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Abstract

With the increasing numerical power of supercomputing facilities, High Performance
Computing (HPC) has become key for scientific research. Consequently, the het-
erogeneous computer architectures are more complex and present a challenge in
order to write efficient and scalable programs. The programming model provided
by OmpSs-2 based in annotations in the code to define tasks and dependencies,
unleash a new way to develop complex applications hiding the complications away
from the programmer. However, it is not until a specific problem is addressed when
the limitations and unforeseen difficulties are observed and only then new solutions
can be proposed.

In this project, a plasma simulator is designed and parallelized using the task-
flow model, while the different challenges found are used to propose improvements
in the programming model. As a result, a fully functional 2D electrostatic with
background magnetic field plasma simulator is designed, based on the particle-in-
cell method. A fast spectral and parallelized solver is included with a real-time
visualization software. The scalability is evaluated with various benchmarks and
our results suggest that the FFT leads to a bottleneck in the simulation, from which
a new proposed method is left to future work.
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Chapter 1

Introduction

It may be surprising to find out that the most common state of matter is plasma,
when we look at the universe. The simulation of plasma has been increasingly
researched since the computers began gaining computation speed, as it is quite
complex and expensive to study in a physics laboratory. The particle-in-cell methods
are now widely used for the simulation of different plasma phenomena, as they
provide a good parallelization that can be exploited with today supercomputers.

A second big revolution began with the race for nuclear fusion, where lightweight
atoms are heated until they are fused together into bigger atoms and subatomic
particles, with the subsequent release of large amounts of energy. Currently diverse
research groups focus on the confinement of plasma in order to heat it efficiently, so
that more energy can be produced that the used to heat the plasma.

The turbulences and instabilities that occur in the plasma in magnetic confine-
ment are one of the points of interest to be studied by the use of computer simulation,
in order to obtain a successful geometry and configuration to avoid the loss of energy.

1.1 Motivation

The design and implementation of a plasma simulator is a useful way to find out
the patterns and complexities of a parallel application used in the real world. Most
of the existing PIC codes are highly tied to solve a specific set of simulations to
work on some experiments and the documentation is usually not available or poor
and the designs are the result of years added features without a clear design, which
hardens the task of improving the performance.

The introduction of a programming model based on tasks and dependencies, as
is the case of OmpSs-2, can free the programmer from the complexities of concurrent
applications. But by building a complete simulation program, the difficulties and
problems can be observed and addressed, benefiting other users in the future. At
the same time, the structure and decisions are completely documented to facilitate
the solution of similar problems in the future.

1



2 CHAPTER 1. INTRODUCTION

1.2 Objectives
One of the main objectives of the simulation is the use of the data-flow execution
model provided by OmpSs-2 to find the challenging computational patterns that
occur in a complete and real application, and to exploit at maximum the available
parallelism provided by the HPC clusters. Furthermore the Task Aware MPI library
(TAMPI), will be compared against MPI to measure the performance in communi-
cations in a complex simulation scenario.

The challenges found during the design of the simulator will be used to im-
prove the current solutions provided by the programming model and propose new
alternatives.

1.3 Structure
The structure of the document follows the diagram shown in the figure 1.1. In the
chapter 2, plasma is described as a physical phenomenon and we focus on the relevant
properties that we want to study, from which we derive a mathematical model.
The discretization of the model allows the computer simulation by using numerical
algorithms, and is discussed in the chapter 3. A sequential prototype is designed to
test the proposed model in chapter 4. Then, following the techniques described in the
chapter 5 a parallel simulator is build in chapters 6 and 7. Finally, the performance
of the simulator is addressed in the chapter 8, leading to the conclusions and future
work in the chapter 9.

Physical phenomenon

Mathematical model

Discretization

Numerical algorithms

Parallelization

Simulation program

Computer experiment

Chapter 2

Chapter 3

Chapters 6 and 7

Figure 1.1: Principal steps in a computer simulation experiment: This project focuses on the
parallelization step.

1.4 Related work
The simulation of plasma began with the first simulations in the 1950s with the
John Dawson codes for 1D simulation. In 1965 Hockney and Buneman introduced
the direct Poisson solver, which allowed the first useful electrostatic simulations. In
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the 1970s, the theory of electrostatic PIC was developed by Langdon, leading to the
first electromagnetic codes.

Finally, from 1980 to the 90s the two main bibles of particle-in-cell codes were
produced by B. Langdon and C. Birdsall in 1975 [3] and by Hockney and Eastwood
in 1988 [7].

At the Plasma Theory and Simulation Group of the University of California,
Berkeley the XOOPIC [11] family of well known codes were released in the 1990s.
There are a lot of specific PIC codes which are currently used for the simulation of
various phenomena, mostly centered in fusion reactors: ELMFIRE, GENE, GTC,
ORB5, PAR-T and EUTERPE [10].
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Chapter 2

Plasma simulation

2.1 Everyday plasmas

It may be surprising to find out that when we look at the universe, the most common
state of matter is plasma, which is a ionized gas formed by free electrons and ions
at a region in space–often known as the fourth state of matter.

Most common forms of plasma only occur in vacuum, as otherwise the air cools
the plasma and returns to a gas. However, is quite common to find plasma in the
space: The sun, our closest star, is a giant ball of plasma.

In our planet, we can see forms of plasma almost every day. A storm day the
lightnings. The spark a piezoelectric lighters, which is the very same principle that
occurs in gasoline engines, and in the lightning of a storm. The Aurora Borealis, of
the lightning of a fluorescent tube are common examples.

A precise definition of a plasma is given by Chen [5] as “a quasineutral gas of
charged and neutral particles which exhibits collective behavior”.

2.2 The particle-in-cell method

The plasmas we are interested in study are modeled by the Vlasov equation, which
describes the time evolution of a distribution function of plasma f .

∂f

∂t
+

d r

d t
· ∂f
∂r

+
dp

d t
· ∂f
∂p

= 0 (2.1)

Solving the Vaslov equation requires a large amount of numerical resources. The
particle in cell method, approximates the solution by discretization of the fields and
by interpolation of the grid to the particles. The method is divided in four main
phases

• Charge accumulation: The charge density is interpolated in the grid from
the particle positions.

• Solve field equation: From the charge density ρ the electric potential is
obtained φ and then the electric field E.

5



6 CHAPTER 2. PLASMA SIMULATION

• Interpolation of electric field: The electric field is interpolated back to the
particle positions.

• Particle motion: The force is computed from the electric field at the particle
position and the particle is moved accordingly.

In order to move the particles, the equations of motion need to be solved:

m
dv

dt
= q(E + v ×B) (2.2)

dv

dt
= v (2.3)

The charge density ρ is a scalar field which describes the charge accumulated by
the particles, and needs to be updated when the particles move. Once we have the
charge density ρ we can compute the electric field E by the integration of the field
equations

E = −∇φ (2.4)

∇ ·E =
ρ

ε0
(2.5)

Which can be combined into the Poisson equation

∇2φ = − ρ
ε0

(2.6)

Different methods can be used to obtain the electric field, but we will focus on
matrix and spectral methods.



Chapter 3

Discrete model

The mathematical model is discretized in algebraic operations, in order to be com-
putable.

3.1 Charge assignment

At each grid point g at x we accumulate the charge of each particle p in xp as

ρ(x) =
∑
p

qW (x− xp) + ρ0 (3.1)

The background charge density ρ0 is used to neutralize the total charge when is
non-zero. The weighting function W determines the shape of the particle charge.
Different schemes can be used to approximate the charge density from the parti-
cles. We will focus on bilinear interpolation for it’s simplicity and low computation
requirements. The corresponding weighting function can be written as

W (x) =


(

1− |x|
∆x

)(
1− |y|

∆y

)
if −∆x < x < ∆x

0 otherwise
(3.2)

Notice that a particle p always affects the four enclosing grid points in the neigh-
bourhood N (p), but more complex interpolation methods may extend the update
region even further. It may be noted that the increase in smoothing, at computation
expense, can gain from the reduced number of particles needed to obtain a similar
result, avoiding nonphysical effects. The particle p has a uniform charge area, cen-
tered at the particle position xp, with size ∆x, as shown in the figure 3.1. Each
grid point A,B,C and D receives the amount of charge weighed by the area a, b, c
and d. It can be observed that the area is equal to the opposite region, when the
particle p is used to divide the grid cell. The particle shape can be altered later
in the Fourier space, without large computation effort, in case the solver already
computes the FFT.

7
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A B

CD

p
a b

cd

c d

ab

Figure 3.1: Interpolation of particle p charge into the four grid points A to D.

3.2 Field equations
In order to compute the electric field E, the electric potential φ is generally needed,
which can be obtained from the charge density ρ.

3.2.1 Electric potential

Several methods are available to solve the Poisson equation (Eq. 2.6).

Iterative methods such as Jacobi, Gauss-Seidel, Successive Over Relaxation
(SOR), Chebyshev acceleration are some of the most familiar methods to solve the
Poisson equation.

Matrix methods The equations from finite differencing the mesh are considered
a large system of equations. We can find in this methods the Thomas Tridiagonal
algorithm, Conjugate-Gradient, LU or Incomplete Decomposition.

Spectral methods Also known as Rapid Elliptic Solvers (RES) are a family of
methods that use the fast Fourier transform (FFT). Are know for being usually
faster than the previous ones [8], with a complexity in O(Ng log2Ng)

We will only focus on the LU for small problems and for testing, and spectral
methods, more specific on the Multiple Fourier Transform (MTF) method, as it is
the main method implemented in the simulator, due to its relative simplicity and
low computational complexity.

3.2.2 LU decomposition

For two dimensions, we can approximate the solution using the second order centered
finite differences (with an error proportional to ∆x2∆y2), as

φ(x− 1, y) + φ(x, y − 1)− 4φ(x, y) + φ(x+ 1, y) + φ(x, y + 1)

∆x2∆y2
= −ρ(x, y)

ε0
(3.3)

which leads to a system of Ng linear equations and can be also written in matrix
form

Aφ = −∆x2∆y2 ρ

ε0
(3.4)
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The Ng × Ng coefficient matrix A has non-zero coefficients only at aii = 4 and
aij = −1 with j ∈ {i + 1, i − 1, i + Nx, i − Nx} mod Nx, for all 0 ≤ i ≤ Ng.
However, the matrix A is singular, so the system of equations has infinite solutions.
Boundary conditions can be added to get a unique solution. The extra equation
φ(0, 0) = 0 leads to a system with only one solution, but with one extra equation.
In order to keep the matrix A square, the following steps may be taken:

1. Subtract the extra equation φ(0, 0) = 0 to the first row of A, with the only
change in the coefficient to a11 = 3.

2. Add all first Ng equations: Each equation has one coefficient of 4 and four of
−1 except the first equation. Also we assume the total charge density is zero,
obtaining φ(0, 0) = 0.

3. Subtract it from the last equation, which leads to a zero coefficient that can
be removed.

The only change that remains is at the coefficient a11 = 3. Now the matrix A is
squared and non-singular and has only one solution and can now be solved with the
LU method.

The LU decomposition, with a complexity in O(2/3N3
g ), can be used to form

two systems of equations that can be solved faster. If we rewrite the system of
equations 3.4 as the usual form Ax = b with

x = φ, b = −∆x2∆y2 ρ

ε0
(3.5)

Then we can use the decomposition A = LU to form two systems of equations

Ux = y, Ly = b (3.6)

which can be solved in complexity O(2N2
g ).

3.2.3 Multiple Fourier Transform (MFT)

The general second-order PDE with constant coefficients and periodic boundary
conditions

a
∂2φ

∂x2
+ b

∂φ

∂x
+ cφ+ d

∂2φ

∂y2
+ e

∂φ

∂y
+ fφ = g(x, y) (3.7)

can be solved by using the FFT. If we expand φ and g in a finite double Fourier
series, we obtain

φ(x, y) =
∑
k,l

φ̂(k, l) exp

(
2πi(xk + yl)

n

)
(3.8)

and
g(x, y) =

∑
k,l

ĝ(k, l) exp

(
2πi(xk + yl)

n

)
(3.9)

which now can be substituted in the Eq. 3.7, to obtain

φ̂(k, l) = Ĝ(k, l) ĝ(k, l), 0 < k < Nx, 0 < l < Ny (3.10)
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with for a unit mesh

Ĝ(k, l) =

[
2a

(
cos

2πk

n
− 1

)
+ ib sin

2πk

n
+ c+

2d

(
cos

2πl

n
− 1

)
+ ie sin

2πl

n
+ f

]−1
(3.11)

To solve the Poisson equation, discretized as Eq. 3.3, we have a = d = 1 and
b = c = e = f = 0 so we can simplify Ĝ(k, l) as

Ĝ(k, l) =
1

2

[
cos

2πk

n
+ cos

2πl

n
− 2

]−1

(3.12)

Let g = −∆x2∆y2 ρ/ε0, then the steps to compute the electric potential can be
summarized as follows:

g ĝ φ̂ φ
FFT Ĝ IFFT

1. Compute the complex FFT ĝ of g

2. Multiply each element of ĝ by the corresponding complex coefficient Ĝ, to
obtain φ̂

3. Compute the inverse FFT of φ̂ to get φ

The complexity in the worst case is in O(Ng log2Ng) with the number of total points
in the grid Ng.

3.2.4 Electric field

The electric field E can then be obtained by centered first order finite differences in
each dimension

Ex(x, y) =
φ(x− 1, y)− φ(x+ 1, y)

2 ∆x

Ey(x, y) =
φ(x, y − 1)− φ(x, y + 1)

2 ∆y

(3.13)

3.3 Force interpolation

The force acting on a particle p can be decomposed in two main parts, the electric
and magnetic force

F = FE + FB (3.14)
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The electric force FE is computed similarly as the charge deposition, but in the
reverse order. The force FE is interpolated from the electric field E of the neighbour
grid points N (p), using the same interpolation function W .

FE = q
∑

g∈N (p)

W (xp − xg) E(xg) (3.15)

Notice that a particle p only needs the values of the electric field in the neighbour-
hood N (p).

The magnetic force FB is constant in the simulator, as we only consider a fixed
background magnetic field B0. For a particle p with velocity v can be written as

FB = q(v ×B0) (3.16)

3.4 Equations of motion
In order to move the particles, the equations of motion need to be solved:

dx

dt
= v (3.17)

m
dv

dt
= F (3.18)

The leap-frog method is a common integration scheme with second-order accuracy
and an error proportional to ∆t2. The name describes de behavior of the position and
velocity, which are updated at interleaved time steps, similarly to the trajectory of
a frog. The method is time reversible with an stability far superior of other higher-
order integration methods, such as fourth order Runge-Kutta. A more in depth
stability analysis can be found in Chapter 4 of Hockney and Eastwood book [7].
The discretized equations can be written as

xn+1 − xn

∆x
= vn+1/2 (3.19)

m
vn+1/2 − vn−1/2

∆x
= F (xn) (3.20)

Several methods are available, but we will focus on the Boris integrator [4].

3.4.1 Boris integrator

Consists of three steps:

1. Add half of the electric impulse

2. Rotate

3. Add the remaining half electric impulse

The Boris integrator computes the velocity of a particle in a constant electric field
E and a constant magnetic field B. We have the velocity vt−∆t/2 of the particle at
t−∆t/2 as we use the leapfrog integrator.



12 CHAPTER 3. DISCRETE MODEL

θ

v+

v−
v′ × t

v′
v′ × s

Figure 3.2: Velocity space rotation from v− to v+

Add half electric impulse We define v− as the velocity after half a electric
impulse:

v− = vt−∆t/2 +
qE

m

∆t

2

Rotate for the magnetic field The rotation is done in two steps, first the half
rotation is computed, with an angle of θ/2:

v′ = v− + v− × t

Then the rotation is completed by symmetry, using the s vector

s =
2t

1 + t2

as
v+ = v− + v′ × s



Chapter 4

Sequential simulator

In order to begin the implementation of the simulator, an initial version was con-
sidered with the minimum complexity, to verify the correctness of the model. A
graphic subsystem was build with MathGL and OpenGL to produce realtime plots
of different elements of the simulation. Of special interest are the particle motion,
the electric potential and the electric field.

The language of choice was C for the low overhead, the lack of automatic memory
management, the support of different libraries planned in future versions and the
low level design, which allowed us to define most of the data structures close to the
byte level.

4.1 Design

The simulator initially only supported one group of particles of the same charge
and mass, denominated specie. Each particle was implemented as a structure with
a given index i, a position vector x, velocity v and other extra fields such as the
interpolated electric field at the particle position E. Only one dimension was im-
plemented for the first tests, but soon extended to two dimensions. The fields were
allocated in contiguous arrays, with the x dimension aligned with the cache line,
also called row-major storage.

The configuration of the simulation is specified in plain configuration files, with
the syntax defined by the libconfig library. It is important to allow the user to
specify comments in the configuration files, as well as scientific notation in different
values. Additionally, the specification of multiple species benefits from the sub-
configuration block feature, which leads to a more intuitive representation.

The solver used was initially the LU decomposition, used from the GSL numeric
library [6], as the only focus was to obtain valid results, ignoring the performance.
All implementations are tested beforehand with some test cases designed in octave.

4.1.1 Debug mode

In order to get insight into all the details of the simulation, a mechanism of visu-
alization can be very useful: the different fields can be plotted in real-time for one

13
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and two dimensions, while the particles move around. The simulator includes a vi-
sualization mode, in which the state of the simulation is plotted at a specific period
of iterations (by default each iteration is shown). In this mode (which we will refer
to as debug mode) the simulation is slowed down, with a top speed of 60 iterations
per second, to follow the visualization in the screen.

Figure 4.1: Example run in 2D of the simulator in debug mode.

With this mode activated, the user can observe and quickly check the overall
behavior of the simulation, as is designed to minimize the delay between writing the
configuration of the simulation and the execution. Once the simulator is running,
the user can see several graphs being updated as shown in the figure 4.1.

The energy measurements are always shown, including potential, kinetic and
total energy—the total energy must be conserved at all times. In the case of one-
dimensional simulations, the particles are plotted in the x-v phase space, with the
fields aligned vertically. However, in two dimensions the particles are plotted by
default in the x-y plane which corresponds to the physical position in space. The
fields now cannot be plotted together, an only the electric potential is shown.
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Once the simulation is properly tested in the debug mode, there is less chance
that a misconfigured setting ruins a large simulation. This mode has also being very
helpful when developing the simulator, as several test required to see the immediate
result of a new feature, or to change a value in the configuration.

4.2 Validation
A set of different tests were designed to determine the correctness of the simulation.

4.2.1 Two particle test

A simple one-dimensional test consists of two electrons placed at some distance
different of L/2 with no initial speed. The analytical solution is known and the
motion should follow a harmonic oscillation trajectory. The energy conservation
can be observed in the figure 4.2, where the total energy only varies due to the
interpolation noise as the time t grows in the x axis.

Figure 4.2: Energy conservation in two particle test as shown in the simulator (notice the lack of
anti-aliasing).

4.2.2 Two stream instability

Another example in one dimension is the two stream instability, which consists of
two streams of particles with opposite velocity. With 500 particles in each stream,
a very characteristic set of vortices are created in the position-velocity phase space,
which can be shown in the figure 4.3.

4.2.3 Cyclotron frequency

In a simulation with two dimensions and a fixed background magnetic field B0, a
charged particle with some initial velocity should describe a circular orbit. The
radius rg known as the Larmor or gyroradius, can be computed analytically as

rg =
mv

|q|B
(4.1)
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Figure 4.3: Phase space position–velocity of the two stream instability, shown at iterations: 0, 200,
400 and 600 (left to right, top to bottom)



Chapter 5

Parallelization techniques

5.1 Message Passing Interface
From the need of standarize communications in a distributed computing environ-
ment, the first draft was proposed in 1992 at the Workshop on Standards for Message
Passing in a Distributed Memory Environment, and has now become one of the most
used communication protocol in HPC. The Message Passing Interface (MPI) pro-
vides a simple to use set of routines to allow processes distributed among different
nodes to comunicate efficiently.

5.1.1 Concepts

Communicator A communicator refers to a group of processes, in which each
has assigned a unique identifier called the rank.

Point-to-point communication In order for a process to exchange information
with another process, the MPI standard defines what are called point-to-point com-
munication routines. The most common examples are MPI_Send to send data, and
MPI_Recv for the reception. Both routines need the rank of the process to stablish
the connection. Additionally a tag is used to label each message, which can be
specified in the reception to filter other messages.

Blocking communication The standard defines various types of communication
methods for sending and receiving data. The so called blocking routines are designed
such that the call does not return until the communication has been done. In the
MPI_Send case, the call returns when the sending data can be safely modified, as
has been sent or buffered. In the case of MPI_Recv the routine only returns when
the data has been received.

Non-blocking communication Similarly as with the blocking communication,
the routines MPI_Isend and MPI_Irecv don’t wait until the message is sent or
received to return. They return inmediately, and the communication status can be
checked with MPI_Test or the process can wait until the communication request has
finished with MPI_Wait.

17
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5.2 OmpSs-2
OmpSs-2 is the next generation of the OmpSs programming model, composed of
a set of directives and library routines. It combines the OpenMP-like incremen-
tal parallelization approach, by means of source code annotations, with the StarSs
execution model, based on a thread-pool design pattern.

5.2.1 Concepts

Task In OmpSs-2 a task is a section of code that can be executed independently
by the runtime scheduler. Tasks may have associated dependencies which lets the
scheduler determine in which order they must be executed. The notation used to
describe a task is by the utilization of the #pragma oss directive, for example:
#pragma oss task out(a[0:N-1]) label(Task 1)
for(i=0; i < N; i++)

a[i] = 3.0 * i;

#pragma oss task inout(a[0:N-1]) in(b[0:N-1]) label(Task 2)
for(i=0; i < N; i++)

a[i] += b[i];

The task 1 writes to the vector a and is stated explicitly by the out directive. Then,
the task 2 will need the values of the vector a, so the execution must wait until the
task 1 finishes.

Parallel execution Unless there is a unmet dependency, all tasks ready to run
are executed in parallel, up to the number of CPU cores available to the runtime.

Task syncronization It may be possible that at some point in the execution all
pending tasks are required to finish in order to continue. The directive taskwait
allows the programmer to specify that the current task must wait for completion of
all the previously created tasks.

5.3 TAMPI
The Task-Aware MPI or TAMPI library provides interoperability between OmpSs-
2 and the MPI message passing library, in order to avoid deadlocks and improve
performance. Two modes of operations are available: blocking and non-blocking
mode.

5.3.1 Blocking mode

When a call to a MPI function cannot be complete immediately, the task is paused
and other task can begin the execution. As soon as the operation completes, the task
is resumed to continue the execution. The main functions MPI_Recv and MPI_Send
support this mode, from the many more available in TAMPI.
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5.3.2 Non-blocking mode

This mode is focused on the family of non-blocking MPI operations, which return
immediately. The two functions TAMPI_Iwait and TAMPI_Iwaitall are introduced
with a special behaviour: once called, they return immediately and the task contin-
ues the execution until the end. But the completion of the task is delayed until all
the communications are completed.
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Chapter 6

The simulator

6.1 Decomposition

To parallelize the simulation, the process must be decomposed in parts that can be
executed in parallel and several decompositions are known. One of the most common
technique found in particle-in-cell codes, is the domain decomposition—the physical
space is divided into sections of similar size and the fields are assigned to different
computing units. The main drawback of this technique is the risk of unbalanced
load, as some regions of space may contain a large amount or even all the particles.

Another approach called particle decomposition consists in the division of the
particles into groups, where each processor maintains a copy of the fields of the
whole space. The problem of this method is the limitation of scalability, as the
number of grid points used in the fields is limited by the memory of one computing
element.

Additionally, the Fourier transform needed by the MFT solver is implemented
using the FFTW library and the parallelization design provided by the library intro-
duces a constraint in the distribution of the fields: they need to be broken into slices
in the Y dimension, resulting in contiguous blocks of elements in X. Consequently,
the domain decomposition is the chosen technique for the simulator.

Firstly, the space domain is distributed in blocks by splitting the physical space
in the Y dimension, as shown in the figure 6.1, and each block is assigned to an MPI
process. As the simulation evolves, communications are needed to exchange infor-
mation between processes. The particles enclosed within a block also are assigned
to the same process in order to speed up the interpolation process. Furthermore, a
second level of decomposition splits the particles of a process into plasma chunks,
which can be processed in parallel. In this case communications within the chunks
of a process are not needed as we can use shared memory to exchange information.
Notice that the number of chunks can vary to fit the number of CPUs.

We will refer to a block to denote the region of space assigned to a process and
the grid points contained in that region. On the other hand a chunk has also a region
of space assigned of a block, but always is associated with a group of particles.

21
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Plasma chunk

Block

y x

Figure 6.1: Domain decomposition: The plasma is divided into chunks in both directions and the
fields into blocks in the Y dimension only

6.2 Data layout

Each block contains the three fields needed for the simulation: the charge density
ρ, the electric potential φ and the electric field E, which can be decomposed in the
two components Ex and Ey. As a consequence, a total of four matrices are needed
to store the three fields.

Paddingx

y

Figure 6.2: A block divided in eight regions, each corresponding to a plasma chunk. Extra padding
is added at the right for internal use in the FFTW library.

A simplified representation of a block can be observed in the figure 6.2, where
the X dimension of each field is contiguous in memory. Notice the padding region in
green, which is needed for the FFTW library to store intermediate values. The use
of ghost elements is needed for communications and will be detailed in the chapter 7.
If we look at each cell (x, y) in the block we find the four components ρ(x, y), φ(x, y),
Ex(x, y) and Ey(x, y).
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6.3 Simulation flow

Before the main loop of the simulation begins, two previous iterations are required
to prepare the simulation. The iteration counter is initially set to −2 to account for
the extra steps.

6.3.1 Allocation step

After the creation of all MPI processes, the different structures to hold the data
are allocated. Each process is assigned a block, with the corresponding fields and
particles.

The fields are zeroed to begin the computation and the particles must be initial-
ized following the user configuration. Each particle has an index which is used to
let the user customize the particle attributes in case is required. Some initialization
functions are provided, which place the particles following a random distribution or
a specified pattern.

As the particles in a chunk are initialized, their position can set to any point in
the physical space of the simulation, as no constraints are imposed for the initial
placement. As a consequence, they need to be translated to the correct chunk before
the simulation begins. We will refer to the initial movement of particles around the
chunks as global communication, and is expected to last more than the typical
communications once the simulation is running, as only local communications will
be needed between neighbour chunks.

At soon as each particle is properly placed in the correct chunk, an initial com-
putation of the charge density is done and the iteration counter is incremented.

6.3.2 Rewind step

The main loop begins with an special iteration that will only change the speed of
the particles. The speed must be computed at half a time-step backwards in time,
in order to use the leap-frog integrator as described in the section 3.4. Once the
iteration finishes, the main loop of can begin its normal execution with the iteration
counter set to 0.

6.3.3 Main loop

The loop of the simulation performs four main steps:

• Accumulate charge density ρ from the position of the particles.

• Solve the field equation to get the electric field E.

• Interpolate the electric field E at particle positions.

• Move the particles based on the computed force.
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6.4 Loop parallelization
The four main steps of the simulation loop are parallelized following a common
scheme: the block is partitioned in the same regions as the plasma chunks, which
are processed in parallel.

6.4.1 Charge accumulation

The interpolation process described in the equation 3.1 is executed in parallel for all
the particles of each chunk. The charge density field is being updated in parallel,
which involves the four surrounding grid points of a particle, and it may happen
that at the frontier of two chunks a concurrent access to the same element occurs.

To avoid a race condition with the next chunk, a dependency is added with the
directive commutative, which allows the execution of the tasks in any order, but
guarantees that a chunk can only be acessed by one task at a time. A detailed
discussion on the directive can be found in the section 7.1.1 with other alternatives
to avoid a chain of dependencies in the case inout was used.

for (i=0; i<plasma->nchunks; i++)
{

c0 = &plasma->chunks[i];
c1 = &plasma->chunks[(i + 1) % plasma->nchunks];
#pragma oss task commutative(*c0, *c1) label(rho_update_0)
rho_update(sim, i);

}

Listing 6.1: Task to update ρ field using the commutative directive

6.4.2 Solve the fields

Once the charge density is accumulated for each chunk, the electric potential can be
computed by solving the Poisson equation (Eq. 2.6). Using the MFT solver requires
the computation of the Fourier transform of the charge density field, which has been
purposely distributed among the Y dimension into blocks: The computation of the
FFT can then be distributed into each process.

To parallelize the execution in each process, two mechanism are available in
the FFTW library: pthreads and OpenMP. The multithreading design is based on
the model of the parallel for, where the total number of iterations are divided into
parts that can be executed in parallel. In the listing 6.2 the OpenMP parallelization
method is shown, as used in the FFTW. With minor changes we can adapt the model
to OmpSs-2, following the same approach. A task is created for each iteration and
then we wait for the completion of all of them, ensuring all iterations of the loop
have been executed, as can be seen in the listing 6.3. A comparative analysis of the
different methods is provided in the chapter 8.

Once we obtain the electric potential φ after the MFT algorithm, we can compute
the electric field E in both directions Ex and Ey. The operation can be fully
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#pragma omp parallel for private(d)
for (i = 0; i < nthr; ++i) {

...
proc(&d);

}

Listing 6.2: Parallel for with OpenMP used in the FFTW library.

for (i = 0; i < nthr; ++i) {
#pragma oss task private(d)
{

...
proc(&d);

}
}
#pragma oss taskwait

Listing 6.3: Parallel for with OmpSs-2 using tasks.

parallelized in tasks by the division of the block in the same regions as the plasma
chunks. It is not necessary that the same division is used, but has the advantage
of simplify how the dependencies between plasma and fields are written. The same

for(ic=0; ic<sim->plasma.nchunks; ic++)
{

chunk = &sim->plasma.chunks[ic];
#pragma oss task inout(*chunk) label(field_E_compute)
field_E_compute(sim, chunk);

}

Listing 6.4: Computation of E in parallel by chunks.

division provided by the plasma chunks is used as a first approximation as shown in
the listing 6.4, but other number of regions are possible.

6.4.3 Field interpolation

Once the electric field of a chunk is ready, the value is interpolated at the particle
locations. The force will be obtained in the next step from the interpolated electric
field in each particle.

Each chunk can be processed independently by one task, but a inout depen-
dency must be added to ensure the order of execution of a chunk is done after the
electric field is computed, as observed in the listing 6.5.



26 CHAPTER 6. THE SIMULATOR

for(i=0; i<sim->plasma.nchunks; i++)
{

chunk = &sim->plasma.chunks[i];
#pragma oss task inout(*chunk) label(chunk_E)
{

for(is=0; is<chunk->nspecies; is++)
{

particle_set_E(sim, chunk, is);
}

}
}

Listing 6.5: Interpolation of the electric field E at particle position.

6.4.4 Particle mover

The force acting on each particle is obtained as described in the equation 3.14, as
the combination of the electric and magnetic forces. The electric term is computed
from the interpolated electric field at the particle locations and each chunk can begin
the process as soon as the interpolation process has finished.

A task is created for each chunk, and the particles are moved accordingly to
the obtained force. The Boris integrator described in the section 3.4.1 is used to
accurately position the particles. An inout dependency is added to each chunk
to guarantee the order of execution: after the electric field is interpolated in the
particles, as shown in the listing 6.6.

for(i=0; i<sim->plasma.nchunks; i++)
{

chunk = &sim->plasma.chunks[i];
#pragma oss task inout(*chunk) label(chunk_x_update)
{

for(is=0; is<chunk->nspecies; is++)
{

particle_x_update(sim, chunk, is);
}

}
}

Listing 6.6: Movement of particles based on the interpolated field E.



Chapter 7

Communication

Different communications are detailed in this chapter, such as particle and frontier
communications.

7.1 Particle communication
When the particles are moved, due to the interaction with the electric field and the
magnetic field, their position can exceed the boundaries of the chunk where they
reside. After updating the position of each particle, the ones that exceed the chunk
must be translated to the correct one. The time step is lowered to ensure that
a particle can only travel at most one chunk per iteration, so we only need local
communications, which are done in two stages: first the particles are moved in the
X dimension, then in the Y. Several steps are required in each stage.

7.1.1 Exchange in X

All chunks in the X dimension reside in one MPI process, so the exchange of particles
can be done by shared memory. Care must be taken to avoid concurrent writes in
the same chunk by different tasks. The proposed solution avoids the problem by
using temporal queues in each chunk. The process can be described in the following
steps:

1. collect_particles_x: Out of bound particles in the X direction are extracted
from the chunk and placed in the correct target chunk queue for local exchange.

2. exchange_particles_x: Each chunk looks for particles in the neighbour
chunks target queues and moves them to itself.

Usually only two target queues are required for each chunk, as the particles can only
move one chunk per iteration. However, in the initial iteration after the initialization
of the particle positions, they can move to any other chunk, and the process is
subsequently more computationally expensive. We will only focus in the general case
involving only the two neighbours, as the initialization iteration can be disregarded
when comparing the time against the whole simulation.

The execution order and mutual exclusion of these two phases should be guar-
anteed by means of a synchronization mechanism. Each step can be implemented
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using OmpSs-2 tasks with dependencies, in order to exploit local parallelism. One
task collects the particles out of the chunk in the corresponding queues, so it needs
to access only the current chunk.

{
chunk = &plasma->chunks[i];
/* Place each particle outside a chunk in the X dimension, in
* the lout list */
#pragma oss task inout(*chunk) label(collect_particles_x)
for(is = 0; is < sim->nspecies; is++)
{

collect_particles_x(sim, chunk, is, global_exchange);
}

}

Listing 7.1: Collect particles in the X direction.

The execution of the corresponding exchange particle tasks will start only if the
collecting step has finished in the neighbour chunks, as otherwise the queues are
still being written. These dependencies must be placed in all the involved chunks.

{
chunk = &plasma->chunks[i];
...

#pragma oss task inout(*chunk) \
inout(*prev_chunk) inout(*next_chunk) \
label(exchange_particles_x)

{
/* Only the two neighbours are needed */
concat_particles(chunk, prev_chunk);
concat_particles(chunk, next_chunk);

}
}

Listing 7.2: Exchange of particles in X

Notice that in the first iteration the exchange step must wait for all the collecting
tasks to finish, as the particles can be moved to any chunk, and thus we expect to
see a slower iteration than the rest of the simulation. In the following steps, only
the next and previous chunk are required to finish the exchange process.

However, there is a problem with the previous loop: as we create the dependen-
cies with the next chunk before the next task is created, we are building a chain of
dependencies which leads to a sequential execution. Using paraver we can clearly
see the chain in the trace graph, shown in the figure 7.1a, where no task can run
in parallel until the previous one finishes. One solution to alleviate this problem is
the use of a coloring technique, where each task is assigned a color. Then all tasks
of the same color are created first, then the ones with the next color and so on.
With three colors we ensure that the two tasks of the same color can run in parallel
without concurrent access to the same chunk, as can be seen in the figure 7.2.

max_color = 3;
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(a) Chain of dependencies observed

(b) The chain has been corrected

Figure 7.1: Comparison of two paraver traces using coloring tasks for communication.

for(color = 0; color < max_color; color++)
{

/* Use coloring to prevent a chain of dependencies */
for(i = color; i < plasma->nchunks; i+=max_color)
{

chunk = &plasma->chunks[i];
...

#pragma oss task inout(*chunk) \
inout(*prev_chunk) inout(*next_chunk) \
label(collect_local_particles)

{
/* Only the two neighbours are needed */
concat_particles(chunk, prev_chunk);
concat_particles(chunk, next_chunk);

}
}

}

Listing 7.3: Exchange of particles in X using the coloring technique

In the figure 7.1b it can be observed how the chain has now disappeared, and the
gaps are now fully covered by tasks running in parallel.

This technique can be expressed without extra work, by using the directive
commutative, which acts similarly as inout but can be executed in any order.
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Chunks

Color 0

Color 1

Color 2

Figure 7.2: The coloring technique shown with 12 chunks where the 12 tasks are created with 3
colors.

Then, once a task begins execution, locking the next chunk, other unordered chunk
can be executed in any order, if their neighbour chunks are unlocked.

for(i = 0; i < plasma->nchunks; i++)
{

chunk = &plasma->chunks[i];
...

#pragma oss task commutative(*chunk, *prev_chunk, *next_chunk) \
label(collect_local_particles)

{
/* Only the two neighbours are needed */
concat_particles(chunk, prev_chunk);
concat_particles(chunk, next_chunk);

}
}

Listing 7.4: Exchange of particles in X using the commutative directive.

Once all exchange tasks are completed, all particles are now placed in the correct
chunk in the X dimension, and only the Y movement is left.

7.1.2 Exchange in Y

Once the particles are placed in the correct chunk in the X dimension, the dis-
placement to the correct chunk in the Y dimension involves sending the particles to
another MPI process. The steps can be resumed as:

1. collect_particles_y: Place each particle out of the chunk bounds in a queue
(one for each target destination).
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collect pack
chunk

send
buf

recv unpack
chunk

Figure 7.3: Graph of task and dependencies of particle communication in Y: Solid arrows indicate
a data dependency, dashed arrows show a creation dependency order.

2. pack_particles_y: Pack the particles to be sent to the neighbour chunk in a
message.

3. send_particles_y: Send the packed particles to each neighbour.

4. recv_particles_y: Receive the message with the packed particles.

5. unpack_particles_y: Unpack the particle message and place the particles in
the chunk.

Similarly as for the horizontal direction, the particles exceeding the limits of each
chunk in the Y dimension are placed in a queue. Once the particles are identified
within a chunk, they are packed in a message in a contiguous memory region. This
buffer is then sent using MPI_Send to the neighbour process.

The reception process works in the opposite order: each chunk receives the com-
munication of the neighbour chunks in the vertical direction. Once a message is
received is unpacked and the particles are added to the chunk. In the diagram 7.3
the dependencies of each step are shown in a graph.

Notice that all the MPI communication is independent of the neighbour chunks
in the horizontal direction, and can be fully parallelized. Some constraints must be
added to coordinate the vertical communications to guarantee that no simultaneous
writes occur in the same chunk.

for(i = 0; i < plasma->nchunks; i++)
{

chunk = &plasma->chunks[i];

/* Collect particles in a queue that need to change chunk */
#pragma oss task inout(*chunk) label(collect_particles_y)
for(is = 0; is < sim->nspecies; is++)
{

collect_particles_y(sim, chunk, is, global_exchange);
}

/* Prepare the packet to be sent to the neighbour */
#pragma oss task inout(*chunk) label(pack_particles_y)
pack_particles_y(sim, chunk, i, global_exchange);

/* Finally send the packet */
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Figure 7.4: Deadlock at particle exchange in Y, where each message has a different tag.

#pragma oss task in(*chunk) label(send_particles_y)
send_particles_y(sim, chunk, i, global_exchange);

/* The tasks are created inside depending on
* whether we use MPI or TAMPI */
recv_particles_y(sim, chunk, global_exchange);

}

Listing 7.5: Communication of particles in the Y direction.

7.1.3 Mitigation of deadlocks with TAMPI

When using MPI to exchange particles between processes, the design must be done
with special care to avoid deadlocks: Assume each chunk tags the message with
the chunk index, so the receiver can filter messages which are not from the vertical
direction. Also, consider that we have multiple chunks, more than the number of
CPUs available, so there are some task that cannot run in parallel and must wait.

It may happen that some task already sent messages and has reached the re-
ception stage: it is waiting to continue and subsequently blocking the task until a
message with the correct tag arrives. But other tasks may be waiting for the CPU
to begin the communication and didn’t send yet any message. When no CPUs are
left, a deadlock is produced as represented in the figure 7.4, where each chunk is
represented by a box node and the edges show which messages were sent.

In order to palliate the deadlock, we can avoid using the tag as a filter, so once
the sending is complete, the task waits for the reception of particles from any other
chunk. With this method, it is guarantee that no deadlock can occur, as before
a task enters the waiting state, after sending the message, another task will be
unlocked and can resume the execution:

#pragma oss task inout(*chunk) weakinout(chunk[0:Nc-1]) \
commutative(*sim) label(recv_particle_packet_MPI)

{
comm_packet_t *pkt;
...

MPI_Probe(MPI_ANY_SOURCE, tag, MPI_COMM_WORLD, &status);

source = status.MPI_SOURCE;
MPI_Get_count(&status, MPI_BYTE, &size);
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pkt = safe_malloc(size);

MPI_Recv(pkt, size, MPI_BYTE, source, tag, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

recv_chunk = &sim->plasma.chunks[pkt->dst_chunk[X]];

#pragma oss task inout(*pkt) inout(*recv_chunk) label(
unpack_comm_packet)

{
unpack_comm_packet(sim, recv_chunk, pkt);
free(pkt);

}
}

Listing 7.6: Reception of particles with MPI

It must be enforced that the calls to MPI_Recv and MPI_Probe are done in mutual
exclusion, as otherwise another task could receive the message between the tho calls.
The dependency with the sentinel *sim avoids the problem, which is released as soon
as the packet is received. Notice that, in order to create a nested task to process
the chunk stated in the packet, we must indicate in the weakinout directive all
posible chunks that may be selected. Then, only one will be used by the child task
to unpack the particles.

The downside of the described mechanism is the implicit complexity and the
amount of extra work needed to ensure a deadlock free execution, which can be
avoided with TAMPI. The deadlock is mitigated not by removing the tag, which
filters the chunk, but by setting the task to sleep once it enters in the waiting state,
so other tasks can begin the execution. The TAMPI library intercepts the calls to
MPI and informs the OmpSs-2 scheduler that the task can be put to sleep.

Using TAMPI only requires a minor modifications with respect to the original
implementation: the message size must be known at the receiver. The current
version of TAMPI doesn’t include MPI_Probe in the family of intercepted functions.
The MPI version first probes for the message to get the length and then allocates a
buffer to hold the entire message. A buffer of known size may be used to hold the
parts of the message while is being send. The message includes the complete size
of the message in the header, so after the reception of the first message, the whole
buffer can be allocated.

#pragma oss task out(*pkt) inout(*chunk) label(recv_particle_packet_TAMPI)
{

...

size = BUFSIZE;
pkt = safe_malloc(size);
MPI_Recv(pkt, size, MPI_BYTE, proc, tag, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);
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/* If more data is comming, realloc and receive it */
if(pkt->size > size)
{

done = size;
size = pkt->size;
parts_left = (size - done + (BUFSIZE - 1)) / BUFSIZE;

/* If the packet is only a fragment, continue until we
* fill the whole buffer */
pkt = realloc(pkt, size);
if(!pkt) abort();

requests = safe_malloc(parts_left * sizeof(MPI_Request));

/* Recv by chunks */
for(j=0,ptr=pkt,i=BUFSIZE; i<size; j++, i+=BUFSIZE)
{

left = size - i;
if(left > BUFSIZE)

left = size;

MPI_Irecv(ptr+i, left, MPI_BYTE, proc, tag,
MPI_COMM_WORLD, &requests[j]);

}

MPI_Waitall(parts_left, requests, MPI_STATUSES_IGNORE);
free(requests);

}
unpack_comm_packet(sim, chunk, pkt);
free(pkt);

}

Listing 7.7: Reception of particles with TAMPI

Note that all communications are done with MPI_BYTE, sending the packed struc-
tures as an array of bytes. This methods of transmission sends the data “as-is”—
MPI doesn’t perform any endianness adjustment. We assume the simulation will
run within nodes with the same endianness, otherwise MPI will need information of
each field or a manual process must be added before the message is unpacked. Ad-
ditionally, the structures sent over MPI are packed to avoid any holes in the buffer
sent.

7.2 Field communication

Each MPI process holds a block with the different fields of the assigned region of
space. Due to the interpolation process some elements of the neighbour fields are
needed to complete the interpolation, which implies that additional communication
is needed.
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7.2.1 Charge density ρ

Following the order of the simulation, first the ρ field is updated, where all particles
deposit the charge. Given a ρ field of size (nx, ny) an extra row ρny is added to
hold the first row of ρ of the next block ρ0, as shown in the figure 7.5. Notice that
an extra padding is required by the FFTW library, to accommodate intermediate
results, and must be taken into account when designing the communications.

ρ

ρ0

ρny

PaddingPadding

ρbuffer

Figure 7.5: The field ρ with the padding

Each process sends ρny to the next process, and receives ρ0 from the previous
one. The size of the message is constant and known beforehand, so it can the be
stored in the same buffer ρbuffer in each iteration, which is added to ρ0 to finally
complete ρ where the ghost is no longer needed.

If the ghost is sent before we begin the reception process, we can reuse ρny to
hold also ρbuffer. But the communications use non-blocking communications, which
may not finish when the process reaches the reception step, so an additional buffer
is used instead—a technique known as double buffering. Before each send the status
of the previous request is tested, and in case is not yet finished, we wait before
continue. The two main functions comm_mat_send and comm_mat_recv are used to
transfer a buffer of floating point numbers.

int comm_mat_send(sim_t *sim, double *data, int size, int dst,
int op, int dir, MPI_Request *req)

{
int tag = compute_tag(op, sim->iter, dir, COMM_TAG_DIR_SIZE);

if(*req)
MPI_Wait(req, MPI_STATUS_IGNORE);

return MPI_Isend(data, size, MPI_DOUBLE, dst, tag,
MPI_COMM_WORLD, req);

}

int comm_mat_recv(sim_t *sim, double *data, int size, int dst,
int op, int dir)
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{
int tag = compute_tag(op, sim->iter, dir, COMM_TAG_DIR_SIZE);

return MPI_Recv(data, size, MPI_DOUBLE, dst, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

7.2.2 Electric potential φ

After the solver, the result is stored in a similar way as ρ, with padding at the right.
However, now we have more ghosts at the top and at the bottom of φ, as they will
be needed to compute the electric field E. In the figure 7.6 the different regions can
be seen: In blue the ones which will be send, φ0 and φ1 to the previous process to
fill ϕny and ϕny+1, and φny−1 to be sent to the next process, to fill ϕ−1. Notice the

φ

φ0

φ1

φny−1

ϕ−1

ϕny

ϕny+1

PaddingPadding

Figure 7.6: The electric potential φ with the ghost rows (red) and padding (green)

use of the notation ϕ to denote the ghosts and φ the rows of the actual field.
It can be observed that the first two rows φ0 and φ1 are not consecutive in

memory, as they have the padding at the right. To avoid two messages or additional
copies, the two rows are sent with the padding included, which will be placed “as-is”
in the receiving process at ϕny and ϕny+1, as the padding region is ignored.

7.2.3 Electric field E

The electric field E can be computed from the ghosts of the electric potential φ
without the need of extra communications. The electric field Ex with a periodic
boundary is obtained from φ, as the whole space domain is available in the block in
the X dimension. In the case of Ey we will need the ghost row at ny, which is marked
in red in the figure 7.7, in order to interpolate the electric field in the particles of
the block. But the computation of the whole field can be produced from the extra
ghost rows stored in φ, which were precisely placed to avoid another communication
step.
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Ey

Ey(ny) Ghost

Figure 7.7: The electric field Ey with the ghost row at ny (red)
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Chapter 8

Analysis of performance

The time of the simulation will be used to characterize the performance when several
parameters are changed. The time is measured using the wall clock, and refers to the
time per iteration. Sometimes the different stages of the simulator will be measured
as well, to give more insight in the distribution of the time. Notice that each process
may start or end a iteration at different times, by in the long run all processes must
be synchronized. The measurements will take place only in the first process (with
rank zero).

At each iteration various factors may affect the iteration time and introduce a
random delay. We will model the simulation time as t = t̂ + et, where the true
simulation time t̂ is unknown but constant between iterations, and the error et is a
random variable with zero mean and unknown but finite variance σ2. Additionally,
we will assume that the error et is independent and identically distributed in each
iteration of the same configuration and that follows a normal distribution.

We can then consider the sequence of measured times T = t1, . . . , tn as inde-
pendent random variables from a common distribution with an unknown mean t̂
and finite standard deviation σ. The sample mean T can be approximated with a
certain degree of confidence by a process of sampling. The standard error of the
mean (SEM) will be used to get a confidence interval in which we can ensure the
true mean is located. The standard error of the mean is defined as:

ε =
σ√
n

(8.1)

As the standard deviation σ is unknown, following the assumption that the error
follows a normal distribution, we can use the student distribution to get the standard
error using the standard deviation of the sample s

ε = Zα
s√
n

(8.2)

With a significance level α = 0.05 we get from the t-student distribution the value
Z = 1.96, and we can obtain the confidence interval T ± ε where we can ensure
the true mean is located with a probability of 95% [9]. By setting the relative error
δ = ε/T to be lower than 1%, we obtain the limit error ε0 to be ε0 = 0.01T . Then,
if we stop the simulation process when the standard error of the mean is below ε0

ε = Zα
s√
n
< 0.01T (8.3)
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We can ensure that (a) with probability 0.95 the true mean t̂ is located in the interval
T ± ε, and (b) the relative error of the mean δ is lower than 1%.

The process of simulation will run for at least a minimum of 30 iterations. Then
it will continue until the relative error is below 1%, or the simulation time exceeds
30 minutes. All experiments were run in the MareNostrum 4 supercomputer [2],
using Intel MPI and the Intel icc compiler with the following modules:

• intel/2017.4

• fftw/3.3.6

• tampi/1.0

• impi/2017.4

• ompss-2/2019.06

• extrae/3.7.0

8.1 Performance model

Consider the real time of the simulation t̂(c) to be a function of a specific configura-
tion c. There are a lot of parameters that may be changed and have some influence
in the time per iteration, but we will focus only on the following ones.

• Np: Number of total particles.

• Ng: Number of total grid points.

• Nc: Number of plasma chunks.

• P : Number of total MPI processes.

• C: Number of total cores (the sum of cores in all processes).

• A: Whether TAMPI (A = 1) or MPI (A = 0) is being used.

A configuration is then completely specified as the tuple c = (Np, Ng, Nc, P, C,A).
The space of states of configurations possible is bigger than the available time for
experimentation, so we must choose a partial group which can reveal interesting
information of the effect in the iteration time.

8.1.1 Number of particles

The number of particles Np is one of the main parameters that affect the running
time of each iteration as it can be observed from the simulation process that at least
a complexity in O(Np) is expected—we need to cycle through each particle at every
iteration. To get an accurate relation, an experiment is run sweeping from 2× 106

to 4× 107 particles, with 32 cores and only one process. The number of grid points
is kept low at 10242 in order to avoid interference from the solver. We see in the
figure 8.1 how the time scales linearly with the number of particles, and the residuals
of the linear regression. With a determination coefficient of R2 = 0.99981, we can
estimate a time per particle of 51.4 µs with 32 cores.
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Figure 8.1: The number of particles Np is increased and the time per iteration t is measured.
A linear regression fit is shown, with the residuals at the left. Using one process and 32 CPUs
MPI communications are not needed. Configuration used (Np = 2× 106 to 4× 107, Ng = 10242,
Nc = 128, P = 1, C = 32, A = 1)

8.1.2 Number of grid points

The MFT solver uses the FFTW library to perform the FFT and solve the field
equation in each iteration, with an expected worst time complexity in O(Ng logNg).
An experiment with varying number of grid points from 20482 to 81922 is designed
to observe the grow in time. In the figure 8.2 it can be seen how the time grows with
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Figure 8.2: The effect of the variables Np and Ng to the time per iteration. Using one process and
32 CPUs (MPI communications are not needed).

the number of grid points following the complexity O(Ng logNg), but the variance
is much bigger than with the number of particles. Notice that the dispersion is not
due to random variations in the execution time, as the standard deviation for each
point is lower than its dispersion from the common distribution. The FFTW uses
an algorithm which benefits from sizes that can be decomposed into the product of
small multiples (2a ·3b ·5c ·7d . . .). However the number of points in the X axis must
be divisible by the number of plasma chunks, and some of the sizes tested had large
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primes in their decomposition.

8.2 Solver multithreading scalability
The simulator is designed to scale with the number of particles when the number of
cores or MPI processes are incremented—each chunk can be computed in parallel
both in the X and Y axis. But when the number of grid points is incremented, the
FFT solver must scale both in the number of CPUs and processes.

The space in Y is divided into equally sized blocks, which are assigned into MPI
processes, following the parallelization design of the FFTW. Additionally the library
offers two parallelization implementations for multithreading: Using OpenMP and
POSIX threads (pthreads). OpenMP is not compatible with OmpSs-2 as we have
one runtime already running so the pthread implementation was tested. Unfortu-
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Figure 8.3: The number of CPUs is increased with only one process: the solver cannot scale and
the time per iteration increases. Configuration used: Np = 5× 105, Ng = 8192× 8192.

nately, the FFTW library doesn’t show a good speedup, in fact worsens the time per
iteration when adding more threads with the configurations tested. In the figure 8.3
it can be shown how the time grows as the number of CPUs increases. The FFTW
documentation warns about this problem, claiming that it can only improve the
time with large enough matrices:

“A shared-memory machine is one in which all CPUs can directly ac-
cess the same main memory, and such machines are now common due
to the ubiquity of multi-core CPUs. FFTW’s multi-threading support
allows you to utilize these additional CPUs transparently from a single
program. However, this does not necessarily translate into performance
gains—when multiple threads/CPUs are employed, there is an overhead
required for synchronization that may outweigh the computational par-
allelism. Therefore, you can only benefit from threads if your problem
is sufficiently large.”—FFTW Online manual [1].

However, larger matrices are not useful to get more precise results, as usually is the
increase in the number of particles what provides more information of the behavior
of plasma in complex simulations.
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Figure 8.4: Tasks created inside the FFTW when using OmpSs-2: Up to 450 tasks are created in
rapid succession, with only 4 CPUs and 2 processes.

In order to avoid a scalability problem, another approach was tested: Adding
support for OmpSs-2 in the FFTW to enable multithreading, following the same
structure as OpenMP. The results obtained were similar as with the pthread case,
but more insight was gained in how the task were being created. In the figure 8.4
it can be shown that the overhead added by the large amount of created tasks
outweight any benefit that could be gained by multithreading.
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Figure 8.5: The number of CPUs per process is incremented while reducing the number of processes
(the total number of CPUs is set to 32 and is kept constant). The time per iteration is measured,
which leads to a characteristic U shape.

We can mitigate the problem by increasing the number of MPI processes. In
order to evaluate which ratio of processes and CPUs yields the best performance
several configurations are tested. With a fixed number of maximum CPUs available
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Figure 8.6: Comparison of MPI and TAMPI

set to 32, we increase the number of processes while we reduce the CPUs per process
as shown in the figure 8.5.

As the ratio of CPUs per process in incremented, while decreasing the number
of processes, the solver begins to increase the execution time. Meanwhile, the part
of the simulation involving the particles, which can be fully parallelized shows a
decrease in time. The optimal ratio for the chosen configuration seems to be around
4 CPUs per process.

8.3 TAMPI

The two modes of communication are compared with different configurations, in
order to evaluate the effect in the overall performance of the simulation. The chunk
size Nc determines the number of messages sent per process and is tested from
32 to 512. In the figure 8.6 it can be seen how the time is drastically reduced
when TAMPI is enabled. The performance difference is lower when the number of
processes increases, but is very significant with few processes. Notice the control case
with only one process were no MPI nor TAMPI communication is needed (shared
memory is used to exchange information between tasks).

It is also noted with MPI a saturation point with 512 chunks per process, where
the time does not improve with more processes. Different versions of OpenMPI
(3.1.1, 4.0.0 and 4.0.1) were also tested, and there was a extreme delay of more
than one order of magnitude with respect to the mean time per iteration with low
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probability of occurrence, and the causes are yet unknown. The same problem was
never observed with Intel MPI, but further investigation is needed to isolate the
issue and conclude that is due to OpenMPI.

In the following experiments, we will always enable TAMPI for the communica-
tions, unless explicitly stated otherwise.

8.4 Scalability

In order to evaluate the simulator in terms of scalability the two main metrics are
initially measured:

1. Strong scalability: The same configuration of problem is repeated with
increasing number of computing elements.

2. Weak scalability: The number of computing elements is increased, while the
amount of work assigned to each one is kept constant by changing the problem
configuration.
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Figure 8.7: Strong scaling with configuration: Np = 1× 108, Ng = 20482, Nc = 128, one process
per node, using each 48 cores.

For the strong scalability, a fixed configuration ofNp = 1× 108 particles, Ng = 20482

grid points and Nc = 128 chunks is used to run the simulator with increasing number
of computing nodes. Each node runs with 48 cores—all the available CPUs of the
machine. In the figure 8.7 the speedup and the efficiency are shown. The rapid
decay of efficiency is to be expected, as the solver cannot exploit the full 48 cores
and only one is used when solving the FFT. We can obtain more information of the
scalability of the simulator without the solver by disabling it—the physical result
of the simulation will be non-sense, but the same stages of the simulator will be
executed as if the solver was enabled. We see in the figure 8.8 how the efficiency
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Figure 8.8: Strong scaling with the solver disabled (the physical simulation is incorrect without
the solver, but the other stages of the simulation are properly executed as if they were genuine).
Using the same configuration: Np = 1× 108, Ng = 20482, Nc = 128, one process per node, using
each 48 cores.

now improves substantially, and indicates that the solver is acting as a bottle neck
which leads to a significant reduction in scalability.

In order to analyze the weak scalability, a configuration is prepared to remain
with constant work per computing elements (we will use the number of nodes, as
each one will run at full capacity, using the 48 CPUs). The configuration chosen has
1× 107 particles per CPU or 4.8× 108 per node. The number of chunks is set to
128 and the number of grid points to 20482. Similarly as for the strong scalability,
the number of nodes is tested from 1 to 32, in powers of 2. In the figure 8.9 the
simulator shows a steady efficiency, which slowly decreases after the 8 nodes.

8.5 Extended scalability
In order to get more information when other parameters vary, more experiments
were designed to show the effect in the efficiency. The solver is one of the main
factors that adversely affect the iteration time, which can be mitigated by varying
the ratio of CPUs per process, with the drawback of increasing the overhead in the
other phases of the computation that benefit from shared memory communication,
as identified in the figure 8.5.

A set of experiments with varying number of grid points were run, where the
number of CPUs per process is set to 1, 16 or 32. The number of total CPUs is
incremented to obtain the efficiency, and is shown in the figure 8.10.
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Figure 8.9: Weak scaling with 1× 107 particles per CPU.
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Figure 8.10: Extended scalability with increasing number of total CPUs, while the number of grid
points is incremented. Three cases are analyzed with a number of CPUs per process of 1, 16 and
32.
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Chapter 9

Discussion

9.1 Conclusions
The presented simulator faces challenging computational patterns that are repre-
sentative in real case scenarios, which were the main aim of this work.

Firstly, when using dependencies in the neighbour chunks a chain of dependencies
prevents their parallel execution and has been solved by the use of two different
techniques: the coloring of the chunks and the commutative directive. The model
of communications used with MPI, consisting in the use of probe and receive can
be proposed for the inclusion into TAMPI, as the current solution requires minor
modifications. However, the use of TAMPI leads to a more efficient execution and
improved performance, as the runtime can fully optimize the time by doing other
tasks and avoiding the waiting time between MPI calls.

Using the model provided by OmpSs-2 based on tasks, the parallelization of the
different stages of the simulation was possible. The only step which continues to
be sequential is the solver, for which a proposed solution is described for the future
work.

9.2 Future work
The main problem to be solved in the simulator is to address the scalability issues
presented by the FFT, as the mitigations tested don’t provide a good solution. One
possibility is the interoperability of the OmpSs-2 runtime, nanos6, with external
MPI processes with an additional mechanism of synchronization. In this way, the
simulator can be fully parallelized, even at the core level. A step by step scheme for
a configuration with c CPUs available per node and N nodes, is outlined as follows:

1. Begin the simulation as usual creating P = N master processes, each with at
least Nc ≥ 2c plasma chunks, to exploit the local parallelism of the n CPUs.

2. Place the fields ρ, φ and E in a shared memory region, accessible by other
child processes.

3. Create c MPI child processes in each master process, with access to the shared
memory and let them wait on a condition variable or the reception of a MPI
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message. Ensure the number of points Ng in the vertical dimension is divisible
by cP .

4. Continue the simulation until it reaches the solver stage.

5. Ensure all tasks are finished, and wake all the child processes and then wait
for them to finish.

6. In each child process execute the distributed FFTW with cP processes, and
use the shared memory to access the fields.

7. Once the FFT finishes, signal the master and put each child process to sleep
again, waiting for a signal.

8. In the master process, the φ field is now ready in the shared memory region.
If the simulation is not finished, go to step 4.

The key concept is that we are moving temporally the threads of the OmpSs-2
runtime away from the CPUs to let the MPI processes of the FFTW take control of
the full parallelism using all the available CPUs. No change is needed in the FFTW
library, and this method may benefit other programs with similar issues.

On the other hand, the physical results must be validated with a direct compar-
ison with other simulators, as is very easy simulate non-realistic behavior without
noticing. The different validation techniques provide some ground that the simula-
tion follows the expected behavior, but don’t guarantee any correctness.

Additionally, there are a large list of improvements that were planned and may
be tested in a future work:

• Introduce more than 2 dimensions.

• Fully electromagnetic simulation.

• Relativistic particle movement.

• Heterogeneous architecture (GPU+CPU).

• Better energy conserving codes.

• Test other interpolation methods (reduce noise at computational cost).

• Replace simulation units, so we avoid factor multiplications.

• Visualization of big simulations (paraview).

• Introduction of probe+receive operations in TAMPI.
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