
Facultat d’Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) – BarcelonaTech

Degree Final Thesis

From High-Level Languages to
Dataflow Circuits

Author: Joaquim Marset Alsina

Director: Jordi Cortadella Fortuny, Computer Science Department

Degree: Bachelor Degree in Informatics Engineering

Specialization: Computer Science

Date: July 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/231704648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The traditional way to compute something is writing software that can be ex-

ecuted in the processor’s central processing unit (CPU). However, a CPU does

not have the computing capacity to properly run applications belonging to certain

fields like for example, deep learning and cryptocurrency mining. With the passage

of time, graphic processing units (GPUs) began to be used in other fields besides

the initially intended ones (e.g. video games), permitting the execution of those

applications that CPUs could not. Nevertheless, exists a different way to execute

programs or algorithms, that is much more efficient in time and power consumption

than executing software in CPUs and GPUs. This other way consists in directly

designing and implementing a hardware circuit to particularly execute something,

instead of using a general-purpose circuitry that can compute anything.

For this reason, the goal of this project is the development of a synthesis tool

that generates data flow circuits from high-level languages. These circuits can be

later be implemented in technologies such as field-programmable gate arrays (FP-

GAs). This project will create a compiler back end, with the help of some existing

compiler front end that can translate the initial high-level code into some interme-

diate representation, such as LLVM. The idea is to have a unique intermediate code

for multiple high-level languages. Then, this intermediate representation will be fed

to our back end, and it will generate a set of modules with different functions,

and channels to transmit data between modules, in the form of directed graphs.

Finally, these graphs will be implemented in the mentioned FPGAs, creating the

final hardware circuit that will be run. The functioning of these circuits, will follow

the data flow paradigm proposed at the MIT in the mid 70’s.

Resum

La manera tradicional de computar alguna cosa és creant software que es pot

executar en la unitat de processament central (CPU) d’un processador. El problema

és que una CPU no té la capacitat de còmput suficient per executar correctament

aplicacions pertanyents a certs àmbits, com per exemple l’aprenentatge profund o

la mineria de cripto-monedes. Amb el pas del temps, les unitats de processament

gràfic (GPUs) es van començar a utilitzar en altres camps més enllà dels ideats

inicialment (p.e. videojocs), permetent l’execució d’aquelles aplicacions que les

CPU no podien. No obstant, existeix una altra manera per executar programes

o algorismes, la qual és molt més eficient en el consum de temps i energia que

executar software en CPUs i GPUs. Aquesta altra manera consisteix a dissenyar i

implementar directament un circuit hardware per executar alguna cosa en particular,

en lloc d’utilitzar un circuit de propòsit general que permet executar qualsevol cosa.

Per aquesta raó, l’objectiu d’aquest projecte és el de desenvolupar una eina

de síntesis que generi circuits de data flow a partir de llenguatges de programació

2

d’alt nivell. Aquests circuits es poden implementar en tecnologies com les matrius

de portes programables (FPGAs). Aquest projecte crearà el back end d’un com-

pilador, amb l’ajuda d’algun front end d’un compilador que permeti la traducció

de codi d’alt nivell en una representació intermèdia, com per exemple LLVM. La

idea és tenir un únic codi intermedi per múltiples llenguatges d’alt nivell. Aleshores,

aquesta representació intermèdia es passarà al nostre back end, i aquest generarà

un conjunt de mòduls amb diferents funcionalitats, i canals per transmetre dades

entre mòduls, en la forma d’un graf dirigit. Finalment, aquests grafs s’implemen-

taran en les mencionades FGPAs, creant el circuit hardware final que s’executarà.

El funcionament d’aquests circuits seguirà el paradigma del data flow, proposat en

el MIT a mitjans dels anys 70.

Resumen

La forma tradicional de computar alguna cosa es mediante la creación de soft-

ware que se puede ejecutar en la unidad de procesamiento central (CPU) de un

procesador. El problema es que una CPU no tiene la capacidad de cómputo suficien-

te para ejecutar correctamente aplicaciones pertenecientes a ciertos ámbitos como

por ejemplo el aprendizaje profundo o la minería de cripto-monedas. Con el paso del

tiempo, las unidades de procesamiento gráfico (GPUs) se empezaron a utilizar en

otros campos además de los inicialmente ideados (p.ej. videojuegos), permitiendo

la ejecución de esas aplicaciones que las CPUs no podían. Sin embargo, existe otra

manera para ejecutar programas o algoritmos, la cual es mucho más eficiente en

el consumo de tiempo y energía que ejecutar software en CPUs y GPUs. Consiste

en diseñar e implementar directamente un circuito hardware para ejecutar algo en

particular, en lugar de utilizar circuitería de propósito general que permita ejecutar

cualquier cosa.

Por esta razón, el objetivo de este proyecto es el de desarrollar una herramienta

de síntesis que genere circuitos de data flow a partir de lenguajes de programación

de alto nivel. Estos circuitos se pueden implementar en tecnologías como las ma-

trices de puertas programables (FPGAs). Este proyecto creará el back end de un

compilador, con la ayuda del front end de algún compilador que permita la traduc-

ción de código de alto nivel en una representación intermedia, como por ejemplo

LLVM. La idea es tener un solo código intermedio para múltiples lenguajes de alto

nivel. De esta forma el código intermedio pasará a nuestro back end, y este genera-

rá un conjunto de módulos con distintas funcionalidades, y canales para transmitir

datos entre módulos, en la forma de un grafo dirigido. Finalmente, estos grafos se

implementarán en las mencionadas FPGAs, creando así el circuito hardware final a

ejecutar. El funcionamiento de estos circuitos seguirá el paradigma del data flow,

propuesto en el MIT a mediados de los años 70.

3

Contents

1. Context 9
1.1. Introduction . 9

1.2. Problem’s Formulation . 10

1.3. Stakeholders . 11

1.3.1. Developer . 11

1.3.2. Director of the project . 12

1.3.3. Users . 12

1.4. State of the Art . 12

1.4.1. Data Flow Architecture . 13

1.4.2. High-Level Synthesis . 14

1.4.3. Elastic Circuits . 16

1.4.4. Combination of them . 16

2. Programming Tools 17
2.1. LLVM Compiler Framework . 17

2.1.1. mem2reg . 18

2.1.2. lowerswitch . 19

2.1.3. gepLowerPass . 20

2.1.4. instnamer . 21

2.1.5. liveVarsPass . 22

2.1.6. dfGraphPass . 22

2.2. Graphviz . 22

3. Live Variables Analysis 24
3.1. Control-Flow Graph . 24

3.2. Live Variables Analysis . 25

4. Data Flow Graph Components 27
4.1. Operator . 28

4.2. Buffer . 29

4.3. Constant . 30

4.4. Fork . 30

4.5. Merge . 31

4.6. Select . 32

4.7. Branch . 32

4

4.8. Demux . 33

4.9. Entry . 33

4.10. Exit . 34

5. Data Flow Graph Generation 34

6. Scope and Methodology 39
6.1. Scope . 39

6.1.1. Objectives . 40

6.1.2. Final Scope . 41

6.2. Methodology . 43

6.2.1. Monitoring tools . 44

6.2.2. Validation methods . 44

6.2.3. Final Methodology . 45

7. Planning 45
7.1. Tasks Description . 45

7.1.1. Project Launch . 46

7.1.2. Project Management (GEP) 46

7.1.3. LLVM IR Generation and Processing 46

7.1.4. Data Flow Graphs Components Definition 47

7.1.5. LLVM IR Translation into Data Flow Graphs 47

7.1.6. Documentation and Defense 48

7.1.7. Communication with the Director 48

7.2. Resources . 48

7.2.1. Human Resources . 48

7.2.2. Material Resources . 48

7.3. Tasks Summary Table . 49

7.4. Initial Gantt Chart . 50

7.5. Action Plan and Valuation of Alternatives 50

7.6. Deviations and Final Plan . 52

7.7. Final Gantt Chart . 54

8. Economic Management 55
8.1. Cost Identification and Estimation . 55

8.1.1. Human Resources . 55

8.1.2. Software and Hardware Resources 56

8.1.3. General Expenses . 57

5

8.1.4. Unexpected Events . 57

8.1.5. Contingency . 57

8.2. Initial Budget . 58

8.3. Management Control . 58

8.4. Final Budget . 59

9. Sustainability 59
9.1. Sustainability Auto-evaluation . 59

9.2. Sustainability Matrix . 60

9.3. Environmental Dimension . 61

9.3.1. Project Put into Production 61

9.3.2. Useful Life . 62

9.3.3. Risks . 62

9.4. Economic Dimension . 63

9.4.1. Project Put into Production 63

9.4.2. Useful life . 63

9.4.3. Risks . 64

9.5. Social Dimension . 64

9.5.1. Project Put into Production 64

9.5.2. Useful Life . 64

9.5.3. Risks . 65

10.Used Knowledge and Worked Competences 65
10.1. Used Knowledge . 66

10.2. Worked Competences . 66

10.2.1. CCO1.1 . 66

10.2.2. CCO1.2 . 67

10.2.3. CCO1.3 . 67

10.2.4. CCO3.1 . 68

11.Conclusions 68
11.1. Personal Valuation . 68

11.2. Future Work . 69

Appendix A. Usage Description 70

Appendix B. Examples 72
B.1. Example 1 . 72

6

B.1.1. LLVM IR . 72

B.1.2. Live Variable Analysis . 73

B.1.3. Data Flow Graph . 74

B.2. Example 2 . 75

B.2.1. LLVM IR . 75

B.2.2. Live Variable Analysis . 75

B.2.3. Data Flow Graph . 76

12.References 78

List of Tables

1. Not yet handled instructions (Source: own compilation). 43

2. Software Resources (Source: own compilation). 48

3. Summary table with the dedication, time dependencies and resources

of each task. (Source: own compilation) 49

4. Roles involved in the project (Source: own compilation based on market

prices) . 55

5. Human resources costs detailed at the level of the Gantt tasks and

phases (Source: own compilation based on market prices) 56

6. Initial budget (Source: own compilation based on market prices) 58

7. Final budget (Source: own compilation based on market prices) 59

8. Sustainability Matrix (Source: own compilation) 61

List of Figures

1. Currently used hardware comparison (Source: own compilation) 10

2. Example program with its corresponding data flow graph (Source: [3]) . 13

3. Data flow architecture model (Source: [3]) 14

4. Example of mem2reg pass (Source: own compilation) 19

5. Example of lowerswitch pass (Source: own compilation) 20

6. Example of gepLowerPass pass (Source: own compilation) 21

7. Example of instnamer pass (Source: own compilation) 22

8. Example graph created with the DOT language (Source: own compilation) 23

9. Example of a control-flow graph (Source: own compilation) 25

10. Results of a live variable analysis (Source: own compilation) 27

7

11. Operator module (Source: own compilation) 29

12. Buffer module (Source: own compilation) 30

13. Constant module (Source: own compilation) 30

14. Fork module (Source: own compilation) 31

15. Merge module (Source: own compilation) 31

16. Select module (Source: own compilation) 32

17. Branch module (Source: own compilation) 32

18. Demux module (Source: own compilation) 33

19. Entry and Argument modules (Source: own compilation) 33

20. Exit and Return modules (Source: own compilation) 34

21. Function call wrapper (Source: own compilation) 36

22. Example of a data flow graph (Source: own compilation) 39

23. Initial Gantt chart, created with Gantter (Source: own compilation) . . 50

24. Final Gantt chart, created with Gantter (Source: own compilation) . . 54

25. Example 1 - LLVM IR (Source: own compilation) 73

26. Example 1 - Live variable analysis (Source: own compilation) 73

27. Example 1 - Data flow graph (Source: own compilation) 74

28. Example 2 - LLVM IR (Source: own compilation) 75

29. Example 2 - Live variable analysis (Source: own compilation) 76

30. Example 2 - Data flow graph (Source: own compilation) 78

8

1 Context

1.1. Introduction

This project is a final degree thesis belonging to the specialization of Computer Science,

in particular, to the field of compilers. It is a research project, following the investigation

of the project’s director, Jordi Cortadella.

As a brief description, the goal of this research is demonstrate if combining three

existing paradigms, an improvement in both the time and power consumption when

executing programs can be achieved. This improvement will be achieved by changing

the way compilers generate executable code, and the way this code is later executed.

Therefore, we can say that this research trying to change the traditional paradigm of

the compilation and execution of programs. However, this degree project will only set

the pave to the complete solution that could achieve this change, as some aspects

will remain uncovered. Both the full description of the problem and the paradigms the

solution is based, will be explained in the following sections.

Formally stating this project, we are going to develop a high-level synthesis (HLS) tool

[7] that generates elastic circuits [9][10], which follow the execution model of the data

flow architecture [3]. These circuits will be later implemented with technologies such

as field-programmable gate arrays (FPGA).

Putting it in a simpler way, we are going to develop some kind of compiler. The front

end will be omitted, and we will use an existing framework to verify the initial code and

translate it into an intermediate representation. We will center our attention on the

back end, that will take this intermediate code, and generate executable code. This

executable code will not be the traditional machine code that a central processing unit

(CPU) and a graphic processing unit (GPU) understand and execute, but a description of

digital circuits in the form of directed graphs. These graphs will be later implemented in

the mentioned FPGA and reproduce the behaviour of the initial code, thanks to the fact

that the logic blocks of an FPGA can be programmed as the user wants. However, this

degree project will end with the generation of those graphs, and leave the programming

of the FPGA out of scope.

We will pick whatever program written in some high-level language (HLL) (e.g C, C++

and Haskell), and generate the mentioned directed graphs. The nodes in those graphs

will represent the computations the circuit does (e.g. logic and arithmetic operations),

9

and the arcs will represent communications of data and control signals between the

nodes. We will represent these graphs using the language that Graphviz [23] offers,

called DOT [18]. Besides, we will use the open-source LLVM compiler framework [22]

as the front end of our compiler, that permits the generation of a unique intermediate

code (LLVM IR) from multiple HLL.

1.2. Problem’s Formulation

We have mentioned above how we are trying to implement the first steps of a solution

that could change the traditional way we compile and execute programs. In this section

we are going to explain the reasons that have lead to this project.

The last phase of a typical compiler is the generation of the set of instructions that can

be finally executed in the processor’s CPU, reproducing the behaviour of the initial source

code. However, CPUs are not the best solution regarding efficiency and consumption,

but their use is too much extended due to their application flexibility and programming

ease. We can see in the graphic below the differences between the existing technologies

regarding these features.

Figure 1: Currently used hardware comparison (Source: own compilation)

We have CPUs in one side and application-specific integrated circuits (ASICs) in the

other. ASICs are the most efficient in both time and power consumption, as they are

designed for a particular application. But, due to their excessive costs their fabrication

implies, their use it is not that extended as with CPUs. CPUs are the cheapest as their

purpose is totally general, but they have the mentioned drawbacks. Both GPUs and

the FPGAs we intend to use, are in the middle regarding those features, being FPGAs

better. FPGAs can be much more expensive than CPUs and GPUs, as well as more

difficult to program and less flexible, but their advantages in efficiency and computing

capacities, make these drawbacks worth.

10

Due to this gain in both time and power efficiency, during the last years, some people has

been trying to break this current situation and use other kind of technologies to execute

certain applications. For example GPUs, initially intended for graphics processing (e.g.

video games), have been used for some years to execute applications from other fields

like artificial intelligence, machine Learning or deep Learning. Another example could

be the more recent use of ASICs in cryptocurreyncy mining. Using such technologies

have permitted the acceleration of critical parts of some applications and algorithms,

compared to their execution in a CPU, or even completely execute some of them that

in a CPU was unfeasible.

Therefore, the project we are going to develop follows the same idea of trying to develop

a solution to break this traditional situation, and accelerate the execution of programs

and reduce its power consumption. In our case we want to achieve this result by

introducing the novelty of combining some paradigms that others alternatives have not

considered, and using technologies such as FPGAs to implement the resulting hardware

circuits.

1.3. Stakeholders

In this section we are going to explain the different persons that will be involved in the

project development, as well as those that might be involved in the future, once we

finish our work, that can benefit with the work we have done. Also, we will consider

those who can benefit once the complete solution is finished, beyond this degree thesis

scope.

1.3.1. Developer

The developer will be this final degree thesis’ author. He will be the one who will

perform all the different tasks to develop the entire project. These tasks do not only

include the development of the mentioned compiler back-end, but they also include

the writing of the needed documentation, preparation, and exposition of the project’s

defense, planning the complete development, creation of a precise budget, analysis of

sustainability, and constant communication with the project’s director.

11

1.3.2. Director of the project

The director of the project will be Jordi Cortadella, professor of the Computer Science

Department. He is the one who proposed the topic for this project, based on a research

he was taking part. He will act as the client, giving the requirements that the solution

must satisfy, as well as the one who will help the developer, giving advice, and evaluating

his work. A constant communication will be hold with him, via meetings or emails, and

he will be up to day during the whole development.

1.3.3. Users

In this set we include those who can benefit from the development of this project. As

we are trying to offer an alternative to solve a problem, that others have not tried, we

cannot ensure its success. Besides, we will not develop the complete solution, and only

perform the first steps. For these reasons, the ones who can benefit are researchers

who might be interested in the approach we present, and want to complete the solution

or use it as base for its own approach. For example, the director of the project can

also be included, as he is the most interested in developing this approach, and he can

continue with this project and finish it.

If the complete solution could achieve positive conclusions that could lead to a useful

approach to solve the problem, we could also include software and hardware developers,

as we could make their work easier. We could help software engineers who are not

used to hardware primitives, accelerating their software. And we could help hardware

engineers, facilitating the design and verification of efficient hardware, as we could offer

a higher level of abstraction of the circuits’ design. Besides, we could also include

common people, who would benefit in an indirect and transparent way. For this to

happen it would mean the addition of a more efficient hardware, like the one we have

mentioned before, in common computer’s processors. But imagining this situation

happening is quite difficult at this moment.

1.4. State of the Art

As explained in the contextualization, this is a research project that tries to provide an

approach to solve the problem, combining three paradigms. These three paradigms are

the data flow architecture, the high-level synthesis, and the elastic circuits.

12

1.4.1. Data Flow Architecture

Proposed by Jack Dennis from the MIT, as an alternative to the classical von Neumann

computer architecture. The main difference is that the data flow architecture does not

have a program counter sequencing the execution of the different instructions. They are

executed as soon as the input arguments are available, and the output is free of previous

data. This permits the execution of instructions out of order, and the achievement of

high levels of parallelism when executing programs.

This architecture was designed to utilize the data flow language, Dennis previously pro-

posed, as its base language [2]. Starting from a program written in some programming

language, this was translated into this data flow language, and later executed in the

machine. A program in this language is a directed graph where the nodes represent

different operators (e.g logic and arithmetic operations), and the arcs represent trans-

mission of data and control signals. This language is quite simple, but it permits the

execution of conditionals and iterations. It was based on the work of R. M. Karp and

R. E. Miller [6], and the work of J. E. Rodriguez [5]. Both of them presented models

for parallel computations consisting in directed graphs. Rodriguez in fact is considered

as the one who created the data flow graphs, with his model called Program Graphs.

Below we have an example of a program with its corresponding data flow graph.

Figure 2: Example program with its corresponding data flow graph (Source: [3])

In this architecture, a program’s data flow graph is held as a collection of instruction

cells, where each cell contains four registers with the operation code to be executed, the

input arguments of that operation and the addresses of the output destination registers.

All these cells are stored in the memory. When a cell contains the needed arguments,

and the output is empty, the operation is ready to be executed. The cell contents are

transmitted as an operation packet to be delivered to a functional unit Dennis called

13

Operation Unit that will execute the corresponding instruction. Then, data packets

with the result are generated, and delivered to the corresponding registers, enabling new

instructions to be executed. As there is no program counter, and many instructions

can be activated simultaneously, a good management is mandatory. For this reason the

architecture has two more functional units, that Dennis called them Arbitration Network,

some kind of fetch unit, and Distribution Network, some kind of update unit. The first

one in charge of delivering the operation packets to the corresponding Operation Unit,

and the second one in charge of delivering the result packets to the recipient registers

[3][4].

Figure 3: Data flow architecture model (Source: [3])

This architecture was proposed in the 70s, but it was unfeasible and finally left aside due

to the development and cost of the hardware at that time. However, with the new age

of the multi-core processors, this architecture model is studied and investigated again

as it has overcome the past hardware problems, and it has become more feasible.

1.4.2. High-Level Synthesis

High-level synthesis (HLS) [7] consists in translating a high-level language source pro-

gram, into a description of a digital circuit that implements the same behaviour. This

description is done using some hardware description language (HDL), which looks like a

programming language. However, the description of the circuit is not done at the level

of logic gates, but at a higher level of abstraction known as Register-Transfer Level

(RTL), that is more similar to high-level programming.

HLS tools can eliminate the need of the hardware designers to translate manually from

a high-level specification into a RTL description, and obtain better results than manual

HDL coding. The use of HLS has increased during the last years, due to the growing

14

complexity of embedded systems, reducing the work of the hardware designers and the

later verification of these resulting circuit designs. Besides, HLS makes the circuit design

accessible for software developers too, who are not much familiar with the hardware

primitives, and who outnumber hardware designers.

HLS involves three main steps, i.e. allocation, scheduling, and binding.

The allocation phase decides the number of the different functional units, storage

components, and connectivity components that will be needed to correctly perform

the different computations of the initial source code while obeying the design

constraints.

The scheduling phase determines which operation executes at each clock cycle,

based on the number of components of each kind, the clock cycle period and the

possible data dependencies between these operations.

The binding phase assigns all the components decided at the first phase to the

different computations scheduled in the second phase, in a non-overlapping and

optimized way. That is, assigning the different variables to the storage units, the

different operators to the functional units, and the different transmissions between

components to the connectivity units.

All those components are selected from what is called RTL component library, that

contains the different specifications of each component, like the delay of a component.

It is an input for the HLS, together with the clock frequency of the target machine.

Both of them, plus other design constraints, like latency, throughput, and area, will

determine the resulting RTL description.

Onces the three main steps are performed, it comes the generation of the RTL model,

implemented as a data path and a controller. A data path consists of a set of storage

elements (e.g. registers and memories), a set of functional units (e.g. ALUs, multi-

pliers and shifters), and communication elements (e.g. buses and multiplexers). The

controller is a finite state machine that controls the flow of data in the data path by

setting the value of the control signals in the data path components like a multiplexer.

Currently there are many HLS tools out, and for example LegUp [8] (http://legup.
eecg.utoronto.ca/) and Vivado HLS tools (https://www.xilinx.com/products/design-

tools/vivado/integration/esl-design.html) are two important ones. Both of them can

synthesize C code into FPGA circuits, accelerating its execution. Also, both of them use the

same LLVM framework we intend to use.

15

http://legup.eecg.utoronto.ca/
http://legup.eecg.utoronto.ca/
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

1.4.3. Elastic Circuits

The elastic circuits [9][10], proposed among others by this project’s director, consist in digital

circuits with a property known as elasticity. This property refers to the ability of a circuit to

adapt its activity to the different timing delays of the computations and communications it does.

This paradigm appears due to the way synchronous circuits, governed by a clock, deal with these

different delays. They deal with these delays by forcing a big clock period as a security margin

to ensure that in one clock cycle whatever computation or communication can be finished.

Asynchronous circuits can deal better with this problem, but due to the lack of a good design

flow and tools that are essential in the design of synchronous circuits (i.e. electronic design

automation (EDA)), asynchronous circuits are still behind synchronous circuits. However, elastic

circuits can be properly designed with the current EDA flow design.

Elastic circuits wait the necessary delays for the different inputs to arrive, and then the operation

is performed. Therefore, we have to consider the accumulated delay of the arguments’ arrival

plus the operation delay. But, this accumulated time is not fixed and it changes depending on

the operation, so they avoid losing some time like synchronous circuits do with their security

margin. Elastic circuits can use this model of executing instructions, thanks to a synchronization

protocol they have. Either they are synchronous and the synchronization it is done by the clock,

permitting idle clock cycles of waiting, or asynchronous and then some handshake signals are

needed.

Besides, the communication of data between components depends on two signals with different

directions. One is transmitted from sender to receiver indicating that the sender is transmitting

valid data. The other is transmitted the other way round indicating that the receiver can

consume the data. This communication of control signals to determine the transmission of

data is what permits the latency-insensitivity that characterizes the elastic circuits.

1.4.4. Combination of them

In the high-level synthesis, we have seen how the different operations are scheduled statically

during the synthesis. This forces the tool to make a conservative plan that will avoid problems

with control and data dependencies, but it will also suppose a slow down in performance. Instead,

if we decided to dynamically schedule the operations as soon as they are ready, like we have

seen in the data flow paradigm, we could achieve a better parallelism. And the mentioned

elastic circuits are a good choice, as they behave in this desired way of executing operations.

We only need some way to represent and describe these circuits by software. The data flow

graphs that we have also presented are a good option, as there is a literal translation between

the components of those directed graphs to the different components of the hardware circuits,

only extending these graphs by adding some control components used in the elastic circuits.

16

This is the reason why we are combining them to produce a possible solution that could solve

the problem.

These three paradigms have existed for a few years, and different works have been proposed.

Below we mention some of them that could be considered similar to this project to a greater or

lesser degree.

Some of them share the same goal of trying to accelerate critical parts of programs, synthesizing

programs into hardware circuits, like LegUp [8] and Vivado HLS tools, mentioned before. Also,

the work mentioned in the paper cited in [14] has the same goals and their approach is quite

similar, but it uses another intermediate language, and it generates asynchronous circuits instead

of elastic.

There are others, that combine both the high-level synthesis and the elastic circuits, but with

the purpose of easing the burden to the hardware engineers when designing circuits with an

ever-increasing complexity. For example the paper cited in [12], and the PhD thesis cited in

[13].

Finally, we want to mention the Ecole Polytechnique Fédérale de Lausanne (EPFL), with whom

the director of the project was collaborating. They are the closest to this project and the biggest

reference, as they used the same paradigms and approach, and tried to solve the same problem

[1].

2 Programming Tools

In this section we are going to explain the two main tools needed to program the solution, i.e.,

the LLVM compiler framework and the DOT language.

2.1. LLVM Compiler Framework

LLVM [22] is an infrastructure to develop compilers. It started as a research project to provide a

SSA-compilation strategy to support dynamic and static compilation of arbitrary programming

languages. Since then, it has grown a lot, and it has become a big open-source project, con-

taining sub-projects that are being used in the commercial and academic field, as everyone can

use it to develop their own tools. And thanks to the fact that everyone can use it without many

limitations, today exists multiple front ends that permit the compilation of multiple high-level

languages such as C, C++, Python, Haskell, Java or Julia. We have decided to use it precisely

because it can compile lots of high-level languages into a unique intermediate representation,

making the steps of the development totally independent of the initial language.

17

This intermediate representation is called LLVM IR. It is a low-level programming language

similar to assembly, strongly typed, with a reduced set of instructions, with an infinite number

of registers, usually in Static Single Assignment (SSA) form. SSA is a property of intermediate

representations that requires that each variable is assigned only once. Therefore, every time

a variable is assigned in the original code, in the SSA form supposes a new variable, or what

we could call a version of that variable. In order to work with the SSA form we need the φ

functions. A φ function is an statement used to resolve the version of a variable, in some

execution point, when it could have come from several independent execution paths. The SSA

form is a good property the intermediate languages have, as it facilitates and improves the

analysis and optimization that the compiler’s back end performs.

Another feature LLVM has is the possibility of applying optimizations and analysis to the gen-

erated intermediate representation. They are run with the LLVM tool that is called with the

opt command, and in the form of what LLVM calls Passes [15][16]. Passes traverse the LLVM

IR gathering information, transforming the code, or performing some function that cannot be

considered as analysis nor transformation. Passes can be applied at different levels, like the

entire program, each function, each basic block or each loop. Besides, different passes can be

chained, and we can create interactions between them, forcing a sequential execution, as well

as prohibit executing some of them together.

We have decided to program our solution using LLVM passes. With passes we can easily traverse

the different functions inside the LLVM IR. Also, as we can chain passes, we can directly get the

information computed in analysis passes, without the need of storing in some file and reading it

again. Another good point is that executing passes is very easy, and only two or three command

line will be needed to execute our solution, using the mentioned tool. We will use some existing

passes, as well as creating some of them, to perform some transformations and analysis to the

generated LLVM IR. It is mandatory that the passes are executed in the order we present them,

in order to avoid conflicts between those making transformations, and ensure the correct results

on those gathering information. Below we explain the functionality of each of them.

2.1.1. mem2reg

Transform pass that promotes memory references to register references. Some LLVM front

ends do not generate LLVM IR in SSA form. The alternative to the SSA form, that avoids

the φ functions and having multiple versions of the same variables, is to store the variable in

the stack, instead of using registers. However, this suppose having each local variable stored in

memory, and every time its value is read or written, this suppose memory traffic with loads and

stores. Hence, the simplest and common operations, like an addition, supposes some memory

traffic and a performance problem. Therefore, this pass transform a non-SSA LLVM IR that

uses stack variables, into a SSA LLVM IR. Within the elastic circuits, we follow the approach

of the SSA as it is more efficient, and it is more natural, as each time we assign a variable its

18

value it is hold by a different module, so we need the φ functions to receive the data from the

correct one. Below we present an example.

define dso_local i32 @testMem2Reg(i32 %a, i32 %b)

#0 {

entry:

%a.addr = alloca i32, align 4

%b.addr = alloca i32, align 4

store i32 %a, i32* %a.addr, align 4

store i32 %b, i32* %b.addr, align 4

%0 = load i32, i32* %a.addr, align 4

%cmp = icmp sgt i32 %0, 10

br i1 %cmp, label %if.then, label %if.else

if.then: ; preds = %entry

%1 = load i32, i32* %b.addr, align 4

%mul = mul nsw i32 %1, 2

store i32 %mul, i32* %b.addr, align 4

br label %if.end

if.else: ; preds = %entry

%2 = load i32, i32* %b.addr, align 4

%mul1 = mul nsw i32 %2, 4

store i32 %mul1, i32* %b.addr, align 4

br label %if.end

if.end: ; preds = %if.else, %if.then

%3 = load i32, i32* %b.addr, align 4

ret i32 %3

}

define dso_local i32 @testMem2Reg(i32 %a, i32 %b)

#0 {

entry:

%cmp = icmp sgt i32 %a, 10

br i1 %cmp, label %if.then, label %if.else

if.then: ; preds = %entry

%mul = mul nsw i32 %b, 2

br label %if.end

if.else: ; preds = %entry

%mul1 = mul nsw i32 %b, 4

br label %if.end

if.end: ; preds = %if.else, %if.then

%b.addr.0 = phi i32 [%mul, %if.then],

[%mul1, %if.else]

ret i32 %b.addr.0

}

Figure 4: Example of mem2reg pass (Source: own compilation)

The original source code was simply a function receiving two parameters, and depending on

the value of the first parameter, the second was multiplied by a different constant, and finally

returned. In the left code, we have the version without applying the pass. The alloca instruction

is in charge of reserving space in the stack, returning a pointer to that memory address. We

can see how it has to store in memory copies of the parameters, in order to use them, and every

time they are used or assigned, a load or store is required. However, the right code, where the

pass has been applied is much shorter and more natural. We can see how the modified value

of the second argument, in each branch of the if-else, is stored in a temporal, and outside the

if-else, a φ is required to receive the value of the path executed in order to return it. Also,

the temporal storing the result of the φ, is a new one, due to the SSA principle of only one

assignment.

2.1.2. lowerswitch

Transform pass that lowers a switch instruction into the corresponding set of conditions and

branches. In the elastic circuits we cannot directly implement a switch instruction with the

modules we have, so we have to reduce it. We present an example below.

19

define dso_local i32 @testSwitch(i32 %a, i32 %b)

#0 {

entry:

switch i32 %a, label %sw.default [

i32 1, label %sw.bb

i32 2, label %sw.bb1

]

sw.bb: ; preds = %entry

%mul = mul nsw i32 %b, 2

br label %sw.epilog

sw.bb1: ; preds = %entry

%mul2 = mul nsw i32 %b, 4

br label %sw.epilog

sw.default: ; preds = %entry

br label %sw.epilog

sw.epilog: ; preds = %sw.default, %sw.bb1, %sw.bb

%x.0 = phi i32 [2, %sw.default],

[%mul2, %sw.bb1], [%mul, %sw.bb]

ret i32 %x.0

}

define dso_local i32 @testSwitch(i32 %a, i32 %b)

#0 {

entry:

br label %NodeBlock

NodeBlock: ; preds = %entry

%Pivot = icmp slt i32 %a, 2

br i1 %Pivot, label %LeafBlock, label %LeafBlock1

LeafBlock1: ; preds = %NodeBlock

%SwitchLeaf2 = icmp eq i32 %a, 2

br i1 %SwitchLeaf2, label %sw.bb1, label %NewDefault

LeafBlock: ; preds = %NodeBlock

%SwitchLeaf = icmp eq i32 %a, 1

br i1 %SwitchLeaf, label %sw.bb, label %NewDefault

sw.bb: ; preds = %LeafBlock

%mul = mul nsw i32 %b, 2

br label %sw.epilog

sw.bb1: ; preds = %LeafBlock1

%mul2 = mul nsw i32 %b, 4

br label %sw.epilog

NewDefault: ; preds = %LeafBlock1, %LeafBlock

br label %sw.default

sw.default: ; preds = %NewDefault

br label %sw.epilog

sw.epilog: ; preds = %sw.default, %sw.bb1, %sw.bb

%x.0 = phi i32 [2, %sw.default],

[%mul2, %sw.bb1], [%mul, %sw.bb]

ret i32 %x.0

}

Figure 5: Example of lowerswitch pass (Source: own compilation)

The original code of this example was a function receiving two parameters, and depending on the

value of the first one, the result of the function was modified, using the second parameter, and

a constant changing depending on the switch case. We want to mention that in the left code we

previously applied the mem2reg pass. In the left code we can see the switch instruction, being

the first label the code to execute in the default case, and then the different cases depending

on the value of the first parameter. The right code is quite simple, comparing the value of the

tested argument against the possible values of the different cases, jumping to the corresponding

section if the value is found, or to the default case if none of them are the correct value.

2.1.3. gepLowerPass

Transform pass that lowers the instruction getelementptr, used to compute the memory address

of array elements or structure fields, into a set of arithmetic and cast instructions. This instruc-

tion accepts a pointer to the structure as one parameter, and a set of indices to move inside the

structure. The first step the pass does is transforming the input pointer into an integer, in order

to properly make additions, multiplications and left shifts. Then, for each index, we compute the

offset this index represents, with respect to the initial address of type that this particular index

20

tries to index, and we add it to the address calculated so far. We want to mention that all the

constant offsets are accumulated, and added in the end. This way we compress all the additions

of constant values into only one LLVM IR instruction, meaning less elastic modules. Once the

final address is calculated, the integer is transformed again into a pointer of the type the final

address is pointing to, resulting in the output pointer that the original instruction obtains. Below

we present an example.

define dso_local i32 @testGEP([32 x i32]* %a) #0 {

entry:

%arrayidx1 = getelementptr inbounds [32 x i32],

[32 x i32]* %a, i64 10, i64 23

%0 = load i32, i32* %arrayidx1, align 4

%mul = shl nsw i32 %0, 1

ret i32 %mul

}

define dso_local i32 @testGEP([32 x i32]* %a) #0 {

entry:

%0 = ptrtoint [32 x i32]* %a to i64

%1 = add i64 %0, 1372

%3 = inttoptr i64 %2 to i32*

%4 = load i32, i32* %3, align 4

%mul = shl nsw i32 %4, 1

ret i32 %mul

}

Figure 6: Example of gepLowerPass pass (Source: own compilation)

The original code was a function receiving a matrix as its argument, and returning the value of

a particular element multiplied by a constant. In the left code we have first applied mem2reg

and lowerswitch, but the second pass has not effect in the original LLVM IR code. We can see

the getelementptr, receiving a pointer to the matrix, and two indices indicating in this case the

row and column it tries to access. In the right code we have lowered this instruction with the

method explained above.

2.1.4. instnamer

Utility pass that gives names to all the anonymous temporaries used to store results of compu-

tations. Instructions in the LLVM IR are represented by a class called Instruction, subclass of

another one called Value, that represent constants, instructions, arguments, and labels. Each

instance of the Value class have a name. In the case of the instances of the Instruction class,

the name belongs to the possible temporary used to store the result of the instruction. And

temporaries of the form %0, %1, etc, do not have a name. They are not essential, but the

names are used for printing purposes, like for example printing the results of the live variable

analysis, explained in the following section. Below we show an example, where the only change

is the name in the mentioned temporaries.

21

define dso_local i32 @testGEP([32 x i32]* %a) #0 {

entry:

%0 = ptrtoint [32 x i32]* %a to i64

%1 = add i64 %0, 1372

%2 = inttoptr i64 %1 to i32*

%3 = load i32, i32* %2, align 4

%mul = shl nsw i32 %3, 1

ret i32 %mul

}

define dso_local i32 @testGEP([32 x i32]* %a) #0 {

entry:

%tmp = ptrtoint [32 x i32]* %a to i64

%tmp1 = add i64 %tmp, 1372

%tmp2 = inttoptr i64 %tmp1 to i32*

%tmp3 = load i32, i32* %tmp2, align 4

%mul = shl nsw i32 %tmp3, 1

ret i32 %mul

}

Figure 7: Example of instnamer pass (Source: own compilation)

2.1.5. liveVarsPass

Analysis pass that computes the live variables analysis [11] of the set of basic blocks [11] inside

each function. This analysis is typically computed in the optimization phase of the compiler, and

it is used to apply some optimization like dead-code elimination. The information of this passed

will be used to generate a specific type of elastic module, that will be necessary to properly

generate the data flow graphs. The result of this analysis will be directly used by the following

pass, as well as printing them in a text file. All the concepts involved with this analysis will be

later explained.

2.1.6. dfGraphPass

Utility pass that generates a data flow graph, describing an elastic circuit, from the LLVM IR

fed as input. This is the pass that traverse each instruction inside each function and generates

the needed elastic modules (i.e. nodes) and elastic channels (i.e. edges). The graph will be

described using the graph description language called DOT, that will be explained in below. The

result of this pass will be a file containing the description of the resulting graph.

2.2. Graphviz

Graphviz [23] is an open source software to create and visualize graphs. It offers a way of

representing structural information as graphs and networks, and has important applications in

fields like networking, bioinfomartics, software development, database and web design, or ma-

chine learning. The graphs are created with the help of the DOT language, a graph description

language that permits the creation directed and undirected graphs.

The DOT language [18] has a very simple syntax, that only needs to create the graph and fill it

with nodes and edges. Moreover, it offers the possibility to add custom attributes to the graph,

nodes and edges. Below we present a dummy graph created with the DOT language.

22

digraph testGraph {

label = "Test Graph";

Node1[color = blue, attr1 = 1, attr2 = "abc"];

Node2[style = filled, fillcolor = red];

Node3[shape = box];

subgraph cluster_SG {

label = "Subgraph"

Node4;

Node5;

Node6;

subgraph cluster_SG_ {

label = "Subgraph's subraph"

Node7;

Node8 [shape = diamond];

}

}

Node1 -> Node2;

Node2 -> Node3;

Node4 -> Node7 [color = magenta];

Node2 -> Node8 [style = dashed];

Node6 -> Node1 [penwidth = 5];

Node4 -> Node5;

}

Figure 8: Example graph created with the DOT language (Source: own compilation)

As we can see, the graph is created specifying if it is a digraph or a common graph, and then

specifying its list of nodes and edges. Inside a graph, the nodes and edges can be grouped in sub-

graphs, using the corresponding sub-graph directive. As we can see, the nodes in a sub-graph

are place inside a black frame in the resulting graph. Also, we can observe how the attributes

are specified inside square brackets, with the typical pair of name and value. The edges can be

specified with an arrow for a directed edge, or two hyphens for an undirected edge.

However, this language is quite simple as its purpose is offering a way of describing graphs,

but it does not provide any type of infrastructure to render and manipulate those graphs. For

example, the attributes added do not have any effect by themselves, but they can be used

by other applications like Graphviz. These applications offer tools to process the DOT files,

permitting its rendering and manipulation. Besides, Graphviz offers the possibility to customize

the graph with various attributes that can be added to the graph, nodes or edges, that will

affect the rendered graph. These include for example attributes to modify the aesthetics of the

graph, like the ones we have added in the different nodes. Also, they offer the possibility of

exporting the graphs in useful formats like PDF or Postscript.

In this project we are going to use the DOT language to represent the data flow graphs we

generate, as they can be easily defined and represented, as well as easily visualized. The idea is

to generate a graph for each program, and create sub-graphs for each function and each basic

block inside each function. We are going to define some particular nodes, where all of them

will share some common attributes, as well as certain types will have some exclusive attributes.

23

Besides, we will try to take profit of the customization attributes Graphviz offers, to facilitate

the visualization and understanding of the resulting graphs.

3 Live Variables Analysis

In this section we are going to explain the concept and algorithm of the live variable analysis,

learned during the Compilers course from the Computer Science Specialization. This analysis

is done in the LLVM pass mentioned before, called liveVarsPass. However, we will first explain

another concept that is related with.

3.1. Control-Flow Graph

The control flow represents the order in which the different instructions, statements, or function

calls, are executed in an imperative language. Within this type of languages we have instructions

that can break the execution flow , permitting the program to start executing a new path

depending on a condition.

Therefore, a control-flow graph is a directed graph that describes the different execution paths

a program can take. In this graph a node represents a basic block, and an edge represents the

existence of a control flow statement in the origin node, that changes the execution flow, and

starts executing the instructions in the destiny node. A basic block [11] is a set of instructions

that are executed sequentially, and no control flow statements can be found except at the

last instruction. Therefore, the control flow can only enter the basic block through the first

instruction in the block, and it can only exit the block through the last instruction.

In one of its intermediate phases, a compiler generates an intermediate code from the input

code, that has a lower level of abstraction. In this code, the compiler applies optimizations

before translating it to the executable machine code. Typically, this intermediate code is divided

into the set of basic blocks in order to apply these optimization. The process used to identify

the set of basic blocks consists in traversing the code, and identify the leaders of each basic

block. They delimit the different basic blocks, and they are always the first instruction of a

basic block. The instructions that can act as leaders of basic blocks are the first instruction of

the code, the destination instruction of a jump, and the instruction following a jump. Once the

leaders are identified, the only thing missing is group together the instructions from one leader

until the one before the next leader. The last instruction of the basic block is always a control

flow statement, and the more typical ones are conditional/unconditional branches and returns.

The intermediate code LLVM generates (LLVM IR), that we intend to use in our back-end, is

divided in basic blocks. Therefore, all the work done will be at the level of basic blocks, including

the generated data flow graphs that will be divided into basic blocks.

24

We are going to show an example of a control-flow graph using the code of a function that

calculates the factorial of a positive integer passed as argument. The code has already trans-

formed into the LLVM IR, and also transformed with the mentioned passes. We will use the

same example to show the process of generating the data flow graph.

define dso_local i32 @fact(i32 %n) #0 {

entry:

br label %while.cond

while.cond: ; preds = %while.body, %entry

%fact.0 = phi i32 [1, %entry],

[%mul, %while.body]

%i.0 = phi i32 [2, %entry],

[%add, %while.body]

%cmp = icmp sle i32 %i.0, %n

br i1 %cmp, label %while.body,

label %while.end

while.body: ; preds = %while.cond

%mul = mul nsw i32 %fact.0, %i.0

%add = add nsw i32 %i.0, 1

br label %while.cond

while.end: ; preds = %while.cond

ret i32 %fact.0

}

Figure 9: Example of a control-flow graph (Source: own compilation)

3.2. Live Variables Analysis

The live variable analysis [11] is a type of data-flow analysis, performed during the optimization

phase of a compiler, as it is needed to perform certain optimizations. These analysis derive

information about the values of the different variables that appear in the program, in different

points of the program. These program points, are locations within the program, before or after

executing a particular instruction. However, most of these analysis are performed at the level of

basic blocks, gathering, for each basic block, information before executing the first instruction

in the basic block, and after executing the last instruction of the basic block.

In the data-flow analysis we have In[s], that represent the value of the different variables before

executing the statement s, and Out[s] that represent the values after executing s. Exists a

relationship between In[s] and Out[s], called transfer function, where one can be expressed in

terms of the other. If the analysis is performed forward, Out[s] depends on In[s], and the other

way round if the analysis is performed backwards.

Performing these analysis means solving for each basic block, two equations, that change if the

analysis is done forward or backward.

Forward analysis:

Out[B] = fB(In[B])

25

In[B] =
⋃

P predecessor of B

Out[P]

Backward analysis:

In[B] = fB(Out[B])

Out[B] =
⋃

S successor of B

In[S]

The f represents the transfer function, that changes for each data-flow analysis.

The idea is to perform an iterative algorithm, solving these equations for each basic block until

there is no change in the result of any basic block.

The live variable analysis is a backward data-flow analysis, where the information computed for

each basic block represents the set of variables that are live at the beginning and at the end of

the block. A variable is alive at a program point, if it holds a value that might be used in some

other program point, reachable from the first program point, before it is written again.

In order to perform this analysis, we need to compute, for each basic block, the set of variables

that are used in the block before any assignment in the same block, and the set of variables

that are assigned before any use. These two sets will be used in the transfer function. As it is

a backward analysis, it starts from the last basic blocks of a function, assuming that the set of

live variables at the end of the last basic block is empty.

The data-flow equations that we must solve in this analysis are the following:

In[B] = UseB ∪ (Out[B] − DefB)

Out[B] =
⋃

S successor of B

In[S]

And as we have said, we have to iterate these equations, starting with these two sets being

empty for each basic block, until there is no change in the content of any set.

In this project we are going to use the live variable analysis to generate the data flow graphs.

The idea is to place certain components in each basic block to properly receive and send data

from one basic block to another, in specific situations.

When a block ends with a conditional branch, and a variable is alive at the end of that

basic block, we have to ensure that the successor that will execute, receives the variable.

When a basic block uses a variable that comes from multiple predecessors, and these

predecessors are totally independent and only one can execute, we must ensure that the

basic block receives the variable from the executed predecessor.

If we were not to control these situations, we would end with an operation waiting eternally for

an operand to come, and never being able to execute (i.e. a deadlock).

However, we will apply a slightly modification to the algorithm that computes the analysis, that

will facilitate its results and the latter generation of the data flow graph graph. Following the live

variables analysis in a phi function, the different versions of a variable reaching that basic block

can be considered uses inside the phi function. Therefore, as these instructions are placed at

the beginning of the block, all these variables are alive at the beginning of the block. Therefore,

26

we will add them to the set of live variables at the end of each predecessor. As each of these

variables comes from a particular block, those that do not come from that predecessor will be

considered alive at whatever point inside that block, as they will not be written there. Therefore,

we are introducing useless variables, that do not have any importance in some blocks. For this

reason, we have decided to only add each different version of the variable being processed with

a phi function, to the set of live variables at the end of the only predecessor that defines it,

indicated in the same phi function.

Following with the example presented in the control-flow graphs, here we present the live variable

analysis of the function present in that example, where the mentioned modification in the

algorithm that computes the live variable analysis has been applied.

Block entry

Live In

n

Live Out

n

Block while.cond

Live In

n

Live Out

n

fact.0

i.0

Block while.body

Live In

n

fact.0

i.0

Live Out

n

mul

add

Block while.end

Live In

fact.0

Live Out

Figure 10: Results of a live variable analysis (Source: own compilation)

4 Data Flow Graph Components

In this section we are going to describe the different nodes and edges that will form the data

flow graphs we generate. As a remainder, these graphs describe elastic circuits that can be

later implemented in an FPGA. The nodes in the data flow graphs represent the different

modules in the elastic circuits that perform different functions. These modules are synchronous

and equivalent to data path components (e.g. Arithmetic Logic Unit (ALU) and Floating-

Point Unit (FPU)). However, they implement latency-insensitivity by communicating with their

predecessors and successors through a pair of handshake signals, usually referred as valid and

ready, instead of plane wires. The first one goes from sender to receiver to indicate the sending

of a valid piece of data. The second one goes from receiver to sender to indicate the availability

of receiving a new piece of data. As we have explained in the state of the art, these handshake

signals are used to achieve the property of elasticity, and have a circuit that can tolerate the

variations in delays in both computations and communications. Achieving this property avoids

the design problems of asynchronous circuits, or the wide clock periods in synchronous circuits.

Elastic modules have some common attributes that include the delay to execute its function, as

27

well as a list of input and output ports that receive and transmit data. As we explained before,

once a module receives all the needed data through its input ports, and the output ports are

all free, the module can be executed. Each port has some features, that include the width of

data they accept and the delay of the data to go through that port. Different types of modules

will have different number of input and output ports. Besides, some of these modules will have

specific attributes that will define its behaviour.

The transmission of data between the output port of a module and an input port of another

module, are called elastic channels, and they represent the edges in the data flow graphs. Each

transmission communicates the handshake signals, but data can also be transmitted. For this

reason, we can distinguish three types of data communication: transmission of boolean data

(i.e. 1-bit data), other type of data (i.e. > 1-bit data), or only the control handshake signals

(i.e. 0-bit data). As we will have this three mentioned type of channels, we will distinguish them

using different colors with the attributes available in the DOT language.

In order to define all these modules, we have used the concept of inheritance and polymorhism,

defining them as a hierarchy of classes and sub-classes. We have considered it as the easiest

way to deal with modules connecting with others, without they types of each of them, as well

as the best way to represent the common attributes all the modules share. Besides, in order

to create the DOT graph, we have defined common and particular methods to print the nodes

and channels, using the DOT syntax.

In the following subsections we explain all the elastic modules. We want to mention that in all the

figures showing the module, a red arrow represents a channel transmitting only the handshake

control signals, the pink arrow represents also the transmission of only boolean data, and the

blue arrow represents transmission of whatever type of data and even control signals. Some

modules are used to transmit data, but also control signals.

4.1. Operator

In the initial specification, they were used to implement arithmetic, logic, and relational oper-

ations. However, we have decided to use them to implement multiple types of instructions in

LLVM IR. All the conversion instructions that are used to modify the type of a value, the mem-

ory access and addressing instructions, and the vector operations instructions, are represented

with this module. This means that we have to indicate the operation that it is performing. And

this also means that this module can have one, two or more input ports, and a maximum of one

output port, depending on the instruction. However, most of the instructions have one or two

input ports and one output port.

Operator modules can be pipelined, meaning that they can start executing another operation

before ending the previous one. The behaviour of a pipelined operator is determined by two

parameters, i.e. latency and initiation interval, both measured in number of cycles. Latency

28

measures the number of cycles to perform an operation, whereas initiation interval measures

the number of cycles before another operation can start. When latency is 0, the block is

assumed combinational, and it cannot be pipelined. When latency is greater than 0, the block

is sequential, it can be pipelined, and the value of the initiation interval has the mentioned

behaviour. In pipelined units the delay of the ports and the block have a different interpretation.

The delay of the input ports represent the delay from the port to the internal registers of the

block, the delay of the output ports represent the delay from those internal registers to the

output ports, and the delay of the block represent the delay from register to register.

Figure 11: Operator module (Source: own compilation)

4.2. Buffer

A buffer is used to store data, implemented as a First in, First out (FIFO) register, with a

certain capacity. This module only contains one input port and one output port, that can

transmit whatever type of data.

Buffers are characterized by two parameters, i.e., size and transparent. The size is simply the

capacity of the buffer, whereas the second one indicates if the buffer is transparent and it can be

by-passed. Buffers are placed on the edges of the data flow graph, and a transparent buffer will

only store data from the source node if the destiny node cannot accept it. A non-transparent

buffer will receive all the data from the source node of the edge, and it will store it until it can

send it to the destiny node in later clock cycles.

If some data is transmitted, but the destiny node cannot it, the output port of the first node

will not get empty, and further executions of this node will not be possible, stalling the process.

This is called back-pressure, and buffers can help avoiding it.

In the case of elastic circuits, buffers are placed in two situations, to avoid the mentioned

problems of a module stalling others due to needing more cycles to perform its function. These

situations are to cut cycles, and to cut paths with a bigger delay than the clock period.

29

Figure 12: Buffer module (Source: own compilation)

4.3. Constant

A constant is a module that holds a constant value that might be needed in some operations.

The idea is to permit the creation of constant modules of the different types that LLVM IR

permit to have a constant value.

This module has an input and an output port. The output port is the one that transmits

the constant value the module carries, whereas the input port is used to receive only the two

handshake signals. As constants cannot receive any type of data from other module, and they

are orphan nodes, they need to be triggered somehow. The way they are triggered is with

the transmission of the handshake control signals, received from some special blocks that only

transmit control signals. The idea is to have at each basic block some handshake signals, either

placing some block there, or getting it from some predecessor. This control signal will trigger

all the constants present in the basic block, and they will transmit its value to the successor

modules.

Figure 13: Constant module (Source: own compilation)

4.4. Fork

A fork is a module that copies the data or control signals received through its input port to all

its output ports. They can be used to copy data or control signals, and they do not have a

limit of output ports. Therefore, they are added every time some port needs to be connected

to more than one destination port. There are two types of forks, called Lazy and Eager. A lazy

fork is a fork that only outputs the data to the successors when all of them are ready to receive

30

the data. An eager fork, is more efficient, as it outputs the data to each successor as soon as

they are ready to receive new data.

Figure 14: Fork module (Source: own compilation)

4.5. Merge

A merge is a module that transmits the data or control signals received through one of its input

ports, to its output port. However, a merge cannot receive data through two input ports at the

same time.

Merges are used when some basic block uses a variable that can come from multiple independent

predecessors, and only one of them can execute at the same time. As the module that needs

the data will not trigger unless the data is present at its input port, we need some mechanism

to properly receive the data from whatever predecessor it could comes, avoiding a deadlock due

to starving input. If we remember the SSA form, a merge is analogous to the phi functions

mentioned there. LLVM automatically places the phi functions in the SSA forms, but we have to

also consider the situation when a block can receive data from multiple independent predecessors,

but none of them modifies the variable. In this situation we need to ensure the arrival of the

data from the execution path taken. Thus, we have to also place merges for all the possible

variables that meet these requirements. And these variables are the ones that are alive at the

beginning of that basic block, obtained with the live variable analysis. Also, we place merges

when we have to receive control signals to activate orphan nodes, from multiple predecessors.

Figure 15: Merge module (Source: own compilation)

31

4.6. Select

A select is a module that permits the selection of data from one of its two input ports, based

in the value of a condition, that receives from another input port. Then it outputs the selected

data through its output port. One of its input ports represent the true value of the condition,

and the other the false value, but both of them have the same port width. The input port that

receives the condition is one of these ports that receives boolean data. We want to mention

that the three input ports in a select, are distinguished in the DOT description with a special

syntax.

Figure 16: Select module (Source: own compilation)

4.7. Branch

A branch is the reciprocal module of the select. It receives data or control signals at its input

port, and depending on the value of a condition it also receives as input, outputs the data

through one of its two output ports. Like with the select module, one of the outputs represent

the true value, and the other the false value. Also, both the input receiving the condition and

the two outputs, have the same special syntax in the DOT file.

We use the branches to transmit the live variables at the end of a basic block to all its successors,

as well as transmitting the control signals to them. However, we only create branches when

the block has multiple successors, and the branch is conditional. Otherwise, we simply put a

channel connecting them. The reason of creating branches for the live variables is the same as

with the merges, to ensure the successors to receive data they might need.

Figure 17: Branch module (Source: own compilation)

32

4.8. Demux

A demux is a module that has an input port that receives whatever type of data or control

signals, and multiple input ports that only receive control signals. The data received through

its input port is output through one of its output ports, the same number as the input ports

receiving control signals, and with the same width as the input port receiving data. What

determines the output port to use is not a condition, but the control signals received through

its input ports. But, like a merge, it can only receive control signals through only one port at

the same time, and never simultaneously.

This module is rarely used, and in this project it is only used in the way we manage the function

call instructions. Besides, in the DOT representation, the order in which the input ports are

specified is important, as the first one carries the data and the others carry control signals.

Figure 18: Demux module (Source: own compilation)

4.9. Entry

An entry is a module to implement one of the entries of the graph of a particular function in

the LLVM IR. We use this module in the first basic block of a function, that will be in charge

of receiving the control signals from the caller, and transmit this control through all the basic

blocks of that function. Again, this control will be used to trigger the orphan modules.

We have decided to also implement as entry modules, the arguments of a function. Therefore,

it maintains the ports but changing its width, as it will receive and transmit data.

Figure 19: Entry and Argument modules (Source: own compilation)

33

4.10. Exit

An exit is a module to implement one of the exits of the graph of a particular function in the

LLVM IR. We use this block to receive the control signals at those blocks without successors,

and return this control to the caller. If there are multiples basic blocks without successors, we

place a merge to return the corresponding control.

We have decided to also implement the return instruction as exit modules, as both represent

sink modules. However, we will only place a return when the function is not void, placing a

merge if there are multiple returns, to gather them all. Also, the ports will carry data instead

of control signal.

Figure 20: Exit and Return modules (Source: own compilation)

5 Data Flow Graph Generation

In this section we are going to explain how we finally generate the data flow graphs. As we

have explained, this part comes after we have already generated the LLVM IR and applied

the different passes, and we have already created the class hierarchy to represent the different

modules, as well as some classes to represent the basic blocks that will store those modules,

and the function that will store those basic blocks. The result of this part will be the final data

flow graph, described using the DOT language.

We will implement this part as another pass. This pass will traverse each function inside the

LLVM IR, and for each function, and each basic block the function is divided, we will process

each instruction. Most of the instructions are a direct translation to one of the defined modules,

like the operator module. However, there are instructions that cannot be directly implemented

with the available modules. These include those instructions that we have lowered using passes,

or those that we will have to create multiple modules to define its behaviour. In addition to

create the modules, in order to process the instructions, we will need to connect them through

its ports. Besides processing each instruction, we have to perform other steps that involve

creating modules with a certain functionality (e.g Fork, Merge and Branch), that we will need

34

to properly create the graphs, and the latter elastic circuits. We explain below the sequence of

steps we have to perform for each function and basic block.

1. In the first basic block of the function we have to process the possible arguments the

function can have. These means creating an entry module for each argument.

2. In each basic block we have to ensure the existence of control signals to trigger the possible

constants in that block. As we have explained, constants are orphan modules that need

to be triggered somehow, to transmit the constant value they hold to its successors.

The first basic block will create an entry module that will receive the control signals

from the possible caller, and transmit them to the other basic blocks.

Basic blocks with multiple predecessors will have to place a merge to receive the

signals from the correct one.

Basic blocks ending with a conditional branch will have to place a branch module to

transmit the signals.

Basic blocks without successors will place an exit module to return the control to

the caller, creating a merge module if there are multiple basic blocks in the function

without successors.

In the other situations, a simple channel will be enough to transmit the control

signals between the different basic blocks.

3. In each basic block we have to process the live variables found at the beginning of the

basic block. As we explained, we have to place a merge module when the data that needs

to be used in that block can come from multiple independent predecessors. If the data

can only come from one predecessor, the module is not needed, and a simple channel is

enough.

4. In all the LLVM IR instructions the constant values are placed directly in the instruction.

In the φ instructions, that receive values from other basic blocks, happens the same.

Therefore, we have to previously save the different constant values that appear in a φ

instruction, that will belong to a different basic block than the one holding the φ. Then,

when we process the basic block that should contain that constant values, we have to

place a constant module for each of these constant values.

5. Once we have done the previous steps we can process all the instructions in a basic

block. Process an instruction consists in creating the module, or the set of modules that

are needed to reproduce its behaviour, and connect them with the modules that contain

the value of the different operators. To facilitate the connection process, we know at

each moment which value is carried by which module, and the concepts of object-oriented

programming (OOP) are also a good help. The modules that are connected with a certain

module, are stored as references in the origin module of the connection. But thanks to

using abstract methods and structures, we do not have to care about the type of module

35

we are connecting, nor the type of the modules we are connecting with.

6. The return instruction is processed as any other common instruction, creating in this case

an exit module, and connecting its operand if the function is not void. However, as we

have explained with the control signals, we can have multiple basic blocks with a return

instruction, and we will have to place a merge module to gather all the possible returns

the function will have, and return the result to the possible caller.

7. The branch instruction only needs to be processed if the branch is conditional, meaning

that the basic block has more than one successor. A branch module has to be added for

each live variable at the end of that basic block. We have to add a branch in order to

properly communicate the data to the path that will execute, depending on the condition.

If the basic block has only one successor, or the branch is unconditional, the branch can

be omitted and a single channel connecting the modules is enough.

8. The call instruction is the most difficult to generate. For each function defined in the

LLVM IR, we may need to add some kind of wrapper, consisting in multiple modules, to

manage the different calls that function can receive. However, if the function is called

only one time, the wrapper is not needed, and all these modules will be simple connections

between the modules from the caller and the called function. Below we show a diagram

representing the wrapper of a function that has some arguments, and it is called a few

times.

Figure 21: Function call wrapper (Source: own compilation)

When a function is called, the caller must pass all the arguments and some control signal

to trigger the possible orphan blocks in that function. As we have said, if the function is

36

called more than one time we need a wrapper to manage the call. This wrapper consists

in some merge modules, fork modules and demux modules.

We have to place a merge for each argument the function has, as well as one to

receive the control signals that will enter the function. These merges will be used

to receive data or control signals from the correct caller.

The control that each caller sends must be split in at least two ways, or three if the

function is not void. Therefore, we will add a fork module to replicate the control

signals from that caller. One of the outputs of each fork will go to the merge that

receives the control, and the others will go to the two needed demux.

The demux modules will be used to return the control and the possible result to the

correct caller. We will have an output port for each of the calls, to return the value

through the correct port. If we remember, the output of a demux depends on the

control that reaches the demux, only one each time. Therefore, the input control

signals will be used to return to the correct caller.

We have decided to create a dummy module to represent each function call. It will be

placed in the basic block making the call, and as it will be like any other module, we will

connect it with others. Its main purpose is to keep track of the different modules that are

involved in that function call, either sending data and control signals, or receiving them.

If a function is called once, and at the moment we process that call, the function is

not processed, we will not have any modules to connect with. However, we have to

connect the modules in the caller somehow, otherwise connecting them later will be

really complicated. In this situation this dummy block is handy, as we can connect

the modules in the caller with it, and later change these connections. We will keep

track of the modules that are connected with this dummy block, to facilitate the

latter change. The same happens when we have to connect the result and control

signals of the function with other modules in the caller, as we do not have them,

and again the dummy block can be really useful, as we can use the same methods

the other modules use. Again, we will have to modify these connections later, but

we are keeping track of the modules that the dummy block is connected with.

If the function is called multiple times, it does not matter as we have the wrapper,

and there are modules that we can connect with. However, we still use the dummy

block here to connect it with those modules that will use the result and control

signals that the function returns. As the dummy block is placed in the caller basic

block, if we have to add forks to replicate the values returned by the function, we

will place them in the correct place, and we will not have to worry about placing

them correctly.

In both situations, we will need another step to change all the connections once the

functions are all processed.

Finally, in each basic block containing calls, we have to synchronize the different control

37

signals that are present in that block, i.e. the one coming present since the beginning, and

those returned by function calls. That is why we have created a type of operator module

that will perform a simple synchronization operation of the multiple control signals it will

receive, before passing the control to the successor basic blocks.

9. Once each function has been processed, we have to connect the modules that are dis-

connected, as well as changing those wrongly connected.

If a function is called once, we have to connect the modules that we have kept

track in the dummy module representing that call, with the argument modules of

the function, and the entry module of the first basic block. Also, we have to connect

the module containing the returning control signals and the possible result with the

modules the dummy module is connected with.

If the function is called multiple times, we have to perform the same connections,

but in this case the modules are all from the wrapper. The merge modules receiving

the arguments as well as the control signals, and the two demux modules returning

the result and the control signals.

Finishing with that example presented in the section of the live variable analysis, here we present

the generated data flow graph. As it was only a function, the entry and exit modules of that

function are disconnected. We have followed with the color convention used to distinguish the

different edges. We have placed the modules inside each basic block in a sub-graph environment,

in order to distinguish them, as DOT prints them inside a black frame. Also, inside each

basic block, we have placed another sub-graph to contain the modules that only communicate

handshake signals to trigger orphan modules, but with a red frame to distinguish them.

38

DataFlow Graph for 'fact.ll' file

DataFlow Graph for 'fact' function

BB0

Control_BB0

BB1

Control_BB1

BB2

Control_BB2

BB3

Control_BB3

Argument1

Merge4

Constant1

Merge1

Constant2

Merge2

Entry1

Fork1

Merge3

Branch2

Fork4

Fork2

Le1

Fork3

Branch1Branch3 Branch4Mul1

Return1

Fork5

Fork6

Exit1

Add1

Constant3

Figure 22: Example of a data flow graph (Source: own compilation)

6 Scope and Methodology

In this section we are going to explain the scope and the objectives we want to reach in this

project, as well as the working methodology we will apply to achieve them.

6.1. Scope

This final degree project will go through a series of steps implementing the different concepts

and ideas we have presented in the previous sections. We present below the different steps that

will divide the implementation of the data flow graphs.

The first step is translate the high-level source code into the intermediate representation

called LLVM IR. As we have explained, LLVM has tools to compile multiple high-level

39

languages, using that intermediate representation in all of them. For example, Clang is

used to compile C, C++ and Objective-C.

With the input code transformed into the LLVM IR, we have to develop the transfor-

mation passes we explained before, that are not already defined, that will modify certain

instructions. Then, with all the passes created, we have to execute them in the needed

sequence in order to transform the LLVM IR.

Once the LLVM IR is totally transformed, we have to implement the live variable analysis.

As we have said, we will also implement it as an analysis pass, permitting its execution

with the same tool as the others. Therefore, we have to apply the explained algorithm to

each function and basic block, taking into account that the functions are already divided

in basic blocks. The results of the analysis will be printed into a text file.

The next step is defining the different elastic modules with a class hierarchy, as well as

defining classes to represent a basic block that will store the modules, and a function that

will store basic blocks. In each module we will define the different ports, the block delay,

and for some of the modules we will also define the particular attributes they have. The

channels will be stored in each origin module, storing a reference to the destiny module

and port. The class representing a basic block will have the list of modules in that block,

and the class representing a function will have the list of basic blocks.

Finally, we will create the utility pass that will use everything from the previous steps and

create the data flow graphs. As we have said, we will print this graph description in a

DOT file with the corresponding DOT syntax.

Due to the time limitations the degree project has, there are some aspects that will not be

covered. These include the implementation of the generated data flow graphs into the FPGA.

This part implies the programming of all the different elastic modules and channels into the

FPGA. Another aspect that might not be dealt is the optimization of the generated graphs.

There are situations where some modules can be substituted by simple channels, or situations

where some modules of the same type can be fused. The initial agreement was to implement

them without optimizing anything. However, we think that it is possible to implement some of

these optimizations. What we will try to do is process all the different instructions LLVM IR

has. However, there are a really big number, and if problems appear, some of them might not

be dealt. In that case, the software will answer by stopping the execution.

6.1.1. Objectives

We have mentioned that we will only perform the first steps of the full solution, and we will leave

some aspects uncovered. Therefore, this project will have as its main objective the development

of a software that perfectly solves the covered aspects.

40

As we are developing software with some functionality, we will have to ensure the common

features someone would expect.

Develop a solution using the last available technologies. We have to use the latest version

of the LLVM compiler framework and the other programming languages we may use to

implement the solution. Otherwise this solution will get obsoleted quickly.

Offer an intuitive and easy-to-use solution, properly documenting everything. We have to

explain in an easy way the different steps to execute the software, as well as explaining

the different tools and requisites necessary to execute it. Besides, we have to properly

explain how the solution has been implemented.

As someone might continue this project, we must ensure the most understandable and

simple code. We have to write easily readable code, ensuring adequate names to the

different variables, structures and functions that appear in the code. In addition, we have

to add the needed comments, explaining the functionality of the different parts of the

code.

As one of the competences this project must cover, we must ensure the most efficient

and fastest solution. This means that when implementing any of the solution’s functions,

we have to analyze and decide which are the most efficient features offered by the pro-

gramming language (i.e. structures, variable types and instructions), and algorithms to

address the implementation. We will decide them by determining its time complexity and

resources consumption, and use the ones with the best results.

We must ensure the proper functioning of all the functions this software will offer, by

properly testing everything. Each time some function is finished, a battery of test will be

applied in order to detect and solve the least odd functioning.

6.1.2. Final Scope

After finishing the project we want to explain the modifications that the scope has suffered, as

we have not been able to totally cover all the aspects we considered at the beginning, and some

changes have occurred. If the LLVM IR presents some of these uncovered aspects, an assert

will be triggered and the execution will stop.

As we planned at the beginning, covering the implementation of the data flow graphs in

the FPGA was totally impossible. Not only due to the big amount of extra hours needed,

but also due to the fact that there are some aspects that the director has not completely

defined in the implementation of the elastic circuits in the FPGA, like the memory model,

that has to be also be programmed in the FPGA, in addition to the different modules.

In the first specification, the optimization of the data flow graph was not contemplated.

However, we have been able to apply some optimizations, whereas others will be applied

using some software the professor has, directly applied to the graph description in DOT.

41

For each variable alive at the beginning of a basic block, a merge module should be placed.

The same applies to the set of variables alive at the end of the basic block, where we need

to place a branch module. However, merges having only one predecessors, or unconditional

branches are useless, and they can be substituted by a simple channel. Placing all of them,

even the useless, facilitate a lot the connection of the graph. However it makes the graph

more difficult to understand. That is why we have applied these optimizations, and we

have simplified a lot the generated graphs. The optimizations we have not applied include

the fusion of two forks or two merges connected together. Forks connected together can

only appear in the wrapper of a function call, but we do not fuse them to make the

graph more understandable. Merges connecting together appear due to the previous

simplifications done, but due to lack of time we have not been able to fuse them.

Another thing we have not considered is the placement of buffers. We have explained

that they are essential in the elastic circuits, but the director told us to not worry about

them, as we should need specifications of the delays of the different elastic modules, in

order to place them, and we do not have those specifications. Therefore, the placement

of these buffers is handled by some external software the director has, applied to the

graph description in DOT.

All the modules have some common attributes like the delay of the module, as well as

some of them have specific attributes. However, we cannot set these attributes only with

the instructions we process. This information is obtained with something similar to the

RTL library we seen in the high-level synthesis. Therefore, all these parameters have a

default value, but the software is prepared to modify them if needed.

The instructions that are used to manage dynamic memory have not been handled. As

we mentioned, the memory model is not completely defined, but in hardware we do not

distinguish the different types of memory, nor we have the system to manage dynamic

memory. We do not distinguish the in hardware, nor a system to handle it like in software.

Therefore, we do not consider them, only the typical to read and write from memory. We

have considered the instruction that reserves space in the stack, but as we do not have a

stack either, we can use it to simply reserve space in the memory model of the FPGA.

The calls to functions defined in external libraries (e.g. math functions like squared root),

that are not present in the file we process. We need the definition of each function, in

order to correctly generate the circuits. We cannot link these libraries and include the

definition in the file containing the LLVM IR, so we cannot permit them.

Related to function calls, there is a problem with respect to the decided model of the

wrapper of a function call. The problem lies within the merges that receives the arguments

and control signals. As we explained, a merge should only receive data through one of its

input ports, but never two or more simultaneously. And with the defined model, a simpler

function that accepts one integer, that is called two times in the same basic block, passing

42

constant values as the argument, will fail in this requisite the merge has. That is, it will

receive data through multiple ports simultaneously, as the constants will be fired at the

same time, and the behaviour will be undefined. Therefore, the model of the wrapper

that was defined with the director has some mistakes that need to be fixed.

LLVM IR permits the creation of constants of complex types like arrays and structs.

However, we cannot automatically create these recursive types in C++, nor obtaining the

values of their elements and fields with the API. Therefore, we have to prohibit them and

only accept constants of primitive types.

Finally the instructions that we present in this list are those that we have not handled

due to lack of time. We do not know if they can be represented using elastic modules,

as most of them are used to implement an exception-handling system, or they are more

complicated versions of other handled instructions, that have some difference in their

behaviour. At least, they are not completely essential to perform most of the instructions

of a high-level language.

Instruction

invoke

callbr

resume

catchswitch

cleanupret

catchret

unreachable

Instruction

shufflevector

fence

va_arg

landingpad

catchpad

cleanuppad

Table 1: Not yet handled instructions (Source: own compilation).

6.2. Methodology

This project has a short duration, hence we are going to apply an agile methodology in order to

succeed. We have decided to apply the Scrum methodology. We are going to set brief periods

of one week, where we will set some type of goal that must be reached. However, not for each

weak we will fix a big and important goal, but little progress that will permit completing the

development satisfactorily and with a good pace.

For those tasks during only a sprint, the objective will be its complete resolution. For those during

more than a sprint, the objective of each sprint will be doing a certain amount of work in which

the task will be split. For example, one of the programming task will consist in implementing

the different components of the data flow graph in order to represent them. As it will last more

than a sprint, we will split all the components we must implement in the different sprints, and

each sprint’s goal will be the implementation of all the assigned components. For those tasks

during less than a sprint, we will fix the goal of finishing that task, and all other tasks or parts

43

of a task split in the same way as above, that can fit in the remaining time.

Setting up these brief sprints, will permit the early detection of programming errors, misconcep-

tions, and other problems that could affect the compliance with the schedule, and even detect

a wrong planning.

Besides, the development of the project will be constantly followed by the director. He will

receive weekly reports with the progress done that weak and the possible occurred problems

and questions that need to be solved. Moreover, extra meetings will be done each three weeks,

in order to show the progress so he can really check that everything is following its correct

direction, and the project’s requirements are fulfilled.

Finally, in order to avoid programming errors and bugs, every week the new code will be properly

revised to detect the least problem. Otherwise we will reach a point where we will have a big

amount of code lines and detect errors will become difficult.

6.2.1. Monitoring tools

In order to properly monitor the progress of this project, some version control tool will be

needed. We have decided to use Git [25] and Github [26], that permit this control of the

different versions, as well as keeping all the work in a safe place. Other tools like Trello [27] can

be used, in order to keep a good control of all the tasks that need to be performed each week.

Besides the use of these tools, a constant communication with the director will be performed

via email or Skype [28].

6.2.2. Validation methods

The director will be following the development at every time, either with the weekly reports or

with the different meetings. As he is the one doing research, and the one who proposed the

project, he is the one who can validate better the meeting of the requirements and the proper

development of the solution. Besides, he will help resolving all the doubts and questions that

can appear.

The project will be tested constantly, with some battery of test created by the developer. These

tests will not only check the proper functioning of everything, but the efficiency of the solution

too. Moreover, the design and the structure of the solution will be also revised constantly.

44

6.2.3. Final Methodology

After developing the entire project, the used methodology has been maintained and followed. It

was quite expected, as it is the one we are most used to work with, and the results have been

always positive.

As we explained, we worked with weekly sprints with some objectives to reach. We managed to

fulfill those objectives almost all the times, except on one phase where we needed quite extra

hours to complete it, increasing the weekly performance during quite the time.

Regarding the communication with the director, he has been following constantly all the develop-

ment. We kept sending him brief reports via email, with the progress done each week. Besides,

we did different meetings with him, even though the initially proposed dates were not always

followed. Also, he gave fast feedback and constantly helped with the doubts and problems.

Finally, we used the monitoring tools we decided to use, as well as constantly testing the

correctness of our program with tests we created ourselves.

7 Planning

This project will last five months, starting on February 2nd, and ending at most on July 5th.

The end date will depend on the project’s defense, between the 1st and the 5th of July. Each

week will have a dedication of 35 hours (i.e. 5 hours per day), with the possibility of increasing

to a maximum of 40 hours if needed. Therefore, the total dedication of the project will be a

number between 600 and 700 hours.

7.1. Tasks Description

We will divide the project in different phases, and each phase will have its own tasks. As we will

use an agile methodology, the weekly sprints will have as its goal finishing some tasks if they

need one week or less, and making the maximum progress in those needing several weeks.

As there is only one person working in the project, we are not going to consider tasks executing

in parallel. Only meetings with the director and writing the documentation can overlap a task.

Besides, most of the tasks will depend on the previous one, resulting in a sequential execution.

For those phases consisting in implementing code with a certain functionality, we will divide them

in the same tasks, i.e. analyze the requirements, design the solution, implement the solution

and test the functionality and efficiency of the solution.

45

7.1.1. Project Launch

In the first phase we will prepare the working environment, and install and learn how to use the

needed software tools. After that, we are going to research and read all the needed articles to

properly understand the different concepts behind the solution we are trying to develop, as well

as looking for other approaches that other people has tried before.

7.1.2. Project Management (GEP)

This phase will include the compulsory course about project management (GEP) that we have

to complete at the beginning of the project’s life, during the first month. The tasks done in this

phase will consist in the four deliveries and the presentation performed in this course. During

this phase we will decide some important aspects that will affect the rest of the development.

These aspects include:

Contextualize the project.

Research the state of the art.

Define the reach and the goals.

Plan an appropriate schedule to follow, taking into account the needed resources and the

alternatives to deal with delays.

Define all the costs involved and create a budget.

Analyze the different sustainability aspects.

In order to properly carry out this phase, the autonomous learning done in the previous phase

will be essential, as it can reduce the number of hours reading articles during the fixed delivery

periods this course has. Besides, we can consider that all the next phases will depend on this

phase, as it is here where we define some aspects like the reach, the objectives, and the planning.

7.1.3. LLVM IR Generation and Processing

This phase will consist in generating the LLVM intermediate representation from the initial high-

level code, and then apply some transformations that will be needed, as well as gather certain

information from it. The tools used to translate the initial code are the different front ends that

can be generated using LLVM (e.g. Clang for C, C++ and Objective C). Then to apply the

transformations we have to use the LLVM tool used to apply optimizations to the LLVM IR.

Some of these transformations are already defined. But there are others, that will transform a

particular instruction that we will need to define. Besides these transformations, the important

part of this phase is the computing of the live variable analysis. An iterative algorithm used to

resolve in different points of the program which variables’ value will be needed before overwriting

46

them. This analysis is performed in the optimization phase of a compiler. However, we will use

it to add certain nodes in the data flow graphs that are needed to ensure correctness.

7.1.4. Data Flow Graphs Components Definition

This phase will define the graph components that will describe the elastic circuits we want

to generate. The nodes in these graphs will represent functional units in the elastic circuits,

implementing for example arithmetic and logic operations. The edges will represent transmission

of data between those functional units.

We will use the DOT language to describe those graphs. As DOT permits adding custom

attributes to both nodes and edges, in the form of pairs of name and value, we can perfectly

use the same syntax the language has and only add the needed attributes. For example, each

node will have an attribute to indicate its type (e.g. operator), a list describing its input and

output ports, and the delay of the block to perform its function. We will have some types that

will have exclusive attributes. In the edges we will only have to indicate the ports of the nodes

that are connecting, besides indicating the nodes we are connecting.

In order to create this description in DOT, we will create a class hierarchy in C++ to create

and store the nodes and edges with their features. With this class system we will take profit of

the concepts of Object-oriented programming (OOP) like inheritance and polymorphism, and

avoid the necessity of distinguishing the nodes we connect together. Also, we will add some

methods to translate the different nodes and edges, stored as class instances, into the DOT

language with the custom attributes we will add. With these methods we will create the graph

description into a DOT file.

7.1.5. LLVM IR Translation into Data Flow Graphs

This phase will use the results of the previous two phases, and will perform the translation of

the LLVM IR code into the final data flow graphs. This translation will consist in traversing

the different instructions inside each function, and create the corresponding nodes for each

instruction, connecting them as needed. In some instructions a node will be enough, but in

other cases it may need multiple nodes and connections to properly implement that instruction.

Also, some of these nodes will be special nodes that will be added in certain situations to correctly

create the graphs, and ensure a proper circuit description. For example, using the results of the

live variable analysis, some nodes will be added.

As we have explained, these nodes will be generated as class instances of a class hierarchy,

where we will store all the needed information of both nodes and edges. Once we have all these

instances created, we will need to use the mentioned methods to auto-generate the file with

the final data flow graph, described with the DOT language.

47

7.1.6. Documentation and Defense

This will be the last phase of the project, performed during the last month, when all the previous

phases are finished. Here, the documentation developed during all the project will be properly

revised and finished. It will contain some annexes with a user manual of the developed code, as

well as examples of the obtained results. Besides, this phase will include the fully preparation

and exposition of the project’s defense.

7.1.7. Communication with the Director

As we have explained in the methodology, we will send weekly reports to the director with the

goals achieved that week. These reports will not be included as tasks, but we will include all

the meetings that we will do every three weeks, as well as the compulsory on May 2nd.

7.2. Resources

7.2.1. Human Resources

This set only includes the developer explained in the stakeholders, doing all the different tasks

with a dedication of 35 hours per week, and with a possible increase to 40.

7.2.2. Material Resources

This set involves the different material resources that we will need, i.e., hardware and software

resources. The hardware resources only include the laptop needed to develop the entire project.

It is an ASUS TP550L, 8Gb of RAM memory, processor Intel Core i7 5500U, a native Windows

8.1 operative system, and a virtual Ubuntu 18.04. The software resources are all free, and they

are presented in the table below.

Resource Purpose

Visual Studio Code [21] Integrated development environment (IDE) used to program

LLVM Compiler Framework Front end to compile the input code and generate the LLVM IR

GraphViz Graph description and visualization application

Git and Github Management of the code repository

Trello Plan the different tasks and objectives for each sprint

Webmail (FIB’s email) and Skype Communicate with the director

Overleaf [29] LATEX online text processor to create the documentation

Google Slides [30] Create PowerPoint presentations

Gantter (Trial version) [31] Create the Gantt chart

Table 2: Software Resources (Source: own compilation).

48

7.3. Tasks Summary Table

Task Hours Dependencies Resources

1 Project launch 80

1.1 Set the environment 30
No dependences

Developer, Laptop, Visual Studio

Code, Git, LLVM CF, Webmail, Skype1.2 Autonomous learning 50

2 Project management 108.1

2.1 First delivery 40

1 < 2; 2.1 < 2.2; 2.2 < 2.3;

2.3 < 2.4; 2.4 < 2.5; 2.5 <

2.6

Developer, Laptop, Overleaf, Trello,

Webmail, Skype, Microsoft

PowerPoint Online

2.2 Second delivery 25

2.3 Third delivery 25

2.4 Fourth delivery + Presentation

Slides
15

2.5 Prepare the presentation 3

2.6 Present the presentation 0.1

3 LLVM IR generation and processing 70

3.1 Analyze the requirements 5

2 < 3; 1 < 3; 3.1 < 3.2; 3.2

< 3.3; 3.3 < 3.4

Developer, Laptop, Visual Studio

Code, Git, LLVM CF, Webmail,

Skype, Trello, Overleaf

3.2 Design the solution 20

3.3 Implement the solution 30

3.4 Test the solution 15

4 Data flow graph components defi-

nition
135

4.1 Analyze the requirements 15

1 < 4; 2 < 4; 4.1 < 4.2; 4.2

< 4.3; 4.3 < 4.4

Developer, Laptop, Visual Studio

Code, Git, Graphviz, Webmail, Skype,

Trello, Overleaf

4.2 Design the solution 20

4.3 Implement the solution 80

4.4 Test the solution 20

5 LLVM IR translation into data flow

graphs
140

5.1 Analyze the requirements 10
1 < 5; 2 < 5; 3 < 5; 4 < 5;

5.1 < 5.2; 5.2 < 5.3; 5.3 <

5.4

Developer, Laptop, Visual Studio

Code, Git, LLVM CF, Graphviz,

Webmail, Skype, Trello, Overleaf

5.2 Design the solution 20

5.3 Implement the solution 80

5.4 Test the solution 30

6 Documentation and defense 70.5

6.1 Finish the documentation 50
1 < 6; 2 < 6; 3 < 6; 4 < 6; 5

< 6; 6.1 < 6.2; 6.2 < 6.3

Developer, Laptop, Webmail, Skype,

Trello, Overleaf, Microsoft

PowerPoint Online
6.2 Prepare the defense 20

6.3 Defense the project 0.5

7 Meetings with the director 7

7.1 Compulsory meeting (50% of the

project completed)
1 1 < 7.1; 2 < 7.1; 3 < 7.1; 7.1

will take place during 4.3;

Each meeting in 7.2 depend

on the previous one and on

the current task and phase

Developer, Laptop, Webmail, Skype,

Trello

7.2 Regular meetings

6

(1

hour

each)

Total Hours 610.6

The dependencies are represented as A < B, indicating that task A needs to be finished before starting task B.

Table 3: Summary table with the dedication, time dependencies and resources of each task. (Source: own compilation)

49

7.4. Initial Gantt Chart

Figure 23: Initial Gantt chart, created with Gantter (Source: own compilation)

7.5. Action Plan and Valuation of Alternatives

As explained before, the brief duration of the project will force some aspects to remain uncovered.

However, we will try to not reduce them even more and obey the deadline. Besides, the agile

methodology will help with the early detection of problems with the initial planning, and permit

their solving as soon as possible.

If a task ends before planned, the next one will start immediately, saving hour for other tasks

that could get need more time than initially planned, affecting the development.

If a task needs more time than initially expected, we will have to consider different alternatives

to solve the problem without affecting the deadline and the requirements. The only tasks where

this situation could happen are the programming-related ones. The others have a fixed period

or are easy enough to complete in the planned time. Therefore, we only consider the tasks

in phases three, four and five. In particular, we could discard the analysis of the requirements

because is the easiest and simplest among the four, as there are not many requirements in

each phase. The other three are the most important ones, as they will have more impact in

determining the result in each of these phases, and we consider that they can be source of delays.

50

Besides, among these three tasks that can need more time than planned, the implementation

will be the most probably to delay, followed by the testing, and finally the design. Below we

present the measures we will apply in this situation, presented in the order they will be applied.

1. Give broad periods surpassing the estimated duration to complete the task.
The estimated dedication for each of those mentioned tasks should be enough, if we do

not consider delays. But, if we detect an inappropriate pace in a sprint by not completing

its goal, at least exists the possibility of spending more hours (increasing or not the weekly

performance) in that task, and reach its finalization date without delaying the start of

others.

2. Re-assign the given spare hours
If the first measure is not enough, means that we need more time than planned in some

task. Therefore, this measure will consist in redistributing the extra hours assigned to

the last three tasks of the programming phases, giving some of them to the delayed task,

and redistribute the rest again.

3. Shorten tasks or combine them together.
If the second one does not work either, we will have to shorten tasks, or combine some

of them. Below we present this measure, again applied in the presented order.

3.1. Combine the analysis and design tasks, performing them together within the
time assigned to the design.

3.2. Combine the analysis, design and implementation, performing them together
within the time assigned to the implementation.

3.3. Reduce the time assigned to the testing tasks.
In phases three and four we can decrease to a minimum of ten hours, and in phase

five to a minimum of twenty hours. The five phase combines the two previous ones,

so we need more time to test everything assembled. We apply it after modifying

the implementation and design because we consider that it can be more important

than those two, as in these tasks we ensure the correct functioning of everything.

3.4. Reduce the time assigned to finalize the documentation.
We will try to write it during the whole development, but we cannot ensure its fully

compliance. For this reason, this will be the last measure to apply, and we will

reduce a maximum of 20 hours, depending in the state of the documentation at

that moment.

Besides all these presented measures, in all the tasks that can delay, we can consider an increase

in the daily performance. We have considered before adding one hour per day, but we could

increase it even more without a fixed limit, and during the needed time.

Whatever deviation with respect to the initial plan will affect both human and material resources,

as the human resources will work extra or less hours and use the material resources (i.e. hardware

and general expenses) to do it.

51

Finally, we want to mention that with the initial working performance and the given duration,

completing the project within the initial plan is perfectly feasible. We have not considered any

measure that involves reducing the objectives or the scope. The aspects we are covering at the

minimum we should cover in this particular project. That is why, we should not decrease them.

However, it could happen that some aspects in LLVM IR cannot be currently translated into a

hardware circuit, and we have to left them uncovered at the moment.

7.6. Deviations and Final Plan

During the GEP course, we planned the whole development of the project in the way we have

explained in the previous sections, dividing it in different phases and tasks, estimating the

duration of each task. However, the followed plan differs with the initial plan. Below we explain

the modifications made on each phase, taking into account that the first phase ended before

starting GEP, and that the GEP phase had a strict calendar to follow.

As we have mentioned, the GEP course had a strict calendar to follow, and delaying those

tasks was impossible. However, the day of the presentation took place before it should

have happened.

This phase ended needing 5 extra hours in the fourth delivery, to correct the errors made

in the second, and other 5 to prepare the presentation. However, these extra hours did

not affect the planning, as there were enough margin to finish each of them.

The third phase started quite before the initially planned. The first regular meeting with

the director was planned in the middle of the GEP phase. Therefore, we decided to work

extra daily hours to make the maximum progress and show something to him. The day of

that meeting, the implementation task of the third phase was more or less finished, but

there were things that needed to be fixed and others improved. However, the work with

that phase stopped there until the end of the GEP course, when it was resumed. This

phase ended at the end of the month, half month before the initially planned.

The hour estimation was more or less accurate, as the analysis was simpler than expected,

saving 3 hours, but needing 5 more in the implementation to fix the mistakes made during

the first regular meeting. Again, these extra hours did not affect the plan. This was

because of that measure to deal with delays, consisting in giving spare hours to some

tasks, surpassing the estimated duration.

At the beginning of April the fourth phase started, finishing it more than a week before

ending the month.

This phase was not that accurately planned. In the end, this phase was easier than

expected, and it needed 38 hours less than initially planned, divided among the four

tasks. Although there were some aspects that we needed to clarify with the director,

both the requirements and the design were quite simple, only needing time to do the

52

implementation. For this reason, the test was also simplified.

The fifth phase started one week after ending the fourth. This was because we had to

write a report about the situation of the development, once the development passed the

midpoint. This phase took an entire month to be completed.

Comparing it with the initial Gantt, it seems that this phase also took less time to be

performed. However, the real hour consumption reflects an important increase and a bad

estimation. Although the analysis, design and test needed less hours, the implementation

needed 46 extra hours. As the documentation was put aside a bit for some time, we

increased the weekly performance during the whole month to finish this phase faster and

have enough time later to finish the documentation. That is why we managed to end this

phase faster.

Thanks to making an effort to finish the programming as soon as possible, we resumed

the writing more than half a month before the initially planned. At that point we had

written more or less the 50%. Besides, the end date of that task was advanced, because

it was compulsory to deliver this document one week before the project’s defense. This

also advances the preparation of the defense, having more time to spend in that task, as

the date of the defense remains the same.

The hour estimation in this phase has suffered an increase of sixteen hours. One extra

hour to finish the documentation, and fifteen to prepare the defense, as we have more

time than initially planned and we want to use it.

The dates of the regular meetings have suffered some modifications than initially planned.

The first regular meeting as well as the compulsory meeting took place as planned. The

second was delayed a week, because the second phase barely started, and there was not

enough progress to show. The third one, following the rule of one meeting each three

weeks, overlapped the compulsory. For this reason, we decided to delete one of them due

to lack of time, and re-arrange the others to fill the rest of the development.

53

7.7. Final Gantt Chart

Figure 24: Final Gantt chart, created with Gantter (Source: own compilation)

As we can see in the final Gantt chart, we have been able to end all the tasks and reach the

finalization date without any problems. It is true that we needed extra 25 hours with respect

what we planned at the beginning. Although, 15 of them are used to prepare the defense better,

and we could save them.

Nevertheless, we have to mention that although everything has gone quite good, the initial

plan we made was quite inaccurate. All the tasks have suffered deviations, all starting before

planning, almost all of them needing more or less hours than planned, and even needing extra

hours in tasks we did not considered at the beginning.

In the economic management as well as in the sustainability study, we will measure the impact

this final plan has, and compare it with the initial one.

54

8 Economic Management

8.1. Cost Identification and Estimation

In this section we will identify and estimate the costs of the different resources needed, the

general expenses to use some of them, costs associated with possible unexpected events, and

finally some contingency costs to deal with possible deviations. All these costs will form the

final budget.

8.1.1. Human Resources

As explained before, one person alone will adopt all the involved roles and perform the different

tasks. The possible roles we are considering, are the typical ones in a software project. They

are presented in the table below, with the total hours, cost per hour, and total cost of each

of them. The cost per hour is an approximate value obtained by contrasting the same roles in

other degree projects and some web pages.

Role Hours Cost per hour (€/h) Cost (€)

Project leader 185.6 19.80 3674.88

Analyst 30 17.00 510.00

Designer 60 13.63 817.80

Programmer 270 11.30 3051.00

Tester 65 11.30 734.50

Total 610.6 8788.18

Table 4: Roles involved in the project (Source: own compilation based on market prices)

Below, there is another table where the human costs are further detailed, divided for each of

the tasks we have presented in the planning.

55

Task Hours Roles Cost (€)

1 Project launch 80 904

1.1 Set the environment 30 Programmer 339

1.2 Autonomous learning 50 Programmer 565

2 Project management 108.1 2140.38

2.1 First delivery 40 Project leader 792.00

2.2 Second delivery 25 Project leader 495.00

2.3 Third delivery 25 Project leader 495.00

2.4 Fourth delivery + Presentation Slides 15 Project leader 297.00

2.5 Prepare the presentation 3 Project leader 59.40

2.6 Present the presentation 0.1 Project leader 1.98

3 LLVM IR generation and processing 70 866.10

3.1 Analyze the requirements 5 Analyst 85.00

3.2 Design the solution 20 Designer 272.60

3.3 Implement the solution 30 Programmer 339.00

3.4 Test the solution 15 Tester 169.50

4 Data flow graph components definition 135 1657.60

4.1 Analyze the requirements 15 Analyst 255.00

4.2 Design the solution 20 Designer 272.60

4.3 Implement the solution 80 Programmer 904.00

4.4 Test the solution 20 Tester 226.00

5 LLVM IR translation into data flow graphs 140 1685.60

5.1 Analyze the requirements 10 Analyst 170.00

5.2 Design the solution 20 Designer 272.60

5.3 Implement the solution 80 Programmer 904.00

5.4 Test the solution 30 Tester 339.00

6 Documentation and defense 70.5 1395.90

6.1 Finish the documentation 50 Project leader 990.00

6.2 Prepare the defense 20 Project leader 396.00

6.3 Defense the project 0.5 Project leader 9.90

7 Meetings with the director 7 138.60

7.1 Compulsory meeting (50% of the project completed) 1 Project leader 19.80

7.2 Regular meetings 6 (1 h/m) Project leader 118.80

Total 610.6 8788.18

Table 5: Human resources costs detailed at the level of the Gantt tasks and phases (Source: own compilation based on

market prices)

8.1.2. Software and Hardware Resources

All the software resources we are going to use are open source, so they are free and no license

is needed. The hardware resources include only the before mentioned laptop. The cost of that

laptop was 700€ when it was purchased in October 2015. We will calculate its amortization

considering a period of 4 years, and a working pace of 8 hours per each day of the week. We

will calculate the amortization per worked hour in that period, and then multiply it by the total

hours. The calculation is:

(700e ∗ 610.6h)/(4years ∗ 365days/year ∗ 8hours/day) = 36.59e

56

8.1.3. General Expenses

General expenses will include the laptop electricity consumption and the internet access costs.

The laptop consumes 65W. Assuming a current kWh price of 0.13€, the calculation is:

0.065kW ∗ 610.6h ∗ 0.13e/kWh = 5.16e

The Internet access amortization is calculated as the amortization per worked hour in a year,

considering the same working period of 8 hours per day, and then multiply it by the total duration

of the project. Considering a monthly fee of 40€, we obtain the following calculation:

(40e/month ∗ 12months/year ∗ 610.6h)/(365days/year ∗ 8hours/day) = 100.37e

Adding them it results in a cost of 105.53€.

8.1.4. Unexpected Events

We will consider two unexpected events. The first one will be the break of the laptop used to

develop everything. The second one will be the mentioned delays in the programming phases.

The cost of each of them will be multiplied by its probability of occurrence.

If the laptop breaks, it will be repaired if possible, or replaced otherwise. We will consider the

higher cost of replacing it by the same model, and with a probability of 10% as it works perfectly

but it is quite old. Therefore, the cost will be 70e.

The worst scenario of planning deviation is when all the last tree tasks of a programming

phase need more hours than estimated, but they can still reach its finalization date, and no

re-assignment of hours and periods is needed. Otherwise, it would reduce the costs as the hours

of project leader, analyst or designer would be probably substituted for programming hours or

for other type with lower cost per hour. We will add 5 testing hours in the three phases, 25

programming hours and 10 design hours in phases four and five, and only 15 programming hours

and 5 design hours in phase three. A probability of 20% assigned to phases four and five, as

they have similar complexity, and 15% to phase three as it is easier. Using the same formulas

and considerations as before, and applying the probability of occurrence, the human costs of

phases four or five ascend to 95.06e, and 44.12e in phase three. The hardware amortization

and general expenses ascend all together to 1.86e in phases four or five, and to 0.87e in phase

three. Adding all of them it results in 238.83e

Adding the cost of the two unexpected events results in a total cost of 308.83e.

8.1.5. Contingency

The contingency costs will suppose the 15% of the addition of the direct costs (i.e. human

resources) and indirect costs (i.e. hardware and software resources and the general expenses),

57

as the budget is more or less detailed. Therefore, the contingency costs will amount to:

(8788.18e+ 36.59e+ 105.53e) ∗ 0.15 = 1339.54e

8.2. Initial Budget

After identifying and estimating the different costs we have to consider in the project, the budget

is presented in the table below.

Type Amount (€)

Human resources 8788.18

Software and hardware resources 36.59

General expenses 105.53

Unexpected events 308.83

Contingency 1339.54

Total 10578.67

Table 6: Initial budget (Source: own compilation based on market prices)

8.3. Management Control

In order to properly control the budget, at the end of each task we will update the budget with

the real hours and costs of the different human and hardware resources, general expenses, and

unexpected events associated to that task. We will compare them with the estimated costs and

hours, in order to detect deviations as soon as possible, and easily detect their origin. Besides,

we will be able to adjust the estimation in the next tasks and phases, and make it more exact.

The metrics we are going to use are both the cost deviation and consumption deviation of those

resources, general expenses and unexpected events, in order to know if a deviation is due to

a difference in worked hours or it is due to a difference in the cost per hour. We will add the

two metrics in order to obtain the total deviation of each of these resources, expenses, and

unexpected events in each task. The formulas to these metrics are presented below.

Cost Dev iation = (estimatedcost − real cost) ∗ realhours
Consumption Dev iation = (estimatedhours − real hours) ∗ real cost
Total Dev iation = Cost Dev iation + Consumption Dev iation

The possible deviations in the budget will be due to the unexpected events explained before,

and the most possible will be the delay in tasks leading to more working hours. However, we

can allow some deviation, as we have taken into consideration the costs of those unexpected

events, as well as contingency costs to cover deviations in the final budget.

58

8.4. Final Budget

Once the project has fully developed, we present the final budget, taking into account all

the deviations in the planning. Also, we have been using those metrics to properly control

the deviations in the budget, that we have explained before. However, these deviations have

obviously been in consumption, as we are not considering changes in the costs per hour. In the

end we have needed 25 extra hours to finish all the task. The problem is that among these

hours, most of them belong to the role of project leader, the most expensive. We did not

consider this possibility, as we ended having more time to prepare the defense than planned and

we have decided to use it.

Type Amount (€)

Human resources 9174.28

Software and hardware resources 38.09

General expenses 109.85

Total 9322.22

Table 7: Final budget (Source: own compilation based on market prices)

If we compare the initial and final budget, we can see how with the costs assigned to the

unexpected events we could almost cover the deviations with respect the initial budget. If

we add the contingency costs, we can fully cover them. This is a good result, as we are not

presenting a budget that surpass the initial one, but these results also show the different mistakes

we have done when planning the project.

9 Sustainability

9.1. Sustainability Auto-evaluation

After answering the survey proposed during the GEP course, that can be found in goo.gl/

kWLMLE, I have come to realize that there are lots of sustainability concepts that I do not apply

very often, like the creation of a full budget with contingency and unexpected costs. Besides,

there are concepts I have never heard about before, like the deontological principles, or concepts

that I did not thought of applying in the development of a project, like diversity or equity.

During these years in the degree, in all the projects I have developed, I never considered directly

the three dimensions of sustainability, as it was not necessary to succeed, nor a requisite to take

into account. When I develop some software in a project, I always try to develop an innovative

and intuitive solution, easy to use, re-usable, that takes into account the resources consumption,

uses the newest technologies, and satisfies all the necessities and users. These aspects are quite

related with the three dimensions, but I never measure them nor make a proper evaluation. In

59

 goo.gl/kWLMLE
 goo.gl/kWLMLE

fact, this was the first time I computed the amortization costs of the hardware used, or its

consumption in kWh, for the sake of analyzing the impact they have.

However, I am quite confident that I can perform an adequate sustainability analysis, using

metrics to measure its impact. I control the environmental and economical dimension quite well

and I understand all its different concepts and metrics. However, the social dimension is the

one I control less. I always try to satisfy the users who will benefit from what I develop, but I do

not know how to proper measure the impact. Also, there are concepts in the survey related to

that dimension, some of them mentioned at the beginning, that I do not know how to properly

apply. Besides, I lack practice with project management, as I usually prefer to work alone, and in

the past situations a simple planning was enough. The same applies with collaborative working

tools, I know them but I am not too much familiar. My experiences with team working were

quite bad when I had to work with people I did not know, and in the end I preferred to work

alone and avoid problems.

As a conclusion, I want to say that making this project will change the way I will face future

projects with similar complexity and importance. And I hope the degree puts more effort in

teaching more about these sustainability concepts, or at least make the students analyze their

impact a bit, making the students more comfortable when working with them.

9.2. Sustainability Matrix

As we have explained before, this final degree project covers only the first steps of a research

project proposed by the advisor. As it is a research project, the main goal is not selling anything

nor making profit of the result, once it is totally finished, but analyze if the approach taken is

correct and could be further studied, paving the way for something bigger with great benefits.

Especially, if the possibility of this approach having negative results and being discarded could

exists. And the possibility of discarding this approach is the biggest risk at all, but we cannot

currently predict the probability of this happening, as the solution is not yet completed.

Therefore, as it is part of a research, the concept of useful life is difficult to apply, even more

if we only take into account the work we have done in this degree project. For this reason, we

are going to consider as useful life the process of analyzing and studying the obtained results in

time and power efficiency, as well as the improvements that the approach could need. And this

useful life could end with the discard of the approach or the success in solving the problem.

Below we present the sustainability matrix, whose cells will be explained in the following subsec-

tions. The first column ranges from 0 to 10, the second from 0 to 20, and the third from -20 to

0. In the three cases the first value represents that the particular aspect is totally unsustainable,

and the right value fully sustainable. Due to the part we have done cannot be very much used

alone, the punctuation we give also include the complete solution.

60

PPP Useful Life Risks

Economic 6 13 -10

Environmental 8 16 -10

Social 7 14 -2

Sustainability Degree 21 43 -22

42

Table 8: Sustainability Matrix (Source: own compilation)

9.3. Environmental Dimension

9.3.1. Project Put into Production

During the GEP course we made an estimation of the environmental impact the development

would have, considering the initial plan and the estimated duration. Among all the resources,

only the laptop, that consumes 65W, has some impact. The initial plan estimated a duration

of 610.6h, meaning a total consumption of 0.065W*610.6h = 39.69kWh. Taking into account

the unexpected events (i.e. a maximum of 105 extra hours due to delays) we considered there,

the consumption would suffer an increase of 6.82kWh.

Considering the followed plan, that has supposed a development of 635.6 hours, the consumption

should be 41.31kWh. However, we have taken advantage of using a laptop and its battery life,

and we kept it disconnected from the electricity 1.5 hours each day. Considering that we have

worked 5 hours almost each day, we can obtain an approximated reduction of 12.39kWh, not
despicable at all. As the approach we are taking is quite a novelty, reusing resources, especially

open source software, has not been possible. At least, using the LLVM compiler framework

has avoided the necessity of spending hours creating front ends to compile different high-level

languages. In addition to the software tools, we only need the laptop, so considering the reuse

of more resources is not possible.

If we were to consider the part of the solution that we have not covered in this degree project,

the development would suppose a bigger impact. In addition to the extra hours to finish the

uncovered aspects, we would have to add the consumption of the FPGA used to test the

solution. The computer used to finish the solution could perfectly be the same used here, or

with the similar specs and consumption. The consumption of the FPGA would depend on the

model used, and on the way it is programmed. As its hardware is programmable, it does not

consumes always the same, supposing an advantage regarding CPUs and GPUs that have a

fixed circuitry and a minimum power consumption.

61

9.3.2. Useful Life

As mentioned, the useful life of this project will be the further research, study and upgrades

that the approach could need in order to solve the problem. However, if the results are not

promising enough, this approach could end rejected.

Therefore, the environmental impact of using the solution would be the consumption of the

computer in charge of executing the software to synthesize high-level code into elastic circuits,

and the consumption of the FPGA to run the generated circuit. As with the development, the

consumption of the computer could be similar to the one we have used, and the same happens

to the FPGA, that would depend on the model and the circuit implemented in there.

However, as mentioned in the objectives, one of the main goals of the complete solution is

to reduce the power consumption when executing programs. Therefore, if the project could

achieve good results, we could reduce the consumption when executing programs, compared to

the ones we have with the commonly used CPUs and GPUs.

Finally, if we were to compare the impact this approach would have with respect to those

presented in the state of the art (e.g. [1] and [8]), it would be probably worse in this approach.

The goals and technologies used are the same, the only change is in the type of circuits that

are implemented in the FPGA, or the intermediate representation used. Therefore, the benefits

obtained with this solution should be similar to those achieved in other approaches. However,

the impact of the development process will be higher, because we have probably needed more

hours to develop the aspects we have covered, as we were only person developing everything

who was not an expert.

9.3.3. Risks

As reducing the power consumption when executing programs is one of the goals the research

seeks, the only risk the approach could undergo, it is the failure of achieving a good reduction

with respect the commonly CPUs and GPUs. It could achieve some reduction, but less than

expected, not being enough to counter the disadvantages in costs and program difficulty the

FPGA has with respect the other two. Or it could not achieve a reduction at all, and even

an increase with respect the current used technologies. This would mean modifications in the

approach, or even its rejection.

62

9.4. Economic Dimension

9.4.1. Project Put into Production

As with the environmental dimension, during the GEP course we made an estimation of the

budget that the development of the covered aspects would undergo, with all the possible costs.

Those costs were calculated using only real and present costs per hour, fees and amortization

periods. Also, we considered the most realistic probability of the unexpected events to happen,

as well as an appropriate contingency percentage for the presented level of detail. As it is

detailed in the economic management, the total estimated budget was 10578.67e.

Now that the project has ended, the final budget has been 9322.22e. As we have explained

before, we have needed 25 extra hours, divided in the role of project leader and programmer.

Nevertheless, we have been able to cover this increase with the contingency and the cost of

unexpected events, so everything is correct. For this reason, trying to save some money has not

been possible, as we have deliberately used 15 of those 25 hours to better prepare the project’s

defense.

If we were to consider the aspects we have not covered, the budget should include more hours

to develop and document the uncovered aspects (i.e. more hours in all the roles), as well as the

costs of the FPGA to test the solution. It would depend on who continues it, but 200 hours

are perfectly feasible. And the costs of the FPGA would depend on the model used, but FPGAs

can range from hundred dollars to thousands.

9.4.2. Useful life

Once someone finishes the work we have left uncovered, other people will be needed to study

the obtained results in both time and power consumption with respect to the commonly used

technologies. Also, if the results were promising, the approach could need modifications and

improvements. For this reason, someone who improves the software we have developed in

this project, as well as the one connecting with it, that finally implements the elastic circuits

in the FPGA, will be also needed. Improving the software would mean improve its time and

resource efficiency, its power consumption, and adding more functions if needed. Also, the used

FPGA will need maintenance, changing it when needed. It is true that like CPUs and GPUs,

FPGAs have a long lifespan that can surpass the 20 years, but they are usually changed due

to obsolescence. However, changing an FPGA is some times more expensive than changing a

CPU or a GPU, depending on the model used.

If we compare again this approach to those mentioned in the state of the art, the costs to

maintain the project, once it is set, would be similar. Again the differences will be in the

development costs due to our fault, and for the same reasons that we explained. Therefore,

63

this solution will not economically improve others. However, as we are doing a research to offer

an approach that could solve an unsolved problem, and we are not trying to sell anything, the

economic costs to develop the project are not that important, and what really matters are the

possible promising results that could be obtained with the complete solution.

9.4.3. Risks

As mentioned before, this is part of a research and the main goal is not obtaining a profitability.

Especially, if we consider that the researched topic and the approach used are quite new, and the

results could not be optimal. Therefore, as we also mentioned, depending on the conclusions the

project achieves, the approach could need changes or end discarded. And this means that the

biggest economic risk is the failure of the project itself, rather than any other external situation

once the project is set. That is, if the reduction in time and consumption would not be enough

to suffice the increased costs of the hardware, it could suppose discarding this approach.

9.5. Social Dimension

9.5.1. Project Put into Production

The realization of this project has been a good help to realize what the development of an

important project suppose, not only the programming parts and the difficulties of facing new

programming languages and concepts, that I am most used to, but especially the management of

the project. I have also learned new concepts related to the project’s topic like the functioning of

FPGA, its differences with other existing similar hardware, the elastic circuits, and the high-level

synthesis.

Probably, most of these concepts will only serve as more knowledge, but not as something I will

constantly apply. It will depend on the path I take after ending here. However, I can ensure that

all the concepts related to project management as well as project sustainability will be useful,

and they have changed the way I should handle this type of projects.

9.5.2. Useful Life

As we explained in the stakeholders, the main beneficiary will be the director of this project. He

is the one who proposed this project, and the one doing research about the topic. As we have

not completely finished it, he will have to look for someone who can finish. Hence, the work we

have done could be useful to the person who finishes it.

64

If the results obtained with this approach, once it is finished and analyzed, are promising, we

could also consider as beneficiaries other researchers on the topic. They could use this approach

with different purposes like using it as basis to develop their own, or compare their results with

the ones obtained with this approach.

Then, we could also consider other beneficiaries, but only if the approach really solves the

problem. In that situation we could include hardware and software engineers, and even common

people. We could help software engineers who are not used to hardware programming, to

synthesize their code into elastic circuits, accelerating the execution of their programs and

algorithms. We could help hardware engineers, facilitating their process of designing and verifying

efficient hardware with an increase complexity. Finally, common users could also benefit in an

indirect and transparent way, when executing programs or applications. In that case, start using

other technologies besides the commonly used, could affect those who produce the new and old

ones.

But, this situation happening is not that easy, as in the end the complete solution could not

solve the problem and this approach ending discarded. Or in case it has positive results, it will

need a lot of further study to improve and update this first approach, and finally reach that

point.

However, we still think that this project should be developed. We want to solve an unsolved

problem with an alternative that others have not considered, that could make a difference. That

is why it is a research. And with the work we have done in this final degree project, we are

paving the way for someone to finish it and valuate the effect of this solution.

9.5.3. Risks

The only situation that could negatively affect some sector would be the complete success of

this approach to solve the problem, that could lead to the growth of using better technologies

like FGPAs and decrease the use of the old ones. This would affect the producers specialized on

manufacturing the old types. However, the probability of this situation happening is currently

really low.

10 Used Knowledge and Worked Competences

In this section we are going to explain the knowledge that we have used in this project, that has

been learned during the different courses taken in the degree. We will also explain the reasons

why this project belongs to the specialization taken, and the technical competences of that

particular specialization that we needed to work and achieve during the whole project.

65

10.1. Used Knowledge

As mentioned in the contextualization, this project belongs to the field of compilers, whose con-

cepts were learned in the Computer Science specialization. For this reason, the main knowledge

this project integrates belongs to the area of the compilation of programming languages. This

knowledge was learned in the compulsory course called Programming Languages where these

concepts were introduced, and further explained in the optional course called Compilers, taught

by the project’s advisor.

These are mainly the concepts that makes this project belong to the specialization of Computer

Science. However, there is other knowledge learned in the common courses done during the

first years of the degree that we have also applied. These include the programming manners

learned during all the different programming courses. In particular, the concepts learned in the

course called Data Structures and Algorithms, related to the analysis and consideration of the

memory and time consumption in the programs we create. That is, when we decide the best way

to program something, selecting the different algorithms, functions and operations to perform,

as well as the different data structures and variables to store content. These concepts were

also reminded in the course called Algorithmics, that also belongs to the Computer Science

specialization. Besides, we have to include the object orientation concepts like polymorphism,

inheritance, and abstraction, taught in the course called Programming Projects.

10.2. Worked Competences

10.2.1. CCO1.1

To evaluate the computational complexity of a problem, know the algorithmic
strategies which can solve it and recommend, develop and implement the solution
which guarantees the best performance according to the established requirements.
[In depth]

As one of the main objectives of the research project is to reduce the time and power con-

sumption compared to the execution in CPUs and GPUs, we have to ensure the best time

performance and best use of the machine resources in the translation of the high-level code

into the data flow graphs. Therefore, this competence has been applied during the complete

development.

Using the LLVM C++ API has been mandatory, otherwise parsing the LLVM IR code as strings

or some other representation would have been a performance downgrade. Also, developing

everything as LLVM transform and analysis passes has been a good strategy, as it has facilitated

the traverse of functions and instructions, as well as permitting the easy sequencing of passes,

66

and using data calculated in other passes. Also, representing the elastic modules as a class

hierarchy has been a good strategy to easily connect modules without worrying about the types

involved. Besides, we have tried to use the minimum storage as well as using the most efficient

structures to store the content needed to properly create the graphs.

10.2.2. CCO1.2

To demonstrate knowledge about the theoretical fundamentals of programming
languages and the associated lexical, syntactical and semantic processing tech-
niques and be able to apply them to create, design and process languages. [In
depth]

This is the most important competence, as we are developing a compiler to synthesize code

written in high-level languages into elastic circuits, and implement them in an FPGA. It is true

that we are leaving some of the processes to the LLVM tools, that generate the intermediate

representation, and are in charge of ensuring the correctness of the input code. However, we are

in charge of processing that intermediate representation, processing all the different instructions

and operands, and generate the corresponding elastic modules and channels.

Therefore, we are applying the lexical and syntactical techniques to properly generate the graphs.

The LLVM performs the semantic analysis and verifies that everything in the original code is well

constructed, as well as generating the intermediate code. And then, we take care of generating

code for the DOT language, as well as applying some modifications to the LLVM IR, and

optimizations on the generated graphs.

10.2.3. CCO1.3

To define, evaluate and select platforms to develop and produce hardware and
software for developing computer applications and services of different complexi-
ties. [A little bit]

In this project, the decision of using both LLVM IR and the DOT language was quite established

since the beginning. The idea of the approach was to use some intermediate representation for

multiple high-level languages, and LLVM was the best option as it is an open-source project

constantly updated. The situation of the DOT language was similar, as DOT permits the

representation of graphs in an easy way, and it also permits the addition of attributes to the

nodes and edges, making it perfect for this project.

The decision of using C++ as the programming language was due to the fact that it is the

language where the LLVLM API is defined for, and it is the one most known by the project’s

67

author.

The decision of using FPGAs to implement the elastic circuits, is what this approach tries to

discover, if synthesizing hardware in this type of technologies is appropriate or not to improve

the execution of programs with respect to CPUs and GPUs.

10.2.4. CCO3.1

To implement critical code following criteria like execution time, efficiency and
security. [Enough]

As explained in the first competence, one of the main goals is reducing the time and power

consumption. Therefore, we have tried to implement everything taking always into account

these aspects. That is, trying to use the correct structures, as well as using the more efficient

algorithms, and finding the most efficient and simpler way to implement all the functions. Also,

we have ensured that there are not memory leaks or bugs. The only problem it could occur is that

the program stops by triggering an assert, due to the LLVM IR code having some instructions

that are not handled for some of the explained reasons.

11 Conclusions

11.1. Personal Valuation

Carrying out this project has been a good challenge as well as a good experience. In addition of

learning new technical concepts, I have been able to learn and apply certain methodologies to

develop projects satisfactorily.

During the degree I have been doing projects for the sake of applying and demonstrating the

concepts learned in that course, obtaining a grade, and forgetting about at the moment it is

delivered. They did not have any purpose nor utility. However, with this project, I have been

forced to properly plan all the development, consider alternatives when something goes wrong,

consider the best working methodology, and create an accurate budget that the development

could suppose. And I am grateful, because during the degree these aspects are not needed to

success, and this way I have been able to learn how I should carry out big and important projects

from now on.

The development has gone quite well, as I have been able to fulfill all the initial objectives, as

well as covering most of the planned aspects, changing some aspects for others that I considered

more important, that they were not supposed to be covered, or leaving some of them uncovered

68

due to lack of time, or being impossible at this moment. Nonetheless, the initial plan has suffered

deviations, as all the phases started before the initially planned, and all of them had a different

duration than planned. Also, the development has suffered an increase of 25 hours with respect

the planned duration, but most of them for the sake of better preparing the defense. Therefore,

my initial thoughts about the duration of each task was a bit inaccurate. However, thanks to

increasing the daily performance, and the contingency and unexpected events costs, neither the

end date nor the budget have been endangered.

During all the project’s life, I have learned different concepts related to the approach the com-

plete project tries to accomplish. In addition, I have researched and learned about the different

existing alternatives trying to solve the same problem or using the same concepts, all serving

as a reference to this project. It is a pity that developing the complete solution was impossi-

ble, if we take into account that most of what it has been left uncovered is really interesting

and completely new for me. Specially, if we consider that all the new concepts learned about

the approach, have been used to understand what is behind this approach, and understand the

reasons behind the work done, rather than directly applying these concepts. In the end, most

of these concepts could not be very useful.

Finally, I want to express my gratitude to the director, for permitting me to carry out this

project, as he was searching a master’s degree student to do it. Specially if I have not been able

to fully develop the solution, and only perform the first steps. Also say that he has been a great

advisor, and I hope that the work I have done can help him somehow, and not be completely

useless.

11.2. Future Work

Developing the complete project in the time given was quite impossible. The GEP course took

an entire month, and performing other tasks at the same time was complicated. Therefore, we

ended with less than three months of complete development, considering the time needed to

write the documentation and prepare the defense.

As we have explained, there are some instructions in the LLVM IR that are not currently man-

aged, and this was not our initial intention. Some of them were impossible to process, due to

an incompatibility of the instruction behaviour with the hardware programming, like calling to

predefined functions that we cannot have access to its definition, or those that manage dynamic

memory, not existing in hardware. However, there are others that have not been considered due

to lack of time. All of them are special terminator instructions that are some variation to others

that we have processed, like a branch or an instruction call, or they are instructions to implement

the LLVM exception-handling system. At least, these instructions are not essential, and they

will appear in very specific situations.

Besides dealing with the uncovered LLVM IR instructions, the most important part of the

69

solution has not been covered yet. That is, the programming of the circuit’s description into

the FPGA. In addition of the price barrier it can have, programming an FPGA is some times

more difficult than programming in a CPU or a GPU. Therefore, this supposes a considerable

time of autonomous-learning, as well as the time to program and test it. These were the reasons

why it was impossible to cover this aspect within the available time. However, this aspect not

being covered was planned since the beginning, as it was totally impossible.

At least we have been able to cover some optimization of the graphs generated, not initially

planned. These optimization simplify the graphs a lot, deleting useless elastic components.

For this reason, we considered doing this instead of implementing the remaining LLVM IR

instructions.

Hence, the future work consists in finding someone to finish the solution, dealing with the

uncovered instructions that can be translated into hardware components, as well as implementing

the elastic circuits, described by the data flow graphs, into the logic blocks of the FPGA. Then,

some study should be done to decide if the results obtained in time and power consumption

can be good enough to counter the drawbacks an FPGA has (e.g. programming difficulty, high

cost and less application flexibility), or discard this approach. If the results were positive, and

this approach promising, further research could be done to improve this approach, and use it to

solve the problem in the future.

A Usage Description

In this appendix we are going to explain how the software developed in this project is executed,

as well as the requisites it needs to be executed.

As we have explained, we have developed everything using the LLVM tools. In addition of the

official tools, some front ends might be needed to compile different high-level languages, as

LLVM only offers clang to compile C, C++ and Objective-C. Also, we want to mention that

LLVM has multiple versions, and the latest stable is the 8. We have tested it with versions 7,

8 and 9, but in version 8 they have added some instructions in the LLVM IR. Therefore, we

recommend using version 8 to execute the software.

We also need cmake [24] to generate makefiles for the different passes, and easily compile them

and build the shared libraries that will execute the passes with opt. We have used [20], an easy

tutorial to build projects with cmake.

Also, we want to explain how the project is structured. There are four folders, containing the

different passes we have created, as well as the C++ classes to represent the data flow graphs.

Then, inside each of the folder containing passes, we have structured following the guides given

in [15]. We have a cmake file and a sub-folder containing the code of the pass, and another

70

cmake file. In the end, we only need to generate the libraries of the different passes, and execute

them.

Below we present the list of steps that must be performed to execute the software. We explain

it using Unix commands, as we have developed using an Ubuntu 18.04. However, all the needed

tools are also available in Windows, so it should be possible to execute it there.

1. In the parent folder of each pass, we have to create a folder called build, enter inside that

folder and execute the following command:

cmake ../

This command will generate themakefile in the same build directory, that will compile that

pass and generate the mentioned shared library. Once we have the makefile generated,

we only need to execute it using

make

We have to repeat this step for all the three passes we have created.

2. Once we have the shared libraries, we have to generate the LLVM IR. It will depend on

the tool used, but for example in clang we have to execute the following command:

clang -S -emit-llvm -Xclang -disable-O0-optnone file.c -o file.ll

The three first options of the command are needed to generate the file containing the

LLVM IR, with the .ll extension. The other two are needed to correctly execute the

transformation passes, like mem2reg, otherwise they do not have any effect.

3. Once we have the LLVM IR and the passes built, we can execute the optimizer tool

and execute the passes. Again, we have to execute them in the sequence we explained.

For those that are already defined, we only need to specify them as a command option,

but for those we have created we need to use -load, passing the complete path to the

shared library object as argument. This library object is placed in the build directory, in a

folder with the name of the pass. Also, the order of the passes in the command line will

determine the order they are executed, and we have explained that we need a particular

order. Therefore, to execute them we only need a command, but we can also divide it.

opt -S -mem2reg -lowerswitch -load

/path/to/the/library/object/for/gepPass -gepPass -instnamer -load

/path/to/the/library/object/for/dfGraphPass -dfGraphPass file.ll -o

fileMod.ll.

As we can notice, we do not need to load the pass that computes the live variable analysis,

as it is automatically executed before dfGraphPass. The problem is that we cannot do

the same with the others, as the predefined ones do not have a header file containing the

pass description, and we cannot include them in the list of requisites, as we have done

with the other. With gepPass it would be possible, but as there is instnamer coming

after, we cannot include it either.

71

B Examples

In this appendix we are going to show some examples of data flow graphs generated with the

software we have developed. We will try to show different parts of the process, to facilitate the

understanding of the final graph.

B.1. Example 1

We first present the source code of this example. We have omitted the main function, as it

would only create some variables and call another function. This way we facilitate a bit the

generated graph. This example has the following source code:

int elemAdd(int a[32]) {

int x = 0;

int i = 0;

while (i < 32) {

x = x + a[i];

i = i + 1;

}

return x;

}

int test(int a[32], int b[32]) {

int x = 0;

int add1 = elemAdd(a);

if (add1%2 == 0) {

x = add1;

}

else {

x = elemAdd(b);

}

return x;

}

B.1.1. LLVM IR

Next, we are going to show the generated and later transformed LLVM IR, using the tools we

have already explained. We will show the code instead of the control-flow graph to see the

different attributes the function has.

72

define dso_local i32 @elemAdd(i32* %a) #0 {

entry:

br label %while.cond

while.cond: ; preds = %while.body, %entry

%x.0 = phi i32 [0, %entry], [%add, %while.body]

%i.0 = phi i32 [0, %entry], [%add1, %while.body]

%cmp = icmp slt i32 %i.0, 32

br i1 %cmp, label %while.body, label %while.end

while.body: ; preds = %while.cond

%idxprom = sext i32 %i.0 to i64

%arrayidx = getelementptr inbounds i32, i32* %a,

i64 %idxprom

%0 = load i32, i32* %arrayidx, align 4

%add = add nsw i32 %x.0, %0

%add1 = add nsw i32 %i.0, 1

br label %while.cond

while.end: ; preds = %while.cond

ret i32 %x.0

}

define dso_local i32 @test(i32* %a, i32* %b) #0 {

entry:

%call = call i32 @elemAdd(i32* %a)

%rem = srem i32 %call, 2

%cmp = icmp eq i32 %rem, 0

br i1 %cmp, label %if.then, label %if.else

if.then: ; preds = %entry

br label %if.end

if.else: ; preds = %entry

%call1 = call i32 @elemAdd(i32* %b)

br label %if.end

if.end: ; preds = %if.else, %if.then

%x.0 = phi i32 [%call, %if.then],

[%call1, %if.else]

ret i32 %x.0

}

Figure 25: Example 1 - LLVM IR (Source: own compilation)

B.1.2. Live Variable Analysis

Then, we are going to print the results of the live variable analysis, as it will be necessary for

the generation of the data flow graph. We show the results of elemAdd aligned to the left, and

the results of text) aligned to the right.

Block entry

Live In

a

Live Out

a

Block while.cond

Live In

a

Live Out

a

x.0

i.0

Block while.body

Live In

a

x.0

i.0

Live Out

a

add

add1

Block while.end

Live In

x.0

Live Out

Block entry

Live In

a

b

Live Out

b

call

Block if.then

Live In

call

Live Out

call

Block if.else

Live In

b

Live Out

call1

Block if.end

Live In

Live Out

Figure 26: Example 1 - Live variable analysis (Source: own compilation)

73

B.1.3. Data Flow Graph

Finally, we present the data flow graph of that example. We will not show the description of

that graph in DOT, as it is quite big. However, we will show it in another example.

DataFlow Graph for 'exemple.ll' file

DataFlow Graph for 'elemAdd' function

BB0

Control_BB0

BB1

Control_BB1

BB2

Control_BB2

BB3

Control_BB3

DataFlow Graph for 'test' function

BB0

Control_BB0

BB2

Control_BB2

BB3

Control_BB3

Argument1

Merge4

Constant1

Merge1

Constant2

Merge2

Entry1

Fork1

Merge3

Branch2

Fork3

Branch1

Constant3

Lt1

Fork2

Fork7

Branch3

Branch4

Add2

Return1

Fork5

Fork4

Fork6

Exit1

IntSExt1

Shl1PtrToInt1

Add1

Constant4

IntToPtr1

Load1

Add3

Constant5

Demux2 Demux1

Merge5Merge6

Fork11Fork12

Fork9

Merge8

Synchronization1

Synchronization2

Argument2

Argument3

Branch5

Constant6

Rem1

Eq1

Constant7

Fork10

Branch6

Branch7

Entry2

Fork8

Fork13

Merge7

Return2Exit2

Figure 27: Example 1 - Data flow graph (Source: own compilation)

74

B.2. Example 2

Like we have done with the previous example, we first present the source code.

int gcd(int a, int b) {

int aux = 0;

while (b != 0) {

aux = b;

b = a % b;

a = aux;

}

return a;

}

int main() {

int x = gcd(52, 76);

}

B.2.1. LLVM IR

We will follow the same sequence, so we are going to show the generated and later transformed

LLVM IR.

define dso_local i32 @gcd(i32 %a, i32 %b) #0 {

entry:

br label %while.cond

while.cond: ; preds = %while.body, %entry

%b.addr.0 = phi i32 [%b, %entry],

[%rem, %while.body]

%a.addr.0 = phi i32 [%a, %entry],

[%b.addr.0, %while.body]

%cmp = icmp ne i32 %b.addr.0, 0

br i1 %cmp, label %while.body, label %while.end

while.body: ; preds = %while.cond

%rem = srem i32 %a.addr.0, %b.addr.0

br label %while.cond

while.end: ; preds = %while.cond

ret i32 %a.addr.0

}

define dso_local i32 @main() #0 {

entry:

%call = call i32 @gcd(i32 52, i32 76)

ret i32 0

}

Figure 28: Example 2 - LLVM IR (Source: own compilation)

B.2.2. Live Variable Analysis

In this example we will only show the live variable analysis of the function that computes the

great common divisor, as the main function has only one basic block, and the live variable

analysis is useless in that function.

75

Block entry

Live In

a

b

Live Out

a

b

Block while.cond

Live In

Live Out

b.addr.0

a.addr.0

Block while.body

Live In

b.addr.0

a.addr.0

Live Out

b.addr.0

rem

Block while.end

Live In

a.addr.0

Live Out

Figure 29: Example 2 - Live variable analysis (Source: own compilation)

B.2.3. Data Flow Graph

In this example we will show the resulting graph, as well as its description using the DOT

language. We first show the DOT description and then the rendered graph.

digraph "DataFlow Graph for 'gcd.ll' file" {
label="DataFlow Graph for 'gcd.ll' file";

subgraph cluster_gcd {
label="DataFlow Graph for 'gcd' function";
subgraph cluster_BB0 {

Argument1[type = Entry, in = "in:32", out = "out:32"];
Argument2[type = Entry, in = "in:32", out = "out:32"];
subgraph cluster_Control_BB0 {

Entry1[type = Entry, in = "in:0", out = "out:0"];
label = "Control_BB0"
color = red

}
label = "BB0"

}
subgraph cluster_BB1 {

Merge2[type = Merge, in = "in0:32 in1:32", out = "out:32"];
Merge3[type = Merge, in = "in0:32 in1:32", out = "out:32"];
Constant1[type = Constant, in = "in:0", out = "out:32", value = 0];
Ne1[type = Operator, in = "in0:32 in1:32", out = "out:1", op = ne, latency = 0, II = 0];
Fork1[type = Fork, in = "in:32", out = "out0:32 out1:32"];
Branch1[type = Branch, in = "in:32 condition?:1", out = "outTrue+:32 outFalse-:32"];
Fork2[type = Fork, in = "in:1", out = "out0:1 out1:1 out2:1"];
Branch2[type = Branch, in = "in:32 condition?:1", out = "outTrue+:32 outFalse-:32"];
subgraph cluster_Control_BB1 {

Merge1[type = Merge, in = "in0:0 in1:0", out = "out:0"];
Fork3[type = Fork, in = "in:0", out = "out0:0 out1:0"];
Branch3[type = Branch, in = "in:0 condition?:1", out = "outTrue+:0 outFalse-:0"];
label = "Control_BB1"
color = red

}
label = "BB1"

}
subgraph cluster_BB2 {

Rem1[type = Operator, in = "in0:32 in1:32", out = "out:32", op = rem, latency = 0, II = 0];
Fork4[type = Fork, in = "in:32", out = "out0:32 out1:32"];
label = "BB2"

}
subgraph cluster_BB3 {

Return1[type = Exit, in = "in:32", out = "out:32"];
subgraph cluster_Control_BB3 {

Exit1[type = Exit, in = "in:0", out = "out:0"];
label = "Control_BB3"
color = red

}
label = "BB3"

}

76

}

subgraph cluster_main {
label="DataFlow Graph for 'main' function";
subgraph cluster_BB0 {

Constant2[type = Constant, in = "in:0", out = "out:32", value = 52];
Constant3[type = Constant, in = "in:0", out = "out:32", value = 76];
Constant4[type = Constant, in = "in:0", out = "out:32", value = 0];
Return2[type = Exit, in = "in:32", out = "out:32"];
subgraph cluster_Control_BB0 {

Entry2[type = Entry, in = "in:0", out = "out:0"];
Fork5[type = Fork, in = "in:0", out = "out0:0 out1:0 out2:0 out3:0 out4:0"];
Synchronization1[type = Operator, in = "in0:0 in1:0", out = "out:0", op = synchronization, latency = 0, II = 0];
Exit2[type = Exit, in = "in:0", out = "out:0"];
label = "Control_BB0"
color = red

}
label = "BB0"

}
}

// gcd Channels

// BB0
Argument1 -> Merge3 [from = out, to = in0, color = blue];
Argument2 -> Merge2 [from = out, to = in0, color = blue];
// Control_BB0
Entry1 -> Merge1 [from = out, to = in1, color = red];

// BB1
Merge2 -> Fork1 [from = out, to = in, color = blue];
Merge3 -> Branch2 [from = out, to = in, color = blue];
Constant1 -> Ne1 [from = out, to = in1, color = blue];
Ne1 -> Fork2 [from = out, to = in, color = magenta];
Fork1 -> Ne1 [from = out0, to = in0, color = blue];
Fork1 -> Branch1 [from = out1, to = in, color = blue];
Branch1 -> Fork4 [from = outTrue, to = in, color = blue];
Fork2 -> Branch1 [from = out0, to = condition, color = magenta];
Fork2 -> Branch2 [from = out1, to = condition, color = magenta];
Fork2 -> Branch3 [from = out2, to = condition, color = magenta];
Branch2 -> Rem1 [from = outTrue, to = in0, color = blue];
Branch2 -> Return1 [from = outFalse, to = in, color = blue];
// Control_BB1
Merge1 -> Fork3 [from = out, to = in, color = red];
Fork3 -> Constant1 [from = out0, to = in, color = red];
Fork3 -> Branch3 [from = out1, to = in, color = red];
Branch3 -> Merge1 [from = outTrue, to = in0, color = red];
Branch3 -> Exit1 [from = outFalse, to = in, color = red];

// BB2
Rem1 -> Merge2 [from = out, to = in1, color = blue];
Fork4 -> Rem1 [from = out0, to = in1, color = blue];
Fork4 -> Merge3 [from = out1, to = in1, color = blue];

// BB3
// Control_BB3
Exit1 -> Synchronization1 [from = out, to = in0, color = red];

// main Channels

// BB0
Constant2 -> Argument1 [from = out, to = in, color = blue];
Constant3 -> Argument2 [from = out, to = in, color = blue];
Constant4 -> Return2 [from = out, to = in, color = blue];
// Control_BB0
Entry2 -> Fork5 [from = out, to = in, color = red];
Fork5 -> Entry1 [from = out0, to = in, color = red];
Fork5 -> Constant2 [from = out1, to = in, color = red];
Fork5 -> Constant3 [from = out2, to = in, color = red];
Fork5 -> Constant4 [from = out3, to = in, color = red];
Fork5 -> Synchronization1 [from = out4, to = in1, color = red];
Synchronization1 -> Exit2 [from = out, to = in, color = red];

}

77

DataFlow Graph for 'gcd.ll' file

DataFlow Graph for 'gcd' function

BB0

Control_BB0

BB1

Control_BB1

BB2

BB3

Control_BB3

DataFlow Graph for 'main' function

BB0

Control_BB0

Argument1

Merge3

Argument2

Merge2

Entry1

Merge1

Fork1

Branch2

Constant1

Ne1

Fork2

Branch1 Fork4

Branch3

Rem1Return1

Fork3

Exit1

Synchronization1 Constant2 Constant3Constant4

Return2

Entry2

Fork5

Exit2

Figure 30: Example 2 - Data flow graph (Source: own compilation)

12 References

[1] Lana Josipović, Radhika Ghosal, and Paolo Ienne. Dynamically Scheduled High-level Syn-

thesis. Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Com-

munication Sciences.

[2] Jack B. Dennis. First Version of a Data Flow Procedure Language. Lecture Notes in

Computer Science , vol. 19, Springer-Verlag, pp. 362-376

[3] Jack B. Dennis. A Preliminary Architecture for a Basic Data-flow Processor. Laboratory

for Computer Science, MIT, Technical Magazine TM-61, 22 pp.

[4] Jack B. Dennis. Data Flow Supercomputers. Laboratory for Computer Science, MIT.

78

[5] Jorge E. Rodriguez. A Graph Model for Parallel Computations. Laboratory for Computer

Science, MIT, Technical Report TR-64, 120 pp.

[6] Richard M. Karp and Raymond E. Miller. Properties of a Model for Parallel Computations:

Determinancy, Termination, Queueing. SIAM Journal on Applied Mathematics, vol. 14,

no. 6, pp. 1390–1411.

[7] Philippe Coussy, Daniel D. Gajski, Michael Meredith and Andres Takach. An Introduction

to High-Level Synthesis. IEEE Design & Test of Computers, vol. 26, no. 4, pp. 8-17.

[8] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason

Anderson, Stephen Brown and Tomasz Czajkowsk. LegUp: An Open-Source High-Level

Synthesis Tool for FPGA-Based Processor/Accelerator Systems. ECE Department, Uni-

versity of Toronto, Altera Toronto Technology Centre.

[9] Josep Carmona, Jordi Cortadella, Mike Kishinevsky and Alexander Taubin. Elastic Circuits.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,

no. 10, pp. 1437-1455.

[10] Jordi Cortadella, Mike Kishinevsky and Bill Grundmann. Synthesis of synchronous elastic

architectures. 2006 43rd ACM/IEEE Design Automation Conference, San Francisco, CA,

2006, pp. 657-662.

[11] Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman. Compilers Principles,

Techniques, & Tools. Addison-Wesley, Second Edition.

[12] Mohamed Ammar Ben Khadra, Yu Bai and Klaus Schneide. High level modeling of elastic

circuits in SystemC. SpringSim 2014, Symposium on Theory of Modeling and Simulation.

[13] Mahdi Jelodari Mamaghani. High-Level Synthesis of Elasticity: From Models to Circuits.

PhD Computer Science thesis, The University of Manchester.

[14] Girish Venkataramani, Mihai Budiu, Tiberiu Chelcea and Seth C. Goldstein. C to Asyn-

chronous Dataflow Circuits: An End-to-End Toolflow. Computer Science Department,

Carnegie Mellon University.

[15] LLVM. Writing an LLVM Pass. http://llvm.org/docs/WritingAnLLVMPass.html.

[16] LLVM. LLVM’s Analysis and Transform Passes. https://releases.llvm.org/7.0.0/

docs/Passes.html.

[17] LLVM. C++ API Documentation. https://llvm.org/doxygen/index.html.

[18] Graphviz. The DOT Language. https://graphviz.gitlab.io/_pages/doc/info/

lang.html.

[19] Graphviz. Node, Edge and Graph Attributes. https://www.graphviz.org/doc/info/

attrs.html.

79

https://releases.llvm.org/7.0.0/docs/Passes.html
https://releases.llvm.org/7.0.0/docs/Passes.html
https://llvm.org/doxygen/index.html
https://graphviz.gitlab.io/_pages/doc/info/lang.html
https://graphviz.gitlab.io/_pages/doc/info/lang.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html

[20] Introduction to CMake by Example. http://derekmolloy.ie/hello-world-

introductions-to-cmake/.

[21] Visul Studo Code. https://code.visualstudio.com/.

[22] LLVM Compiler Framework. https://llvm.org/.

[23] Graphviz. https://www.graphviz.org/.

[24] Cmake. https://cmake.org/.

[25] Git. https://git-scm.com/.

[26] Github. https://github.com/.

[27] Trello. https://trello.com/.

[28] Skype. https://www.skype.com/.

[29] Overleaf. https://www.overleaf.com/.

[30] Google Slides. https://www.google.es/intl/es/slides/about/.

[31] Gantter (Trial Version). https://www.gantter.com/.

80

http://derekmolloy.ie/hello-world-introductions-to-cmake/
http://derekmolloy.ie/hello-world-introductions-to-cmake/
https://code.visualstudio.com/
https://llvm.org/
https://www.graphviz.org/
https://cmake.org/
https://git-scm.com/
https://github.com/
https://trello.com/
https://www.skype.com/
https://www.overleaf.com/
https://www.google.es/intl/es/slides/about/
https://www.gantter.com/

	Context
	Introduction
	Problem's Formulation
	Stakeholders
	Developer
	Director of the project
	Users

	State of the Art
	Data Flow Architecture
	High-Level Synthesis
	Elastic Circuits
	Combination of them

	Programming Tools
	LLVM Compiler Framework
	mem2reg
	lowerswitch
	gepLowerPass
	instnamer
	liveVarsPass
	dfGraphPass

	Graphviz

	Live Variables Analysis
	Control-Flow Graph
	Live Variables Analysis

	Data Flow Graph Components
	Operator
	Buffer
	Constant
	Fork
	Merge
	Select
	Branch
	Demux
	Entry
	Exit

	Data Flow Graph Generation
	Scope and Methodology
	Scope
	Objectives
	Final Scope

	Methodology
	Monitoring tools
	Validation methods
	Final Methodology

	Planning
	Tasks Description
	Project Launch
	Project Management (GEP)
	LLVM IR Generation and Processing
	Data Flow Graphs Components Definition
	LLVM IR Translation into Data Flow Graphs
	Documentation and Defense
	Communication with the Director

	Resources
	Human Resources
	Material Resources

	Tasks Summary Table
	Initial Gantt Chart
	Action Plan and Valuation of Alternatives
	Deviations and Final Plan
	Final Gantt Chart

	Economic Management
	Cost Identification and Estimation
	Human Resources
	Software and Hardware Resources
	General Expenses
	Unexpected Events
	Contingency

	Initial Budget
	Management Control
	Final Budget

	Sustainability
	Sustainability Auto-evaluation
	Sustainability Matrix
	Environmental Dimension
	Project Put into Production
	Useful Life
	Risks

	Economic Dimension
	Project Put into Production
	Useful life
	Risks

	Social Dimension
	Project Put into Production
	Useful Life
	Risks

	Used Knowledge and Worked Competences
	Used Knowledge
	Worked Competences
	CCO1.1
	CCO1.2
	CCO1.3
	CCO3.1

	Conclusions
	Personal Valuation
	Future Work

	Appendix Usage Description
	Appendix Examples
	Example 1
	LLVM IR
	Live Variable Analysis
	Data Flow Graph

	Example 2
	LLVM IR
	Live Variable Analysis
	Data Flow Graph

	References

