
tude, respectively, used to describe the location of objects in the sky, in particular in
a sphere of infinite radius with the Earth as its center called the celestial sphere.

Taking this into account, Right Ascension play the role of longitude, but referred
to the Aries point, expressed in degrees (or more commonly in hours, minutes and
seconds) and Declination, the equivalent of latitude, is expressed in degrees between
the two poles: +90◦ and -90◦, this reference system is used to describe the position
of objects in the sky. [24]

The angle β between two celestial objects is obtained by means of equations 3.2,
3.3 and 3.4, by performing the dot product of the two unit vectors that define the
position of the objects using their right ascension (α) and declination (δ).

unitV ectorObjectA =

cos δg ∗ cosαg

cos δg ∗ sinαg

sin δg

 (3.2)

unitV ectorObjectB =

cos δs ∗ cosαs

cos δs ∗ sinαs

sin δs

 (3.3)

cos β = unitV ectorObjectA · unitV ectorObjectB (3.4)

For this case, the cosine of the solar-zenith angle χ is computed using the IPP’s
Right Ascension and Latitude (equivalent to declination). The previous dot product
can be simplified to:

cosχ = sin δIPP ∗ sin δSun + cos δIPP ∗ cos δSun ∗ cos(αIPP − αSun) (3.5)

37

Solar flare detection

The following FORTRAN code is the function that implements equation 3.5 and
returns cosχ (given both angles in radians):

1 double precision function computeAngle (raIPP , decIPP , raSun ,

decSun)

2 implicit none

3 double precision , intent(in) :: raIPP , decIPP , raSun , decSun

4 double precision :: solarZenithAngle

5
6 solarZenithAngle = sin(decIPP)*sin(decSun) + cos(decIPP)*cos(

decSun)*cos(raIPP - raSun)

7 return

8 end function computeAngle

Listing 3.5: Computation of the solar-zenith a angle’s cosine

3.4 Results

Taking 212.338◦ and −13.060◦ as the corresponding Sun’s right ascension and dec-
lination, respectively, and the measurements of all IPPs at 11.05 hours, figure 3.3
shows the plot of the output of our program.

Figure 3.3: VTEC value as a function of the solar-zenith angle cosine

As we can observe, the resulting plot, similar to the one from figure 3.1, shows
a strong corelation between the cosine of the solar-zenith angle and the VTEC
content, which increases from cosχ = −0.1 to cosχ = 1 (90◦) (the effect of the Sun
on the IPP increases) and it does not seem to be affected from cosχ = −1 (180◦)
to cosχ = −0.1 (when the IPP is in the night hemisphere).

38

Solar flare detection

In conclusion, we can see that there appears to be the expected correlation
between the two variables. This correlation will be studied in more detail in the
following section, where a first approach of the algorithm will be presented to detect
the flare without knowing the location of its source.

39

Chapter 4

Brute Force Approach

In the previous chapter the correlation between the solar-zenith angle’s cosine and
the estimated VTEC value was studied. Here, we aim to provide a first, brute force
approach, of the Blind GNSS Search of Extraterrestrial EUV Sources (BGSEES)
algorithm to estimate the location of a EUV source. This approach is done as a
first approximation to the problem to see more clearly how the algorithm will work,
regardless of its performance.

For this first approach the Sun is used as the source we are trying to find (to
check the corectness of the solution). It considers possible Sun locations (with a
certain degree of precision) and checks the fitness of each to consider which could
be the real location.

4.1 Correlation

As seen in the previous chapter, there exists a correlation between the VTEC value
and the cosine of the solar-zenith angle during solar flares.

The aim of the algorithm is to study the correlation for each of the possible Suns
locations considered and yield a fitness indicator for each of them.

The main idea behind the search is that the higher the correlation, the more
accurate the estimated location should be, compared to the Sun’s real location.

The results will be discussed in the last section of this chapter to see if the
previous expectations are true.

Computation

The correlation between two independent variables is defined as follows:

rxy =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
for i ∈ (0, n) (4.1)

40

Brute Force Approach

Although optimization is not the aim of this section, the previous formula would
require passing the data twice: first to compute the mean of the cosine and VTEC
and second to compute the coefficient itself. The formula can also be expressed as
follows:

rxy =
n
∑
xiyi −

∑
xi

∑
yi√

n
∑
x2i − (

∑
xi)2

√
n
∑
y2i − (

∑
yi)2

for i ∈ (0, n) (4.2)

Which can be implemented with a single pass algorithm, as opposed to the
former. Because of this we decided to initially start with this one.

4.2 Algorithm

The algorithm works as follows: the spike of VTEC value throughout the day is
found by finding the epoch with the maximum mean VTEC of all IPPs for that
epoch1. The data is then filtered by that epoch (only the info of IPPs for that epoch
will be used for the computations) and the algorithm starts considering possible
Suns. Furthermore, because the peak of the flare has a VTEC value of 0.4, a cutoff
filter is performed to with a value of 0.7, so that interferences do not cause incorrect
calculations.

There are 360∗180 = 64800 possible Sun’s. Thus, in order to test the algorithm,
the factor STEP is used which defines the step between the angles of possible Suns.
A step of 1 degree would mean considering all 64800. The smaller the step, the
more Suns will be considered.

For each of these possible Suns, the VTEC value and the cosine of the solar-
zenith angle (cosχ) are computed for every IPP in that epoch. Each of these Suns
yields a data set with the aforementioned variables that can be plotted to obtain
images such as the one studied at the end of the previous section. This two variables
are used for computing the correlation coefficient for every considered Sun.

The following is the pseudocode for the brute force approach of the algorithm.
Which returns the Sun that has yielded the highest correlation coefficient.

1The use of this method for finding the best epoch is discussed later in the chapter using the
results of the algorithm

41

Brute Force Approach

Algorithm 1 Brute Force Approach

1: procedure main
2: epoch← findSpikeInData()
3: filterDataByEpoch(epoch)
4: bestSun← nil
5: for ra = 0; ra <= 360; ra+ = STEP do
6: for dec = −90; dec <= 90; dec+ = STEP do
7: currentSun← computeCorrelationPossibleSun(ra, dec)
8: if currentSun.correlation > bestSun.correlation then
9: bestSun← currentSun

10: return bestSun

4.2.1 Implementation

Iterating over the possible Suns

The main loop of the algorithm considers: for each possible declination, each possible
right ascension (taking into consideration the special case of the poles) and uses said
declination and right ascension to compute the correlation coefficient, saving the one
with the highest value.

1 for (int dec = -90; dec <= 90; dec += step) {

2 if (dec != -90 and dec != 90) {

3 for (int ra = 0; ra <= 360; ra += step) {

4 pearsonCoefficient = computeCorrelation (&ra, &dec);

5 if (pearsonCoefficient > maxCoefficient) {

6 maxCoefficient = pearsonCoefficient;

7 location = "[" + ra + ", " + dec + "]";

8 }

9 }

10 }

11 else {

12 int ra = 0;

13 pearsonCoefficient = computeCorrelation (&ra, &dec);

14 if (pearsonCoefficient > maxCoefficient) {

15 maxCoefficient = pearsonCoefficient;

16 location = "[" + ra + ", " + dec + "]";

17 }

18 }

19 }

Listing 4.1: Main loops

42

Brute Force Approach

Computing the correlation

This is the main code of the Fortran function computeCorrelation(ra, dec) called
for every possible (ra, dec) pair considered in the previous loop. Other auxiliary
functions appear in the computeCorrelation(ra, dec) function such as openFile()
(opens the file for reading) or toRadian() (converts the degrees from the input
to radians, used by Fortran’s trigonometric functions). These functions are not
included for readability.

computeCorrelation(ra, dec) reads every line of the file that contains the infor-
mation of the IPPs filtered by the found epoch and computes both the solar-zenith
angle and the VTEC using the same procedures seen in the previous chapter:

1 double precision function traverseFile (raSunIn , decSunIn)

2 implicit none

3 integer , intent(in) :: raSunIn , decSunIn

4 double precision :: raIPP , decIPP , raSun , decSun , mapIon , d2Li ,

cosX , vtec

5 double precision :: sumx = 0, sumy = 0, sumxy = 0, sumx2 = 0,

sumy2 = 0

6 double precision :: rxyPearson

7 integer :: i = 0

8
9 raSun = raSunIn

10 decSun = decSunIn

11 raSun = toRadian(raSun)

12 decSun = toRadian(decSun)

13 call openFile ()

14 do while (1 == 1)

15 read (1, *, end = 240) raIPP , decIPP , mapIon , d2Li

16 raIPP = toRadian(raIPP)

17 decIPP = toRadian(decIPP)

18 vtec = estimateVTEC(mapIon , d2Li)

19 cosx = computeSolarZenithAngle (raIPP , decIPP , raSun , decSun)

20 if (cosx > CORRELATION_THRESHOLD) then

21 call updateCorrelationParameters (cosx , vtec , sumx , sumy ,

sumxy , sumx2 , sumy2)

22 i = i + 1

23 end if

24 end do

25 240 continue

26 close (1)

27 rxyPearson = computePearsonCoefficient(i, sumx , sumy , sumxy ,

sumx2 , sumy2)

28 return

29 end function traverseFile

Listing 4.2: Correlation computation

As can be seen in the code, the line (IPP) is only considered if cosχ is higher

43

Brute Force Approach

than a ”correlation threshold” (−0.1◦ in this case). This is done because we want to
study only the ”part” of the ionosphere where the Sun is having an effect. This can
be seen in figure 6.1, where we observed that the VTEC value remained the same
from cosχ = −1 (180◦) to cosχ = 1 (0◦).

Once the two variables are computed (vtec and cosx, in the code), the necessary
summations for computing the correlation are updated at each iteration:

•
∑
xi and

∑
yi

•
∑
xiyi

•
∑
x2i and

∑
y2i

The following code is the function called every iteration that updates this sum-
mations:

1 subroutine updateCorrelationParameters (x, y, sumx , sumy , sumxy ,

sumx2 , sumy2)

2 implicit none

3 double precision , intent(in) :: x, y

4 double precision :: sumy , sumy2 , sumxy , sumx2 , sumx

5
6 sumx = sumx + x

7 sumy = sumy + y

8 sumxy = sumxy + x*y

9 sumx2 = sumx2 + x*x

10 sumy2 = sumy2 + y*y

11
12 return

13 end subroutine updateCorrelationParameters

Listing 4.3: Updating the summations

Finally, once all the IPPs have been processed, the previous summations are
used to compute the Pearson Correlation Coefficient using equation 4.2, this is the
value the function returns to the C++ code.

44

Brute Force Approach

1 double precision function computePearsonCoefficient (n, sumx , sumy ,

sumxy , sumx2 , sumy2)

2 implicit none

3 integer , intent(in) :: n

4 double precision , intent(in) :: sumx , sumy , sumxy , sumx2 , sumy2

5 double precision :: rxyPearsonCoefficient

6
7 numerator = n*sumxy - sumx*sumy

8 denominator = sqrt(n*sumx2 -sumx*sumx)*sqrt(n*sumy2 -sumy*sumy)

9
10 rxyPearsonCoefficient = numerator/denominator

11 return

12 end function computePearsonCoefficient

Listing 4.4: Computing the correlation coefficient using the summations

Compiling

The C++ and Fortran compilers allow us to compile both languages and their
libraries together. With this, the main part of the algorithm can be implemented
using C++ which can then call Fortran for the parts that require heavy numerical
computation.

This can be done by compiling the object of the Fortran code using the −c flag,
and then linking it with the C++ code using the −lgfortran flag so that the stan-
dard Fortran libraries are included:

gfortran fortranFunctions.f90 -c -o functions.o
g++ functions.o bruteForce.cc -o bruteForce.x -lgfortran

4.2.2 Mean VTEC as a reliable indicator of the moment of
the flare

The first part of the algorithm was, without going into the actual computations
regarding the position of the IPPs, the possible Sun locations, etc, finding out when
to perform the study, that is, detecting a spike in the VTEC content throughout the
provided data range. In the previous chapter we already knew the specific moment
of the flare: 11.05h (2003.301.39777), and could work based on this information,
but the first step of the algorithm has to determine which moment is going to be
studied.

For each epoch2 we computed the mean VTEC of all IPPs and returned the
epoch which had the highest VTEC mean.

2In our data set the epochs ranged from 10.5 to 11.5, that is, 10:30AM to 11:30AM with a
sampling rate of 1/120 hours or 30 seconds

45

Brute Force Approach

To see if the mean VTEC could be used as a reliable indicator, the algorithm
was tested with all available epochs of the data set, in order to study the effect of
this indicator in the resulting estimation of the source’s location, before studying
the one with the highest coefficient in detail.

To do this we sorted the different epochs available in our data set by their mean
VTEC, inserting them into a priority queue.

The following loop traverses the data and computes the mean VTEC of each
epoch, inserting it in a priority queue:

1 int n = 0;

2 data >> epochIn >> vtecIn >> raIPPIn >> latIPPIn;

3 double totalEpochVTEC = vtecIn;

4 double previousEpoch = epochIn;

5 while (data >> epochIn >> vtecIn >> raIPPIn >> latIPPIn) {

6 totalEpochVTEC += vtecIn;

7 n++;

8 if (previousEpoch != epochIn) {

9 insertCandidate(previousEpoch , totalEpochVTEC/n);

10 previousEpoch = epochIn;

11 totalEpochVTEC = 0;

12 n = 0;

13 }

14 }

Listing 4.5: Finding a VTEC spike

The following table presents the 5 best epochs from best to worst and their
results. Figure 4.1 shows a visual representation of the evolution of the correlation
coefficient and its total error (right ascension error + declination error) as the mean
VTEC of the epoch decreases (using 15 different epochs).

Epoch RA Dec RA Error Dec Error Correlation Coefficient

11.05 213.75 -10.3125 1.412 2.7475 0.949659

11.075 215.625 -12.1875 3.287 0.8725 0.910935

11.0417 210.938 -9.375 1.4005 3.685 0.941128

11.1167 211.875 -19.6875 0.463 6.6275 0.669265

11.0333 225.938 -18.75 13.5995 5.69 0.564307

Table 4.1: Results for different epochs

As we can see, the correlation rapidly decreases from 1 (almost linear) to almost
0. The error, on the other hand, does not experience much change for the first
epochs but finally increases considerably, because despite the correlation coefficient
the estimation can still be done. Past a certain correlation, however, the estimation
is harder to perform and the error spikes.

46

Brute Force Approach

(a) Correlation coefficient (b) Error of the estimated source

Figure 4.1: Correlation and error of the solution as the mean VTEC decreases

4.2.3 Results

Executing the algorithm with a STEP of 10◦, this is the output of the execution:

1 [C++: Finding a spike in the VTEC distribution]

2 -> Spike found: 11.05

3 [AWK: Filtering all data by best epoch: 11.05]

4 [C++ -> Fortran: Finding the Person coefficients for possible Suns]

5 -> Input degree step: 10

6 [631 possible Suns considered]

7 [C++: Results]

8 -> Largest correlation coefficient: 0.926959

9 -> Estimated Sun ’s location: [ra=210, dec=-10]

Listing 4.6: Brute force approach algorithm output

The possible Sun with the highest correlation coefficient (0.9269) has a location
with a right ascension of 210◦ and a declination of -10◦. Considering that for the
epoch the Sun position was 212.338◦ and −13.060◦ as the right ascension and dec-
lination, respectively, we can see that the estimated Sun’s location returned by the
algorithm is close to the real one, using a step of 10◦.

It can be interesting to see how the computation time grows as more precision is
demanded from the algorithm, and if the precision of the results does as well. The
following table shows this relation for some input cases:

47

Brute Force Approach

Step Considered Suns Correlation Estimated location Time

100 5 0.695358 [ra=200, dec=10] 867ms

50 25 0.695358 [ra=200, dec=10] 303ms

25 106 0.866293 [ra=225, dec=-15] 820ms

12 436 0.92287 [ra=216, dec=-6] 956ms

6 1771 0.934663 [ra=216, dec=-12] 1s 385ms

3 7141 0.937349 [ra=213, dec=-12] 7s 169ms

1 64621 0.939114 [ra=214, dec=-11] 1m 9s 564ms

Table 4.2: Results using different STEP values

As we can see this approach provides the expected results, but has a large com-
putational complexity that increases with the precision we demand.

Furthermore, we can see that a problem appears: in the last two cases there is
an increase in the correlation coefficient as expected, but the estimated Sun location
does not improve, it is actually less accurate than the previous one. This could be
caused by other interferences in the VTEC measurement from other origins.

In the next chapter, an optimization is presented for the algorithm to perform
these computations, aiming to reduce its complexity.

48

Chapter 5

Decreasing search range method

In the previous chapter we saw that the BGSEES algorithm for detecting the location
of an EUV source (in this case, the Sun) is possible with a first, brute force approach.
Here, the algorithm is studied in more detail considering a different method aiming
to increase its precision and reduce its computational complexity.

5.1 Decreasing the range of the search

As we saw in the previous chapter, to increase the precision of the algorithm, the
step with which we iterate over the possible angles (right ascension and declination)
is reduced. This causes more possible Suns to be considered. For example, with a
step of one degree, we consider all possible right ascensions [0,360] and declinations
[-90,90]: 360 ∗ 180 = 64800 Suns, minus the 2 ∗ 360− 2 = 718 right ascensions we do
not consider1 because as we have seen right ascensions for declinations of -90 and
90 are the same location.

We want to have the highest precision possible without having to consider all
64800− 718 = 64082 possibilities by progressively reducing the search range.

This first method works as follows: the entire possible range is considered with
a large starting step (e.g 60). Once the best Sun is found within this range, the
precision is increased (the step is decreased) and the search range is reduced. This
way the precision is increased but the number of considered possibilities remains
similar each iteration of the algorithm.

1We do not consider the 360 right ascensions at one degree of resolution of the two poles (-90
and 90), hence 2*360, but we do consider the two poles themselves (with any valid right ascension)

49

Decreasing search range method

5.2 Pseudocode

The following is the pseudocode for the algorithm using this method:

Algorithm 2 Search range decrease

1: procedure main
2: epoch← findSpikeInData()
3: filterDataByEpoch(epoch)
4: bestSun← nil
5: r ← defaultRange()
6: for step = initStep; step >= min; step / = 2 do
7: for ra = r.lowerRa; ra <= r.upperRa; ra+ = step do
8: for dec = r.lowerDec; dec <= r.upperDec; dec+ = step do
9: currentSun← computeCorrelationPossibleSun(ra, dec)

10: if currentSun.correlation > bestSun.correlation then
11: bestSun← currentSun
12: r ← newRange(bestSun, step)

13: return bestSun

5.3 Implementation

This first piece of code is the main loop of the method, which starts with a default
range of ra=[0, 360], dec=[-90, 90] and is reduced every iteration based on the
current best Sun’s estimated location.

Furthermore, because an increase in the precision of the tested location does not
necessarily imply an improvement in the solution, the new candidate is inserted into
a priorityQueue ordered by the coefficient to assure that the method returns the
best one found throughout the entire execution.

1 void TraverseGlobe :: decreasingSTEP () {

2 int rangeSize = 3;

3 int initStep = 60;

4 sourceInfo currentSun;

5 searchRange range = setRange(currentSun , true , initStep ,

rangeSize);

6 for (double step = initialStep; step >= 0.5; step /= 2) {

7 currentSun = considerPossibleSuns(step , range , plotData);

8 bestSuns.push(currentSun);

9 range = setRange(currentSun , false , step , rangeSize);

10 }

11 }

Listing 5.1: Decreasing the range and increasing the precision

50

Decreasing search range method

The setRange function sets a new range based on the estimated location that
depends on the precision used for the values and checks that valid range values are
returned.

1 searchRange setRange(sourceInfo sun , bool defaultR , double step ,

int rangeSize) {

2 searchRange r;

3 if (defaultR) {

4 r.lowerRa = 0;

5 r.upperRa = 360;

6 r.lowerDec = -90;

7 r.upperDec = 90;

8 }

9 else {

10 double rRange = step*rangeSize;

11 double dRange = step*rangeSize;

12 r.lowerRa = sun.ra - rRange >= 0 ? sun.ra - rRange : 0;

13 r.upperRa = sun.ra + rRange <= 360 ? sun.ra + rRange : 360;

14 r.lowerDec = sun.dec - dRange >= -90 ? sun.dec - dRange : -90;

15 r.upperDec = sun.dec + dRange <= 90 ? sun.dec + dRange : 90;

16 }

17 return r;

18 }

Listing 5.2: Setting the new range based on the estimated source location

Finally, the considerPossibleSuns function has the same functionality as the one
from the previous chapter, it iterates over the possible locations, this time, however,
it does so over the given range, rather than just the default one.

The names of the lower and upper bound variables have been changed (uRa
instead of upperRa, for example) for readability.

51

Decreasing search range method

1 sourceInfo considerPossibleSuns(double step , searchRange range) {

2 FortranController fc;

3 double pearsonCoefficient;

4 int i = 0;

5 sourceInfo bestSun;

6 bestSun.coefficient = -23;

7 bestSun.location = "salu2";

8
9 for (double dec = range.lDec; dec <= range.uDec; dec += step) {

10 if (dec != -90 and dec != 90) {

11 for (double ra = range.lRa; ra <= range.uRa; ra += step) {

12 pearsonCoefficient = fc.computeCorrelation (&ra, &dec);

13 if (pearsonCoefficient > bestSun.coefficient) {

14 bestSun.coefficient = pearsonCoefficient;

15 bestSun.ra = ra;

16 bestSun.dec = dec;

17 }

18 }

19 }

20 else {

21 //Do only once

22 double ra = 0;

23 pearsonCoefficient = fc.computeCorrelation (&ra, &dec);

24 if (pearsonCoefficient > bestSun.coefficient) {

25 bestSun.coefficient = pearsonCoefficient;

26 bestSun.ra = ra;

27 bestSun.dec = dec;

28 }

29 }

30 }

31 return bestSun;

32 }

Listing 5.3: Iterating over possible locations within the given range

Finally, the computeCorrelation calls the Fortran code (the same used in the
Brute Force chapter) to compute the correlation

Figure 5.1 is a visual representation of how the algorithm works. The X and Z
axis are the possible right ascensions and declinations (the possible solutions to our
problem) and the Y axis is the correlation coefficient.

As we can see in the plot, as we increase the precision of the search, the range
decreases, this can be seen because each point of the plot is each of the locations
considered by the algorithm: the density of considered solutions increases as the
algorithm gets closer to the local maxima, the correct solution we are looking for.

Another change that could be done to improve this method’s performance would
be to adopt a sort of ”Dynamic Programming” strategy in order to avoid repeated
calculations (the new range will always be inside the previous range). However,
the problem is that because we are dealing with a different precision for the right

52

Decreasing search range method

Figure 5.1: All visited candidates of the solution space

ascension and declination values every loop, the algorithm is not working with the
exact same value.

5.4 Linear fitting: discarding outliers

In the previous chapter we used a simple method to discard outliers for the VTEC
value (using a cutoff value between -0.7 and 0.7). However, another approach to
discard outliers was possible: linear fitting. The aim is to find the line that fits best
the relation between both variables (cosine and VTEC) by means of linear regression
to discard samples that do not fit in it.

We can see that this procedure has been used before in figure 3.1 from the
paper ”GNSS measurement of EUV photons flux rate during strong and mid solar
flares”[9].

Manuel Herández-Pajares, the author, provided the Fortran program that per-
forms this computation. After integrating it with the rest of the code, figure 5.2
shows the result of testing it with the flare used in the previous chapter:

The main problem of this method without it, the correlation could be calculated
in a single pass of the data. Now, on the other hand, the algorithm needs multiple
iterations: first, the solar-zenith angle cosine for each IPP is calculated; then, the
outliers are discarded, and finally, the filtered data is traversed one last time to
compute the correlation.

Here is the new code in order to compute the correlation for each possible loca-
tion:

53

Decreasing search range method

Figure 5.2: All data (red) and fitted samples (blue)

1 double computeCorrelation(double* ra , double* dec) {

2 FileManager fileManager;

3 int sigma = 1;

4 int iterations = 6;

5 computecosinesofcurrentsourcefortran_(ra, dec);

6 fileManager.discardOutliersLinearFitFortran(sigma , iterations);

7 return computecorrelationfortran_(ra , dec);

8 }

Listing 5.4: Discarding outliers and computing the correlation

As we can see, the data is traversed at least 3 times now (more depending on
the number of iterations).

5.5 Results

Executing the algorithm with both methods for discarding outliers using the data
set from the previous chapter we obtain:

1 Estimation error: 1.86776 degrees

2 Execution time: 1.07601 seconds

Listing 5.5: Decreasing range using a cutoff value for outliers

As we can see, the algorithm provides a better estimation than the brute force
approach. Which took more than minute yielding a result with a precision of 1
degree.

Testing the algorithm using the linear fit approach to discard outliers we obtain
the following result:

54

Decreasing search range method

1 Estimation error: 3.57674 degrees

2 Execution time: 37.5578 seconds

Listing 5.6: Decreasing range using linear fit for outliers

For this data set in particular, the solution has a similar error (although the
linear fit version does not improve with respect to the one with a basic filter) and
the execution time is increased considerably. This comparison will be studied in
more detail in the Results chapter, where different data sets will be used.

Seeing the increase in computational complexity of this method when discarding
outliers using linear fitting, we decided to focus on a different method that would
rely only on the data itself, instead of considering the many possible locations of
the source.

55

Chapter 6

Least Squares method

As we have seen in previous chapters the overall process to determine the location of
the source is studying the correlation between the VTEC value and the solar-zenith
angle (or source-zenith angle, speaking in general terms) for a possible location.

That is, for an IPP with a location and an associated VTEC value, given the
location of a possible source, compute the cosine between them, and see that the
closer the cosine is to 1 (or 180◦), the higher the VTEC value.

The idea that we wanted to test with this method was finding the location of
the source by performing the inverse operation: having the VTEC, location of the
IPP and correlation (1, assuming a near-linear correlation), obtaining the source’s
right ascension and declination.

6.1 The system of equations

The source-zenith cosine between the source and the IPP was computed using the
following equations:

unitV ectorIPP =

X ′Y ′
Z ′

 =

cos δg ∗ cosαg

cos δg ∗ sinαg

sin δg

 (6.1)

unitV ectorSource =

XY
Z

 =

cos δs ∗ cosαs

cos δs ∗ sinαs

sin δs

 (6.2)

cosχ = unitV ectorIPP · unitV ectorSource (6.3)

Having the VTEC and source-zenith cosine, we could find the correlation of the
two variables, expecting that the real source would yield a near-linear correlation.

56

Least Squares method

Visually, we can see the relation between VTEC and the computed cosine in
figure 6.1, obtained in chapter 3 when studying the a specific case for the Sun.

Figure 6.1: VTEC as a function of the solar-zenith angle’s cosine

As we have previously seen for this case, there appears to be a linear relation
starting around cosχ = −0.1 between the two studied parameters. Therefore, we
could define this linear relation as a straight line (y = mx + b) by expressing the
estimated VTEC value (∆V) as a function of the source-zenith cosine (6.4).

∆V = a cosχ+ b (6.4)

Because the cosine is computed using the previous equations (6.1, 6.2, 6.3). It
can be expressed as follows, the dot product of both unit vectors:

cosχ = XX ′ + Y Y ′ + ZZ ′ (6.5)

Where X ′, Y ′, Z ′ are the components of the IPP’s unit vector obtained from
equation 6.1, and X, Y , Z are the unknowns of our equation: the components of
the source’s unit vector.

However, finding the value of these unknowns is the challenge of this method.
Taking the cosine as 6.5 we can express the linear function as:

∆V = aXX ′ + aY Y ′ + aZZ ′ + b (6.6)

Because a and b are unknowns as well as X, Y and Z, we can group them as
follows:

∆V = αX ′ + βY ′ + γZ ′ + b (6.7)

57

Least Squares method

Being α = aX, β = aY and γ = aZ. Our aim after solving the previous equation
would be obtaining the values of X, Y and Z. We can see that:√

α2 + β2 + γ2 =
√
a2(X2 + Y 2 + Z2) =

√
a2 = |a| (6.8)

Because X, Y and Z are the components of a unit vector1. The previous allows
us to, once we know the values of α, β and γ, obtain X, Y and Z by doing:

α√
α2 + β2 + γ2

=
α

|a|
=
aX

|a|
= ±X (6.9)

In our data we can find, for each IPP: ∆V , X ′, Y ′, Z ′ (because we have the right
ascension and declination of the point).

For each of these IPPs, we have an equation of the form ∆V = αX ′+βY ′+γZ ′+b
and, therefore, we have an overdetermined system of equations, with more equations
(a variable number, depends on the input data) than unknowns (four: α, β, γ and
b)

Knowing how to obtain X, Y and Z from α, β and γ, we can now focus on
solving the system of equations to obtain the latter unknowns .

Because we have an overdetermined system of equations, the solution can be
approximated using the Least Squares approach.

Least Squares is a method to estimate the solution of an overdetermined system
of equations (more equations than unknowns, as in our case), by minimizing the
sum of the squared residuals. Residuals will be studied in more detail in the lasts
sections of this chapter.

The method estimates the solution of a matrix system of the form y = AX using
the following equation:

X = (ATA)−1ATy (6.10)

Our system can be represented in matrix form as follows:
∆V0
∆V1
.
.
.

∆Vn

 =


X ′0 Y ′0 Z ′0 1
X ′1 Y ′1 Z ′1 1
. . . .
. . . .
. . . .
X ′n Y ′n Z ′n 1



α
β
γ
b

 (6.11)

Where y is the VTEC, A the components of the IPP, and X the solution to the
system, α, β, γ and b.

1
√

(X2 + Y 2 + Z2) = 1

58

Least Squares method

With the Least Squares method we could obtain X, Y and Z using the solution
to the system (α, β, γ). Taking into consideration equation 6.2, the values of the
right ascension and declination angles can be obtained by performing the inverse
trigonometrical operations, that is:

Because we know that Z = sin(δs) we the declination is obtained by simply
computing the arc sinus:

δs = arcsin(Z) (6.12)

But we have two operations that involve the declination, X = cos δs ∗ cosαs and
Y = cos δs ∗ sinαs. Both involve cos δs so we can equate them:

Y

sinαs

=
X

cosαs

(6.13)

αs = atan2(Y,X) (6.14)

The atan2(Y,X) function is a FORTRAN function that computes the tangent
but using two numbers. Instead of relying only on one angle (which would cause
ambiguity regarding the quadrant of the angle) this function uses both angles to
determine the exact value, which suits our situation.

Using these two operations, the algorithm finally yields our solution: the right
ascension and declination estimated from using all the IPPs’ information as an
overdetermined system, with the exception of the aforementioned initial ambiguity.

Furthermore, another possibility would be executing the algorithm multiple iter-
ations. Using the estimated location yielded by each iteration, the algorithm would
compute the cosine of the angle between the estimated solution and the IPP (each
line) and discard it considering a certain cosine threshold: -0.1 in particular, the
cosine in which the linear relation starts (day hemisphere in the case of the Sun) as
we have seen in previous chapters. The results of the algorithm with and without
iterations are discussed in the last section.

The main advantage of this method over the one introduced in the previous
chapter is that it does not need to compute the correlation (which requires passing
the data set once) every time a location is considered. The data set itself (the) file
is only traversed once.

6.2 Pseudocode

The following is the pseudocode of the algorithm for a single iteration of the algo-
rithm:

59

Least Squares method

Algorithm 3 Least Squares method

1: procedure main
2: for i each line in file do
3: y(i)← vtec
4: A(i,0)← cos(dec)*cos(ra)
5: A(i,1)← cos(dec)*sin(ra)
6: A(i,2)← sin(dec)
7: A(i,3)← 1

8: sytemSolution← (ATA)−1ATy
return obtainEstimatedPosition(sytemSolution)

9: procedure obtainEstimatedPosition(systemSolution)
10: a← sytemSolution(0)
11: b← sytemSolution(1)
12: g← sytemSolution(2)
13: mod←

√
a2 + b2 + g2

14: X← a/mod
15: Y← b/mod
16: Z← g/mod
17: dec← asin(Z)
18: ra← atan2(Y,X)

return (ra, dec)

The algorithm first stores the necessary data in the arrays and uses them to
compute the system solution. The estimated location of the source is then obtained
from the system solution by means of the equations presented in the previous section.

6.3 Implementation

For the case of no iterations, the algorithm can simply be implemented by storing
each line of information in an array. On the other hand, when discarding outliers
using the result of the previous iteration, two possible implementations exist:

• Using the same static array for all iterations, but storing 0s in the rows of
unused IPP information

• Using a dynamical, allocatable array, storing only the information that will be
used

When using dynamical arrays in Fortran these have to be allocated/deallocated,
the following is the function that adds a new row to the array storing the information,
implemented for our case with 4 columns and an unknown number of rows.

60

Least Squares method

1 subroutine addRowToArray(array , elem0 , elem1 , elem2 , elem3)

2 implicit none

3 integer :: i, oldSize

4 double precision , intent(in) :: elem0 , elem1 , elem2 , elem3

5 double precision , dimension (:,:), allocatable :: array

6 double precision , dimension (:,:), allocatable :: tmpArray

7
8 if(allocated(array)) then

9 ! Allocate one more row to the tmpArray

10 oldSize = size(array ,1)

11 allocate(tmpArray (0: oldSize , 0:3))

12
13 ! Copy the original content of the array

14 tmpArray (0: oldSize ,0:3) = array (0: oldSize ,0:3)

15
16 ! Append the new row

17 tmpArray(oldSize ,0) = elem0

18 tmpArray(oldSize ,1) = elem1

19 tmpArray(oldSize ,2) = elem2

20 tmpArray(oldSize ,3) = elem3

21
22 ! Free the previous array and store the new data in it

23 deallocate(array)

24 call move_alloc(tmpArray , array)

25 else

26 allocate(array (0:0, 0:3))

27 array (0,0) = elem0

28 array (0,1) = elem1

29 array (0,2) = elem2

30 array (0,3) = elem3

31 end if

32 end subroutine addRowToArray

Listing 6.1: Adding a new row to a two dimensional array

The function first checks if the array is already allocated, in which case the
previous array is copied to a new one with one more row and then the new elements
are stored in the it with the new space. If it has not been allocated yet, a new array
is created but with one single row.

Because of this, each time a new row is added, the processed data up until that
point has to be traversed again (when copying the content of the array to the new
one).

On the other hand, using a static array allows us to store the data in one single
pass (simply storing 0s if we are not going to use the data), consequently, using the
approach with dynamic arrays has more time complexity.

Both methods yield exactly the same results, as the rows that contain 0s are
not used in the matrix computations, because of this, the algorithm works with the
static version, to assure that there is only a single pass of the data.

61

Least Squares method

The following is the main function of the algorithm, which stores the data in
the array reading it from the input file (listing 6.3), computes the solution to the
system (listing 6.3), and then using that solution obtains the estimated location of
the source (listing 6.3).

1 subroutine leastSquares(iteration , solutionRa , solutionDec)

2 implicit none

3 integer , intent(in) :: iteration

4 double precision :: solutionRa , solutionDec

5 double precision , dimension (0: numRows) :: matrixVTEC

6 double precision , dimension (0: numRows , 0:3) :: matrixIPP

7 double precision , dimension (0:3) :: solution

8
9 call storeMatrixData(matrixVTEC , matrixIPP , iteration ,

solutionRa , solutionDec)

10 call matrixComputations(solution , matrixIPP , matrixVTEC)

11 call obtainSourceLocation(solution , solutionRa , solutionDec)

12
13 end subroutine leastSquares

Listing 6.2: Main Least Squares function

62

Least Squares method

The static storeMatrixData function traverses the file and stores the information,
if the method is working with multiple iterations, it also checks using the past
iteration’s estimation whether the IPP point is valid or not. If it is, the components
are computed with function computeComponentsIPP() (listing 6.3), otherwise, 0s
are stored for that row.

1 subroutine storeMatrixData(matrixVTEC , matrixIPP , iteration ,

solRa , solDec)

2 implicit none

3 integer , intent(in) :: iteration

4 double precision , intent(in) :: solRa , solDec

5 double precision , dimension (0: numRows) :: matrixVTEC

6 double precision , dimension (0: numRows , 0:3) :: matrixIPP

7 double precision :: vtec , raIPP , decIPP

8 double precision :: xIPP , yIPP , zIPP

9 integer :: i, validSample

10
11 call openFile(inputFileName)

12
13 do i = 0, numRows

14 read (1, *, end = 240) vtec , raIPP , decIPP

15 validSample = 1

16 if (iteration /= 0) then

17 validSample = checkOutlier(solRa , solDec , raIPP , decIPP)

18 end if

19 if (validSample == 1) then

20 call computeComponentsIPP(raIPP , decIPP , xIPP , yIPP , zIPP)

21 else

22 vtec = 0

23 xIPP = 0

24 yIPP = 0

25 zIPP = 0

26 end if

27 matrixVTEC(i) = vtec

28 matrixIPP(i, 0) = xIPP

29 matrixIPP(i, 1) = yIPP

30 matrixIPP(i, 2) = zIPP

31 matrixIPP(i, 3) = 1

32 end do

33 240 continue

34 close (1)

35 end subroutine storeMatrixData

Listing 6.3: Storing the data from the input file

63

Least Squares method

1 subroutine computeComponentsIPP(ra, dec , xIPP , yIPP , zIPP)

2 implicit none

3 double precision , intent(in) :: ra , dec

4 double precision :: raRad , decRad

5 double precision , intent(out) :: xIPP , yIPP , zIPP

6
7 raRad = toRadian(ra)

8 decRad = toRadian(dec)

9
10 xIPP = cos(decRad)*cos(raRad)

11 yIPP = cos(decRad)*sin(raRad)

12 zIPP = sin(decRad)

13 end subroutine computeComponentsIPP

Listing 6.4: Compute the components of the IPP’s unit vector

After storing all the necessary data in the arrays, the algorithm perform the
calculations of equation 6.10. The function to compute the inverse is the only
matrix operation that is not implemented by Fortran’s standard library, so the
LAPACK (Linear Algebra PACKage) library for numerical linear algebra[19], which
implements it, is used by the algorithm for this computation. This library would
allow us to distribute the inversion of the symmetrical matrix in different threads
using Scalapack.

1 subroutine matrixComputations(solution , A, Y)

2 implicit none

3 double precision , dimension (0:3), intent(out) :: solution

4 double precision , dimension (0: numRows), intent(in) :: Y

5 double precision , dimension (0: numRows , 0:3), intent(in) :: A

6 double precision , dimension (0:3, 0: numRows) :: transposedA

7 double precision , dimension (0:3, 0:3) :: covMat

8
9 transposedA = transpose(A)

10 covMat = inv(matmul(transposedA , A))

11 solution = matmul(matmul(covMat , transposedA), y)

12 end subroutine matrixComputations

Listing 6.5: Function matrixComputations to solve the system

After the solution to the system has been obtained, the angles are obtained as
explained in the previous sections, and using Fortran’s atan2() function:

64

Least Squares method

1 subroutine obtainSourceLocation(solution , solRa , solDec)

2 implicit none

3 double precision , dimension (0:3), intent(in) :: solution

4 double precision , intent(out) :: solutionRa , solutionDec

5 double precision :: a, b, g, mod , radianRa , radianDec

6 double precision :: X, Y, Z

7
8 a = solution (0)

9 b = solution (1)

10 g = solution (2)

11 mod = sqrt(a*a + b*b + g*g)

12 X = a/mod

13 Y = b/mod

14 Z = g/mod

15 radianRa = datan2(Y,X)

16 radianDec = dasin(Z)

17 if (radianRa < 0) then

18 radianRa = radianRa + 2*PI

19 end if

20 solRa = toDegree(radianRa)

21 solDec = toDegree(radianDec)

22 end subroutine obtainSourceLocation

Listing 6.6: Obtaining the source’s location using the system’s solution

The solRa and solDec variables are the ones that are either returned to the C++
controller or used perform another iteration of the algorithm.

6.4 Results

Here the results of the algorithm with both methods for discarding outliers are
studied, using the data set from the previous chapter.

6.4.1 Single iteration

These are the results of the algorithm with a single iteration, that is, solving the
equation system once and using all the available data (with the cutoff value for the
VTEC introduced in the previous chapter):

1 Estimation error: 4.57509 degrees

2 Execution time: 0.00851647 seconds

Listing 6.7: One iteration of the Least Squares method

As we can see, the error has been slightly increased compared to the Decreasing
Range method, but the execution time has been greatly reduced.

65

Least Squares method

6.4.2 Multiple iterations: narrowing the search

As mentioned before, a possibility to improve the result could be iterating using the
estimated value of the algorithm. This is done using the checkOutlier() function
when storing the matrix data (listing 6.3). The function implements the method
to discard IPPs discussed earlier in the chapter: computing the cosine of the angle
between the estimated solution and the IPP and discard it considering a cosine
threshold: -0.1, to work only IPPs from the day hemisphere.

1 integer function checkOutlier(solRa , solDec , raIPP , decIPP)

2 implicit none

3 double precision , intent(in) :: solRa , solDec , raIPP , decIPP

4 double precision :: sourceZenithAngle

5 integer :: validSample , returnValue

6
7 sourceZenithAngle = computeSourceZenithAngle (solRa , solDec ,

raIPP , decIPP)

8 if (sourceZenithAngle >= COSINE_THRESHOLD) then

9 validSample = 1

10 else

11 validSample = 0

12 end if

13 returnValue = validSample

14 return

15 end function checkOutlier

Listing 6.8: Function checkOutlier to discard outliers

The following table shows the results of using 10 iterations with this method:

Iteration Total estimation error (degrees) Time (seconds)

1 4.57509 0.0134369

2 7.98606 0.00955695

3 10.9058 0.00946149

4 5.50332 0.0102698

5 7.25672 0.0149682

6 8.48851 0.0115219

7 8.46854 0.0136026

8 10.206 0.014326

9 6.23355 0.0140396

10 7.83679 0.0156941

Table 6.1: 10 iterations of the Least Squares method

As we can see, multiple iterations do not present an improvement in the estima-

66

Least Squares method

tion. This is caused because in each iteration IPPs are discarded and therefore the
system of equations has less information to compute the estimation.

Because there does not appear to be any improvement, another option could be
to use the estimation error obtained from the covariance matrix as an indicator of
how precise the estimation is. This is obtained by adding the covariances of the
the components of the system’s solution. These covariances are the elements of the
diagonal from the matrix (ATA)−1 from equation 6.10. This option using the LS
estimation error (not the actual error, obtained from comparing our estimation to
the real position of the source) will be tested with more data sets in the results
chapter.

6.4.3 Multiple iterations: residual sum

Another possibility would be to discard IPPs by using the residual sum of the
Least Squares estimation (not the one we obtain comparing our solution to the
real position), rather than by discarding the night hemisphere. This value can be
obtained using the real VTEC values (from the input data) with the ones we would
obtain using the least squares estimated model.

σ2 =

∑m
i=0(yi − f(i))2

m
(6.15)

Which can then be used to discard IPPs based on the following comparison.

|yi − f(i)| <= 3σ (6.16)

In this case the algorithm does not consider the estimation error to keep the best
possible solution, but rather iterates and returns the result of the last iteration.

Iteration Total estimation error (degrees) Time (seconds)

1 4.57509 0.00756712

2 4.71719 0.010272

3 4.7942 0.0120997

4 4.47241 0.0105663

5 4.47009 0.0125787

Table 6.2: 5 iterations of the Least Squares method using the residual sum of squares
to discard outliers

As with the previous iteration method, we are discarding rows and therefore the
Least Squares method reduces its precision, therefore yielding a larger error. How-
ever, the error seems to decrease after iteration 4 and slightly improve the original

67

Least Squares method

solution for this case in particular, but whether it improves the solution or not for
other cases will be studied in the Results chapter.

Although for this specific case the method does not present an improvement in
comparison to the Decreasing Range method, the Least Squares method is signifi-
cantly faster in terms of execution, and will be studied in more detail, where more
data sets will be used to see which yields the best results.

68

Chapter 7

Other methods and optimizations

In the previous chapters two methods to estimate the location of a flare have been
presented.

Here, other possible optimizations are considered that could be used to, in the
future, extend the algorithm and perhaps improve its performance and accuracy.

While some are completely different methods, others are optimizations that can
be built on top of any approach.

7.1 Hill Climbing

Using the decrease range method in chapter 6 we could see the plot of all the
possibilities the algorithm considers:

Figure 7.1: All visited candidates of the solution space

In this solution space, there appears to be a ”hill” (our solution) so an attempt
to solve the problem using a Hill Climbing approach was also considered.

69

Other methods and optimizations

Hill Climbing is an heuristic search algorithm that moves through the solution
space of a problem by finding the best neighbour of the current solution until it can
not progress any more. Seeing the previous figure we thought it could be interesting
to test this method for our problem, so a simple greedy algorithm was implemented
as a first attempt to test if the method could work.

The following is the implementation of such test, which checks its surrounding
neighbours and moves to the best one (the objective function is the correlation)
until the solution can not be improved any further.

1 sourceInfo current;

2 current.ra = 160;

3 current.dec = -20;

4 int i = 0;

5 // Loop with limit or until no progress can’t be made

6 while (++i < 100) {

7 vector <sourceInfo > candidates = getNeighbourList(current);

8 sourceInfo newCandidate = getBestCandidate(candidates);

9 if (newCandidate < current) break;

10 current = newCandidate;

11 }

Listing 7.1: Hill Climbing

The following figure shows the results of the execution for two different starting
states. For both of them, the algorithm ran until no more improvements to the
solution could be performed. The plots contain both the possibilities considered by
the decrease range method (in purple, the same plot as 7.1), and the path taken by
the greedy algorithm (in green).

(a) Start: ra=100◦, dec=-60◦ (b) Start: ra=160◦, dec=-20◦

Figure 7.2: Paths taken by the Hill Climbing algorithm

Visually, we can see that the number of considered possibilities is inferior and
the top is reached for case (b), but a problem appears: a local maxima.

70

Other methods and optimizations

If we take a starting right ascension of 160◦ and a declination of -20◦, the algo-
rithm takes a path that gets to the top of our solution, yielding similar results to
the previous, decrease range method.

However, with a starting right ascension of 100◦ and a declination of -60◦, the
algorithm finds a local maxima on its way and cannot progress to the real best
solution.

As a result, the Hill Climbing approach is not reliable for all cases, considering
that local maxima may exist for our type of problem, leading to incorrect estimations
in some cases.

A possible solution to the problem of local maxima would be using the Simulated
Annealing algorithm (the main difference is the use of probability to accept a solution
as better than the current one, to be able to explore other areas of the solution space)
so that other parts of the solution space could be explored, finding other paths that
might lead to our desired solution, instead of only focusing on one path that could
get stuck in a local maxima.

Although it might yield better results, Simulated An approximates the optimal
solution, but does not guarantee finding the global maxima.

7.2 OpenMP

OpenMP (Open Multi-Processing) is an specification for compiler directives and
library routines available for C, C++ and Fortran used for parallel programming.

Using OpenMP would not be an entirely different method, but rather an op-
timization that could be used with all the presented methods to try to parallelize
some regions of the code. It would be feasible for our case considering it is available
for both C++ and Fortran, the main languages used for the algorithms.

An example of how multi-processing could be used for the algorithm would be
parallelizating the computation of the correlation in the decrease range method:
each thread could read a part of the input and compute the necessary variables
used to obtain the final value of the correlation. Because these variables are sums,
each thread could handle a part of the input and finally we could compute the total
sum using OpenMP’s reduction clause (which sums the values from each thread at
the end of the partial loop).

These two possibilities (using OpenMP and Simmulated Annealing) could be
implemented in the future if more tests were done with the algorithm, but for now
we decided to focus on the methods from previous chapters.

71

Chapter 8

Results: solar flares

In this chapter different data sets will be studied using the two presented methods
for the BGSEES algorithm: the Least Squares and Decrease Range methods.

The aim of the chapter is to test them against each other and using different
parameters to see which method yields the best results.

The algorithm is tested using data from Solar flares, for these, the ti files of
days when a flare had taken place were used to compare the results. The data was
filtered around the time of the flare (30 minutes before and after, if there was an
exact moment in time).

Below is the list of times (year.day.seconds) of the different flares we studied.
The seconds are either an exact moment in time or a range used in the plots of the
papers the flares are listed in.

These are the flares listed in the paper ”GNSS measurement of EUV photons
flux rate during strong and mid solar flares”[9]

• 2003.301.39777

• 2003.308.71000-71100

• 2005.020.24200-24400

• 2011.210.44134

And those listed in ”GPS as a solar observational instrument: Real-time esti-
mation of EUV photons flux rate during strong, medium, and weak solar flares”[22]

• 2001.347.51800-52200

• 2002.196.72240

• 2005.258.30990

• 2012.066.4400-4700

72

Results: solar flares

• 2012.130.50600-51000

• 2012.297.11600-12000

To perform this study, the best epoch within the given range is found using the
mean VTEC, as shown in chapter 5. The data is then filtered using this epoch and
the algorithm is executed using the necessary parameters, outputing the execution
time and the absolute error of the estimation, obtained by computing the angle
between correct Sun position1 and the estimated location.

1 #!/bin/bash

2 strings =(

3 ’2003.301 ,36000 ,41400 ’

4 ’2011.210 ,44134 ’

5 [.. All the filenames ..]

6 ’2012.297 ,11600 ,12000 ’

7)

8 tiDataFolder="/home/mbdavid2/Documents/dataTi/"

9 for i in "${strings[@]}"; do

10 dataInfo="$i"

11
12 # Split the information

13 arrayInfo =(${dataInfo //,/ })

14
15 # Use the range if specified , compute it otherwise

16 if [${#arrayInfo[@]} = 2]; then

17 let lowerLimit="${arrayInfo [1]}" -1800

18 let upperLimit="${arrayInfo [1]}"+1800

19 else

20 let lowerLimit="${arrayInfo [1]}"

21 let upperLimit="${arrayInfo [2]}"

22 fi

23
24 # Name the file according to the parameters

25 tiDataFile="ti.""${arrayInfo [0]}"

26 outputFileName="$tiDataFile"".""$lowerLimit""-""$upperLimit"

27
28 # Filter and compress

29 zcat "$tiDataFolder""originals/""$tiDataFile"

30 | gawk -v lower="$lowerLimit" -v upper="$upperLimit"

31 ’{/a/; if ($3 >= lower /3600 && $3 <= upper /3600) {print $0;}}’

32 > "$tiDataFolder""$outputFileName"

33 gzip -f "$tiDataFolder""$outputFileName" # -f to force overwrite

34 done

Listing 8.1: Filtering the ti file

1The correct Sun position at that moment is obtained from the Starlink astronomical software
developped by the Rutherford Appleton Laboratory, included in two of the many fields the ti files
contain

73

Results: solar flares

The ti files that contain data for the entire day are filtered using the previous
bash script, which has a list with the information of each file to be filtered: the name
of the original file and the upper and lower limits of time (or a specific moment used
to compute the limits). It then filters each file using a simple AWK one-line script
that checks the field with the time.

The study is divided in three categories, based on the method used to discard
outliers from the input data:

• Using the data from all IPPs without filtering out any outliers

• Using a cutoff value for all the VTEC data that will be used for the
computations of the algorithm

• Using linear fit for the Decreasing Range method to discard outliers and
multiple iterations for the Least Squares method to try to improve the
solution, both presented in their respective chapters.

• Using data from multiple epochs rather than just one.

74

Results: solar flares

8.1 Using all available data

For this first test, all the data from the ti file is used: in the case of the Decreasing
Range (DR) method, all the VTEC values that could be outliers are used to compute
the correlation, and in the case of the Least Squares (LS) method, all are used for
the equations of the system.

Data set Error (o) Time (s)

2001.347 113.813 1.03879

2002.196 83.5147 0.26934

2003.301 24.6405 1.07813

2003.308 128.59 0.971644

2005.020 20.1031 0.916863

2005.258 91.3298 0.498707

2011.210 90.5716 1.46812

2012.066 133.236 2.30571

2012.130 162.888 2.49292

2012.297 78.487 0.789705

Total 927.174 11.8299

Data set Error (o) Time (s)

2001.347 106.064 0.0175844

2002.196 66.2043 0.0158694

2003.301 42.2689 0.0154119

2003.308 55.4949 0.326298

2005.020 124.218 0.14858

2005.258 111.073 0.0264138

2011.210 98.776 0.0558694

2012.066 64.186 0.0143492

2012.130 73.1871 0.0321778

2012.297 47.0189 0.00680915

Total 788.491 0.659363

Table 8.1: Estimation error and execution time for different data sets using the DR
(left) and LS (right) methods without any filter

The main problem of this method is that outliers can cause the computation of
the mean to be unstable, which causes the algorithm to use incorrect epochs.

Furthermore, the outliers can cause numerical instability in some of the meth-
ods’ computations, if one has a large value, for example, the computation of the
correlation relies on the sum of the square of the VTEC value, so the total can lead
to incorrect results because of the rapid increase of this variable.

Additionally, the LS method is significantly faster: all data sets together add up
to a total execution time of less than one second, whilst the DR method needs that
time or even more for almost each of the data sets.

While in all previous sections a direct VTEC filter has been used, using all data
was tested too to compare the results.

75

Results: solar flares

8.2 Direct VTEC filter

Although this is a very simple approach to discard outliers, we decided to test it
because the value of the Delta VTEC does not usually surpass values such as 0.7,
only some IPPs might present values like this, due to other ionospheric variability
sources in the satellite data. The flare from the day 301 of 2003, for example, studied
in previous chapters, is one of the most powerful flares ever recorded, and the peak
value of the Delta VTEC is 0.4.

These are the results of the execution using a cutoff value of 0.7. This value was
selected as it is the one that yielded the best results in a range of 0.3 to 1:

Data set Error (o) Time (s)

2001.347 3.53947 1.03243

2002.196 27.6877 0.287287

2003.301 3.93239 1.36538

2003.308 131.366 0.891328

2005.020 64.8737 0.551884

2005.258 48.7806 1.00214

2011.210 126.204 1.23266

2012.066 75.1081 1.85402

2012.130 56.7937 2.42187

2012.297 1.46042 2.86145

Total 539.746 13.5005

Data set Error (o) Time (s)

2001.347 3.41832 0.0114944

2002.196 46.578 0.00492704

2003.301 4.57509 0.00724225

2003.308 141.865 0.378145

2005.020 38.3263 0.129509

2005.258 1.88011 0.0103007

2011.210 38.5213 0.0603164

2012.066 70.1063 0.0251154

2012.130 9.26238 0.0518934

2012.297 3.00704 0.0392889

Total 357.54 0.718233

Table 8.2: Estimation error and execution time for different data sets using the DR
(left) and LS (right) methods with a cutoff filter

As we can see, there has been a significant improvement for both methods in
some of the flares with low error values (although some still present a high error),
and because this filter is applied when performing the selection by time of the data,
it does not have an impact on the complexity of the execution.

Because the direct filter yields significantly better results for both cases, the next
sections use it for filtering the first traversal of the data (when the necessary data
is obtained from the ti file), before performing an additional filter to attempt to
discard outliers.

76

Results: solar flares

8.3 Decreasing range: linear fit

This approach, introduced in chapter 5, finds the straight line that fits the data
set and discards outliers based on a sigma parameter. This filter can be performed
several times (the number of iterations). The results of the decreasing range method
using a sigma of 3 and 4 iterations (the best combination of those values in a range
from 1 to 10) is shown below:

Data set Error (o) Time (s)

2001.347.gz 3.66657 45.4151

2002.196.gz 30.9237 42.6182

2003.301.gz 3.57674 51.7222

2003.308.gz 79.3679 43.6955

2005.020.gz 68.911 37.3023

2005.258.gz 22.6375 50.5795

2011.210.gz 19.7344 55.8291

2012.066.gz 84.3076 31.9302

2012.130.gz 21.896 42.326

2012.297.gz 0.679492 53.7369

Total 335.701 455.155

Table 8.3: Results for different data sets using linear fit with the DR method

While this approach improves upon the solution of the Least Squares method
(from 357.54 to 335.701), it requires a significantly higher execution time: each
execution takes almost a minute, which is more than the total execution time for
all data sets using the same method in the previous section.

77

Results: solar flares

8.4 Least Squares: Iterations

8.4.1 Discarding by source position

In chapter 6 iterations did not provide better results for a specific case, but we
decided to test it using all data sets in case there was any overall improvement.
These are the results of executing the algorithm with 10 iterations, saving the result
of the best iteration. The best iteration is that which has the least estimation error,
given by the covariance matrix (as seen in 6.4.2):

Data set Error (o) Time (s)

2001.347 3.41832 0.0194832

2002.196 46.578 0.00818968

2003.301 4.57509 0.0171783

2003.308 141.865 0.366494

2005.020 38.3263 0.141508

2005.258 1.88011 0.0177967

2011.210 38.5213 0.0704044

2012.066 70.1063 0.049831

2012.130 9.26238 0.0711422

2012.297 3.00704 0.0592826

Total 357.54 0.82131

(a) Results for different data sets
(b) Comparison of the real error (purple) and
the estimated Least Squares error (green)

Figure 8.1: Results of LS method with 10 iterations based on the estimated LS error

As we can see, the results in terms of estimation error are exactly the same
as the ones seen in table 8.2 with a slight increase in execution time due to the
number of iterations. Because there is no improvement with consecutive iterations,
the algorithm just keeps the best result from the first one, hence the same results.

Despite the fact that using this approach does not improve the results, it can be
interesting to see how the estimated LS error evolves compared to the real error for
all the studied data sets, figure 8.1b shows a comparison for all the tested data sets.

As we have seen in previous sections, some of the studied flares are hard to
detect for both methods, due to their intensity. We can observe that both functions
have similar spikes: if the solution has a large error, it is because the Least Squares
method could not provide a good solution with the available data.

78

Results: solar flares

8.4.2 Discarding the measurements with high residuals

In the Least Squares chapter a slight improvement could be observed when dis-
carding outliers based on the post-fit residuals Root Mean Squared (RMS) of each
iteration (when the residual absolute value is higher than 3*RMS), but only for a
specific flare. These are the results of the total error and total execution time for
all 10 data sets using up to 30 iterations.

Iterations Error (o) Time (s)

2 375.793 0.741631

3 458.501 0.752343

4 454.244 0.736867

5 422.8 0.744048

6 447.083 0.767054

7 445.304 0.813639

8 457.769 0.80455

9 401.549 0.87425

10 385.327 0.824476

11 370.055 0.838879

Iterations Error (o) Time (s)

12 387.599 0.893248

13 371.906 0.893959

14 376.933 0.910624

15 365.973 0.934418

...

22 376.933 0.939168

23 365.973 0.915974

...

29 376.933 0.95647

30 365.973 1.16539

Table 8.4: Total estimation error and total execution time for different data sets
using LS method with iterations

As we can see, the total error increases significantly once the algorithm starts
iterating but the results slowly improve (and the execution time increases) until
iterations 14 and 15, where the algorithm periodically yields the same results every
two iterations. Still, no iteration presents any improvement in comparison to the
first one: 357.54 degrees, so using a single iteration appears to be the best option
for the Least Squares method.

79

Results: solar flares

8.5 Using multiple epochs

Although this change did not come up when testing the data sets from the Sun but
those from far-away stars, using multiple epochs resulted in better estimations with
the Sun as well so it is included in this chapter.

As we have seen when reducing the number of samples by discarding oultiers
with the Least Square method, the results did not improve due to less equations
being used for the system. Because of this, we decided to test the algorithm using
data from more than one epoch, but with similar mean DTEC, and then similar
expected ionospheric footprint, that is, when filtering by the time of the best found
epoch, also doing so by the time of the second best one (or third), increasing the
number of samples used by the algorithm. These are the results of using the two
best epochs rather than just the best one:

Data set Error (o) Time (s)

2001.347 6.47413 2.14455

2002.196 23.1275 0.59226

2003.301 1.86704 2.0248

2003.308 94.6148 1.19993

2005.020 72.4195 1.18676

2005.258 44.2516 1.92844

2011.210 11.4821 2.54239

2012.066 89.4625 3.97582

2012.130 20.645 4.37908

2012.297 4.82785 4.78413

Total 369.172 24.7582

Data set Error (o) Time (s)

2001.347 4.49127 0.161254

2002.196 8.30599 0.00555821

2003.301 4.25894 0.00930464

2003.308 129.135 0.363268

2005.020 40.0696 0.13032

2005.258 12.3223 0.011427

2011.210 6.11407 0.0623802

2012.066 43.7512 0.0282298

2012.130 7.72546 0.0567187

2012.297 3.8804 0.0432351

Total 260.055 0.871695

Table 8.5: Estimation error and execution time for different data sets using the DR
(left) and LS (right) methods with a cutoff filter and using data from two epochs

Although using linear fit to discard outliers with the DR method seemed to
improve the results in previous sections, using it with multiple epochs does not
present any improvement (the total error of the DR with linear fit for two epochs
is 400.146). Regarding the LS method, using multiple iterations with two epochs
reduces the error, but not iterating at all is again the combination that yields the
lowest error values, a total of 260.055 degrees.

Furthermore, using 3 epochs instead of 2 resulted in a total error of 390.954 for
the DR method and 294.689 for the LS method, with no improvement beyond 3
epochs. This change was significant for some tests presented in the next chapter.

80

Results: solar flares

8.6 Discussion

In this chapter we have seen that working with the entire data set of IPPs does not
yield good results, there is too much noise and the results differ considerably from
the real position of the Sun. Considering that this is a new method to detect flares,
however, this could have been the case in general (the detection could not have been
possible, or at least not with enough precision), but when using a direct filter for
the VTEC values we have seen that some of the data sets yield results with errors
as small as 4 degrees.

It can be interesting to see, however, how some data sets still have a high error,
due to the nature of the flare (perhaps it was not sufficiently strong to have an
impact on the ionosphere), figure 8.2a compares the Least Squares and Decreasing
Range methods’ error of the direct filter approach.

(a) Estimation error (degrees) (b) Execution time (seconds)

(c) Mean VTEC as a function of the error (d) Error as a function of mean VTEC

Figure 8.2: Comparison of the estimation error and execution time for the Least
Squares and Decreasing Range methods

81

Results: solar flares

Furthermore, the correlation between the intensity of the flare and the error of
the estimation can be seen in figure 8.2c if we plot the mean VTEC of the best epoch
that the algorithm uses (representative of the strength of the flare) as a function of
the estimation error. Or the inverse (figure 8.2d). These two plots are representative
of how the estimation error increases as the power of the flare decrease.

Regarding the performance of the algorithm, figure 8.2b compares the execution
time of both the LS (green) and DR (purple) methods. The DR method takes
more time for all data sets and there would be an even greater difference would we
compare the method using linear fit.

In conclusion, the Decreasing Range method (using linear fit to discard outliers)
and the Least Squares method (using a direct filter) provide good results for some
of the data sets with powerful flares, therefore, these two methods can be used.
However, the combination that yields the best results is the Least Squares method
using a direct filter and data from the two best epochs rather than just one.

Therefore, this will be the main method used to study stellar flares in the next
chapter, although the other presented options will be taken into consideration as
well.

82

Chapter 9

Stellar flares

9.1 Study on the feasibility of stellar flare detec-

tion

Before starting to adapt the algorithm for detecting solar flares to this scenario, a
study was conducted parallel to its development, to see if the energy from flares
originating in far-away stars could be detected using the already existing method,
namely the GNSS Solar Flare Activity Indicator (GSFLAI) algorithm [9].

To study if this was feasible, the existing algorithm was executed with certain
candidates of flares and Gamma Ray Bursts (GRBs) to see if they could be detected.

The project supervisor, Manuel Hernández-Pajares, who as mentioned before
has previously performed several studies on the subject, performed these tests with
the GSFLAI algorithm. The algorithm takes into consideration the location of the
source (the Sun) to see if there is a relation between an increase in the VTEC of
the ionosphere and the solar-zenith angle to determine if this increase is caused by
a solar flare [9]. The aim was changing the location of the source (the Sun) to that
of the star being studied to see if had any effect on the ionosphere.

However, because of its large execution time, the objective was to:

• Find a database for possible candidates, several online archives with informa-
tion about previously recorded Gamma Ray Bursts were considered.

• Select an appropriate source of this pool of candidates by writing a quick script
that yielded an ordered list of the best candidates based on certain factors,
instead of selecting a random source.

9.1.1 Sources of data and possible candidates

The three main databases we considered for the study were:

83

Stellar flares

• The GRB collection website of Dr. Jochen Greiner, scientist at the Max-
Planck-Institute for extraterrestrial Physics (MPE) [16], which offers a collec-
tion of detected GRBs by different telescopes and observatories.

• The Magnetar Outburst Online Catalog (MOOC), developed by the Institute
of Space Sciences (CSIC-IEEC, Barcelona) [14]. We also had the pleasure to
meet one of the leaders of this project, Dr. Nanda Rea, and discuss this with
her.

• The Neil Gehrels Swift Observatory website and archive by the National Aero-
nautics and Space Administration (NASA), Goddard Space Flight Center [7]
which contains an archive of detected GRBs by the Swift observatory and is
constantly updated.

Because of the layout of the website and how the data could be accessed, the
option with which we started was the Swift Database, as the data could be visualized
in an HTML table and was easily accessible.

9.1.2 The Neil Gehrels Swift Observatory and its data

The Swift Observatory is a NASA mission with international participation, designed
to observe GRBs and their afterglows to study topics such as the origins of GRBs
or what they can reveal about the early stages of the universe [21]. The observatory
is equipped with three main instruments that work with each other to study GRBs
[5] [7]:

• The Burst Alert Telescope (BAT), tasked with detecting the GRBs and
computing their positions. This triggers the spacecraft to point the other
telescopes to the burst so it can be studied in more detail.

• The X-ray Telescope (XRT), used for studying the X-ray radiation and
taking images of the bursts which in turn help increase the accuracy of the
location estimation.

• The UV/Optical Telescope (UVOT), which serves a similar purpose to
the XRT, but studies the ultraviolet band of the spectrum.

For each detected GRB, the data obtained by the different telescopes is given.
The parameters that are relevant to our study and determine the fitness of each of
the candidates are:

• The name of the burst, given by the date it was detected. For example, the
GRB named 190220A was detected the 20th of February of 2019.

84

Stellar flares

• The Universal Time (UT) of the detection, that is, hh:mm:ss of the day
given by the name.

• The fluence detected by the BAT component, in units of keV.

• The UVOT magnitude, measured by the UV Telescope.

• The location that triggered the detection, given as Right Ascension (Ra)
and Declination (Dec).

9.1.3 Objective function

Our main goal in this section was to obtain a list of GRB candidates ordered from
more to less probable to be detected by the algorithm based on their fitness. To
obtain this score we had to define an objective function, taking into consideration
two factors:

• The strength of the burst, given by the UVOT magnitude. If this value was
not available (as it was the case with many of the candidates) the BAT fluence
was considered as its strength. This values were already given by the archive
and no additional computations were required.

• The angle between the burst and the Sun, this was an important factor
because bursts having an effect on the night hemisphere should be more no-
ticeable than those hitting the day one, where the Sun has a bigger influence.

The final score is computed by adding the previous factors. While the angle
ranged from 0 to 180, the strength had smaller values, giving more weight to the
angle in the final score.

Computing the angle

As mentioned before, the Swift archive gives us the Right Ascension (Ra) and Decli-
nation (Dec) where the source is thought to be located. The location of the Sun, on
the other hand, is unknown. But we do know the time when the burst was detected.

The supervisor, Manuel Hernández-Pajares, provided me with an algorithm
which takes date (year, month, day and UT) and a planet of the Solar System
(or the Sun, our case) as the input and returns its location in the celestial sphere,
that is, its Ra and Dec.

This algorithm belongs to the Starlink Project (Rutherford Appleton Labo-
ratory), which provided open-source software like the one at hand to astronomical
institutions. Although it was shut down in 2005, the code is still available and we
could use it for our study [1]. Knowing the location of the GRB and that of the Sun:
the cosine of the angle between both can be computed and used as a parameter for
the objective function.

85

Stellar flares

9.1.4 Obtaining the data

Regarding the scrapping of the website to parse the data and obtain this ordered
list, Python was chosen because the problem required a quick implementation,
and Python’s libraries offered a great tool to develop a simple solution as quick as
possible.

In the script, the website with the table of bursts (see figure x) is scrapped using
Python’s BeautifulSoup library, which has an HTML and XML parser that allows
us to easily select and obtain data from a given website.

Insertion sort was used so we could insert every considered GRB into a list of
sorted candidates as we were traversing the table.

The best 5 candidates of the resulting sorted table, are shown here:

Name Ra Dec UVOT BAT Date Angle Score

190202A 166.506 9.393 V=17.94 60 2019.02.02 148.79 166.69

190129B 117.285 1.257 n/a n/a 2019.01.29 158.11 158.11

181228A 49.831 13.212 V¿19.1 100 2018.12.28 134.41 153.41

181010A 52.574 -23.023 V¿19.4 6.9 2018.10.10 133.22 152.22

190219A 189.686 76.606 n/a 39 2019.02.19 111.74 150.74

Table 9.1: Best results from the Swift GRB database

Sadly, none of the GRBs provided good results, an example of the result of the
execution of the GSFLAI algorithm is shown in figure 9.1

Figure 9.1: Result of the GSFLAI algorithm for the 181228A GRB

As we can see, although a small peak can be seen at the moment of the flare,
there are many other (and more significant) spikes throughout the plot, which does
not indicate a clear detection of the flare.

86

Stellar flares

9.2 Testing the BGSEES algorithm

As we have seen detecting stellar flares is a really challenging task. Even when
knowing the location of the star and making the algorithm focus on that direction
no clear results have been obtained. The aim of the project was to provide algorithms
to detect Solar flares without knowing the location of the Sun so that it could be
expanded to try this method without focusing on the direction of the star, but rather
studying the available data and trying to find and validate the source and the time
simultaneously.

For this chapter two stellar flares were studied to test the algorithm and whether
it could be possible to detect them using this method.

9.2.1 Discarding the day Ionosphere

One of the first things that needed to be implemented in order to study stellar flares
was a way to avoid the interferences of the Sun. Because the Sun would have a
greater effect on the Earth’s ionosphere, the day hemisphere is discarded.

This leaves the algorithm with only half the data, which could cause potential
flares to be missed if they were having an effect on the day hemisphere.

This is done by simply taking the IPP’s and Sun’s right ascension and declination
from the ti file and computing the cosine of their angle as has been done in previous
chapters, using equations 3.2, 3.3 and 3.4.

If we want to discard the daylight Ionosphere, then the IPP has to be ignored
if the cosine of the angle with respect to the Sun, which has a range of [-1,1], is
larger than -0.2 (the point at which a linear correlation between the variables can
be observed, as seen in chapter 3 (figure 3.3).

The following is the AWK script that performs this check for every IPP if we
indicate the algorithm that it has to discard the hemisphere:

1 function checkValidIPP(raSun , decSun , raIPP , decIPP) {

2 return unitVectorsCosine(raSun , decSun , raIPP , decIPP) <= -0.2

3 }

4
5 function unitVectorsCosine(raSource , decSource , raIPP , decIPP) {

6 return (sin(decIPP)*sin(decSource) + cos(decIPP)*cos(decSource)

*cos(raIPP - raSource));

7 }

Listing 9.1: Discarding the day hemisphere

The function returns true (the IPP is valid) if it is in the night hemisphere, that
is, the cosine of its angle with the Sun is less or equal than -0.1.

With this change in the algorithm, it should be ready to try to detect stellar
flares, rather than flares from the Sun. The following are some cases of strong stellar
flares detected by dedicated telescopes that have been presented in research papers,

87

Stellar flares

using the information of them and with the help of the authors in some cases, the
algorithm is tested to see if it can work with stellar flares or these are too weak to
be detected without a dedicated telescope.

9.2.2 Proxima Centauri

The first studied flare is presented in the paper ”The first naked-eye superflare
detected from Proxima Centauri” (Howard, Ward S., et al.) [13], which, as the title
of the paper suggests, was a flare so powerful it could even be seen with the naked
eye. This star is located in the Centaurus constellation, 4.22 light-years away

The flare was detected the 18th of March of 2016, with the flare peaking at
8:32 UT. Having the ti file from this day in particular, 2016.078, we filtered the
time range to obtain one hour surrounding that specific moment. Because this was
a more challenging scenario, instead of finding the moment of the peak and only
focusing on that time, the algorithm iterates over all epochs to see if any of them
provided good results.

Taking into consideration that Proxima Centauri has a right ascension of 217.4294◦

and a declination of−62.67948◦ [25], the algorithm was executed using only the night
hemisphere to try to detect this flare, using this location to calculate the error of
the estimation.

All of the following tests used a direct VTEC filter of 0.7. Furthermore, the day
hemisphere is discarded using the code shown in the previous section.

88

Stellar flares

Result of the 20 best epochs

The first tests consisted of computing the results for the 20 best epochs using
multiple combinations, the ones that yielded the best results where: Least Squares
with 1, 2 and 10 iterations and Decreasing Range without Linear fit.

Figure 9.2 shows plots of the results of these tests in which the evolution of the
estimation error (in degrees) throughout the time range can be seen.

(a) Decreasing Range (b) Least Squares (single iteration)

(c) Least Squares (2 iterations) (d) Least Squares (10 iterations)

Figure 9.2: Estimation error surrounding the moment of the flare using 20 epochs
(Proxima Centauri)

Although there is a lot of variation and spikes, some information can be drawn
from the results. The Least Squares method using 2 iterations (figure 9.2c) shows a
significant decrease in the estimation error with only 8.99495 degrees of error. This
could be a coincidence but it is an interesting result because it is from the exact
moment of the flare (8.525h). A decrease (although still yielding a high error) can
be seen too in the results of the Decreasing Range method (figure 9.2a).

89

Stellar flares

Result of the 10 best epochs

Because the estimation is not precise there appears a lot of variation if many epochs
are used (many possible solutions) and not much information can be obtained from
the results and the plot, however, if the number of used epochs is ten, we expected
the change in the estimation to be seen more clearly. In this case, the Least Squares
method with 3 iterations gave better results than using 10 iterations:

(a) Decreasing Range (b) Least Squares (single iteration)

(c) Least Squares (2 iterations) (d) Least Squares (3 iterations)

Figure 9.3: Estimation error surrounding the moment of the flare using 10 epochs
(Proxima Centauri)

Although there is less noise in the plots and inverse spikes can be seen more
clearly, none of them coincide with the exact moment of the flare and the results
of the best epochs (ordered by their mean VTEC) are not the best results of the
algorithm (in the previous test with 20 epochs, in fact, we have seen a result of only
8.99495 degrees for the moment of the flare).

90

Stellar flares

Result of the 20 best epochs using 2 simultaneously

In the previous chapter the option of using the 2 best epochs was introduced, which
yielded improved results for the tests done with the Sun. Using this method provides
better results for this case as well. However, because the epochs are not ordered
by time, but by their fitness, the 2 used epochs to compute a solution are not
consecutive in time. Because of this the results of these tests show two functions:
the estimation error of the algorithm as a function of the first epoch (purple) or the
second (green).

(a) Decreasing Range (b) Least Squares (single iteration)

(c) Least Squares (2 iterations) (d) Least Squares (3 iterations)

Figure 9.4: Estimation error surrounding the moment of the flare using 20 epochs
in groups of 2 (Proxima Centauri)

As we can see, although we obtain good results for some cases, such as the Least
Squares method using 2 iterations, which gives a solution with only 4.15255 de-
grees of error when using the epochs 8.5083h and 8.3h (the two inverse spikes
seen in figure 9.4c). This time, the spike can also be seen more clearly with the

91

Stellar flares

Decreasing Range method (9.4a) and the other Least Squares executions (9.4b and
9.4c).

The results for the Proxima Centauri flare are promising considering that the
estimation that only has 4.15255 degrees of error is obtained when using data from
an epoch near the moment of the event (8.5083h), leading us to believe that the
algorithm has been slightly sensitive to the flare.

9.2.3 NGTS J121939.5-355557

Another studied stellar flare is presented in the paper ”Detection of a giant flare
displaying quasi-periodic pulsations from a pre-main-sequence M star by the Next
Generation Transit Survey” (Jackman, James AG, et al.) [15].

Although the date was specified in the paper (2016.032), the specific moment
of the flare was not indicated. We got in touch with the authors of the paper,
who kindly provided us information about the moment of the flare. The event was
detected only at the moment of the peak (04:00 UT), so the start and end of the
flare were unknown. Because of this, we worked with one hour of data surrounding
the peak.

Several tests were performed with this flare. Generally speaking, none of the
results provided an exact location estimation but we could observe some interesting
results as with the previous flare.

Using the same parameters as the previous section (discarding the night hemi-
sphere and using a direct VTEC filter), we proceeded to perform the same tests as
the previous flare.

92

Stellar flares

Result of the 20 best epochs

(a) Decreasing Range (b) Least Squares (single iteration)

(c) Least Squares (2 iterations) (d) Least Squares (10 iterations)

Figure 9.5: Estimation error surrounding the moment of the flare using 20 epochs
(NGTS)

Although the results obtained present a lot of variation and spikes as with Prox-
ima Centauri, we can notice that there is a significant improvement in the solution
for the moment of the flare in all four cases from figure 9.5. However, other epochs
present low estimation errors as well, with values as low as 12.5647 degrees.

93

Stellar flares

Result of the 10 best epochs

With the previous flare we performed the tests by plotting only the 10 best epochs
to try to see the results more clearly, which we did in this case as well:

(a) Decreasing Range (b) Least Squares (single iteration)

(c) Least Squares (2 iterations) (d) Least Squares (10 iterations)

Figure 9.6: Estimation error surrounding the moment of the flare using 10 epochs
(NGTS)

Although there is a high error for the Decreasing Range method (9.6a), we can
see a sort of depression in the plot surrounding the moment of the flare. This
depression is more clear in the other three tests using the Least Squares method
(9.6b, 9.6c and 9.6d), yielding the best results near the moment of the flare.

94

Stellar flares

Result of the 20 best epochs using 2 simultaneously

So far, the best results (both for solar and stellar flares) have been obtained when
using 2 epochs simultaneously, and this method had interesting results for this flare
as well.

(a) Decreasing Range (b) Least Squares (single iteration)

(c) Least Squares (2 iterations) (d) Least Squares (10 iterations)

Figure 9.7: Estimation error surrounding the moment of the flare using 20 epochs
in groups of 2 (NGTS)

Similarly to the previous flare, the plot of the first used epoch (purple) is the
one that presents a clear inverse spike at the moment of the flare, which is very
noticeable in the Decreasing Range method (9.7a), in which the error of the estima-
tion remains high (slightly below 100 degrees) surrounding the flare and is greatly
reduced at the moment of the peak.

Both flares, the one from Proxima Centauri and the one from NGTS J121939.5-
355557, present a significant reduction in the estimation error at the moment of the

95

Stellar flares

flare, which could be due to the algorithm being able to estimate a better solution
due to the strength of the flare at that moment in time, leading us to think that the
algorithm might be slightly sensitive to these two stellar flares.

96

Chapter 10

Conclusions

The main aim of the project was developing an algorithm capable of detecting solar
flares without considering the location of the Sun i.e. both in time and space, so
that this could then be applied to the challenging scenario of stellar flares.

In the first chapters we studied the main factor that has to be taken into con-
sideration in the algorithm: the correlation between the source-zenith angle’s cosine
and the VTEC value.

Then, a first approach of algorithm was developed to traverse the globe and
consider possible sources (Suns), the Decreasing Range method, which choose the
best candidate based on its correlation.

An alternative method, the Least Squares method, was also developed. This
approach solved an equation system to estimate the source’s location, and yielded
similar results.

Finally, both methods were tested with several solar flares using different param-
eters to study which one yielded better estimations, which provided positive results
regarding the detection of solar flares. Using this information, the algorithm was
tested with stellar flares as well.

This was a very challenging task due to stellar flares having a weaker effect on
the ionosphere, but the algorithm has provided interesting results with the studied
cases, where it seems to be sensible to the event, considering the estimation error of
the stellar source is reduced at the moment of the flare.

10.1 Future work

The results obtained when studying the detection of stellar flares have presented an
opportunity to proceed with the project, by improving on it and using the algorithm
to test more flares to see if similar results are obtained.

In the next weeks more tests will be performed with other cases and a brief
research paper presenting the results and new proposed methods will be written to

97

Conclusions

be submitted to a first class peer-reviewed journal like the ”Geophysical Research
Letters” journal, and the results of this project have motivated the preparation of
a dedicated ERC Advanced Grant proposal to be submitted by the end of next
August.

Furthermore, some of the proposals presented in chapter 7 will be implemented
as well, such as the parallelization of some parts of the algorithm for increased per-
formance.

In conclusion, the aim of the project was to develop an algorithm to be able
to detect solar flares without knowing the location of the Sun to try to detect
stellar flares and the tests performed with flares from outside the Solar System have
provided promising results that have encouraged us to keep working on the project,
which we hope can be of help to the scientific community in the future.

98

Bibliography

[1] (Archived website) The Starlink Project. https://web.archive.org/

web/20120123062045/http://starlink.jach.hawaii.edu/starlink/

WelcomePage. [Online; accessed 10-March-2019].

[2] International GNSS Service Website. http://www.igs.org/about. [Online;
accessed 8-March-2019].

[3] J. M. Dow, R. E. Neilan, and C. Rizos. The international GNSS service in a
changing landscape of global navigation satellite systems. Journal of geodesy,
83(3-4):191–198, 2009.

[4] L.-L. Fu and A. Cazenave. Satellite altimetry and earth sciences: a handbook
of techniques and applications, volume 69. Elsevier, 2000.

[5] N. Gehrels, G. Chincarini, P. Giommi, K. Mason, J. Nousek, A. Wells,
N. White, S. Barthelmy, D. Burrows, L. Cominsky, et al. The swift gamma-ray
burst mission. The Astrophysical Journal, 611(2):1005, 2004.

[6] N. Gehrels and S. Razzaque. Gamma-ray bursts in the swift-fermi era. Frontiers
of Physics, 8(6):661–678, 2013.

[7] Goddard Space Flight Center (NASA). Swift GRBs Archive. https://swift.
gsfc.nasa.gov/archive/grb_table.html/. [Online; accessed 1-March-2019].

[8] C. J. Hegarty and E. Chatre. Evolution of the Global Navigation Ssatellite
System (GNSS). Proceedings of the IEEE, 96(12):1902–1917, 2008.

[9] M. Hernández-Pajares, A. Garćıa-Rigo, J. M. Juan, J. Sanz, E. Monte, and
A. Aragón-Àngel. GNSS measurement of EUV photons flux rate during strong
and mid solar flares. Space Weather, 10(12):1–16, 2012.

[10] M. Hernández-Pajares, J. Juan, J. Sanz, R. Orus, A. Garcia-Rigo, J. Feltens,
A. Komjathy, S. Schaer, and A. Krankowski. The igs vtec maps: a reliable
source of ionospheric information since 1998. Journal of Geodesy, 83(3-4):263–
275, 2009.

99

https://web.archive.org/web/20120123062045/http://starlink.jach.hawaii.edu/starlink/WelcomePage
https://web.archive.org/web/20120123062045/http://starlink.jach.hawaii.edu/starlink/WelcomePage
https://web.archive.org/web/20120123062045/http://starlink.jach.hawaii.edu/starlink/WelcomePage
http://www.igs.org/about
https://swift.gsfc.nasa.gov/archive/grb_table.html/
https://swift.gsfc.nasa.gov/archive/grb_table.html/

BIBLIOGRAPHY

[11] M. Hernández-Pajares, J. M. Juan, J. Sanz, À. Aragón-Àngel, A. Garćıa-Rigo,
D. Salazar, and M. Escudero. The ionosphere: effects, gps modeling and the
benefits for space geodetic techniques. Journal of Geodesy, 85(12):887–907,
2011.

[12] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle. GNSS–global navigation
satellite systems: GPS, GLONASS, Galileo, and more. Springer Science &
Business Media, 2007.

[13] W. S. Howard, M. A. Tilley, H. Corbett, A. Youngblood, R. P. Loyd, J. K. Rat-
zloff, N. M. Law, O. Fors, D. Del Ser, E. L. Shkolnik, et al. The first naked-eye
superflare detected from proxima centauri. The Astrophysical Journal Letters,
860(2):L30, 2018.

[14] Institute of Space Sciences (CSIC-IEEC. Magnetar Outburst Online Catalog.
http://magnetars.ice.csic.es/#/parameters. [Online; accessed 3-March-
2019].

[15] J. A. Jackman, P. J. Wheatley, C. E. Pugh, D. Y. Kolotkov, A.-M. Broomhall,
G. M. Kennedy, S. J. Murphy, R. Raddi, M. R. Burleigh, S. L. Casewell, et al.
Detection of a giant flare displaying quasi-periodic pulsations from a pre-main-
sequence m star by the next generation transit survey. Monthly Notices of the
Royal Astronomical Society, 482(4):5553–5566, 2018.

[16] Jochen Greiner, Max-Planck-Institute for extraterrestrial Physics. GRB col-
lection. http://www.mpe.mpg.de/~jcg/grbgen.html. [Online; accessed 3-
March-2019].

[17] D. Mart́ınez Cid. First study on the feasibility of stellar flares detection with
gps. B.S. thesis, Universitat Politècnica de Catalunya, 2016.

[18] A. P. Mitra. Ionospheric effects of solar flares. In Astrophysics and space science
library, volume 46, 1974.

[19] Netlib. LAPACK library. http://www.netlib.org/lapack/. [Online; accessed
29-April-2019].

[20] S. W. P. C. N. Oceanic and A. Administration). Ionosphere. https://www.

swpc.noaa.gov/phenomena/ionosphere. [Online; accessed 25-March-2019].

[21] P. W. Roming, T. E. Kennedy, K. O. Mason, J. A. Nousek, L. Ahr, R. E.
Bingham, P. S. Broos, M. J. Carter, B. K. Hancock, H. E. Huckle, et al. The
swift ultra-violet/optical telescope. Space Science Reviews, 120(3-4):95–142,
2005.

100

http://magnetars.ice.csic.es/#/parameters
http://www.mpe.mpg.de/ ~jcg/grbgen.html
http://www.netlib.org/lapack/
https://www.swpc.noaa.gov/phenomena/ionosphere
https://www.swpc.noaa.gov/phenomena/ionosphere

BIBLIOGRAPHY

[22] T. Singh, M. Hernandez-Pajares, E. Monte, A. Garcia-Rigo, and G. Olivares-
Pulido. GPS as a solar observational instrument: Real-time estimation of EUV
photons flux rate during strong, medium, and weak solar flares. Journal of
Geophysical Research: Space Physics, 120(12):10–840, 2015.

[23] S. Solar Center. The Earth’s Ionosphere. http://solar-center.stanford.

edu/SID/activities/ionosphere.html. [Online; accessed 13-March-2019].

[24] Solar System Exploration, NASA Science. Reference Systems. https://

solarsystem.nasa.gov/basics/chapter2-2/. [Online; accessed 5-March-
2019].

[25] WikiSky. Proxima Centauri location. http://server3.wikisky.org/

starview?object_type=1&object_id=2392473. [Online; accessed 3-June-
2019].

101

http://solar-center.stanford.edu/SID/activities/ionosphere.html
http://solar-center.stanford.edu/SID/activities/ionosphere.html
https://solarsystem.nasa.gov/basics/chapter2-2/
https://solarsystem.nasa.gov/basics/chapter2-2/
http://server3.wikisky.org/starview?object_type=1&object_id=2392473
http://server3.wikisky.org/starview?object_type=1&object_id=2392473

	Project Management
	Introduction
	Scope of the project
	Objectives
	Scope
	Methodology and rigor
	Obstacles and risks of the project

	Contextualization
	Areas of interest
	Stakeholders
	State of the art

	Planning and scheduling
	Task description
	Time table
	Scheduling: Gantt chart
	Action plan
	Resources

	Cost estimation
	Software resources
	Hardware resources
	Human resources
	Indirect costs
	Budget per task
	Total budget
	Budget control

	Sustainability
	Environmental sustainability
	Economic sustainability
	Social sustainability

	Background
	Global Navigation Satellite Systems
	Ionosphere
	Stellar flares
	Gamma-Ray Bursts

	Solar flare detection
	Data
	GPS Data
	Formatting
	The Halloween Solar Storm: X17.2 flare

	Vertical Total Electron Content (VTEC)
	Computing the VTEC
	Distribution throughout the day

	Solar-zenith angle
	Results

	Brute Force Approach
	Correlation
	Algorithm
	Implementation
	Mean VTEC as a reliable indicator of the moment of the flare
	Results

	Decreasing search range method
	Decreasing the range of the search
	Pseudocode
	Implementation
	Linear fitting: discarding outliers
	Results

	Least Squares method
	The system of equations
	Pseudocode
	Implementation
	Results
	Single iteration
	Multiple iterations: narrowing the search
	Multiple iterations: residual sum

	Other methods and optimizations
	Hill Climbing
	OpenMP

	Results: solar flares
	Using all available data
	Direct VTEC filter
	Decreasing range: linear fit
	Least Squares: Iterations
	Discarding by source position
	Discarding the measurements with high residuals

	Using multiple epochs
	Discussion

	Stellar flares
	Study on the feasibility of stellar flare detection
	Sources of data and possible candidates
	The Neil Gehrels Swift Observatory and its data
	Objective function
	Obtaining the data

	Testing the BGSEES algorithm
	Discarding the day Ionosphere
	Proxima Centauri
	NGTS J121939.5-355557

	Conclusions
	Future work

