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Abstract

Nowadays, most Intruction Set Architectures (ISA) include Single
Instructions that process Multiple Data (SIMD) to speed up High
Performance Computing (HPC) applications. The first part of this work
aims to characterize HPC applications optimized using the NEON
extension, which is the actual SIMD extension supported by ARMv8
processors. For this purpose, we have two high-end ARMv8 processors,
ThunderX and ThunderX2, and two mainstream comercial ARMv8
compilers, GCC and Arm HPC Compiler. With this set up we have
characterized a collection of benchmarks extracted from RAJAPerf,
HACCKernels and HPCG benchmarks. The characterization includes
experimental work in order to obtain speed-up, scalability, energy
efficiency and power efficiency measurements for all benchmarks.
Moreover, we have taken a look into the assembly code to identify what
optimizations are used by each compiler that makes benchmarks run
faster or slower.

The second part of this work focuses on the novel Scalable Vector
Extension (SVE) specified in the ARMv8.2 ISA. This SIMD specification
introduces a Vector-Length Agnostic programming model, which enables
implementation choices for vector lengths that scale from 128 to 2048
bits. To this day, no real processor implements this new ISA, therefore we
have used the Arm Instruction Emulator (ArmIE), an emulation tool
developed by Arm, that allows the execution of SVE compiled binaries
running in an ARMv8 processor. Our work analizes how compilers that
support SVE (GCC and Arm HPC Compiler) vectorize the benchmarks
and what is the quality of the generated assembly code. We also propose
some low level optimizations to improve code generation.
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Resum

Avui en dia, la majoria dels conjunts d’instruccions (ISA) inclouen
instruccions que processen múltiples dades en una única instrucció.
Aquestes instruccions s’utilitzen per accelerar aplicacions d’alt rendiment
(HPC). La primera part d’aquest treball busca caracteritzar aplicacions
HPC que han estat optimitzades utilitzant NEON, que és l’actual
subconjunt d’instruccions vectorials suportat pels processadors basats en
l’ISA ARMv8. Per aconseguir aquest objectiu tenim a la nostra disposició
dos processadors de alta gamma basats en ARMv8, que són ThunderX i
ThunderX2, i dos dels principals compiladors del mercat, GCC i Arm
HPC Compiler. Amb aquests hem caracteritzat una col·lecció de
benchmarks obtinguts del conjunt de benchmarks RAJAPerf i les
aplicacions HACCKernels i HPCG. Aquesta caracterització inclou
experiments per obtenir la millora de rendiment, l’escalabilitat, l’eficiència
energètica i el consum de potència. A més, hem analitzat el codi
assemblador per tal d’identificar quines optimitzacions s’han fet i quines
caracterıstiques fan que uns experiments siguin més ràpids que altres.

La segona part d’aquest treball es centra en la nova extensió vectorial
escalable (SVE) de Arm, la qual està especificada en la ISA ARMv8.2.
Aquesta especificació introdueix el model de programació independent de
la longitud dels registres vectorials (VLA). Aquest model permet que els
fabricants de processadors puguin triar diferents longituds de vectors
entre 128 i 2048 bits par la implementació de las seves
micro-arquitectures. A dia d’avui, no existeix cap processador que
implementi aquest nou repertori d’instruccions, per tant hem estat forçats
a utilitzar una eina de emulació (ArmIE) desenvolupada per Arm.
Aquesta eina ens permet executar binaris compilats amb suport per SVE
en processadors de la ISA ARMv8. En aquest treball s’analitza com els
compiladors GCC y Arm HPC Compiler vectoritzen aquestes
benchmarks, i a més es proposa una optimització de baix nivell per tal de
millorar la generació de codi.
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Resumen

Hoy en d́ıa, la mayoŕıa de repertorios de instrucciones (ISA) incluyen
instrucciones que procesan multiples datos en una única instruccion.
Éstas instrucciones se utilizan para acelerar aplicaciones de alto
rendimiento (HPC). La primera parte de este trabajo busca caracterizar
aplicaciones HPC que han sido optimizadas utilizando NEON, que es el
actual subcojunto de instrucciones vectoriales soportado por los
procesadores basados en la ISA ARMv8. Para alcanzar este objetivo
tenemos a nuestra disposición dos procesadores tope de gama basados en
ARMv8, que son ThunderX y ThunderX2, y dos de los principales
compiladores del mercado, GCC y Arm HPC Compiler. Con ellos hemos
caracterizado una colección de benchmarks extraidos del conjunto de
benchmarks RAJAPerf y las aplicaciones HACCKernels y HPCG. Esta
caracterización incluye una serie de experimentos que buscan calcular el
speed-up, la escalabilidad, la eficiencia energética y de consumo de
potencia. Además, hemos analizado el código ensamblador para
identificar que optimiaciones se han llevado a cabo y qué caracteristicas
hacen que unos experimentos sean más rápidos que otros.

La segunda parte de este trabajo se centra en la nueva extensión
vectorial escalable (SVE) de Arm, la cual está especificada en la ISA
ARMv8.2. Esta especificación introduce el modelo de programación
independiente de la longitud de los registros vectoriales (VLA). La cual
permite que los fabricantes de procesadores puedan elegir diferentes
longitudes de vectores entre 128 y 2048 bits, para la implementación de
sus microarquitecturas. A d́ıa de hoy, no existe ninguna máquina que
implementa este nuevo repertorio de instrucciones, por lo tanto hemos
tenido que usar una herramienta de emulación (ArmIE) desarrollada por
Arm. Esta herramienta nos permite ejecutar binarios compilados con
soporte para SVE en procesadores de la ISA ARMv8. Nuestro trabajo
analiza cómo los compiladores GCC y Arm HPC Compiler vectorizan
estos benchmarks y además propone ciertas optimizaciones de bajo nivel
para mejorar la generación de código.

4



Preface

Dear reader, the document you are reading right now is my final bachelor
thesis that concludes my four years degree in informatics engineering at
Univeristy of Zaragoza, which I have developed and defended at the
Polytechnic University of Catalonia. This project has been developed
with the colaboration of the Mont-Blanc 2020 project.

I would like to thank Adrià Armejach, Daŕıo Suárez and Miquel Moretó,
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Chapter 1

Context and Scope of the
Project

This chapter analyzes HPC research lines on Single Instruction, Multiple
Data architectures focusing in ARM-based proposals. Then, it introduces
problem formulation, project objectives and principal stakeholders.
Finally, describes state-of-the-art proposals, project scope and
development practices.

1.1 Context

Nowadays, one of the most used methods of speeding up HPC (High
Performance Computing) and machine learning applications, is through
SIMD (Single Instruction, Multiple Data) [1]. These instructions increase
data parallelism, since the same operation is executed on different data
points at the same time. This approach dominated supercomputing
during 80’s, until they were surpassed by inexpensive MIMD approaches
(Multiple Instructions, Multiple Data), where different processors
compute different instructions to different data [2]. Modern
supercomputers architectures are dominated by clusters of MIMD
computers, each of them implementing SIMD.

A current trend in the server & HPC segments is the popularization of
Arm’s (Advanced RISC Machines) Instruction Set Architecture (ISA).
The ARM ISA has become with the years the most used and the most
produced in quantity terms [3]. One of the key factors for the adoption of
ARM ISA is its power efficient RISC chips, which is a key factor in the
mobile market segment. If we classify the ISAs according to their
complexity, we usually distinguish between RISC and CISC. Reduced
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2 CHAPTER 1. CONTEXT AND SCOPE OF THE PROJECT

Instruction Set Computing (RISC) is a family of processors architectures
that have a small set of general purpose instructions, while on the other
extreme of the design space, instructions in a Complex Instruction Set
Computing (CISC) machine can execute several low level operations. In
fact most current CISC processors internally execute RISC
micro-operations.

On one hand, RISC cores are well known for addressing embedded
systems and battery powered platforms where power efficiency is critical,
due to their power efficient design they consume less for the same task.
On the other hand CISC cores have been dominating supercomputing
and server markets, because of high performance designs. However, with
the years, these differences have been reducing and Arm has focused
towards HPC and server systems introducing its SIMD extensions
(NEON and SVE), while Intel has introduced its new mobile chips based
on the Atom product like, for smartphones [4].

In this context, the Mont-Blanc project [6] was born to develop a
supercomputer based on mobile market technology; in order to take
advantage of the higher manufacturing volumes, faster design cycles and
better economic factors [5]. To achieve this, Mont-Blanc focuses on
ARM-based processors. An initial prototype was based on the Samsung
Exynos 5 Dual processor, and in 2017 Mont-Blanc announced a new
prototype based on Marvell’s ThunderX2 CPUs [7].

1.2 Problem Formulation

This project aims to characterize SIMD generated code of the two main
ARM ISA compilers: GCC (GNU Compiler Collection) and the Arm HPC
compiler. We cover two different SIMD extensions: NEON and the Scalable
Vector Extension (SVE), for the ARM 64 bits architecture ARMv8.2-A.

The NEON extension was first introduced in the ARMv7-A
specification. With a vector length of 128-bit, its instructions can perform
two operations of double precision floating point or 4 operations of single
precision floating point [11]. SVE was first introduced within ARMv8.2-A
in 2016. This extension is a novel approach for SIMD instruction
specifications. It allows developers to generate and optimize SIMD code
and forget about the vector length. In other words the ISA is vector
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length agnostic and enables SVE binaries to run on machines with
different vector lengths without recompilation. Apart from the vector
length agnostic paradigm, SVE supports gather and scatter instructions
that allow SIMD instructions to operate on non contiguous data [12].
Nowadays, there is no machine that implements the SVE extension, and
it is planned that Fujitsu will deploy the first in 2021.

To perform the characterization we use a set of HPC and Machine
Learning benchmarks, namely: RAJAPerf loops [8], HACCK [9] and
HPCG [10]. These benchmarks will be compiled and executed for using
the OpenMP programming model. A benchmark is a program which the
main goal is to quantify the performance of a computer and to be able to
compare it with other computers. This is achieved by executing the same
binary under the same conditions on different computers and analyzing
the metrics obtained from these executions. Metrics help analysts
quantify and characterize program’s behaviour, e.g. GFlops and speed-up
are two well known metrics that measure a program performance [25].

The selected benchmarks employ OpenMP to parallelize execution.
OpenMP is a specification for a set of compiler directives, library
routines, and environment variables that can be used to specify high-level
parallelism in Fortran and C/C++ programs. OpenMP is used to
parallelize benchmarks, via shared memory multiprocessing programming.
It offers an easy way to parallelize code in order to scale application at
the node level, and it is widely used in supercomputers.

Each benchmark will be executed mainly in the two prototype clusters
from the Mont-Blanc project that are called ThunderX and ThunderX2.
The two clusters are based on ARM 64 bit processor, that are manufactured
by Cavium (Marvell Technology Group). One is based on a ThunderX
model with 48 in-order cores and the other a ThunderX2 with 32 out-
of-order cores. Both processors use a custom implementation of ARM
64 bit cores, focusing its features for enterprise server solutions and HPC
workloads.

Eventually, we will make some experiments in a third machine based
on Intel’s Skylake architecture. These experiment will help us to contrast
the results obtained in both Cavium machines.
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1.3 Objectives

Once we have the statement of the problem, we can focus on the different
objectives this project aims to achieve. These can be summarized as:

1. Implement and maintain a work space for experiments.

2. Develop an evaluation methodology and the necessary infrastructure
to conduct experiments for the research work. This infrastructure
can be used in future experiments and by other researches.

3. Measure performance and power consumption differences between
GCC and ARM-HPC compilers, between SIMD and no SIMD
assembly code and between ThunderX and ThunderX2 nodes in
machine learning and HPC benchmarks.

4. Check correctness of assembly code generated by both compilers for
the new vector extension SVE.

5. Analyze how each compiler optimizes the same code. And seek for
specific compiler options that optimize concrete applications.

1.4 Stakeholders

1.4.1 Developer and Research Intern

The developer will be responsible of all the technical part. From
modifying the benchmarks code to be suitable for experiments to
implement an automatized pipeline for the execution of the experiments.
But the most important task for the researcher is to analyze and
document the results.

1.4.2 Director, Co-director and Ponent

The director of this project is Adrià Armejach, he is senior researcher at
Barcelona Supercomputer Center (BSC-CNS). The co-director of the
project is Daŕıo Suárez, assistant professor at Universidad de Zaragoza.
And the responsible of the project is Miquel Moretó, Ramon y Cajal
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research fellow at UPC and senior researcher at BSC. Their roles will be
essential for the correct development of the project and their knowledge
will be key for the analysis of the results.

1.4.3 Scientific Community

The results published after this work can be used by the scientific
community in future research. The direct beneficiary will be the BSC.
The usage of novel technologies like SVE and the Arm HPC compiler is
still in its early stages compared to other technologies, so the results of
this project may help developers in the future.

1.5 State-of-the-art

As mentioned before, the ARM ISA has seen a steep growth in popularity.
This has lead academia to start researching ARM based solutions for HPC.

1.5.1 ThunderX and ThunderX2

On 2014, Cavium announced ThunderX, its first 64 bit multi-core ARM
server microprocessor. Relying on the ARMv8 ISA, this processor was
able to integrate 48 in-order cores. On 2016, Cavium announced its new
server generation, ThunderX2. As well as ThunderX, is a 64 bit multi-core
ARM server microprocessor, but with a radical new architecture based on
32 out-of-order cores implementing the ARMv8.1 ISA. Both processors are
suitable for vector architecture experiments since they support NEON and
have high memory bandwidth. Moreover, both processors have been used
on several academic articles [13] [14].

1.5.2 The Mont-Blanc European Project

Since 2011, the Mont-Blanc European project has encouraged its vision of
an exascale supercomputer based on technology coming from the mobile
market segment. The last Mont-Blanc prototype is called Dibona, which
is based on ThunderX2 processors. The whole system is suited for HPC
workloads, like simulation of geophysics, fusion, materials, particle
physics, life sciences, combustion, aerodynamics, weather forecast,
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computational fluid dynamics, biophysics, and a large etc. As
consequence of project researching, numerous reports have been published
in the past years. During stage three of the Mont-Blanc project, the team
chose a set of HPC applications for evaluating their performance in
ARM-based architectures. The benchmarks were ported and tuned for
ARM mini-cluster prototypes, that includes ThunderX processor [15].
After that, Dibona behaviour was studied using a heterogeneous set of
benchmark compiled with a collection of commonly used compilers.
These benchmark were chosen in order to reach the throughput and
memory bandwidth peaks of ThunderX2. In those experiments the main
objective instead of comparing possible ARM ISA compilers, was chose
the best generated code that could achieve the highest performance. [16].
Another interesting report is [17], that compared GOMP (GCC OpenMP
implementation) and IOMP (intel and LLVM OpenMP implementation).
Nevertheless, these experiments only focused in OpenMP instead of full
compiler capabilities.

While all these works are profoundly related with HPC on ARM based
machines, none of them analyzes differences between compiler generated
assembly.

1.5.3 LLVM and GCC Comparisons

The Arm HPC compiler is based on LLVM tool chain technology. Since
LLVM was released first on 2003 there has been many comparisons
between both compilers. Almost all these comparisons are focused on the
x86 architecture [18], and only few ones that take a look at ARM
assembly are outdated [19]. On these papers GCC usually has a better
performance over LLVM while on Mont-Blanc’s papers LLVM
outperforms GCC, specially when using optimized Arm Performance
Libraries.

Arm has also published some posts in its blog, in which they shown
some small cases of study. Nevertheless, this experiments come from Arm
itself and they don’t give enough detailed information [20].
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1.5.4 SVE Research

Until the first SVE implementation arrives, developers and the scientific
community have only two main tools to port and tune applications for
the new ISA. One based on simulation (gem5 [21]) and one based on
emulation (ArmIE [22].) Simulations give detailed reports about
execution performance, but require a high computational cost. On the
contrary, emulators can run application’s binaries in less time, but losing
all possible information about execution time and performance. The
major part of scientific research has focused on simulations in last years.
These simulations are essential for the development of future chips, but
emulators can obtain useful information, specially about compiler code
generation and correctness.

1.6 Scope

The purpose of this section is to frame the contents of this project and to
explain what is out of scope, either due to time limitations or divergence
over the main objectives.

As said before, this project aims to characterize Arm’s Single
Instruction Multiple Data ISA extensions on HPC applications. There are
two main extensions: NEON and SVE. The focus will be on the NEON
extension, which can be evaluated using real machines. We will evaluate
performance and power consumption. Since, there is no real hardware
implementing SVE yet, its characterization would require the use of
simulations tools with a steep learning curve, and a low level of maturity
which does not fit with the time duration of this project. However, SVE
will be analyzed using an emulator.

Initially, a set of HPC applications will be chosen. This benchmarks
have to be suitable for vectorization and have different characteristics in
order to cover a broad spectrum of HPC applications. For example, some of
them could be compute intensive, that is when the CPU operations define
the execution time, or memory intensive, where data movements represent
a major part in execution time. The set of applications should take into
account actual scientific problems, machine learning or genomics.

For NEON characterization, applications will be instrumented in order
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to capture the execution time and hardware counters, that would give the
performance information of its execution. Power measurement scripts will
be written to catch energy consumption and calculate energy efficiency.
All these tasks are a small part in the development of a fully automatized
experiment pipeline. This necessity of such a high level of automatization
is caused by long execution times and high number of experiments that
restricts human intervention.

During the experiments, binaries will be evaluated on three machines,
one based on ThunderX processors, other in ThunderX2 processors and the
third in Skylake processors. These two latter machines are placed inside
Dibona, which is a prototype developed within the Mont-Blanc project and
employs ThunderX2 and Skylake processors. With data gathered from
experiments, a two way analysis is done. On one side, assembly code
generated is analyzed. On the other, performance metrics are calculated
so binaries can be compared between each other. With the analysis, some
conclusions should be obtained, like what compiler is doing a better job of
auto-vectorization for HPC, or the most energy efficient processor and the
associated reasoning.

For SVE analysis, a new version of every program is complied allowing
SVE vectorization. The correctness of generated code is checked using the
ArmIE emulator on the new binaries. Emulation only gives information
about which instructions have been executed, but there is no useful
information about execution time or cycles executed. As a consequence of
performance information absence, both compilers will be compared on
their ability to vectorize each loop and on the correctness of the code.

1.7 Development Practices and Validation

As said before, the short time available for finishing the project implies the
use of agile and strict work methodologies.

1.7.1 Short Development Cycles

With the use of short cycle methodologies (small tasks defined each week)
an accurate control of the project is granted. This methodology makes easy
to check if the project is on track and reschedule tasks if necessary.
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1.7.2 Tools for Development

To analyze the execution of the benchmarks, specific tools like power
measurement scripts, paraver [23] and extrae [24] will be used. All of
them are based on hardware counters and were developed at BSC to help
developers understand the behavior of parallel applications. Additionally,
the progress of the project will be registered using BSC’s gitlab
infrastructure.

1.7.3 Project Tracking

A detailed tracking on project progress will be achieved by performing
weekly meetings with project advisors. These meetings will be documented
in their respective records and documentation.

1.7.4 Final Evaluation

Once all the experiments and analysis have been done, we will obtain and
redact what are the main differences between compilers. Then, the level
of completeness of project is evaluated checking how many of the initial
objectives are full filled.



Chapter 2

Project Planning

This chapter is a summary of the initial project management course done
in March of 2019. It specifies project duration and individual tasks.
Then, it explains project schedule and their associated resources. Finally,
it describes an action plan for eventual deviations of project schedule.

2.1 Estimated Project Duration

The estimated project duration was approximately 4 months. The project
started on February 18Th, 2019 and the deadline was expected to be on
July 3rd, 2019. However, we extended it to July 17Th of 2019.

2.2 Project Tasks

In this section, we explain what are the main project tasks. We explain
which steps must be done to accomplish each task.

2.2.1 T1 Project Planning and Feasibility

This task pertains to Project Management Course and includes the next
four stages:

I Project scope.

II Project planning.

III Project budget.

IV Initial state of the art.

10



2.2. PROJECT TASKS 11

2.2.2 T2 System Set Up and Benchmark Analysis

The main objective of this task is to make an analysis of possible
benchmarks that are suitable for the project and set up the necessary
software and tools needed to achieve project objectives.

Benchmarks are selected from Mont-Blanc 2020 project (MB2020)
initial prospections. At the moment, this report is confidential until its
final version is published. This report searches and analyzes a set of real
life applications that exhibit the characteristic demands of Big Data and
HPC applications. These programs stress all the segments targeted by
MB2020. One of the principal characteristics of these applications its that
allow exploring the vector ISA in terms of manual code vectorization,
auto-vectorization, and the use of generic performance libraries.
Therefore, the benchmarks used in this project are a subset of the
MB2020 benchmarks

To develop the project, we need a modern version of GCC (version 8.2.0)
and the ARM compiler for HPC (version 19.0) as well as their respective
implementations of OpenMP installed, for compiling and executing the
parallel versions of the benchmarks. Extrae and paraver are also needed in
order to generate traces of the execution and visualize them. These traces
are used to understand the behavior of the different benchmarks. All these
tools are already installed in the test machines but the developer needs to
test and learn how to use them for the project.

The test clusters use as operating system a Linux distribution adapted
to ARM, so no learning phase is needed. The executions in the
Mont-Blanc clusters are done through the SLURM queue system.
SLURM (Simple Linux Utility for Resource Management) is an
open-source resource manager designed for Linux clusters of all sizes.
Learning how to use SLURM is needed for the project, because SLURM
lets the user allocate exclusive access to resources, bind processes to
cores, specify shell scripts to run before or after an execution, and
automatize experiments.

2.2.3 T3 Compilation and Experiment Development

Benchmark compilation is the central part of the project. Initially all
benchmarks are compiled in six different versions: NEON-ArmHPC,
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NEON-GCC, SCALAR-ArmHPC, SCALAR-GCC, SVE-ArmHPC and
SVE-GCC. Prefix refers to type of vectorization: SCALAR is a
non-vectorized binary, NEON uses NEON vectorization and SVE uses
SVE vectorization. The suffix refers to compiler used for the compilation.
After that step, assembly code must be checked in order to assert that is
correct and vectorized.

The first step to perform the experiments is to instrument all
benchmarks so we can measure execution time and hardware counter
values of the regions of interest. These regions execute the most
important part of the benchmark, the part that stresses the processor. At
same time shell scripts are written in a way that they launch experiments
and capture energy consumption automatically. Another parallel task, is
programming a python scripts for data visualization and metrics
calculation, that help during analysis.

2.2.4 T4 Performance and Code Analysis

Next step consists in doing a deep analysis with all the information
compiled from benchmarks executions. Benchmark bounds are identified
and performance is compared between the two compilers and hardware
prototypes, i.e. one benchmark may be limited by number of floating
point operations done per second (FLOPS) and its vectorized version has
an higher performance than scalar version. The best binary version is
selected by comparing all binaries within the same workload.
Performance differences between performing vectorization and not, are
shown for each compiler.

Then, the power and energy consumption of both processors is
measured in order to compute the energy and power efficiency. However,
during the project development we could not measure this metrics in
ThunderX, because the tool used for this purpose was broken. In the
place of ThunderX, we finally measured Skylake.

Then assembly code is used to justify all these observations, checking
for optimizations performed by the compiler. If each compiler selects a
different set of instructions for the same task, they can be compared because
both codes are executed on the same hardware.
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2.2.5 T5 SVE Compilation and Code Analysis

Last step consist in benchmarking all SVE binaries for the same
experiments used in past steps. Then we review the assembly code of the
binaries in order to find possible errors, unnecessary parts or possible
optimizations. We compare how much vectorization is done by each
compiler using SVE. Then we show how SVE vectorization reduces the
number of instructions executed when increasing the vector length from
128 bits to 2048 bits, and what weight have these SVE instructions. We
also compare SVE to Intel SIMD instructions set in order to compare how
well SVE vectorize for different vector lengths.

2.2.6 T6 Final Stage

The final stage consists on preparing the delivery of the project. This
includes document all experiments, make the necessary graphs to illustrate
the results, make an analysis over the results and draw conclusions. With
these elements we build the memory of the bachelor thesis. Finally, we
prepare the presentation for the thesis defense.

2.3 Task Dependencies

The first task to be done is project planning (T1). This task is key for
the correct organization and development of the project. Tasks T2 and
T5 depend on T1. Then Task T3 depends on T2 and T4 depends on T3.
Finally, T6 depends on all of them. The final stage must be done once the
project is finished.

2.4 Estimated Time

In this section we present a resume with the estimated cost in hours of each
task and what has been its real duration.
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Stage Estimated
dedication
(hours)

Final
dedication
(hours)

Planning and feasibility 75 62

Benchmark analysis and system set up 50 67

Compilation and experiment development 160 177

Performance and code analysis 75 83

SVE compilation and code analysis 110 122

Final Stage 80 84

Total 550 595

Table 2.1: Estimated and dedicated hours per group of tasks.

2.5 Resources

2.5.1 Hardware Resources

• Laptop PC (with an Intel i7-8550U CPU @ 1.80GHz, 8 of RAM):
used as work station.

• Thunder cluster: Cavium ThunderX with 128GB of RAM and 128GB
of SSD. Each node has 2 sockets, each with 48 ARMv8 in-order cores.

• ThunderX2 cluster: Marvell ThunderX2 with 256GB of RAM and
3.3TB of disk. Each node has 2 sockets, each with 32 ARMv8.1
out-of-order cores.

• Skylake cluster: Intel Xeon Platinum 8176 Processor with 28 Skylake
out-of-order cores.

2.5.2 Software Resources

• GNU Compiler Collection (GCC), version 8.2.0 : for compilation.
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• Arm compiler for HPC, version 19.0: for compilation.

• Arm Instruction Emulator, version 19.0: for emulation of SVE
instructions.

• Arm Performance Libraries: for compilation of scientific applications.

• CMake: for automatization of compilation and linking.

• Perfmon2: for capturing hardware counters.

• Python: for data parsing.

• Extrae: for obtaining OpenMP and hardware counter traces

• Paraver: for visualizing extrae traces.

• Latexmk: for compiling project documentation.

• PDF viewer: for visualizing project final documentation.

• Matplotlib: for building graphs.

• ICC: for compilation.

• Libcount: for counting instructions with ArmIE.

2.5.3 Human Resources

The development of this project involves Adrià Armejach, Daŕıo Suárez
and Miquel Moretó as advisors and Vı́ctor Soria as main developer and
research intern of the project.
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2.6 Gantt chart

Figure 2.1: Gantt chart of project schedule

2.7 Action Plan

The Gantt chart listed above in Figure 2.1 depicts the initial project plan to
achieve all the objectives, but in most projects, it is hard to follow planning
as initially thought, and in this case we have had to delay the project
duration. This was caused by an underestimation of the task duration,
but in other cases can be due to unexpected problems. In these cases,
the project team has to find a solution in order to minimize the negative
impact over the original task scheduling.

This bachelor thesis must be delivered before the 24Th of June, 7 seven
days before the presentation. However, this project was planned to finish
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the 3rd of June. Nevertheless, we have finished it the 17Th of June. We
have been able to delay the project, because we planned the delivery 21
days before the real deadline. This gave us some days to accommodate the
deviations.

Following we explain the project deviations and the mitigation actions
we have taken.

2.7.1 Machine Failures

Normal servers, and specially prototypes, can have hardware errors. Also,
machines may not be available for other reasons like high utilization on
the server, network problems or maintenance works.
Solution: This problems can only be resolved by system administrators.
In our case, we had to change the test machines in the phase of energy
and power measurement, because the tools used for this purpose were
broken. We changed ThunderX for Skylake, so we could compare
ThunderX2 metrics with another architecture.

2.7.2 Timetable

Because we have special conditions for the development of this project
(programs licenses), the timetable was a critical part of the project.
Solution: To overcome it, a very rigid and realistic timetable was followed
with weekly meetings with the project advisors to ensure the project was
following the timetable.

2.7.3 Bad Documentation

Working with machine prototypes usually leads to working with incomplete
documentation.
Solution: We faced situations where we needed information that did not
appear in the documentation. The developer have had to ask to experts or
developers with knowledge on the problems for help.



Chapter 3

Budget and Sustainability

In this chapter the budget and sustainability of the project are explained.
The first part contains a detailed description of software, hardware and
human costs and an analysis of how the budget was affected by deviations.
The second part evaluates the sustainability of the project.

3.1 Budget Estimation

In order to develop the project successfully, it requires a set of resources
listed in the previous report, Section 2.5. In this section we estimate the
costs of the human, hardware, software resources and the indirect costs.
The amortization of each investment will be calculated using two factors;
the first one is the useful life of the investment, and the second one is the
amount of time is used in the project.

3.1.1 Human Resources

This project is mainly carried by only one person that does all the
experiment and documentation work. He counts with the help of three
advisors that have guided him. Table 3.1 specifies the number of hours
estimated and the final hours consumed for every role and the economic
value of them.

3.1.2 Software Resources

In this section, we list the costs of the software tools that were used during
the development of the project. All tools are free for use for academic
purposes or are open source.

18
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Role Price per
hour(e)

Estimated
Hours

Cost (e) Real
Hours

Cost (e)

Analyst / Advisor 20.00 32 640.00 32 640.00

Analyst / Intern 8.00 550 4400.00 595 4760.00

Total 5040.00 5400.00

Table 3.1: Human resources budget.

Product Price (e) Useful life Amortization (e)

GCC (8.2.0) 0.00 – 0.00

Arm compiler for HPC (19.0)* 0.00 – 0.00

Arm Instruction Emulator* 0.00 – 0.00

Arm Performance Libraries* 0.00 – 0.00

CMake 0.00 – 0.00

Perfmon2 0.00 – 0.00

Python 0.00 – 0.00

Extrae 0.00 – 0.00

Paraver 0.00 – 0.00

Latexmk 0.00 – 0.00

PDF viewer 0.00 – 0.00

SLURM 0.00 – 0.00

Matlplotlib 0.00 – 0.00

ICC* 0.00 – 0.00

Libcount 0.00 – 0.00

Total 0.00 0.00

*Need licence but are free for academia

Table 3.2: Software budget.
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3.1.3 Hardware Resources

In this section, we list the costs of the hardware clusters that were used
during the development of the project. All this hardware has been
purchased before the beginning of the project, because is part of the
Mont-Blanc project. These machines are not exclusive for this bachelor
thesis, so the only cost this hardware has for the project is their
amortization. Servers and personal computers have an estimated life of 5
years. Table 3.3 lists the amortization of each hardware resource. The
total cost is 1210,68 e, but we split this value in two because at the time
initial estimation was done Skylake cluster was not supposed to be used.

Investment Price (e) Useful life Amortization (e)

Dell Inspireon 13 7030 900.00 5 years 60.00

Thunder cluster node* 3500.00 5 years 233.34

Dibona ThunderX2 cluster
node*

6000.00 5 years 400.00

Dibona Skylake cluster node* 7760.19 5 years 310.00

Total 18160.00 693.34 + 310.00

*The cost of the Dibona clusters is an estimation because they are not publicly
available

Table 3.3: Hardware budget.

3.1.4 Indirect Costs

In addition to the costs related to the explicitly required resources specified
up to this point, other costs that affect project budget must be considered.
Even if they are not directly related with the tasks. These costs are derived
from project execution, i.e the cost of electricity, internet access, office rent,
etc. However, as the project was developed in its totality at the BSC-CNS
installations, it is not possible to specify the real cost of the services. In
its place we provide estimated data, see Table 3.4.



3.1. BUDGET ESTIMATION 21

Product Price per month(e) Number of months Cost (e)

Electricity 75.00 4 300.00

Internet 37,90 4 151.60

Office rent 90.00 4 360.00

Transport 35.00 4 140.00

Total 951.60

Table 3.4: Estimated indirect costs.

3.1.5 Contingency and Unexpected Events

Budget estimation as project planning can suffer possible deviations.
Therefore, contingency was calculated as much as 15% of the total cost.
This value permitted us to extend the project 14 days. At the end, we did
not exceed the total budget, see Table 3.5

3.1.6 Total Budget

Finally, by consolidating all tables above, the total budget is obtained.
Taxes that apply to resources cost are included in the investment price.

Type Estimated
Cost (e)

Real Cost
(e)

Human resources 5040.00 5400.00

Software resources 0.00 0.00

Hardware resources 693.34 1003.34

Indirect costs 951.60 951.60

Total without contingency 6684.94 - -

Contingency (15%) + 802.20 - -

Total 7487.14 7354.94

Table 3.5: Total budget.
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3.2 Budget Control

In this section we explain the control mechanism developed to prevent
project deviations. One of the most frequent deviations in computer science
projects is task duration. It is highly important to account the number of
hours spent on every project task, and to have a comparison with the
amount of estimated hours. Verification of project objectives is also a key
part of project tracking.

A control mechanism for measuring and avoiding deviations is obtaining
the difference between resources consumed and resources estimated for each
task. This procedure has to take special care of tasks that have a high risk
of deviation. The principal motivation for following such a strict tracking
is that, the earlier a deviation is detected, the earlier could a corrective
action be taken. Therefore, the deviation would have a lower impact on
task scheduling. This tracking is assured to be executed because there is a
weekly meeting between developer and advisors.

During project execution we did some more resources than the initially
estimated, since we had to use extra hardware that was not planned. In the
case of software programs there are a lot of open source alternatives that
covered project needs. Human resources was the main resource deviation
and the one who most budget increment supposed, that was the reason to
include a contingency item in the budget.

The possible project deviations were measured with the following
metrics:

• Efficiency deviations:
Cost of human resources deviation = (number of work hours
estimated - number of work hours realized) * estimated cost
Cost of product consumption deviation = (estimated consumption
of product - real consumption of product) * estimated product cost

• Total deviations:
Total deviation on human resources = estimated human resources
cost - real human resources cost
Total fixed cost deviation = estimated total fixed costs - real total
fixed costs
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3.3 Sustainability

The sustainability of this project is discussed from three points of view:
economic, social and environmental.

3.3.1 Self-assessment of the Current Domain of
Sustainability Competence

After answering an interactive pool provided by UPC, I have obtained the
following conclusions:

Throughout the survey, I realized that I have an intermediate level of
knowledge about sustainability of a project. All knowledge I have about
this topic comes from self learning and personal interests, because in my
university of origin this competence does not exist. I think that I am able
to analyze correctly the sustainability of a project in all three dimensions:
economic, social and environmental. I can identify possible impact of an
IT project. Moreover I can find new ideas and solutions in order to make
these IT projects more sustainable in any of these three areas.

To me, economic and environmental aspects of IT projects are easy to
cover since their impact can be easily measured and actions can be taken
in consequence. For example, development teams can choose product
materials taking into account how big are its associated costs or
environmental footprints. However, to me social sustainability is harder
to analyze. I do not know accessibility, ergonomics, on safety metrics; nor
possible solutions or actions to modify project shortcomings on these
aspects. Despite this lack of knowledge in these topics, I consider social
impact of my research projects, so they can help people improve their
quality of life.

On the other hand, during the survey I found some terms that I was
not familiar with. For example, the existence of deontological ethics about
sustainability for computer scientists. So I had to find information about
this logic. In the future I want to know more about them so I can apply
them to future projects.
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3.3.2 Environmental Sustainability

During the development this project it consumed only one environmental
resource, electricity. Test clusters (ThunderX and Dibona ones) were
running during all 4 months. In fact, they are running all year, because
they are a shared resource for different scientific research groups.
Dibona’s ThunderX2 has a known power of 180 watts and ThunderX 120
watts. However, these metrics are not exact because the whole system
consumes more power, and both processors have lower operation
frequencies, because they are not always working at full load. Since the
start of the project to its finish date, there have been 2520 hours. That
supposes 756 kWh consumed by the clusters.

Besides these two clusters, a laptop was used for development tasks,
but its energy consumption is negligible, it spent around 500 Wh. All this
energy consumption could not be reduced because the laptop was used only
when it was necessary and the cluster cannot be turned off.

Even though, the resulting conclusions extracted from this project can
be used in future works, so wasted energy would be further amortized.
When programmers know what compiler flags generate best power efficient
code helps to waste less energy.

Therefore its environmental sustainability is awarded with an 8. Despite
its high energy consumption during development, it could save energy in
posterior applications, and has a low risk for the environment.

3.3.3 Economic Sustainability

Project costs have been already detailed in section 3.1. There is no
estimation for maintenance within budget summary, since the only
project outcome is the results report. However, the project’s useful life is
expected to last for a while, because it may be useful for future research
teams or developers.

Reducing project budget maintaining the project scope could have been
only achieved by reducing the number of dedicated hours taken to develop
it, but this would have required a more experienced developer who’s salary
would be higher. Both hardware and software resources are clearly justified
in the planning section, so every euro spent in this resources could not be
saved.
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The cost of this project compared to other state-of-the-art and similar
projects is more affordable, due to a shorter project duration, lower waste
in human resources and lower use of software and hardware resources.
This similar projects invest from 17933e to 23026e during development
[26][27][27]. While the total cost of the project is 7487.14e.

This project is awarded an 8 in the economic sustainability area, since
most of the software tools have no cost at all, there is no maintenance,
and even though the Mont-Blanc clusters are expensive, they are not used
exclusively for this research.

3.3.4 Social Sustainability

At personal level, the accomplishment of the projected plan has supposed
my firsts steps in research. As said many times before, this project will
engross Academia publications and may contribute to have a better
understanding of today’s compilers. At the same time I have learned
about how compilers generate assembly code and optimize it. This
project also aimed to support the development of high performance
computing models for Arm technology. This may help to perfect HPC
applications like medical, engineering and scientific simulations.

Actually, there is a lot of literature published about GCC and Clang
compilers (Arm HPC Compiler is based on Clang). But all this articles
focus on Intel architectures, therefore there is not enough information of
code generated by these two compilers on Arm architectures. HPC
research, which was treated indirectly in this project, has a high impact
in society because it helps scientist find solutions for social problems like
air pollution, medical treatments or product development.

Hence, it is awarded a 7 in the social sustainability area, since it will
benefit the scientific community and has the potential to improve people
quality of life, not directly but indirectly.
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Methodology

This chapter describes the experiment infrastructure built and the
methodology we follow. First, a description of the software stack used,
followed by selection of benchmarks, an architectural description of the
test machines, and finally the experimentation environment and metrics.

4.1 Benchmark Selection

This section describes the selection process we have followed to choose
the set of benchmarks we want to study. Then, the chosen benchmark
suites are described. A benchmark suite is a collection of benchmarks that
are grouped by its characteristics. As mentioned in section 2.2.2, we have
picked up benchmark suites employed in the Mont-Blanc 2020 project. The
project team has followed this criteria:

I Benchmarks represent a computational pattern that consumes
significant resources on today’s massively-parallel HPC systems.

II Benchmarks are foreseen to be long-term candidates for relevant HPC
computations.

III Benchmarks allow porting in terms of manual code vectorization,
auto-vectorization, and by using generic performance libraries.
Benchmarks are suitable to SVE porting.

IV Benchmarks demand high memory bandwidth or represent relevant
HPC computational patterns.

V Benchmarks are written in C/C++ and use OpenMP.

26
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Therefore, we have choose the following suites of benchmarks:

Name of the suite Type Number of benchmarks

HACCK n-body methods 1

HPCG sparse linear algebra 1

RAJAPerf set of HPC kernels 11

Table 4.1: Suite description and number of benchmarks per suite.

4.2 Metrics

To make an accurate and deep analysis we need a set of metrics that detail
the behaviours of the experiments. Moreover, these metrics help us to
compare different experiments between them. In this section we present
the metrics and how they are obtained.

First and most basic metric is speed-up. It help us to calculate how
much faster or slower is one experiment respect to other. Speed-up is
calculated as:

Speedup =
Base Execution Time

Improved Execution Time

When we calculate the speed-up respect to the same application but
changing the number of cores, we usually talk about parallel efficiency. It
measures how an application speeds-up respect to the number of cores used
and is calculated as:

Parallel Efficiency =
Speed− up

Number of Threads

Another performance metric commonly used when comparing different
processors with different frequency is GFlops. It measures the number of
floating operations executed by time unit. In most benchmarks the main
part of the computation work is done by floating point operations, therefore
measuring the number of floating point instructions is more accurate than
measuring the total number of instructions. It is calculated as:

GFlops =
Number of Floating Point Instructions Executed

Execution Time× 109
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When an in-depth analysis is made is common to measure the number
of misses per kilo instruction (MPKI). This metric is hard to understand
because it describes part of the architectural behaviour hidden to the
programmer. This metric is also ambiguous because some times higher is
worse (a bad code manages worst data and therefor generates more
misses) and in others is better (a good code executes in less instructions
and thus with higher misses per kilo instructions). MPKI is calculated as

MPKI =
Number of Misses

Number Kilo of Instructions Executed

A common way of measuring power efficiency is calculating performance
(GFlops) per Watt. This metric measures performance per power unit. It
is calculates as follows:

GFlops/Watt =
Number of Floating Point Instructions Executed

Average Power Consumption× Execution Time× 109

Finally we also want to measure energy efficiency with two distinct
metrics. First one is total energy consumed by processor during the
experiment. We only have power measuring tools, therefore we will
obtain total energy consumed as follows:

Energy (Joules) = Average Power Consumed×Execution Time (Seconds)

The last experimental metric is energy delay product (EDP), it relates
time to the energy consumed. Sometimes EDP is a better metric than total
energy consumed because some codes can be slower in order to consume
less energy. But we are interested not only in the energy consumption
reductions but also about the performance.

EDP = Energy consumed(Joules)× Execution Time (Seconds)

Finally, we present a theretical metric that we will compute for every
benchmark using only the high level code. This metric measures the
amount of floating point operations a benchmark does for every byte of
data brougth from memory, it is called Arithmemtic Intensity. It can help
us clasify benchmarks and it is calculated as follows:

Arithmetic Intensity (AI) =
Number of floating point operations

Number of bytes read from memory
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4.3 Software Stack

In this section we will describe the main software packages used to generate
HPC benchmark binaries and profile them.

4.3.1 Compilers

There are many different compiler solutions in the market, like Fujitsu or
Cray compilers. However, for compiling our applications we have used the
only two representative and available compilers: GCC 8.2.0 [30] and Arm
Compiler for HPC 19.0 [31]. The latter is based on the LLVM 7.0.2 tool
chain. Both compilers support SVE and NEON vectorization and
implement the OpenMP standard and runtime. In particular, OpenMP
4.5 is fully supported for C/C++ in GCC through the libgomp library
(GOMP), while Arm compiler offers C/C++ support for OpenMP 3.1
and some features of OpenMP 4.0/4.5 through the libiomp library. Both
compilers have entirely different processes to generate optimized code. In
fact, Arm has been working with to development teams two improve both
compilers ARM ISA assembly generation [20].

4.3.2 Performance Libraries

Some applications like HPCG use Arm Performance Libraries (PL) that
provide BLAS, LAPACK, FFT, and standard math routines. PL routines
are tuned specifically for ARM processors. We have used version 19.0 of
the PL for both GCC 8.2.0 and Arm HPC Compiler 19.0.

4.3.3 Hardware Counters

Because we want to characterize application behaviour we need more
information than just execution time. Today’s processors implement a set
of registers and counters that can log architectural events inside the
processor. Each processor can register a different subset of architectural
events but almost all include cycle and instruction count.

There are several libraries that implement system calls that are
available to developers so they can read performance counters. The two
most famous are Performance Application Programming Interface (PAPI
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[33]) and libpfm [32]. We will use the former with extrae, explained in
next subsection. We will use the latter to instrument benchmark code,
capturing events during the execution of the region of interest (ROI). The
concrete events we will capture are specified in section 4.3. We use both
tools, instead only PAPI, because extrae generates big trace files that are
difficult to understand and have a lot of information. Therefore, we will
use libpfm for all the initial experiments, so we can obtain ROI
performance counters. For the interesting cases, we will use PAPI with
extrae for a finer grain level of detail with traces.

4.3.4 Extrae and Paraver

Extrae and Paraver are two tools developed by BSC. The former is a
dynamic instrumentation package to trace programs already compiled
and run with shared memory programming model (OpenMP or
pthreads), the message passing (MPI) programming model, or both
programming models. Extrae generates trace files that can be later
visualized with Paraver. Paraver is a flexible parallel program
visualization and analysis tool. Paraver was developed responding to the
need of having a qualitative global perception of the application behavior
by visual inspection and then to be able to focus on the detailed
quantitative analysis of the problems. We will use extrae with OpenMP
and PAPI, so we can visualize the hardware counters and OpenMP events
through time.

4.3.5 ArmIE

Arm Instruction Emulator (ArmIE [22]) is an emulation tool that allows
the execution of binaries compiled for ARMv8.2 ISA on machines based
on ARMv8.0 ISA. Therefore, we can emulate the execution of a SVE
binary without a machine that implements SVE. However, emulation is
not suitable to obtain performance metrics and execution times, because
ArmIE’s results are not related with the behaviour of a real machine
implementing ARMv8.2 ISA.

One of the characteristics ArmIE implements is instruction counting,
that allow us to count how many instructions are executed, and what
number of them is emulated. With both numbers we can check how
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increasing the machine vector length used by SVE instructions the total
number of instructions is reduced.

4.4 Test Machines Architecture

In this section we describe what are the processors that we will evaluate in
our experiments. The description include the architectural characteristics
of the processors.

4.4.1 ThunderX

Figure 4.1: ThunderX1 cluster diagram [36]

The ThunderX node is dual socket system, this means that the node
has two ThunderX processors. However, we will only use on the
ThunderX processors. ThunderX processor is a 64-bit ARMv8 server
SoCs, that enables servers and appliances optimized for compute, storage,
network and secure compute workloads in the cloud and HPC datacenters
[35]. One ThunderX processor has 48 in-order cores, manufactured in
28nm process technology under architectural license from Arm. It can
run up to 2.5Ghz but our cluster is configured at 1.8Ghz, so the TDP is
under its 120W. ThunderX memory hierarchy is described in Table 4.2
and Figure 4.1 describes processor layout.
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L1
Data
Cache

Policy Write-through

Type Private

Size 32KiB

Associativity 32-way

Block 128-bytes

L1
Instruction
Cache

Size 72KiB

Associativity 39-way

Block size 128-bytes

L2
Cache

Policy Write-back

Type Shared

Size 16MiB

Associativity 16-way

Block 128-bytes

Table 4.2: ThunderX memory hierarchy [34].

The ThunderX pipeline is still unknown today, but several articles [37]
and compilers development logs [38] take into account that there are two
execution pipelines inside each ThunderX core as shown in Figure 4.2.
This pipeline comes from the Octeon III router core, but we can figure out
that ThunderX’s one is very similar. ThunderX SIMD and floating point
instructions can only be executed in one of the execution pipelines.

Finally, hardware counters supported by this processor are not
documented and most libraries cannot read most of them. Despite, this
problem we have been able to read instructions, cycles and L1-data
misses.

4.4.2 ThunderX2

The second generation ThunderX2 product family introduced by Cavium
was released for general availability in early 2018. ThunderX2 is a family
of 64-bit ARMv8.1 processors re-branded by Cavium based on the original
design of Broadcom’s Vulcan. In the ThunderX2 CN99XX series, the ARM
based SoC integrates high-performance custom out-of-order (OoO) cores,
supporting up to 32 ARMv8.1 cores in a single-socket configuration and
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Figure 4.2: Pipe diagram of a ThunderX1 like processor (Octeon III) [37]

64 cores in a dual-socket configuration, with a frequency of up to 2.5GHz
in nominal mode and 3GHz in Turbo mode, but in the Dibona prototype
frequency is fixed at 2.0GHz. ThunderX2 has a Thermal Design Power
(TDP) of 180 Watts. Simultaneous Multithreading (SMT) is supported
which allows up to 4 threads per physical core, but we will not use it,
SMT is deactivated in Dibona prototype by default. Each core has 32
KiB L1 instruction and data cache, as well as 256 KiB L2 cache. The 32
MiB L3 cache is distributed among the cores. Each ThunderX2 processor
provides multiple, up to 8, DDR4-2666 memory controllers per chip with
a maximum bandwidth of up to 170 GB/s [16].

In Figure 4.3 we can see the block diagram of one ThunderX2 core.
The most interesting aspects of this core for our project is that there are
2 SIMD execution units and the double load bandwidth, two 128-bits load
execution units. ThunderX2 memory hierarchy specs are shown in Table
4.3.
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Figure 4.3: ThunderX2 block diagram [39]
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Characteristic L1 D-Cache L2 Cache L3 Cache

Type Private Private Shared, Exclusive

Size 32KiB 256KiB 16MiB

Associativity 8-way 8-way N/A

Table 4.3: ThunderX2 memory hierarchy.

4.4.3 Skylake

Because BSC power measurement tools broke before we could measure
power consumption of ThunderX, we have decided to use another test node
inside the same cluster for power consumption experiments. This machine
is built with 2 Intel R© Xeon R© Platinum 8176 Processor [43]. Skylake is a
family of x86˙64 processors. This processor contains 28 Out-of-Order cores
that support Intel R© SSE4.2 (128 bits SIMD), Intel R© AVX (256b SIMD),
Intel R© AVX2 (245b SIMD), Intel R© AVX-512 (512b SIMD) instructions
set extensions. Thanks to multithreading each core support 2 threads that
suppose a total number of 56 threads. Base frequency is 2.1 Ghz but on
turbo mode can reach 3.80 GHz. Last level of cache is L3 that has a size
of 38.5 MB. The TDP is 165 Watts.

Its most important architectural characteristics are the 224 ROB entry,
two 512 bits Vector Floating Point ALU.

4.5 Workload and Environment

Since most HPC systems run over MIMD and SIMD paradigms we have
done our experiments over different combinations of them. First, we have
compiled four basic binaries that correspond with: NEON supported
binary compiled with Arm HPC compiler (NEON-ArmHPC), NEON
supported binary compiled with GCC, no-SIMD support binary compiled
with Arm HPC Compiler (SCALAR-ArmHPC) and no-SIMD support
binary with GCC Compiler (SCALAR-GCC). And for the emulation
experiments we have compiled two more binaries that are SVE support
binary compiled with Arm HPC Compiler (SVE-ArmHPC) and SVE
support binary compiled with GCC (SVE-GCC). We have compiled two
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no-SIMD versions only to compare them with SIMD ones. MIMD
paradigm has been tested executing these binaries with different number
of threads and binding each thread to only one core of the machine.

4.5.1 Compilation

Tables 4.4 and 4.5 detail the base compiler flags enabled for GCC and
Arm HPC Compiler. Tables describe only two sets of compiler flags that
are shared by all binaries. There are only two compiler flags that change
for every binary, they are listed in Table 4.6. These two flags must be
concatenated to the end of the basic flags in order to achieve the correct
compilation. Respect to the rest of the compiler flags, we only employ
the default ones that came with the vanilla sources. Flags have only been
modified to generate specific ARMv8 code and allow or deny vectorization.
Skylake flags are listed in appendix B.

Application Flag SCALAR-GCC

HACCK -O3 -ffast-math -fopenmp -funroll-loops -ffp-contract=fast

HPCG -O3 -ffast-math -fopenmp -funroll-loops -std=c++11 -ffp-
contract=fast -larmpl lp64 mp

RAJAPerf -O3 -fopenmp -ffast-math

Table 4.4: Flags for GCC scalar version.

Application Flag SCALAR-ArmHPC

HACCK -O3 -ffast-math -fopenmp -funroll-loops -ffp-contract=fast

HPCG -O3 -ffast-math -fopenmp -funroll-loops -std=c++11 -ffp-
contract=fast -larmpl lp64 mp

RAJAPerf -O3 -fopenmp -ffast-math

Table 4.5: Flags for Arm HPC Compiler, scalar version.
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Binary Version -march Flag

SCALAR-GCC -march=armv8-a+fp+nosimd -fno-tree-vectorize

SCALAR-ArmHPC -march=armv8-a+fp+nosimd -fno-vectorize

NEON-GCC -march=armv8-a+fpsimd -ftree-vectorize

NEON-ArmHPC -march=armv8-a+fpsimd -fvectorize

SVE-GCC -march=armv8-a+fp+sve -ftree-vectorize

SVE-GCC -march=armv8-a+fp+sve -fvectorize

Table 4.6: Flags for GCC, NEON supported version.



Chapter 5

Benchmark Vectorization

This chapter describes each kernel code and its main characteristics.
Moreover, it details the modifications we have made to the code in order
to achieve auto-vectorization, and what problems we had during
compilation.

5.1 RAJAPerf

For all the benchmarks we have added simd clause to OpenMP parallel
for clause in order to vectorize the loops automatically. For some of the
kernels we have also added schedule(dynaamic,CHUNK) clause in order to
partition the workload in blocks of CHUNK iterations of the parallel loop.
This second clause is necessary to balance the workloads in ThunderX core,
since some processor slowed down during execution.

5.1.1 MULADDSUB

This first kernel executes a Hadamard product of two vectors, addition
and subtraction. We have modified the original source code, because both
compilers produce extra and not necessary load operations. The original
MULADDSUB code and the modified version to ease vectorization are
shown in Listing 1. With the original code compilers distrust the accesses
performed by other threads; thus, they generate one load and one store for
each of the computation variables instead of storing them to registers. We
have resolved this by adding the firstprivate clause, see Sublisting 1b. This
kernel, has a very low Arithmetic Intensity (AI) because it makes only 3
floating point operations (flops) per 5 data elements of 8 bytes, therefore
the AI is 0.075 flops/bytes.

38
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Listing 1: MULADDSUB code

#pragma omp parallel for simd

for (int i = begin; i < end; ++i ){

out1[i] = in1[i] * in2[i];

out2[i] = in1[i] + in2[i];

out3[i] = in1[i] - in2[i];

}

a: Original MULADDSUB code

#pragma omp parallel for simd \

firstprivate(out1,out2,out3, \

in1,in2)

for (int i = begin; i < end; ++i){

double in1_i = in1[i];

double in2_i = in2[i];

out1[i] = in1_i * in2_i;

out2[i] = in1_i + in2_i;

out3[i] = in1_i - in2_i;

}

b: Optimized MULADDSUB
code

5.1.2 EOS

The EOS kernel, shown in Listing 2, has an AI of 0.5 flops/byte. In each
iteration, it takes 4 data elements of 8 bytes from memory and executes
16 floating operations. Despite having 10 memory accesses, only 4 of them
are fetched from memory. This kernel has a good memory locality as the
remaining accesses have already been fetched from memory and they are
stored in cache.

Listing 2: EOS code

#pragma omp parallel for simd schedule(dynamic,CHUNK)

for (int i = ibegin; i < iend; ++i ) {

x[i] = u[i] + r*( z[i] + r*y[i] ) +

t*( u[i+3] + r*( u[i+2] + r*u[i+1] ) +

t*( u[i+6] + q*( u[i+5] + q*u[i+4] ) ) );

}

5.1.3 HYDRO

Listing 3 shows HYDRO kernel. HYDRO has a low arithmetic intensity
of 0.2083 flops/byte. HYDRO executes 3 accesses to main memory and 5
flops.
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Listing 3: HYDRO code

#pragma omp parallel for simd schedule(dynamic,CHUNK)

for (int i = ibegin; i < iend; ++i ) {

x[i] = q + y[i]*( r*z[i+10] + t*z[i+11] );

}

5.1.4 INT PREDICT

The INT PREDICT kernel is a one dimensional stride stencil solver, see
Listing 4. INT PREDICT accesses a matrix stored in a column major
order. This kernel is thought to stress memory systems by non-contiguous
pattern accesses, and has a low AI of

17 flops

11 accesses× 8 bytes
= 0.19318 flops/byte

.

Listing 4: INT PREDICT code

#pragma omp parallel for simd schedule(dynamic,CHUNK)

for (int i = ibegin; i < iend; ++i ) {

px[i] = dm28*px[i + offset * 12] + dm27*px[i + offset * 11] +

dm26*px[i + offset * 10] + dm25*px[i + offset * 9] +

dm24*px[i + offset * 8] + dm23*px[i + offset * 7] +

dm22*px[i + offset * 6] +

c0*( px[i + offset * 4] + px[i + offset * 5] ) +

px[i + offset * 2];

}

5.1.5 COPY

COPY is a memory bandwidth stress kernel from the well-known Stream
benchmark [41], Listing 5. No floating point operations are executed in
this kernel, thus its AI is 0.

Listing 5: COPY code

#pragma omp parallel for simd schedule(dynamic,CHUNK)

for (int i = ibegin; i < iend; ++i ) {

c[i] = a[i] ;

}
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5.1.6 VOL3D

VOL3D is a very interesting application that manipulates points in a 3D
space, Listing 6. In contrast to the previous kernels, has a high AI of
1.388 flops/byte. This value has been obtained experimentally. We have
measured the number of data bytes requested by the processor and the
number of flops executed. If we divide the number of memory accesses
by the number of iterations we get 8 memory accesses requested in each
iteration:

Listing 6: VOL3D code

#pragma omp parallel for simd schedule(dynamic,CHUNK)

for (int i = ibegin ; i < iend ; ++i ) {

double x71 = x7[i] - x1[i] ; double y71 = y7[i] - y1[i] ;

double x72 = x7[i] - x2[i] ; double y72 = y7[i] - y2[i] ;

double x74 = x7[i] - x4[i] ; double y74 = y7[i] - y4[i] ;

double x30 = x3[i] - x0[i] ; double y30 = y3[i] - y0[i] ;

double x50 = x5[i] - x0[i] ; double y50 = y5[i] - y0[i] ;

double x60 = x6[i] - x0[i] ; double y60 = y6[i] - y0[i] ;

double z71 = z7[i] - z1[i] ; double z30 = z3[i] - z0[i] ;

double z72 = z7[i] - z2[i] ; double z50 = z5[i] - z0[i] ;

double z74 = z7[i] - z4[i] ; double z60 = z6[i] - z0[i] ;

double xps = x71 + x60 ;

double yps = y71 + y60 ;

double zps = z71 + z60 ;

double cyz = y72 * z30 - z72 * y30 ;

double czx = z72 * x30 - x72 * z30 ;

double cxy = x72 * y30 - y72 * x30 ;

vol[i] = xps * cyz + yps * czx + zps * cxy ;

xps = x72 + x50 ;

yps = y72 + y50 ;

zps = z72 + z50 ;

cyz = y74 * z60 - z74 * y60 ;

czx = z74 * x60 - x74 * z60 ;

cxy = x74 * y60 - y74 * x60 ;

vol[i] += xps * cyz + yps * czx + zps * cxy ;
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xps = x74 + x30 ;

yps = y74 + y30 ;

zps = z74 + z30 ;

cyz = y74 * z60 - z74 * y60 ;

czx = z74 * x60 - x74 * z60 ;

cxy = x74 * y60 - y74 * x60 ;

vol[i] += xps * cyz + yps * czx + zps * cxy ;

xps = x74 + x30 ;

yps = y74 + y30 ;

zps = z74 + z30 ;

cyz = y71 * z50 - z71 * y50 ;

czx = z71 * x50 - x71 * z50 ;

cxy = x71 * y50 - y71 * x50 ;

vol[i] += xps * cyz + yps * czx + zps * cxy ;

vol[i] *= vnormq ;

}

5.1.7 FIR

Finite Impulse Response (FIR) filter is a signal processing application
that applies a filtering function in different time steps, Listing 7. This
application has great locality and reuse. On every iteration, 16 elements
of 8 bytes of in array are used, but only one is brought from memory, the
rest are stored in cache. There are 16 multiplications and 15 additions for
every 2 elements of 8 bytes loaded, thus the AI is 1.938 flops/byte.

Listing 7: FIR code

double coeff_array[FIR_COEFFLEN] = { 3.0, -1.0, -1.0, -1.0,

-1.0, 3.0, -1.0, -1.0,

-1.0, -1.0, 3.0, -1.0,

-1.0, -1.0, -1.0, 3.0 };

#pragma omp parallel for simd

for (int i = ibegin ; i < iend ; ++i ) {

double sum = 0.0 ;

for (int j = 0 ; j < coefflen ; ++j ) {

sum += coeff[j]*in[i+j] ;

}

out[i] = sum ;

}
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5.1.8 JACOBI 1D

Original JACOBI 1D kernel, see Sublisting 8a, is a one-dimensional
convolution benchmark with an arithmetic intensity 0.1875 flops/byte (3
flops and 16 accessed bytes), similar to HYDRO and INT PREDICT, so we
decided to change the original code for a new one-dimensional convolution,
see Sublisting 8b. This convolution tries to find the local maxima in a one
dimension data stream. AI improves up to 0.375 flops/byte (6 flops 16 read
bytes). Filtering weights are parameterized so it can be easily modified.
The Original coefficient of 0.333 must be changed for 0.5 in order to follow
image filtering standards. This coefficient is 1

K , where K is the sum of the
positive weights.

Listing 8: JACOBI 1D code

for (int t = 0; t < tsteps; ++t) {

#pragma omp parallel for

for (int i = 1; i < N-1; ++i ) {

B[i] = 0.33333 * (A[i-1] +

A[i] +

A[i + 1]);

}

#pragma omp parallel for

for (int i = 1; i < N-1; ++i ) {

A[i] = 0.33333 * (B[i-1] +

B[i] +

B[i + 1]);

}

}

a: Original JACOBI 1D code

double weights[3] = { -1.0,

2.0,

-1.0 };

for (int t = 0; t < tsteps; ++t){

#pragma omp parallel for simd

for (int i = 1; i < N-1; ++i){

B[i] = 0.5 *

(A[i-1] * weights[0] +

A[i] * weights[1] +

A[i+1] * weights[2]);

}

}

b: Modified JACOBI 1D code

5.1.9 JACOBI 2D

We find the same situation in JACOBI 2D. Sublisting 9a shows original
JACOBI 2D code, which does an image convolution or box filtering, and
again we have the same problem this time with an IA of 0.3125 flops/byte.
We have followed the same approach, and we have replaced the original
kernel with a Laplace filter (Sublisting 9b) to recognise corners or points
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on a gray scale image. The IA is 1.125 flops/byte (18 flops and 16 read
bytes). Both JACOBI codes are very similar to the FIR kernel. The main
difference is that FIR has a nested loop and an accumulator variable that
can make compilers generate different code.

Listing 9: JACOBI 2D code

for (int t = 0; t < tsteps; ++t) {

#pragma omp parallel for

for (int i = 1; i < N-1; ++i ) {

for (int j = 1; j < N-1; ++j ) {

B[j + i*N] = 0.2 *

(A[j + i*N] +

A[j-1 + i*N] +

A[j+1 + i*N] +

A[j +(i+1)*N] +

A[j +(i-1)*N]);

}

}

#pragma omp parallel for

for (int i = 1; i < N-1; ++i ) {

for (int j = 1; j < N-1; ++j ) {

A[j + i*N] = 0.2 *

(B[j + i*N] +

B[j-1 + i*N] +

B[j+1 + i*N] +

B[j +(i+1)*N] +

B[j +(i-1)*N]);

}

}

a: Original JACOBI 2D code

double weights[9] = { 1, 4, 1,

4,-20, 4,

1, 4, 1 };

for (int t = 0; t < tsteps; ++t) {

#pragma omp parallel for simd

for (int i = 1; i < N-1; ++i ) {

for (int j = 1; j < N-1; ++j ) {

B[i*N+j] = 0.05 *

(A[(i-1)*N +j-1]*weights[0] +

A[(i-1)*N +j ]*weights[1] +

A[(i-1)*N +j+1]*weights[2] +

A[ i * N +j-1]*weights[3] +

A[ i * N +j ]*weights[4] +

A[ i * N +j+1]*weights[5] +

A[(i+1)*N +j-1]*weights[6] +

A[(i+1)*N +j ]*weights[7] +

A[(i+1)*N +j+1]*weights[8]);

}

}

}

b: Modified JACOBI 2D code

5.1.10 GEMM

The GEMM benchmark is a common matrix multiplication algorithm with
time cost O(n3). Original code in Listing 10a. We have removed the
collapse clause because it inhibited compiler vectorization. The alpha
constant has been removed too, because we wanted a lower IA. Original is
0.375 flops/byte, the same as JACOBI˙1D. Final code is shown in Listing
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10b. GEMM arithmetic intensity is hard to calculate as there is a some
reuse in the code. Because each matrix has a size of 2400x2400 elements,
all three matrices cannot fit in memory, but a row or a column can. First,
we only consider the inner loop. Only k is modified in each iteration, so
we can take A as a constant because only a row is stored in memory and
B as the read bytes source. Thus, AI is 0.25 flops/byte (2 flops and 8 read
bytes). We can repeat this computation and be more precise for the middle
loop. Only k and j are modified in each loop iteration, again A is a constant

and this time B and C are a source of data:
2400∗2 flops

(2400+1)∗8 read bytes
= 0.249

flops/byte.
Therefore, we can consider a theoretic AI of 0.25 flops/byte, however we

are running this benchmarks on real machines, and therefore we should
consider that memory is brought in blocks and stored in cache. Therefore
if the assembly code generated accesses only one element of the block and
then requests another block, the AI may be lower depending on the cache
block size or the optimizations performed by the compilers.

Listing 10: GEMM code

#pragma omp parallel for collapse(2)

for (int i = 0; i < ni; ++i ) {

for (int j = 0; j < nj; ++j ) {

C[j + i*nj] *= beta;

double dot = 0.0;

for (int k = 0; k < nk; ++k ) {

dot += alpha * A[k + i*nk] *

B[j + k*nj];

}

C[j + i*nj] = dot;

}

}

a: Original GEMM code

#pragma omp parallel for simd

for (int i = 0; i < ni; ++i ) {

for (int j = 0; j < nj; ++j ) {

C[j + i*nj] *= beta;

double dot = 0.0;

for (int k = 0; k < nk; ++k){

dot += A[k + i*nk] *

B[j + k*nj];

}

C[j + i*nj] = dot;

}

}

b: Modified GEMM code

5.1.11 FLOYD WARSHALL

Floyd-Warshall algorithm is a well known polynomial algorithm that can
find all pair short paths in a graph in time O(|V |3). As GEMM algorithm,
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this kernel has low locality and reuse, as can be seen in Listing 11. In
this case, pin[k + i*N] is a row of the input matrix. We can consider it
as a constant is reused in the inner loop through different iterations. We
consider the < operation as a floating point operation. Thus, its IA is 0.125
(2 flops and 16 read bytes).

Listing 11: FLOYD WARSHALL code

for (int irep = 0; irep < run_reps; ++irep) {

for (int k = 0; k < N; ++k) {

#pragma omp parallel for simd

for (int i = 0; i < N; ++i) {

for (int j = 0; j < N; ++j) {

pout[j + i*N] = pin[j + i*N] < pin[k + i*N] + pin[j + k*N] ?

pin[j + i*N] : pin[k + i*N] + pin[j + k*N];

}

}

}

}

5.2 HACCK

The Hardware/Hybrid Accelerated Cosmology Code (HACC [9]) , is a
cosmology N-body-code designed to run efficiently on diverse computing
architectures and to scale to millions of cores and beyond. It can simulate
gravity forces produced between particles at cosmological scale.

The first time we compiled the program we found that the Arm HPC
Compiler could vectorize the code whereas GCC could not. To enable
both compilers to vectorize the benchmark we modified the source code of
the benchmark, see Sublisting 12a. We found that the continue clause
was the problem and removed it using Boolean variables. Arm HPC
Compiler made this transformation using a bit mask approach. We also
changed single precision variables to double precision, because the rest of
the benchmarks used double precision. Then, we recompiled and verified
that both compilers have vectorized the code. Such modifications are shown
in Sublisting 12.
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Listing 12: HACCK code

#pragma omp simd \

reduction(+:lax,lay,laz)

for (int i = 0; i < n; ++i) {

float dx = x[i] - x0;

float dy = y[i] - y0;

float dz = z[i] - z0;

float r2 = dx * dx +

dy * dy +

dz * dz;

if (r2 >= MaxSepSqrd || r2 == 0.0f)

continue;

float r2s = r2 + SofteningLenSqrd;

float f=PolyCoefficients[PolyOrder];

for (int p=1; p<=PolyOrder; ++p)

f = PolyCoefficients[PolyOrder-p]

+ r2*f;

f = (1.0 / (r2s * sqrt(r2s)) - f) *

mass[i];

lax += f * dx;

lay += f * dy;

laz += f * dz;

}

a: Original HACCK code

#pragma omp simd \

reduction(+:lax,lay,laz)

for (int i = 0; i < n; ++i) {

double dx = x[i] - x0;

double dy = y[i] - y0;

double dz = z[i] - z0;

double r2 = dx * dx +

dy * dy +

dz * dz;

bool bigger, zero;

bigger = r2 < MaxSepSqrd;

zero = r2 != 0.0f;

double r2s = r2 + SofteningLenSqrd;

double f=PolyCoefficients[PolyOrder];

for (int p = 1; p <= PolyOrder; ++p)

f = PolyCoefficients[PolyOrder-p]

+ r2*f;

f = (1.0 / (r2s * sqrt(r2s)) - f) *

mass[i];

lax += f * dx * zero * bigger;

lay += f * dy * zero * bigger;

laz += f * dz * zero * bigger;

}

b: Optimized HACCK code

There are three different versions of the HACC Kernel depending on
the degree of the polynomial used (order 4, 5 or 6). We will analyze the
performance of all of them.
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5.3 HPCG

The last application we have selected is High Performance Conjugate
Gradient (HPCG) benchmark. HPCG was designed to replace the Linpack
benchmark, whose main objective is to serve as a metric for ranking high
performance computing systems [10]. HPCG resolves systems of sparse
linear equations using an iterative method. This algorithm makes use of
many known linear functions like matrix-vector multiplication or library
calls that make high level code hard to read, therefore we. The main
modification done to the code is the addition of the simd clause To parallel
loops.



Chapter 6

Results and Analysis

In this chapter we present and analyze the results of our experiments on
ThunderX and ThunderX2. First, we expose what are the performance
bounds of our applications using Roofline Models. Then, we divide
the benchmarks in different sets by their behaviors and analyze their
performance. Moreover, we compare both processors and detail power
efficiency and energy consumption of the applications. Finally, we analyze
what are the causes of these behaviors by inspecting the assembly code
generated by Arm HPC Compiler and GCC.

6.1 Roofline Models

Roofline models [40] are a simple and visual way to understand program
behaviour. A roofline model ties together floating point performance,
arithmetic intensity, and memory performance in a two-dimensional graph,
see Figure 6.1. The Y-axis is GFlops per second (performance). Theoretical
ceilings can be derived using the hardware specifications. The X-axis is
operational intensity, operations per byte of DRAM traffic. Therefore,
we measure traffic between the caches and memory rather than between
the processor and the caches. We can then plot memory performance
by calculating the maximum floating-point performance that the memory
system of that computer can support for a given operational intensity. This
formula drives the two performance limits in the roofline model:

GFlops/s = min

{
peak floating point performance

peak memory bandwidth × operational intensity

We have calculated peak performance with the following formula:

49
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(6.1)
Peak GFlops = (CPU speed in GHz)× (number of CPU cores)×

(SIMD element wide)× (flops per operation)×
(number of SIMD units)

We have used fused multiply-add (FMA) instruction as reference to
compute peak performance. It performs two floating point operations, thus
an FMA using NEON performs 4 double precision floating point operations.
Next we list the different performance peaks we will use for the roofline
models:

For 48 ThunderX cores using scalar instructions in a double precision
program we have:

1.8 GHz×48 cores×1 element wide×2 flops×1 exec. unit = 172.8 GFlops

For 48 ThunderX cores using SIMD in a double precision program:

1.8 GHz×48 cores×2 elements wide×2 flops×1 SIMD unit = 345.6 GFlops

ThunderX can deliver up to one SIMD FMA instruction of 128 bits
every cycle.

For one ThunderX2 core using scalar instructions in a double precision
program:

2.0 GHz× 1 core× 1 element wide× 2 flops× 2 exec. unit = 8 GFlops

For one ThunderX2 core using SIMD in a double precision program:

2.0 GHz× 1 core× 2 elements wide× 2 flops× 2 SIMD unit = 16 GFlops

For 32 ThunderX2 cores using scalar instructions in a double precision
program:

2.0 GHz× 32 cores× 1 element wide× 2 flops× 2 exec. unit = 256 GFlops

For 32 ThunderX2 cores using SIMD in a double precision program:

2.0 GHz×32 cores×2 elements wide×2 flops×2 SIMD unit = 512 GFlops
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ThunderX2 can deliver up to two SIMD FMA instructions of 128
bits every cycle. This is equivalent to 8 double precision floating point
operations.

Peak theoretical memory bandwidth of ThunderX is 150,0 GB/s. While,
ThunderX2 has a peak memory bandwidth of 170 GB/s.

Figure 6.1: Roofline model for 48 ThunderX cores

Figure 6.1 represents the roofline model for a ThunderX processor with
48 cores. This roofline has two CPU performance ceilings: SCALAR
and NEON double precision performance ceilings. There are also two
memory bandwidth ceilings: the black line represents the theoretical peak
bandwidth (150 GB/s) and the red line the maximum bandwidth achieved
using the STREAM benchmark (70 GB/s).

For every benchmark we make 4 measurements corresponding to all
possible compiler and flag flavors. These are the two compilers GCC
and Arm HPC Compiler (labeled ArmHPC) and no-SIMD (labeled as
SCALAR) or SIMD (labeled as NEON).
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We can see that all benchmarks are far from the theoretical bandwidth
limit and only MULADDSUB is near from the experimental memory
peak. This means that the performance bottleneck is the computational
CPU capacity. The performance (GFlops/s) of FLOYD WARSHALL and
GEMM benchmarks is really poor. In the former, we can only obtain 0.746
GFlops/s with 48 cores (less than 0.2% of the peak), and in the latter,
about 2.166 GFlops/s (around 0.6%). In both benchmarks a matrix is
traversed in row major order. Despite the rest of the benchmarks have
a better performance none of them is above 47.30 GFlops (13.6% of the
peak). Therefore we can say that arithmetic units are underused because of
data dependencies and pipeline stalls. These are due to microarchitectural
details of a ThunderX core, that features an in-oreder pipeline that is not
well suited for HPC tight loops. We can also distinguish between compilers
and between SCALAR and NEON. We will explain this in Section 6.2.

Figure 6.2: Roofline model for 1 ThunderX2 core

Figure 6.2 is the ThunderX2 roofline model for only one core. Again
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we can see that all applications are bounded by CPU performance. In
this model memory bandwidth ceilings do no represent any constraint.
FLOYD WARSHALL executed on only one core of ThunderX2 has a
better performance than executed on 48 cores on the ThunderX. The peak
performance is 5.05 GFlops/s (31.6%). In summary ThunderX2 exploits its
resources better than ThunderX due to its out-of-order pipeline; however,
there is still room for improvement.

Figure 6.3: Roofline model for 32 ThunderX2 cores

Figure 6.3 shows a second roofline model for ThunderX2, this time
using all 32 cores. Again, the black memory bandwidth ceiling represents
the theoretical limit (170 GB/s) and the red one represents the peak
achieved by STREAM benchmark (100 GB/s). This third model is
completely different from the past two because many benchmarks reach the
experimental memory bandwidth limits. No matter how fast the CPU we
use is, it will be limited by memory bandwidth. Only HPCG, JACOBI 2D,
FIR and some versions of HPCG are below the memory bound ceiling, and
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therefore can improve their performance.
These behaviour differences between test machines can be explained.

The ThunderX processor is built with in-order cores that make it perform
far from its theoretical peak. In contrast, the ThunderX2 processor is
based on out-of-order cores that yield superior performance. With only one
thread and one core running, performance is not constrained by memory
bandwidth, but when the processor is running with all the cores, it is.

6.2 Performance, Scalability and Bounds

This section contains the performance differences (speed-up) between the
four compiled binaries, GCC using scalar instructions (SCALAR-GCC),
GCC compiled with NEON support (NEON-GCC), Arm HPC Compiler
using scalar instructions (SCALAR-ArmHPC) and Arm HPC Compiler
with NEON support (NEON-ArmHPC). We will remark what are the main
limitations in benchmarks with poor scalability.

Figure 6.4 shows the speed-up between the four binaries on 48 ThunderX
cores. The speed-up is normalized to the execution time using one thread
and the SCALAR-ArmHPC version. The differences between versions do
not change with the number of threads, thus we only need one graph.

On average there are no major differences between both SCALAR
binaries and both NEON binaries. The speed-up is about 1.25x for
NEON versions compared to SCALAR. Nevertheless, each benchmark
behaves differently. For example MULADDSUB vectorization speeds
up 2x SCALAR performance, however, vectorization does not improve
performance in multiple benchmarks, e.g. FLOYD WARSHALL, GEMM,
or VOL3D. We also observe that the compiler can play a major role in
performance, in EOS benchmark, SCALAR-GCC is 1.5 times faster than
SCALAR Arm HPC compiler.

The selected applications scale really well on the ThunderX processor, it
has an average parallel efficiency of 80%. Only two benchmarks (COPY and
HPCG) do not scale well and are under 40% of parallel efficiency, while 5
benchmarks scale up to 95%. However, this behavior is due to poor single-
core performance and the abundant amount of memory bandwidth that
does not become a limiting factor for performance.

Same information about one thread running on ThunderX2 processor is
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Figure 6.4: Speed-up (w.r.t 1-thread SCALAR-ArmHPC) of all benchmarks with
48 threads on a ThunderX node.

shown in Figure 6.5. We show speed-up for 1 and 32 threads separately
because they behave differently. We can see how vectorization speeds
up our applications 1.6x for NEON-ArmHPC and 1.63x for NEON-GCC
with respect to SCALAR-ArmHPC. A larger gain than that observed for
the ThunderX. According to the geometric mean there are no significant
differences between compilers. The most remarkable cases are JACOBI 2D,
which has a speed up of 2.5x for NEON-ArmHPC binary, and FIR,
where SCALAR-GCC is two times slower than SCALAR-ArmHPC. Other
interesting cases that we will analyze later in Section 6.5 are: VOL3D in
which NEON-GCC speeds up 1.5x with respect to NEON-ArmHPC binary
due to a better and shorter code, and EOS in which SCALAR-GCC speeds-
up 1.5x with respect to SCALAR-ArmHPC due to a better management
of the registers.

Figure 6.6 shows the speed up on 32 cores. In this second graph, we can
see how the memory bandwidth wall/ceiling affects our applications. Four
applications out of 13 have a parallel efficiency of 95%, but 6 benchmarks
are below 50%. Since benchmarks are sorted by their arithmetic intensity,
we can see that the ones with an arithmetic intensity (AI) below 0.5, from
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Figure 6.5: Speed-up (w.r.t 1-thread SCALAR-ArmHPC) with one thread on
ThunderX2 processor

COPY to EOS, do not benefit from vectorization and do not scale well.
While the ones with a higher AI do benefit; JACOBI 2D, VOL3D, HACCK
and FIR.

At first sight, Arm HPC Compiler versions scale better than GCC, due
to HPCG benchmark, in which GCC has a poor scaling. To compare both
compilers, we have to make a deeper analysis on each benchmark, because
there is a memory bandwidth bound. There are also some benchmark-
dependent behaviours we want to investigate, such as low performance of
NEON for JACOBI 1D benchmark (Section 6.2.3) or previous mentioned
low scalability of GCC for HPCG the benchmark (see Section 6.2.4).

6.2.1 Low AI Benchmarks

We have seen how AI is related with scalability, therefore we have selected
a set of benchmarks that have a low AI. Figure 6.7 shows the speed-up of 6
applications run on ThunderX for 4 compilers. X-axis corresponds to the
number of threads and Y-axis corresponds to the speed-up. The speed-
up is calculated with respect to SCALAR-ArmHPC binary execution time
with only one thread. The benchmarks are sorted by arithmetic intensity,
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Figure 6.6: Speed-up (w.r.t 1-thread SCALAR-ArmHPC) running 32 threads on
ThunderX2 node

thus COPY has the lowest AI, then MULADDSUB, and finally EOS has
the highest AI.

The COPY benchmark is clearly limited by memory bandwidth, because
it has an AI of 0. In most of the benchmarks there are no differences
between binary versions, except for MULADDSUB and EOS in which
NEON obtains a speed-up of 2x with respect to SCALAR versions,
achieving a speed-up of over 48x. Between these two extremes we find
FLOYD WARSHALL, INT PREDICT and HYDRO that do not scale
perfectly, but achieve a 65% of parallel efficiency. Despite these benchmarks
having a low AI, and significant memory bandwidth consumption, they are
not memory bound. This is because ThunderX is an in-order core, so any
memory stall can significantly reduce single thread performance. All 48
threads barely consume all the available memory bandwidth.

Figure 6.8 shows the same benchmarks running on ThunderX2. All these
benchmarks scale well until they saturate memory bandwidth and then stall
on that performance. It is easy too see the correlation of the results with the
ThunderX2 32 cores roofline model, higher AI means higher memory ceiling
and therefore better speed-up. Vectorization only takes an important role
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Figure 6.7: Speed-up and performance scalability (w.r.t 1-thread SCALAR-
ArmHPC) of low arithmetic intensity benchmarks executing on ThunderX

in EOS benchmark, where NEON versions hit the speed-up ceiling with
less cores than the SCALAR versions.

6.2.2 High AI Benchmarks

The second set of applications is formed by the four ones AI above 0.5.
Figure 6.9 shows the speed-up of the four binaries respect to 1-thread
SCALAR-Arm HPC execution time on ThunderX. In all four benchmarks
we can see a very strong scalability, specially for JACOBI 2D and HACCK.
Both benchmarks achieve a parallel efficiency of almost 100% for SCALAR
binaries.

VOL3D has a slightly worse scalability than the other three benchmarks
and does not benefit from NEON. This is due to a high overhead in some
NEON instructions like MLA and MLS, which appear mainly in VOL3D
(see Section 6.5.4). These instructions take more cycles than the SCALAR
versions [38]. Arm HPC Compiler doubles the performance of GCC in the
FIR benchmark thanks to a loop unrolling of two iterations (see Section
6.5.1) .

Same experiments under ThunderX2 (Figure 6.10) show again a great



6.2. PERFORMANCE, SCALABILITY AND BOUNDS 59

Figure 6.8: Speed-up and performance scalability (w.r.t 1-thread SCALAR-
ArmHPC) of low arithmetic intensity applications executing on ThunderX2

scalability for the four applications. In JACOBI 2D, the two SCALAR
versions scale well, but the NEON ones have a higher memory bandwidth
consumption and exhaust the memory bandwidth. NEON speeds-up
VOL3D around 2x for GCC and 1.5x for Arm HPC Compiler. GCC
generates a shorter and simpler assembly code for VOL3D, this is explained
in Section 6.5.4. Again Arm HPC Compiler beats GCC in FIR benchmark
by 2x, in this case the OpenMP runtime has a big impact on performance,
we look into this in Section 6.5.3.

6.2.3 JACOBI 1D

The JACOBI 1D benchmark is a special case because NEON versions of
the benchmark behave completely different compared to SCALAR versions
when ran on ThunderX2, see Figure 6.11. At first sight, we can see how
NEON versions scale worse than SCALAR versions at high core counts.
NEON versions stall at 22x speed-up while SCALAR versions scale up to
26x. With only one thread, NEON binaries have a 1.65x speed-up with
respect to SCALAR-ArmHPC running with one thread. However, with 32
threads NEON is 30.7% slower than SCALAR. In contrast, the execution
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Figure 6.9: Speed-up and scaling (w.r.t 1-thread SCALAR-ArmHPC) of high
arithmetic intensity applications executing on ThunderX

of the same binaries on ThunderX does not present this behaviour.

Figure 6.11: Speed-up (w.r.t 1-thread SCALAR-ArmHPC) of JACOBI 1D
running on ThunderX2
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Figure 6.10: Speed-up and scaling (w.r.t 1-thread SCALAR-ArmHPC) of high
arithmetic intensity applications in ThunderX2

We have used Extrae tool to take a picture of what is happening
during the execution at runtime level. Figure 6.12 depicts two traces of
JACOBI 1D obtained with Extrae and visualized with Paraver. Paraver
allow us to plot only the runtime function calls executed during the
experiment, and also select a time window of all the trace. Each function is
represented with a colored rectangle while idle execution is represented as
white spaces. Subfigure 6.12a an represents arbitrary but representative,
time window execution of SCALAR-ArmHPC running with 32 threads and
Subfigure 6.12b represents the same time window but of NEON-ArmHPC
running 32 threads. If we compare both traces, it is easy to see that in
the NEON version a large part of the execution trace is in idle state. In
other words, many threads are not computing anything while they wait
for other threads to finish their respective jobs. This behaviour is known
as load imbalance and happens when some threads have much more work
than others and take more time to finish their work. The problem can be
mitigated if the scheduling function is changed to another more suitable.
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(a) SCALAR-ArmHPC execution trace

(b) NEON-ArmHPC trace

Figure 6.12: Traces of JACOBI 1D compiled by Arm HPC Compiler with
and without SIMD, executed on ThunderX2 with 32 threads (only a few
are tagged for clarity). Y-axis represents the number of thread. X-axis
represents time, both share the same time window. Each colored rectangle
represents one parallel function. White represents idle.



6.2. PERFORMANCE, SCALABILITY AND BOUNDS 63

6.2.4 HPCG

As JACOBI 1D, the HPCG benchmark has a special behaviour. The
scalability on ThunderX (see Figure 6.13) is poor, it has a parallel efficiency
of 40% for 48 threads. This low scalability results from its sparse matrix-
vector multiplications that stresses the memory bandwidth. As mentioned
before ThunderX has a blocking cache that is very sensitive to HPCG’s
access patterns.

Figure 6.13: Speed-up (w.r.t 1-thread SCALAR-ArmHPC) of HPCG running on
ThunderX

When we run this application on ThunderX2 (Figure 6.14), scalability
of GCC drops below 12% parallel efficiency, while Arm HPC Compiler
achieves a 50% parallel efficiency. GCC is performing almost four times
slower than Arm HPC Compiler. Regarding vectorization, GCC cannot
benefit from it, while Arm HPC compiler does, but discreetly because
SCALAR-ArmHPC version is already memory bound.

As in previous section, the traces obtained using Extrae can help us to
explain GCC poor scalability. Subfigures 6.15a and 6.15b show the traces of
two executions of HPCG, the former is SCALAR-ArmHPC and the latter is
SCALAR-GCC. Again the trace consists on the parallel functions executed
by each thread. In this case there are different parallel functions but we
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Figure 6.14: Speed-up (w.r.t 1-thread SCALAR-ArmHPC) of HPCG on
ThunderX2

do not need to distinguish them because they are not interesting for the
analysis. Two parallel functions with the same color are the same parallel
function, and white represents idle state. The two most interesting details
are that GCC parallel functions are slower than Arm HPC Compiler ones
(rectangles are wider), and that GCC has a bigger sequential execution
time. This happens when only master thread (thread number one) is
working, and the rest of the threads are idle. This sequential function
is part of the runtime and it is a call to a shared library.

This sequential function is only a small part of the execution time, and
the slow-down of the parallel functions is more important (around 2x), we
have decided to look closer at the traces. Paraver usually hides fine grained
details when the time window is big, because it interpolates the colors of
the functions. Figure 6.16a and 6.16b show a close up of the traces. Paraver
shows us with these traces, that the sequential function of the runtime is
the main reason that made the total execution of GCC 4x slower. Figure
6.16a shows that master thread (thread one) is idle, and not executing a
any function. This happens because sequential function cannot be traced
by Extrae, libiomp library is not fully supported by Extrae.
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(a) SCALAR-ArmHPC trace

(b) SCALAR-GCC

Figure 6.15: Traces of HPCG compiled by GCC and Arm HPC Compiler,
executed on ThunderX2 with 32 threads (only shown the forth thread of
every four and number one). Y-axis represents the number of thread. X-
axis represents time, the same for both traces. Each colored rectangle
represents one parallel function. White represents idle.
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(a) SCALAR-ArmHPC trace

(b) SCALAR-GCC trace

Figure 6.16: Traces of HPCG compiled by GCC and Arm HPC Compiler,
executed on ThunderX2 with 32 threads (only shown the forth of every
four thread and number one). Y-axis represents the number of thread.
X-axis represents time, the same for both traces. Each colored rectangle
represents one parallel function.
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6.3 Test Machines Performance Comparison

This section compares ThunderX and ThunderX2 processors. Figure 6.17
shows the speed-up of the four binaries executed using one thread on
both processors. The reference time used is 1-thread SCALAR-ArmHPC
running on ThunderX. We use logarithmic scale for the speed-up for clarity.
The geometric mean shows a speed up of 7x between both processor for
SCALAR versions and 11x for NEON versions. These values are high
compared to typical comparisons between in-order and out-of-order cores.
Two examples are [44] in which speed-up values range from 1.21X to
3.25x and [45] with speed-ups between 1.66x and 4x. However, we are
not considering that ThunderX2 has a 10% higher frequency, and one level
of cache more. Furthermore, these papers only consider in-order cores with
buffered caches, but ThunderX has a blocking cache that is very sensitive
to memory bandwidth consuming benchmarks like RAJAPerf or HPCG.

Figure 6.17: Speed-up using the logarithmic scale (w.r.t 1-thread SCALAR-
ArmHPC on ThunderX) comparison of one thread between ThunderX
(TX1) and ThunderX2 (TX2)

The highest speed-up ThunderX2 achieves is 16X for MULADDSUB and
FLOYD WARSHALL. Again, we remark that ThunderX does not benefit
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from NEON as much as ThunderX2 does. In benchmarks with higher
arithmetic intensity (see the three benchmarks with highest AI: VOL3D,
HACCK and FIR) speed-up reduces to common values like 4x for SCALAR
and below 8x for NEON.

Figure 6.18: Speed-up using the logarithmic scale (w.r.t 1-thread SCALAR-
ArmHPC on ThunderX) comparison of 48 threads on ThunderX (TX1) and
32 threads on ThunderX2 (TX2)

When we run the benchmarks with 48 threads for ThunderX and 32
threads for ThunderX2, we see how speed-ups achieved by ThunderX2 over
ThunderX reduce to an average of 4x for SCALAR and NEON versions.
Again both nodes have a mild benefits from SIMD utilization, due to in-
order execution that stalls ThunderX pipelines and memory boundness
in ThunderX2. High arithmetic intensity benchmarks are the exception,
NEON binaries present significatn speed-ups, as we showed in Section
6.2. The most interesting benchmark is HPCG, in which GCC running
on ThunderX2 has the same performance as both binaries of Arm HPC
Compiler running on ThunderX, as disscused in Section 6.2.4.
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6.4 Power and Energy Efficiency of ThunderX2

Another aspect we want to analyze is the energy consumption, energy
efficiency and power efficiency of both processors. However, only
ThunderX2 measurements were available. Power measurement tool let us
read the average power consumption of the processor during the execution
of the region-of-interest (ROI) for each benchmark, see Figure 6.19. All
benchmarks are far away of the nominal TDP (180 watts), the highest value
is 132 watts achieved by NEON-GCC running VOL3D. Which means that
the power consumption is always below the 73.33% of the nominal TDP.
Both, HPCG and HACCK are below 100 Watts, very low values if we
consider that idle consumption of the processor is 67 watts.

Figure 6.19: Absolute power values in watt for every benchmark running
on ThunderX2 processor

With the average power consumption we can calculate the energy
consumed multiplying by the execution time. Figure 6.20 shows the
normalized energy consumed of all the benchmarks. We normalize the
values because each benchmark has a different magnitude and we only want
the relationships between different experiments of the same benchmark.
First thing we identify is two outliers, one is GCC binaries running the
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HPCG benchmark and the second is SCALAR-GCC running the FIR
benchmark. Both, experiments have a high execution time (see Figure 6.6
in Section 6.2). A part from this, we can see how NEON reduces the energy
consumed a 10% on average and up to a 50% for HACCK. This reduction
is higher for the benchmarks with high AI. Low AI benchmarks spend most
of the time waiting for data to arrive to the cache, reducing the potential
energy savings. Only JACOBI 1D and GEMM consume more energy when
NEON is used, and in both cases the performance and scalability of NEON
is worse than SCALAR versions.

Figure 6.20: Normalized energy consumption (w.r.t 32-threads SCALAR-
ArmHPC) for every benchmark running on ThunderX2 processor

Figure 6.21 shows the Energy Delay Product (EDP) of all the
benchmarks. EDP is a metric that considers not only the energy consumed
but also the execution time. Therefore, experiments that have a higher
execution time, but low energy consumption have higher EDP values than
experiments that present low execution time and low energy consumption.
As in previous figure, we can see HPCG and FIR outliers. If we ignore the
outliers SCALAR-GCC version has a higher EDP than SCALAR-ArmHPC
version, for instance, 1.3x for VOL3D, 1.2x for JACOBI 1D and 1.1x for
COPY and GEMM. In contrast NEON-GCC version has lower EDP than
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NEON-ArmHPC version, 60% less for FIR, 38% for VOL3D and 21% for
JACOBI˙2D. If we do not take into account HPCG, GCC benefits more
than Arm HPC Compiler from vectorization, reducing on average EDP a
10% with respect to SCALAR-ArmHPC. As in previous figure AI is related
to EDP reduction for NEON binaries.

Figure 6.21: Normalized EDP (w.r.t 32-thread SCALAR-ArmHPC) for
every benchmark running on ThunderX2 processor

After measuring energy efficiency, we proceed with power efficiency. We
use a performance/power metric (GFlops/Watt metric) because processors
tend to consume more power in order to achieve a better performance
(speculation, wider vector lengths, superscalar, etc), but at same time
this higher power consumption harms scalability because higher power
and dissipation must be ensured. For this reason we use GFlops/watt,
which penalizes extra power consumption to achieve better performance.
Figure 6.22 depicts the GFlops per Watt achieved by every application. As
in previous sections, benchmarks are sorted by arithmetic intensity. We
can appreciate how AI is correlated with performance per watt. In low
AI benchmarks, processors waste most of their cycles waiting for data to
arrive. In contrast high AI benchmarks have higher values, because they
spend most of the time executing floating point operations. In general all
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benchmarks have a poor energy efficiency, being the geometric mean below
0.2 GFlops/Watt and all below 1.4 GFlops/Watt. The theoretic maximum

GFLOPS/Watt is 2.84 =
512 peak GFlops
180 watts TDP . This values are far away of

the top ten of the Green500 List (17.604 GFlops/Watt [46]), however these
HPC systems use graphic cards that have different trade-offs for power
consumption. HPCG is the less power efficient benchmark, around 0.003
GFlops/Watt for GCC and 0.007 for Arm HPC. Similar values for HPCG
appear in Montblanc Project experiments [16].

Figure 6.22: GFlops per Watt consumed for every benchmark executed in
ThunderX2 node

Because this values by themselves are hard to understand we have done
the same experiments with a Skylake cluster that is inside the Dibona
infraestructure. Figure 6.23 shows the comparison of performance/watt
between ThunderX2 (labeled as TX2) and Skylake (labeled as SKX)
processors. We have only compiled SCALAR and 128 bit wide SIMD (SSE)
binaries for fairness, despite Skylake has vector instructions of 256 bits and
512 bits. The complete comparison with all vector lengths can be found
in appendix C. We consider two compilers for Intel: GCC and ICC. The
details of compilation can be found in appendix B. The SCALAR-ICC
version is excluded because we cannot force ICC to avoid vectorization
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completely.

Figure 6.23: GFlops per Watt consumed for every benchmark executed
using 32 threads in ThunderX2 (TX2, dashed bars) processor and 28
threads in Skylake (SKX) processor. First three bars are SCALAR versions
and the last four are the 128 bits SIMD versions.

On the average both processors are not too far from each other in terms of
power efficiency. Skylake is around 10% more efficient in SCALAR versions
and a 20% for SIMD versions, because it has more internal resources
(2 executions units more than ThunderX) that improve its performance
without increasing too much the power consumption. Skylake power
efficiency is interesting because its native vector length is 512 bits. This
wider vector length implies a higher power consumption although only 128
of the 512 bits are used by binaries.

The power efficiency of both processors is similar for low AI benchmarks,
both processors have nearly the same bandwidth. Skylake is clearly more
efficient in GEMM, JACOBI˙2D, HACCK and FIR benchmarks. While
ThunderX2 is better in EOS and VOL3D kernels. Part of this behaviour
could be explained by the two extra execution units Skylake has. Three
out of the eight execution units allow SIMD instructions.
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6.5 Code Analysis

In this section we analyze the principal characteristics of our binaries
focusing the analysis on the assembly code. We have four binary versions:
compiling with Arm HPC Compiler and no SIMD support (SCALAR-
ArmHPC), compiling with GCC and no SIMD support (SCALAR-GCC),
compiling with Arm HPC Compiler and NEON support (NEON-ArmHPC)
and compiling with GCC and NEON support (NEON-GCC). This section
is structured by code optimizations and different behaviour characteristics
binaries have in common. With this analisys we aim to understand how
generated code affects performance.

6.5.1 Loop Unrolling and Reduction of Data Access
Instructions

After analyzing all assembly code of the benchmarks we have found that
Load Pair of Register (ldp) is one of the most relevant instructions in the
ARMv8 ISA. This instruction loads two registers with two consecutive data
elements in memory, instead of using two common load instructions. Arm
HPC compiler benefits from this instruction because it ususally applies a
two-iteration loop unrolling optimization, and then it reduces the number
of memory access instructions using ldp. Therefore the total number of
instructions is reduced. We can find this two-iteration loop unrolling in
COPY, GEMM, JACOBI 1D and FIR in both SCALAR-ArmHPC an
NEON-ArmHPC binaries, and in FLOYD WARSHALL and HACCK only
for vectorized versions. But the Arm HPC compiler does not only apply
ldp-optimization to loop unrolling, it also uses it whenever there are two
consecutive accesses, like in EOS and JACOBI 2D. GCC barely uses ldp
because it rarely performs a loop unrolling unless programmer forces it
with a compiler flag or a pragma. GCC uses ldp in EOS and JACOBI 1D.

To illustrate how important is this instruction, we will analize the COPY
benchmark (See Listings 13a and 13b). In the SCALAR-ArmHPC version,
Arm HPC compiler does a loop unrolling and then reduces the number of
load instructions using ldp, as we mentioned before. While GCC generates
a simpler assembly code.
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Listing 13: COPY assembly code

#LOOP: ldp x17, x18, [x14, #-8]

subs x16, x16, #0x2

add x14, x14, #0x10

stp x17, x18, [x15, #-8]

add x15, x15, #0x10

b.ne #LOOP // b.any

a: COPY assembly code
generated with Arm HPC
Compiler

#LOOP: ldr x1, [x20, x0, lsl #3]

str x1, [x19, x0, lsl #3]

add x0, x0, #0x1

cmp x2, x0

b.ne #LOOP

b: COPY assembly code
generated with GCC

Next, we explain how this optimization affects performance. We do
not know the characteristics of the L1D cache of ThunderX2, so we have
supposed that the size of the block is 64 bytes and the number of entries in
the miss status holding register (MSHR) is 16. We know that ThunderX2
has a ROB of 180 entries. Therefore, we can calculate how many iterations
of the loop can be stored in the ROB, which is 30 iterations for SCALAR-
ArmHPC assembly (1806 = 30) and 36 iterations for SCALAR-GCC (1805 =
36). Thus, we can calculate how many cache misses are stored in MSHR,
because the memory accesses are sequential and we have the hypothetical
block size. In each cache block we have 8 elements of data

64 bytes/block

8 bytes/element
= 8 elements per block

Therefore, if ldp accesses to a pair double precision floating point
numbers, every 4 ldp instructions we read or write an entire cache block,
so we can compute the number of misses stored in cache MSHRs: 15 out of
16 entries for SCALAR-ArmHPC (304 × 2 = 15) and 9 cache misses stored
in the MSHR for GCC (368 × 2 = 9). In this example many entries of
the MSHR are underutilized by GCC and this can explain the difference
in performance between SCALAR-ArmHPC and SCALAR-GCC shown in
Figure 6.5, for COPY, JACOBI 1D and FIR. The latter has a speed-up of
1.8x over GCC.
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Figure 6.24: Number of misses per kilo instruction of COPY running on
ThunderX2

Figure 6.24 shows the number of misses per kilo instructions for both
binaries. L3 counters are not available, instead we show the L2 refill
events. This event counts all misses at the L2 level plus some other
events that imply bringing data blocks from L3 or main memory (prefetch
or speculative misses included). It is interesting how SCALAR-ArmHPC
has almost twice the ratio of misses than SCALAR-GCC, thus SCALAR-
ArmHPC stresses more the memory and feeds the cores faster.

We can compute this MPKI values theoretically. For 1000 instructions
we have 167 iterations of the SCALAR-ArmHPC assembly loop and 200 for
SCALAR-GCC. As we have mention before, there are two misses every 4
iterations of the SCALAR-ArmHPC assembly loop, so we have 83 MPKI. If
we repeat this computation for SCALAR-GCC, there are two misses every
8 iterations of SCALAR-GCC assembly loop, which is 50 MPKI. We can
appreciate that the theoretical values are nearly the same as the observed
ones in Figure 6.24 for one core. This number decreases when using more
cores because the number of instructions executed out of the loop in order
to control threads execution increases.

Both NEON binaries have twice the MPKI ratio of SCALAR due to
vector instructions. Therefore, they fill the MSHRs registers, as SCALAR-
ArmHPC, but do not achieve a higher performance because the MSHRs
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are already saturated.

6.5.2 Keeping Constants Stored in Registers

Another important difference between GCC and Arm HPC compiler is
the management of constants. GCC tries to keep constants stored in
registers whenever is possible, so constants are loaded only once before
start executing the kernel loop. On the other hand, Arm HPC Compiler
tries to use the minimum number of registers, so in every iteration of the
loop constants are loaded from memory. Those extra loads should only
have impact on in-order cores like ThunderX, where they stall the pipe
line.

Listing 14: EOS assembly code

#LOOP:

#Load ldr d0, [x21]

lsl x14, x9, #3

ldp d4, d2, [x13, #-16]

ldr d5, [x13]

ldr d6, [x10, x14]

ldr d7, [x11, x14]

fmadd d2, d4, d0, d2

#Load ldr d1, [x27]

ldur d3, [x13, #-24]

ldp d4, d16, [x13, #16]

fmadd d6, d7, d0, d6

#Load ldr d7, [x26]

fmadd d2, d2, d0, d5

ldr d5, [x13, #8]!

fmadd d0, d6, d0, d3

cmp x9, x8

add x9, x9, #0x1

fmadd d3, d5, d7, d4

fmadd d3, d3, d7, d16

fmadd d2, d3, d1, d2

fmadd d0, d2, d1, d0

str d0, [x12, x14]

b.lt #LOOP

a: EOS assembly code generated
with Arm HPC Compiler

#LOOP: ldp d4, d0, [x0, #24]

ldp d1, d5, [x0, #40]

add x0, x0, #0x8

ldr d2, [x0]

ldr d3, [x19, x1, lsl #3]

fmadd d0, d10, d0, d1

ldr d1, [x0, #8]

fmadd d2, d8, d2, d1

ldr d1, [x20, x1, lsl #3]

fmadd d1, d8, d1, d3

ldur d3, [x0, #-8]

fmadd d0, d10, d0, d5

fmadd d2, d8, d2, d4

fmadd d1, d8, d1, d3

fmadd d0, d9, d0, d2

fmadd d0, d9, d0, d1

str d0, [x21, x1, lsl #3]

add x1, x1, #0x1

cmp x2, x1

b.ne #LOOP

b: EOS assembly code generated
with GCC
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As an example we show the code of the EOS benchmark (see Listing 14),
but this can be seen also in the HYDRO benchmark. In SCALAR-ArmHPC
code we have remarked the extra loads with label #Load. We have counted
the number of instruction of both codes and SCALAR-ArmHPC has a loop
length of 23 instructions, and SCALAR-GCC has 20. This a negligible
difference, but in Section 7.2.2 we will see that it is important for SVE
assembly.

6.5.3 Library and Runtime Performance

We have seen in Sections 6.2.3 and 6.2.4 how the OpenMP runtime
implementation libraries, libomp for Arm HPC compiler and libgomp
for GCC, have an important impact in performance. Listing 15
presents the assembly code of SCALAR-ArmHPC and SCALAR-GCC for
MULADDSUB. We can see that both codes are almost the same. But if
we return to Figure 6.5, SCALAR-Arm-HPC is faster than SCALAR-GCC.
We belive that this speed-up is caused by the runtime instead of the main
loop.

Listing 15: MULADDSUB assembly code

#LOOP: lsl x10, x9, #3

ldr d0, [x23, x10]

ldr d1, [x22, x10]

cmp x9, x8

add x9, x9, #0x1

fmul d2, d1, d0

fadd d3, d1, d0

fsub d0, d0, d1

str d2, [x21, x10]

str d3, [x20, x10]

str d0, [x19, x10]

b.lt #LOOP // b.tstop

a: MULADDSUB assembly
code generated with Arm HPC
Compiler

#LOOP: ldr d0, [x5, x0, lsl #3]

ldr d1, [x6, x0, lsl #3]

fmul d3, d0, d1

fadd d2, d0, d1

fsub d0, d0, d1

str d3, [x2, x0, lsl #3]

str d2, [x3, x0, lsl #3]

str d0, [x4, x0, lsl #3]

add x0, x0, #0x1

cmp x1, x0

b.ne #LOOP // b.any

b: MULADDSUB assembly code
generated with GCC

GCC allows programmers to link the assembly code against other
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libraries that implement OpenMP runtime, which is the case of the libomp
library. We have compiled a new binary following this technique, so our
binary mixes GCC generated code with the Arm HPC Compiler runtime
library. With this binary we want to test if libomp speeds-up GCC
assembly code. However, we find that in most cases it does not improve
GCC execution time, only in the NEON version of FIR it speeds-up a
1.3x, see SCALAR-CROSS and NEON-CROSS in Figure 6.25. This single
positive result pushes us to think, that GCC and Arm HPC Compiler not
only use different runtime libraries, but also use them in a different way.

Figure 6.25: Speed up (w.r.t 1-thread SCALAR-ArmHPC) of cross
compiling GCC against Arm HPC Compiler runtime in ThunderX2 with 1
thread (left) and 32 threads (rigth)

6.5.4 VOL3D

Finally we will study VOL3D benchmark in detail. In Sections 6.2 and 6.2.2
it has been shown how NEON-GCC binary outperforms NEON-ArmHPC
binary when we run VOL3D (See Figures 6.5 and 6.6). To explain this
speed-up we have compared both codes using labels to make a bidirectional
association. This labels let us remark sections of code that are present in
both versions and parts that are distinct.
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We do not list all the code because it is too long and some parts are
repetitive. Both codes have 3 sections one where the operands are loaded,
the second where the kernel equation is resolved with the operands, and
a third one where the result is stored and the indices are updated (See
Listings 16a and 16b). In the first section both codes are almost identical,
they execute 24 loads (label #T1) corresponding to the 24 operands needed
for the kernel. This loads use the same addressing method of base address
register plus index register.

Section two is different for both compilers, despite they are computing
the same equation. Arm HPC Compiler uses 6 instructions more than GCC
(GCC uses 59 instructions), this is 10% more instructions. Five of these
instructions correspond to fneg, labeled with #T2. This instruction negates
a register, and Arm HPC Compiler uses it to execute a subtraction with
fmla (Floating-point fused multiply-add to accumulator). GCC instead
of negating the content of a register and then using fmla, it uses fmls
(Floating-point fused multiply-subtract from accumulator). Arm HPC
compiler also uses fmls, but in other parts of the code. The other extra
instruction used by the Arm HPC compiler is a store, labeled with #T3,
which is not necessary at all. We also want to remark that, there is
a constant in the original kernel that multiplies the result in order to
normalize it. GCC uses a register to store this constant, and Arm HPC
compiler loads it on every iteration, label #T6.

In the third section both codes store the result, label #T5, and update
the addressing registers, label #T4. Arm HPC compiler updates the
base address instead of the index. Thus, GCC code only does one ”add”
operation and Arm HPC compiler code does it 24 times.

Finally, if we count the number of instructions executed for both
versions in each iteration we have that Arm HPC compiler generates 120
instructions while GCC only generates 88, which means the Arm HPC
Compiler generates 36% more instructions than GCC. This difference is
likely the reason ro the differences in performance seen in Figures 6.5 and
6.6.
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Listing 16: VOL3D assembly code

;;;;;; Operands load

#LOOP: ldur x10, [x29, #-168]

subs x21, x21, #0x2

lsl x10, x10, #3

ldr q0, [x12, x10]

ldr q1, [x13, x10]

#T1 ldr q2, [x14, x10]

ldr q3, [x15, x10]

;;;;;; Kernel body execution

fsub v1.2d, v0.2d, v1.2d

fsub v2.2d, v0.2d, v2.2d

fsub v0.2d, v0.2d, v3.2d

........

fmul v30.2d, v21.2d, v3.2d

fmul v31.2d, v7.2d, v3.2d

fadd v27.2d, v19.2d, v6.2d

fmls v30.2d, v23.2d, v2.2d

#T2 fneg v31.2d, v31.2d

fadd v28.2d, v25.2d, v20.2d

fmul v29.2d, v21.2d, v17.2d

fmla v31.2d, v17.2d, v2.2d

........

#T3 str q27, [x22, x10]

#T6 ldr d0, [x19]

fmul v0.2d, v27.2d, v0.d[0]

;;;;;; Store Result

#T4 add x23, x23, #0x10

#T4 add x20, x20, #0x10

#T4 add x27, x27, #0x10

#T4 add x11, x11, #0x10

#T4 add x22, x22, #0x10

#T5 str q0, [x22, x10]

b.ne #LOOP // b.any

a: VOL3D assembly code generated
with Arm HPC Compiler

;;;;;; Operands load

mov x0, #0x0 // initial index #0

#LOOP: ldr q19, [x24, x0]

ldr q9, [x12, x0]

#T1 ldr q23, [x25, x0]

;;;;;; Kernel body execution

fsub v7.2d, v20.2d, v7.2d

fsub v24.2d, v24.2d, v27.2d

fsub v21.2d, v18.2d, v21.2d

fsub v3.2d, v3.2d, v1.2d

fsub v6.2d, v18.2d, v6.2d

fmul v0.2d, v4.2d, v23.2d

........

fmul v7.2d, v27.2d, v21.2d

fmla v0.2d, v6.2d, v16.2d

#T2 fmls v3.2d, v18.2d, v26.2d

fadd v4.2d, v4.2d, v24.2d

fmla v0.2d, v4.2d, v3.2d

fmls v6.2d, v2.2d, v1.2d

fmul v2.2d, v2.2d, v19.2d

;;;;;; Store Result

#T5 str q0, [x2, x0]

#T4 add x0, x0, #0x10

cmp x4, x0

b.ne #LOOP

b: VOL3D assembly code generated
with GCC



Chapter 7

SVE Analysis

This chapter details the experiments and preliminary analysis that we have
carried on SVE vector instructions. In particular, we have measured how
different vector lengths can reduce the number of instructions and what
differences exist between both compilers. Finally we have analyzed the
assembly code understand these differences.

7.1 Instruction Reduction

One of the most important features of the Scalable Vector Extension,
defined in the ARMv8.2 ISA, is the adoption of a Vector-Length Agnostic
(VLA) programming model, which means that vector instructions adapt to
the available vector length. Therefore, with VLA we do not need different
instruction sets in order to express different vector lengths. In this section,
we want to answer the question of how different vector lengths affect our
SVE binaries. However, as we stated on Section 1.5.4, we have only one
available tool to answer this question before the project deadline. This
tool is Arm Instruction Emulator (ArmIE), and we already explained how
it works in Section 4.3.5. ArmIE allows us to count the total number
of instructions that would have been executed by an ARMv8.2 processor
during the execution of a benchmark. We have evaluated six different
binaries for each benchmark:

7.1.1 Number of Instructions Executed

In this subsection, we present the experiments that measure the number of
instructions executed in each benchmark.

Figure 7.1 shows the normalized number of instructions obtained from

82
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Binary Compiler SIMD extension
supported

Vector length
(bits)

SCALAR-ArmHPC Arm HPC Compiler NONE - -

SCALAR-GCC GCC NONE - -

NEON-ArmHPC Arm HPC Compiler NEON 128

NEON-GCC GCC NEON 128

SVE128-ArmHPC Arm HPC Compiler SVE 128

SVE128-GCC GCC SVE 128

SVE256-ArmHPC Arm HPC Compiler SVE 256

SVE256-GCC GCC SVE 256

SVE512-ArmHPC Arm HPC Compiler SVE 512

SVE512-GCC GCC SVE 512

SVE1024-ArmHPC Arm HPC Compiler SVE 1024

SVE1024-GCC GCC SVE 1024

SVE2048-ArmHPC Arm HPC Compiler SVE 2048

SVE2048-GCC GCC SVE 2048

Table 7.1: List of experiments and its characteristics: compiler used, vector
extenion that supports, vector length in bits of the extension.

the execution of SCALAR, NEON, and SVE128 binaries. Instructions are
normalized with respect to the SCALAR-GCC. This figure illustrates the
number of instructions SVE executes for the same vector length NEON
has. We use a logarithmic scale with base 2 for the Y-axis, because NEON
and SVE128 instructions work with two double precision floating point
elements. On average NEON reduces the number of instructions by 47% for
NEON-GCC, and by 45% for NEON-ArmHPC with respect to SCALAR
versions. It is easy to see the effects of the two-iteration loop unrolling
in the following benchmarks: COPY, HACCK and FIR for SCALAR-
ArmHPC and COPY, FLOYD WARSHALL, JACOBI 1D, HACCK and
FIR for NEON-ArmHPC. In these experiments, the Arm HPC Compiler
binary employs a significantly lower number of instructions than GCC.

Similarly, SVE128- GCC achieves a slightly lower 45%, that can be
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Figure 7.1: Normalized number of instructions executed (w.r.t SCALAR-
GCC) using ArmIE. Y-axis uses a logarithmic scale. Only SCALAR,
NEON and SVE-128 versions. All experiments use 32 OpenMP threads

explained by high number of instructions executed in FIR and HACCK
benchmarks. In contrast, SVE128-ArmHPC gets a poor 27%, this
increase of instructions with respect to NEON-ArmHPC can be seen in all
benchmarks except GEMM, we will see in Section 7.2 that this is caused
by some unnecessary extra instructions and the lack of loop unrolling
optimizations.

After comparing SVE128 with SCALAR and NEON versions, we follow
with the remaining SVE experiments. We have had to split the experiments
in two figures (Figures 7.2 and 7.3) because the high number of experiments
made graphs difficult to interpret. Both figures show the normalized
number of instructions for SVE binaries with vector lengths of 128, 256,
512, 1024 and 2048 bits. Both graphs share same geometric means.
Moreover, we omit SCALAR and NEON experiments for clarity, because
all experiments are normalized with respect to SCALAR-GCC version.
Therefore, 1.0 value represents the same number of instructions that
SCALAR-GCC executed.

We can see how in almost all benchmarks, the number of instructions is
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Figure 7.2: Normalized number of instructions executed (w.r.t SCALAR-
GCC) using ArmIE. Y-axis uses a logarithmic scale. There are 5 different
experiments with vector lengths of 128, 256, 512, 1024 and 2048 bits. All
experiments use 32 OpenMP threads

reduced by a factor of 2x with respect to the previous vector length. But,
there is one benchmark that stands out above the rest, it is FIR benchmark.
This benchmark cannot reduce the number of instructions from 1024 to
2048 bits for both compilers. The way compilers vectorize this benchmark
is not optimal, because it contains a inner loop that has 16 iterations, the
same number of double precision floating point data elements that fit in
1024 bits. Therefore, for larger vector lengths there is a part of the vector
registers that is not used. Further explanations can be found in Section
7.2.

Aside from this outlier, we can appreciate how instruction count is
halved for each 2x increase of the vector length. A perfect example is
INT PREDICT’s experiments with the SVE-GCC versions, it achieves
reductions of 50% for 128 bits, 75% for 256 bits, 87.5% for 512 bits, 93.8%
for 1024 bits and 96.9% for 2048 bits. The best reduction is achieved
by SVE2048-GCC running JACOBI˙2D with a 97.2%. This value is higher
than the expected maximum reduction performed by a vector length of 2048
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Figure 7.3: Normalized number of instructions executed (w.r.t SCALAR-
GCC) using ArmIE. Y-axis uses a logarithmic scale. There are 5 different
experiments with vector lengths of 128, 256, 512, 1024 and 2048 bits. All
experiments use 32 OpenMP threads

bits (32−1
32 = 96.87%). The explanation is that SCALAR-GCC version uses

much more instructions than NEON and SVE128-GCC bits experiments,
they both achieve a reduction higher than the expected (2−1

2 = 50%) with
a 59%. Arm HPC Compiler versions execute always a higher number of
instructions than GCC versions. We can see how on average, SVE2048-
GCC yields a reduction of 95.8% and SVE2048-ArmHPC achieves a lower
reduction of 91.4%, both with vector lengths of 2048 bits. With these values
seen through logarithmic scale, we can conclude that Arm HPC Compiler
executes on average, twice as many instructions than GCC.

We have set apart HPCG and HACCK benchmarks because both
benchmarks are significantly different than the rest and put a lot of noise
into the geometric mean. In the former, both compilers can only vectorize
a small part of code, and we cannot select a region of interest with ArmIE.
In the latter, the GCC is not able to vectorize the main loop (GCC prompts
that there are not enough data references in basic block), while Arm HPC
Compiler is able to perfectly vectorize the loop. We can see these two
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Figure 7.4: Normalized number of instructions executed (w.r.t SCALAR-
GCC) using ArmIE. Y-axis uses a logarithmic scale. There are 5 different
experiments with vector lengths of 128, 256, 512, 1024 and 2048 bits. All
experiments use 32 OpenMP threads

behaviours in Figure 7.4.

7.1.2 Ratio of SVE Instructions

Finally we have use the ArmIE feature that counts the number of SVE
instructions emulated, and we have computed the ratio of SVE instructions
emulated with respect to the total number of instructions. Figures 7.5 and
7.6 depict the rate of SVE instructions emulated with respect to the total
number of instructions. Again, we split the benchmark collection in two
sets, and we do not consider either HPCG and HACCK benchmarks for
the computation of the geometric mean.

When running the HACCK benchmark, the first thing we can observe
is that GCC executes almost no SVE instructions (0.07% of the total
instructions). We can conclude that the GCC binary is not vectorized
for HACCK benchmark. In the HPCG benchmark, SVE code has at most
a weight of 48% from the total number of instructions, which is a low ratio.
We also remark FIR benchmark, because there is no difference between
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Figure 7.5: Normalized number of instructions executed (w.r.t SCALAR-
GCC) using ArmIE. There are 5 different experiments with vector lengths
of 128, 256, 512, 1024 and 2048 bits. All experiments use 32 OpenMP
threads

1024 and 2048 bits.
On average, GCC is able to generate assembly code that has a higher rate

of SVE instructions than Arm HPC Compiler. For 128 bits, GCC is able to
vectorize the 87.5% of the code and Arm HPC compiler an 80%. Therefore,
when we duplicate the vector length, the weight that SVE instructions
lose (two iterations become one) is less for GCC than for the Arm HPC
Compiler. From 128 to 2048 bits, GCC loses only a 12.5% of the SVE
instructions weight, while Arm HPC Compiler loses 38.26%.

7.1.3 Comparision Between SVE and x86 64

In order to understand how good are these code reductions, we have
performed experiments on Skylake in order to compare SVE against
Skylake instruction set. We can compare the normalized number of
instructions between both architectures because we normalize with respect
to binaries without SIMD support, SCALAR-GCC compiled with the
ARMv8 ISA and SCALAR-GCC compiled with the x86˙68 ISA. The
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Figure 7.6: Normalized number of instructions executed (w.r.t SCALAR-
GCC) using ArmIE. There are 5 different experiments with vector lengths
of 128, 256, 512, 1024 and 2048 bits. All experiments use 32 OpenMP
threads

Skylake microarchitecture implements 3 different vector lengths: 128 bits
with SSE, 256 bits with AVX2, and 512 bits with AVX512. We have used
the same binaries of Section 6.4, using GCC and ICC compilers. The main
difference with Arm SVE, is that for every version we have to compile a new
binary, this gives some extra information to compilers about which vector
length they are compiling for. Therefore, both ICC and GCC optimize the
assembly code they generate for each vector length. Right now, compiling
SVE with optimization for an specific vector length is not allowed in GCC
and Arm HPC Compiler, but in the future it is expected to be supported.

Figure 7.7 shows the normalized number of instructions executed by each
binary version with respect to SCALAR-GCC version. On average SSE
(128 bits) and AVX2 (256 bits) achieve a reduction of 45.3% and 75.3%
respectively. In contrast AVX512 only reduces the number of instructions
by 84%, a slightly lower than the expected 88%. We should remark
that instruction reduction is highly benchmark-dependent. For example
INT PREDICT, HYDRO, JACOBI 1D, VOL3D and FIR benchmarks
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Figure 7.7: Normalized number of instructions executed (w.r.t SCALAR-
GCC) running with 32 threads in Skylake processor. There are 3 different
types of experiments with vector lengths of 128, 256, and 512 bits.

compiled with AVX512 can reduce the number of instructions above 88%,
which is more than what one should expect for a vector length of 512
bits. As explained before, this is due to specific optimizations done for
a vector length. Others benchmarks like FLOYD WARSHALL, GEMM,
HPCG, JACOBI 2D or HACCK present a large gap between the number
of instructions ICC and GCC binries execute. In these cases, one or both
compilers choose to generate code with smaller vector lengths, with respect
to the given flags, because they consider that the performance would be
better.

7.1.4 Final Remarks

We can conclude that SVE is capable of reducing the number of instructions
with on par results as x86 64, but with a smaller instruction set. However,
in the future ARMv8.2 compilers should be able to specify the vector length
and unlock further optimizations. Regarding the quality of the code of the
compilers, both Arm HPC Compiler and GCC should improve its assembly
code generation, the former should improve reducing the size of instructions
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in the loops and the latter should review the cost model in order to vectorize
complex loops like HACCK benchmark. Finally we should remark that
less instructions not always leads to better performance. However, we have
already seen in Section 6.5.1 that shorter codes have an impact on core
structures utilization.

7.2 Code Analysis

In this section we analyze the principal differences between both compilers
and detail some assembly code that explains the behaviour shown in the
previous section.

7.2.1 Data Dependencies

Across all the benchmarks, we have detected that Arm HPC Compiler
always adds the same sequence of instructions at the end of loops. This
sequence consists of a brkns and a mov instruction, see label #L in
Sublisting 17a. Brkns instruction was designed to implement a high level
instruction break. It is used, when in a loop a break is executed, then the
rest of iterations are not executed and the processor jumps to the next
code sequence after the loop. This translated to SIMD is done through
predication, each z register has a predicate register that indicates if each of
the stored elements are active or not. What brkns does with the predication
is preventing the execution of the remaining iterations after the break,
setting the corresponding elements as inactive. The mov instructions is
needed because brkns cannot read and write to the same register. The way
brkns instruction is used in these loops is far from its correct use, because all
the iterations in the loop are executed and therefore there is no conditional
execution. Using a whilelo as GCC does is enough, see Sublisting 17b.
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Listing 17: HYDRO benchmark assembly code

#LOOP:

#I add x14, x8, x11

#C ld1rd {z0.d}, p2/z,[x22]

ld1d {z1.d}, p0/z,[x14]

#I add x14, x10, x11

#C ld1rd {z2.d}, p2/z,[x20]

ld1d {z3.d},p0/z,[x14,x27,lsl#3]

#C ld1rd {z4.d}, p2/z,[x26]

incd x12

whilelo p1.d, x12, x13

fmul z2.d, z3.d, z2.d

ld1d {z3.d},p0/z,[x14,x28,lsl#3]

#I add x14, x9, x11

#I addvl x11, x11, #1

fmla z2.d, p2/m, z3.d, z4.d

fmla z0.d, p2/m, z2.d, z1.d

st1d {z0.d}, p0,[x14]

#L brkns p1.b, p2/z, p0.b, p1.b

#L mov p0.b, p1.b

b.mi #LOOP

a: Assembly code generated with
Arm HPC Compiler

#LOOP:

ld1d {z0.d},p0/z,[x3,x0,lsl #3]

ld1d {z2.d},p0/z,[x4,x0,lsl #3]

ld1d {z1.d},p0/z,[x5,x0,lsl #3]

fmul z0.d, z4.d, z0.d

fmla z0.d, p1/m, z5.d, z2.d

fmad z0.d, p1/m, z1.d, z3.d

st1d {z0.d},p0,[x1,x0,lsl #3]

incd x0

whilelo p0.d, x0, x2

b.ne #LOOP

b: Assembly code generated with
GCC

In order to measure the impact of these unnecessary instructions, we
have computed their weight on each benchmark, except for HPCG due
to its code complexity, see Table 7.2. First column contains the name of
the benchmark, the second contains the number of instructions for one
iteration of the main loop. In the cases of FLOYD WARSHALL, GEMM
and FIR, which contain nested loops, we consider only the inner loop. We
use the inner loop because it represents the major part of the instructions
that will be executed in these cases. On the third column, we show the
reduction ratio that can be achieved by removing unnecessary brkns and
mov instructions. This pair of instructions represent an important part
of the total instruction budget in benchmarks that have short loops like
COPY and FIR. Moreover, on average they represent a significant 9.60%.
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Benchmark # instructions ArmHPC % Reduction

COPY 8 25.00%

MULADDSUB 13 15.38%

FLOYD WARSHALL 12 16.66%

INT PREDICT 35 5.71%

HYDRO 19 10.52%

GEMM 11 18.18%

JACOBI 1D 17 11.76%

EOS 32 6.25%

JACOBI 2D 39 5.12%

VOL3D 118 1.69%

HACCK 36 5.55%

FIR 8 25.00%

Geom. Mean – 9.60%

Table 7.2: Number of instructions of each loop compiled by Arm HPC
Compiler and the reduction achieved removing brkns and mov instructions.

7.2.2 Indices and Registers

We have seen in Section 6.5.2 that Arm HPC Compiler when compiling
for ARMv8.0 does not store constants in registers in order to have more
available registers for the rest of the loop. However, this implies loading
the same constants from cache every iteration. In addition, we have shown
that Arm HPC Compiler makes a worse management of address indices, see
Section 6.5.4. In contrast, GCC is able to manage constants and indexes
reducing the total number of instructions.

This two characteristic are inherited by ARMv8.2 code generation. In
Sublisting 17a, we have seen how Arm HPC Compiler doubles the number
of instructions generated with respect to GCC. We have labeled constant
loading instructions with #C and index computing instructions with #I.
This instructions have a potentially higher weight than the pair shown in
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Benchmark #
instructions

# index
instructions

# constant
instructions

% Reduction

COPY 8 1 0 12.50 %

MULADDSUB 13 0 0 0.00 %

FLOYD WARS. 12 0 1 8.33 %

INT PREDICT 35 1 8 25.71 %

HYDRO 19 4 3 36.84 %

GEMM 11 2 0 18.18 %

JACOBI 1D 17 1 3 23.52 %

EOS 32 6 3 28.12 %

JACOBI 2D 39 5 9 35.89 %

VOL3D 118 27 0 24.57 %

HACCK 36 0 0 0.00 %

FIR 8 0 0 25.00 %

Geom. Mean – – – 13.12 %

Table 7.3: Number of instructions of each loop compiled by Arm
HPC Compiler, the number of instructions where an additional index
computation or constant loading is performed and the reduction achieved
by removing them.

the previous section, so again we have computed the reduction achieved by
removing them, see Table 7.3.

This reduction cannot be done in all benchmarks, MULADDSUB and
HACCK do not have any of this extra instructions. But, INT PREDICT,
HYDRO, JACOBI 1D, EOS, JACOBI 2D, VOL3D and FIR represent
more than a 20 % of the total code. Thus, we can achieve a 13.12 %
reduction on average. In all cases, except JACOBI 1D and HACCK, GCC
successfully avoids these instructions.



7.2. CODE ANALYSIS 95

7.2.3 Instruction Selection

The first processor that will implement SVE is the Fujitsu Post-k, arriving
around 2021 [47]. This means that nowadays GCC and Arm HPC Compiler
developers do not known the details of the michroarchitecture of SVE
processors. Thus, developers must take design decisions on the fly. One
such decisions is choosing between two sequence of assembly code that
perform the same task but with different instructions. In Listings 18 and
19, we present the assembly code of two loops, where GCC chooses a set
of instructions to solve a task and Arm HPC Compiler chooses a different
set. In Listing 18, Arm HPC Compiler chooses the fmla instruction, while
GCC chooses fmul and fadd. In this case, it is clear that fmla will have a
better performance, because it implements a sequence of two floating point
operations that are data dependent using only one instruction.

Listing 18: FIR benchmark assembly code

#LOOP:

ld1d {z2.d},p1/z,[x20,x13,lsl#3]

ld1d {z3.d},p1/z,[x12,x13,lsl#3]

incd x13

whilelo p2.d, x13, x11

#L brkns p2.b, p0/z, p1.b, p2.b

fmla z1.d, p1/m, z3.d, z2.d

#L mov p1.b, p2.b

b.mi #LOOP

a: Assembly code generated with
Arm HPC Compiler

#LOOP:

ld1d {z2.d},p6/z,[x3,x2,lsl#3]

ld1d {z1.d},p6/z,[x0,x2,lsl#3]

incd x2

fmul z1.d, z1.d, z2.d

fadd z0.d, p6/m, z0.d, z1.d

whilelo p6.d, x2, x4

b.ne #LOOP

b: Assembly code generated with
GCC

In Listing 19, we present the assembly code of FLOYD WARSHALL.
This benchmark selectes the minimum value between two memory
addresses. Arm HPC Compiler uses a comparison (fcmgt) and a conditional
data movement (sel) to perform this operation. On the other hand, GCC
uses fminnm instruction, that implements directly the selection of the
minimum.

Listing 19: FLOYD WARSHALL benchmark assembly code
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#LOOP:

ld1d {z0.d},p1/z,[x16,x4,lsl#3]

#C ld1rd {z1.d},p0/z,[x3]

ld1d {z2.d},p1/z,[x18,x4,lsl#3]

fadd z1.d, z2.d, z1.d

fcmgt p2.d, p0/z, z1.d, z0.d

sel z0.d, p2, z0.d, z1.d

st1d {z0.d},p1,[x17,x4,lsl#3]

incd x4

whilelo p2.d, x4, x10

#L brkns p2.b, p0/z, p1.b, p2.b

#L mov p1.b, p2.b

b.mi #LOOP

a: Assembly code generated with
Arm HPC Compiler

#LOOP:

ld1d {z0.d},p0/z,[x5,x0,lsl#3]

ld1d {z1.d},p0/z,[x3,x0,lsl#3]

fadd z0.d, z2.d, z0.d

fminnm z0.d, p1/m, z0.d, z1.d

st1d {z0.d}, p0,[x1,x0,lsl#3]

incd x0

whilelo p0.d, x0, x2

b.ne #LOOP

b: Assembly code generated with
GCC

7.2.4 FIR

We have seen in Section 7.1, that the minimum number of instructions
achieved in FIR benchmark is obtained with a vector length of 1024 bits.
In Listing 18 we can see FIR benchmark assembly code, which corresponds
to the inner loop. This loop iterates over 16 floating point constants of
double precision, each constant is represented with 64 bits. In total, we
have 1024 bits. Therefore, if we increase the vector length over 1024 bits,
when we load the vector of constants, there will be elements of the vector
register that will be unused, and these positions will be set to inactive in
the predicate register.

One possible solution to this bottleneck is, instead of loading all the
constants into a vector register, we can have one register for each constant
(this is 16 of the 32 vector registers). For every vector register all its

elements (
vector length

64bits ) are set to the corresponding constant for that
register. Then, each constant is multiplied by the corresponding element
of the input array (see FIR source code in Section 5.1.7) and added to the
accumulator. With these modifications we achieve a better utilization of
the vector length.
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7.2.5 Loop unrolling

We have shown in Section 6.5.1 how loop unrolling and replacing two
contiguous loads for one ldp are two of the best optimization techniques.
The increase of the number of misses per instruction rises the pressure on
memory bandwidth, which speeds-up high arithmetic intensive benchmarks
like VOL3D, HACCK and FIR. SVE only allows the former optimization,
but not the latter, because load instructions only accept one destination
vector register [48]. Despite, compilers can keep using loop unrolling, only
JACOBI 2D, is optimized with loop unrolling. A likely reason is that
compilers do not know what is the target execution machine and what
vector length is implemented.

Incidentally, SVE implements a subset of memory access instructions,
that are specific for loading structured data. They are known as structs,
and they are a composite data type. Structs allow us to reference a set of
variables using only one address. The way SVE allows loading and storing
this type of data is through ld2, ld3, ld4, st2, st3 and st4 instructions. They
load or store multiple N-element structures composed by basic data types
of the same type. For example ld2d loads two vector registers with double
precision floating point elements taken from memory. The only difference
with a multiple contiguous load is interleaving. This means that the first
double it reads is stored in the first vector register, and then the second
double is stored in the second register, the next double goes to the first
register, and so on (see Arm reference for more information [49]). This
can be generalized to the rest of the instructions, so ld3 loads the double
number i in the register x, where x is obtained using the following equation
x = (i mod 3). And finally, ld4 works similarly but using the equation
x = (i mod 4).
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Listing 20: COPY benchmark different assembly code implementations

#LOOP:

ld1d {z0.d},p0/z,[x22,x3,lsl#3]

st1d {z0.d},p0,[x21,x3,lsl#3]

incd x3

whilelo p0.d, x3, x1

b.ne #LOOP

a: Assembly code generated with
GCC

#LOOP:

ld1d {z0.d},p0/z,[x0]

ld1d {z1.d},p0/z,[x0,#1,mul vl]

ld1d {z2.d},p0/z,[x0,#2,mul vl]

ld1d {z3.d},p0/z,[x0,#3,mul vl]

st1d {z0.d},p0,[x1]

st1d {z1.d},p0,[x1, #1,mul vl]

st1d {z2.d},p0,[x1, #2,mul vl]

st1d {z3.d},p0,[x1, #3,mul vl]

incb x0, all, mul #4

incb x1, all, mul #4

incd x5, all, mul #4

whilelo p0.d, x5, x3

b.ne #LOOP

b: Arm assembly code proposal
for loop unrolling

#LOOP:

ld4d {z0.d-z3.d}, p0/z, [x21, x3, lsl #3]

st4d {z0.d-z3.d}, p0, [x22, x3, lsl #3]

incd x3, all, mul #4

whilelo p0.d, x3, x1

b.ne #LOOP

c: Our assembly code proposal for loop unrolling

With these instructions we have something similar to a load pair
instruction, that we can exploit to reduce the number of instructions
executed by a benchmark. In Listing 20, we have written three versions
of COPY benchmark. The first version (Sublisting 20a) is the assembly
generated by GCC. The second version (Sublisting 20b) is a handwriten
assembly code we have obtained following the Arm proposition for four-
iteration loop unrolling presented in Hot Chips Conference[50]. The third
version (Sublisting 20c) is our proposal of a four iteration loop unrolling
using ld4d instructions.

In Figure 7.8, we can see the normalized number of instructions of
the three assembly versions: GCC as GCC-BASE, Arm loop unrolling
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proposal as Arm-UNROLL and our proposal as LD4-UNROLL. We can
see how our proposal uses 75% less instructions than the baseline, while
Arm proposal is at 34.7%. In addition, for all vector lengths our proposal
uses less instructions than Arm proposal and GCC generated code. This
technique can be applied to other benchmarks with low complexity like
MULADDSUB, FLOYD WARSHALL, INT PREDICT or FIR, where the
interleaving of the memory access instructions is not an obstacle.

Figure 7.8: Normalized number of instructions executed (w.r.t GCC-BASE
using 128 bits) using ArmIE. There are 5 different experiments with vector
lengths of 128, 256, 512, 1024 and 2048 bits.

We finally remark the importance of this reductions, because in out-
of-order processors that would implement short vector lengths (128 or
256 bits) it can imply a large improvement on single thread performance
and for high arithmetic intensity benchmarks it would also improve the
performance of one-thread-per-core execution. However, this are only
speculations and in the futer we want to test these codes in simulators
like Gem5.
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7.2.6 Non-Temporal Vector Instructions

SVE includes two interesting instructions: ldnt1d and ldnt1d. These are
non-temporal contiguous load and store instructions that include a hint to
the memory system, so it does not need to keep referenced blocks in cache.
Nevertheless, they are only a hint, so cache can continue storing the blocks
anyways. This instructions are useful to code benchmarks with streaming
memory access patterns, this pattern consists in executing operations over
all the elements of a large data structure. Therefore, when a memory
location is accessed, is not expected to be accessed again in a long period
of time.

All of our benchmarks show this behaviour, but this is not enough to
benefit from non-temporal instructions, benchmarks should also present
some re-usability in the accesses. Streaming accesses usually evict other
memory blocks from the data cache due to cache conflicts, if there are some
memory blocks that are used frequently they could be evicted from cache,
leading to performance penalties. From our collection of benchmarks,
GEMM, FLOYD WARSHALL and HPCG have re-usability patterns in
memory accesses. Nevertheless, none of the assembly binaries use these
instructions. In Listing 21, we propose a modification to the original GCC
generated assembly code (see Sublisting 21a), so it could reduce the number
of conflict misses and therefore improve performance.

Listing 21: FLOYD WARSHALL benchmark modified assembly code

#LOOP:

ld1d {z0.d},p0/z,[x5,x0,lsl#3]

ld1d {z1.d},p0/z,[x3,x0,lsl#3]

fadd z0.d, z2.d, z0.d

fminnm z0.d, p1/m, z0.d, z1.d

st1d {z0.d}, p0,[x1,x0,lsl#3]

incd x0

whilelo p0.d, x0, x2

b.ne #LOOP

a: Assembly code generated with
GCC

#LOOP:

ld1d {z0.d},p0/z,[x5,x0,lsl#3]

#N ldnt1d {z1.d},p0/z,[x3,x0,lsl#3]

fadd z0.d, z2.d, z0.d

fminnm z0.d, p1/m, z0.d, z1.d

#N stnt1d {z0.d}, p0,[x1,x0,lsl#3]

incd x0

whilelo p0.d, x0, x2

b.ne #LOOP

b: Our proposed assembly code

We have changed the second load and the store (see Sublisting 21b,
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changes labeled with #N) for non-temporal memory accesses. These
instructions bring memory blocks to the cache that are used once and then
they are evicted. Nevertheless, this new memory blocks can make the cache
evict other memory blocks due to cache conflicts, and this evicted blocks are
used frequently. More specifically, frequently used blocks are loaded by the
first load, they have some re-usability and fit in cache. These frequently
used blocks represent the row of a matrix that is used in different loop
calls. With these changes we give hints to the cache to not bring other
non-temporal memory blocks, and if cache uses the hints, we can reduce
the possibility that the frequently used blocks are evicted from the cache.



Chapter 8

Conclusions

In this last chapter we summarize what are the most remarkable aspects
of this work. We cover all the chapters and what are the conclusions we
have extracted from them. And finally we evaluate the work we have done
with respect to the initial project management course.

8.1 Summary

In Chapter 5, we have seen that a basic tool to auto-vectorize parallel
loops, is the directive #pragma omp simd. In some cases, this directive
is not enough to achieve the optimal code, and programmers have to use
other directives, or modify the original code, in order to aid automatic
vectorization, but without changing the correctness of the benchmark.

In Chapter 6, we analyzed the execution of four binaries: one compiled
with Arm HPC Compiler and no SIMD support, one compiled with
GCC and no SIMD suppport, one compiled Arm HPC Compiler and
NEON support, and one compiled with GCC and NEON support. This
analysis consisted on executing the four binaries in two different processors:
ThunderX and ThunderX2; and with different number of threads. We saw
how memory bandwidth or CPU performance limit the final performance
of the binaries, and we correlated this with the arithmetic intensity of
the benchmarks and architecture of the processor in which the benchmark
was executed. We saw how vectorization plays a significant role in high
arithmetic intensive benchmarks or single thread execution, and how Arm
HPC Compiler yields a higher performance than GCC. In addition, we
also compared both test processors and measured the energy and power
efficiency of ThunderX2.

In the second part of the chapter we analyzed what were the
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optimizations or techniques used in the assembly generation process that
have a significant impact on performance. We found that Arm HPC
Compiler exploits ldp to improve its loop unrolling optimization. Moreover,
the Arm HPC Compiler has better implementation of the runtime library
and uses it more efficiently than GCC. We have also found that GCC
is more aggresive storing constants to registers, which leads to better
performance for some evaluated benchmarks .

In Chapter 7, we used the Arm Instruction Emulator (ArmIE) to test the
compilation support of SVE in GCC and Arm HPC Compiler. Moreover,
we have used ArmIE to count the total number of instructions and the
number of SVE instructions to obtain the relative instruction reduction
achieved by increasing the vector length. Furthermore we have obtain
what is the ratio of vectorization of each compiler using SVE. With these
experiments we have found that GCC is not able to vectorize complex
loops and that Arm HPC Compiler has a poorer assembly generation.
Regarding assembly code, we have detailed why the Arm HPC Compiler
generates sometimes inefficient assembly code, and we have proposed some
optimizations, we believe are interesting and we want to study in the future.

8.2 Project Autoevaluation

From the set of objectives listed in Section 1.3 we have completely
accomplished the objectives 1, 2, 4 and 5. Objective number 3 has been
completed, except the part of comparing power consumption of ThunderX
and ThunderX2. Similarly, from the scope defined in Section 1.6, we
have accomplish everything except the power efficiency comparision of
ThunderX and ThunderX2. Instead of this, we have compared Skylake
and ThunderX2. Therefore, we can say that the scope and the objectives
have been completed. Moreover, we have followed all the good practices
listed in Section 1.7.

Regarding project planning, we have followed the schedule defined at
the start of the project. However, there have been some divergences with
respect to the duration of the tasks, in which the project is divided. The
total amount of hours invested is 595, and 45 of them were not included
in the initial plan. However, we arleady estimated that we may needed
3 weeks more than those planned, that we have used to cover this extra
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work.
Finally, I would like to express what has been to work in a research

group within the scope of an european project. During these 4 months, I
have learned a lot about vectorization, compiler optimizations, OpenMP,
microarchitecture, and performing experiments. This work has help me to
start writing research reports and analying results. Moreover, this work
has introduced me to some state-of-the-art topics in the world of computer
architecture like HPC, Arm SVE and OpenMP supporting compilers. In
the future, I would like to continue working with BSC on these topics.



Appendix A

Workloads

In this appendix we list what are the workloads we have used in our
experiments. We differentiate four sets of benchmarks: simple input
benchmarks from RAJAPerf, complex input benchmarks from RAJAPerf,
HACCKernels and HPCG.

The set of simple imput benchmarks from RAJAPerf is made up of
RAJAPerf benchmarks that only have three input arguments: sizefact
argument, which is the number of iterations of the parallel loop, in other
words the number of times the body of the loop is executed; repfact
argument, which is the number of repetitions the parallel loop is executed;
and npasses argument, which is the number of times the whole experiment
is executed in order to obtain the arithmetic mean of the hardware counters
and time execution of the experiments, its value is always 3. Table A.1
shows the workload used for each benchmark from and the inputs we have
used. Apart from the three arguments we listed above this table lists the
multiplicative constants that multiply sizefact and repfact. For example,
for COPY benchmark we have executed 60 million iterations of the parallel
loop and we have executed the parallel loop 1800 times. We have set the
number of iterations of the inner loop, so the working set does not fit
in cache. For VOL3D we could not obtain the multiplicative constant
because the benchmark uses a complex function to obtain the size of the
data structures and the number of iterations.
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Benchmark Sizefact Mult. Sizefact Repfact Mult. Repfact

COPY 60 1000000 1 1800

MULADDSUB 192 100000 1 3500

INT PREDICT 96 100000 1 4000

HYDRO 19.2 100000 1 12500

EOS 72 100000 1 5000

VOL3D 6.0 Unknown 1 300

FIR 192 100000 1 1 600

Table A.1: Workloads of simple input benchmarks in RAJAPerf suite.

The rest of the benchmarks of RAJAPerf suite have one more argument
that takes different semantic for each benchmark. Therefore, we have opted
to define them one by one.

• FLOYD WARSHALL: we use a matrix of 3600 x 3600 double
precision floating point elements. Parallel loop is executed only one
time.

• GEMM: we use two matrix of 2400 x 2400 double precision floating
point elements. Parallel loop is executed 6 times.

• JACOBI 1D: we use a vector of 9200000 double precision floating
point elements. Parallel loop is executed 25000 times.

• JACOBI 2D: we use a matrix of 2800 x 2800 double precision floating
point elements. Parallel loop is executed 400 times.

Finally we use the following parameters nx=192, ny=192 and nz=192
for HPCG benchmark and for HACCKernels we use 100000 iterations.



Appendix B

Skylake Flags

Application Flag Intel GCC SCALAR

HACCKernels -O3 -march=skylake -mno-sse4 -mno-ssse3 -mno-sse2 -msse -
mno-avx -mno-avx2 -mno-avx512f -mno-avx512pf -mno-avx512er
-mno-avx512cd -mno-avx512vl -mno-avx512bw -mno-avx512dq -
mno-avx512ifma -g -fopenmp -fno-tree-vectorize -ffast-math -
funroll-loops -ffp-contract=fast

HPCG -O3 -march=skylake -mno-sse4 -mno-ssse3 -mno-sse2 -msse -
mno-avx -mno-avx2 -mno-avx512f -mno-avx512pf -mno-avx512er
-mno-avx512cd -mno-avx512vl -mno-avx512bw -mno-avx512dq -
mno-avx512ifma -g -fopenmp -fno-tree-vectorize -ffast-math -
funroll-loops -std=c++11 -ffp-contract=fast

RAJAPerf -O3 -march=skylake -mno-sse4 -mno-ssse3 -mno-sse2 -msse -
mno-avx -mno-avx2 -mno-avx512f -mno-avx512pf -mno-avx512er
-mno-avx512cd -mno-avx512vl -mno-avx512bw -mno-avx512dq -
mno-avx512ifma -g -fopenmp -fno-tree-vectorize -ffast-math

Table B.1: Flags for GCC, no SIMD version.
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Application Flag Intel GCC SSE

HACCKernels -O3 -march=skylake -msse4 -mssse3 -msse2 -msse -mno-avx -
mno-avx2 -mno-avx512f -mno-avx512pf -mno-avx512er -mno-
avx512cd -mno-avx512vl -mno-avx512bw -mno-avx512dq -mno-
avx512ifma -g -fopenmp -ftree-vectorize -ffast-math -mprefer-
vector-width=128 -funroll-loops -ffp-contract=fast

HPCG -O3 -march=skylake -msse4 -mssse3 -msse2 -msse -mno-avx -
mno-avx2 -mno-avx512f -mno-avx512pf -mno-avx512er -mno-
avx512cd -mno-avx512vl -mno-avx512bw -mno-avx512dq -mno-
avx512ifma -g -fopenmp -ftree-vectorize -ffast-math -mprefer-
vector-width=128 -funroll-loops -std=c++11 -ffp-contract=fast

RAJAPerf -O3 -march=skylake -msse4 -mssse3 -msse2 -msse -mno-avx -
mno-avx2 -mno-avx512f -mno-avx512pf -mno-avx512er -mno-
avx512cd -mno-avx512vl -mno-avx512bw -mno-avx512dq -mno-
avx512ifma -g -fopenmp -ftree-vectorize -ffast-math -mprefer-
vector-width=128

Table B.2: Flags for GCC, SSE (128b SIMD) support version.

Application Flag Intel GCC SSE, AVX and AVX2

HACCKernels -O3 -march=skylake -msse4 -mssse3 -msse2 -msse -mno-avx -
mno-avx2 -mno-avx512f -mno-avx512pf -mno-avx512er -mno-
avx512cd -mno-avx512vl -mno-avx512bw -mno-avx512dq -mno-
avx512ifma -g -fopenmp -ftree-vectorize -ffast-math -mprefer-
vector-width=256 -funroll-loops -ffp-contract=fast

HPCG -O3 -march=skylake -msse4 -mssse3 -msse2 -msse -mavx -mavx2 -
mno-avx512f -mno-avx512pf -mno-avx512er -mno-avx512cd -mno-
avx512vl -mno-avx512bw -mno-avx512dq -mno-avx512ifma -g -
fopenmp -ftree-vectorize -ffast-math -mprefer-vector-width=256 -
funroll-loops -std=c++11 -ffp-contract=fast

RAJAPerf -O3 -march=skylake -msse4 -mssse3 -msse2 -msse -mavx -mavx2 -
mno-avx512f -mno-avx512pf -mno-avx512er -mno-avx512cd -mno-
avx512vl -mno-avx512bw -mno-avx512dq -mno-avx512ifma -g -
fopenmp -ftree-vectorize -ffast-math -mprefer-vector-width=256

Table B.3: Flags for GCC, AVX2 (256b SIMD) support version.
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Application Flag Intel GCC SSE, AVX, AVX2 and AVX512

HACCKernels -O3 -march=skylake -msse4 -mssse3 -msse2 -msse -mno-avx -
mno-avx2 -mno-avx512f -mno-avx512pf -mno-avx512er -mno-
avx512cd -mno-avx512vl -mno-avx512bw -mno-avx512dq -mno-
avx512ifma -g -fopenmp -ftree-vectorize -ffast-math -mprefer-
vector-width=512 -funroll-loops -ffp-contract=fast

HPCG -O3 -march=skylake -msse4 -mssse3 -msse2 -msse -mno-avx -
mno-avx2 -mno-avx512f -mno-avx512pf -mno-avx512er -mno-
avx512cd -mno-avx512vl -mno-avx512bw -mno-avx512dq -mno-
avx512ifma -g -fopenmp -ftree-vectorize -ffast-math -mprefer-
vector-width=512 -funroll-loops -ffp-contract=fast

RAJAPerf -O3 -march=skylake-avx512 -msse4 -mssse3 -msse2 -msse -
mavx -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -
mavx512vl -mavx512bw -mavx512dq -mavx512ifma -g -fopenmp
-ftree-vectorize -ffast-math -mprefer-vector-width=512

Table B.4: Flags for GCC, AVX512 (512b SIMD) support version.

Application Flag Intel ICC SSE

HACCKernels -O3 -std=c++11 -gcc-name=/usr/bin/gcc -march=corei7 -
xSSE4.2 -g -qopenmp -vec -ffast-math -funroll-loops -ffp-
contract=fast

HPCG -O3 -gcc-name=/usr/bin/gcc -march=corei7 -xSSE4.2 -g -
qopenmp -vec -ffast-math -funroll-loops -std=c++11 -ffp-
contract=fast

RAJAPerf -O3 -gcc-name=/usr/bin/gcc -march=corei7 -xSSE4.2 -g -
qopenmp -vec -ffast-math -ansi

Table B.5: Flags for ICC, SSE (128b SIMD) support version.
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Application Flag Intel ICC SSE, AVX and AVX2

HACCKernels -O3 -std=gnu++11 -gcc-name=/usr/bin/gcc -march=corei7 -
xCORE-AVX2 -g -qopenmp -vec -ffast-math -funroll-loops -ffp-
contract=fast

HPCG -O3 -gcc-name=/usr/bin/gcc -march=corei7 -xCORE-AVX2 -
g -qopenmp -vec -ffast-math -funroll-loops -std=c++11 -ffp-
contract=fast

RAJAPerf -O3 -gcc-name=/usr/bin/gcc -march=corei7 -xCORE-AVX2 -g -
qopenmp -vec -ffast-math -ansi

Table B.6: Flags for ICC, AVX2 (256b SIMD) support version.

Application Flag Intel ICC SSE, AVX, AVX2 and AVX512

HACCKernels -O3 -std=gnu++11 -gcc-name=/usr/bin/gcc -march=corei7 -
qopt-zmm-usage=high -xSKYLAKE-AVX512 -g -qopenmp -vec
-ffast-math -funroll-loops -ffp-contract=fast

HPCG -O3 -gcc-name=/usr/bin/gcc -march=corei7 -qopt-zmm-
usage=high -xSKYLAKE-AVX512 -g -qopenmp -vec -ffast-math
-funroll-loops -std=c++11 -ffp-contract=fast

RAJAPerf -O3 -gcc-name=/usr/bin/gcc -march=corei7 -qopt-zmm-
usage=high -xSKYLAKE-AVX512 -g -qopenmp -vec -ffast-math
-ansi

Table B.7: Flags for ICC, AVX512 (512b SIMD) support version.



Appendix C

ThunderX2 and Skylake
Comparision

In this appendix we show the complete graphs of the comparision
between ThunderX2 and Skylake processors. First we list both machines
performance, next energy efficiency and finally power efficiency.

C.1 Performance

Figure C.1: Speed-up using the logarithmic scale (w.r.t 1-thread SCALAR-
ArmHPC on ThunderX2) comparision of one thread between ThunderX2
(TX2) and Skylakae (SKX).
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Figure C.2: Speed-up using the logarithmic scale (w.r.t 1-thread SCALAR-
ArmHPC on ThunderX2) comparision of between 32 threads on ThunderX
(TX2) and 28 threads on Skylake (SKX).

C.2 Energy Efficiency

Figure C.3: Normalized energy (w.r.t 1-thread SCALAR-ArmHPC on
ThunderX2) comparision between 32 threads in ThunderX2 (TX2) and
28 threads on Skylake (SKX).
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Figure C.4: Energy Delay Product (w.r.t 1-thread SCALAR-ArmHPC on
ThunderX2) comparision between 32 threads ThunderX (TX2) and 28
threads on Skylake (SKX).
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C.3 Power Efficiency

Figure C.5: GFlops/watt (w.r.t 1-thread SCALAR-ArmHPC on
ThunderX2) comparision between 32 threads on ThunderX2 (TX2) and
28 threads on Skylake (SKX).
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